MAINTAINERS: add myself under 'general project admin' section
[qemu.git] / target-arm / cpu.h
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #ifndef CPU_ARM_H
20 #define CPU_ARM_H
21
22 #define TARGET_LONG_BITS 32
23
24 #define ELF_MACHINE     EM_ARM
25
26 #define CPUArchState struct CPUARMState
27
28 #include "config.h"
29 #include "qemu-common.h"
30 #include "exec/cpu-defs.h"
31
32 #include "fpu/softfloat.h"
33
34 #define TARGET_HAS_ICE 1
35
36 #define EXCP_UDEF            1   /* undefined instruction */
37 #define EXCP_SWI             2   /* software interrupt */
38 #define EXCP_PREFETCH_ABORT  3
39 #define EXCP_DATA_ABORT      4
40 #define EXCP_IRQ             5
41 #define EXCP_FIQ             6
42 #define EXCP_BKPT            7
43 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
44 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
45 #define EXCP_STREX          10
46
47 #define ARMV7M_EXCP_RESET   1
48 #define ARMV7M_EXCP_NMI     2
49 #define ARMV7M_EXCP_HARD    3
50 #define ARMV7M_EXCP_MEM     4
51 #define ARMV7M_EXCP_BUS     5
52 #define ARMV7M_EXCP_USAGE   6
53 #define ARMV7M_EXCP_SVC     11
54 #define ARMV7M_EXCP_DEBUG   12
55 #define ARMV7M_EXCP_PENDSV  14
56 #define ARMV7M_EXCP_SYSTICK 15
57
58 /* ARM-specific interrupt pending bits.  */
59 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
60
61
62 typedef void ARMWriteCPFunc(void *opaque, int cp_info,
63                             int srcreg, int operand, uint32_t value);
64 typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
65                                int dstreg, int operand);
66
67 struct arm_boot_info;
68
69 #define NB_MMU_MODES 2
70
71 /* We currently assume float and double are IEEE single and double
72    precision respectively.
73    Doing runtime conversions is tricky because VFP registers may contain
74    integer values (eg. as the result of a FTOSI instruction).
75    s<2n> maps to the least significant half of d<n>
76    s<2n+1> maps to the most significant half of d<n>
77  */
78
79 typedef struct CPUARMState {
80     /* Regs for current mode.  */
81     uint32_t regs[16];
82     /* Frequently accessed CPSR bits are stored separately for efficiency.
83        This contains all the other bits.  Use cpsr_{read,write} to access
84        the whole CPSR.  */
85     uint32_t uncached_cpsr;
86     uint32_t spsr;
87
88     /* Banked registers.  */
89     uint32_t banked_spsr[6];
90     uint32_t banked_r13[6];
91     uint32_t banked_r14[6];
92
93     /* These hold r8-r12.  */
94     uint32_t usr_regs[5];
95     uint32_t fiq_regs[5];
96
97     /* cpsr flag cache for faster execution */
98     uint32_t CF; /* 0 or 1 */
99     uint32_t VF; /* V is the bit 31. All other bits are undefined */
100     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
101     uint32_t ZF; /* Z set if zero.  */
102     uint32_t QF; /* 0 or 1 */
103     uint32_t GE; /* cpsr[19:16] */
104     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
105     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
106
107     /* System control coprocessor (cp15) */
108     struct {
109         uint32_t c0_cpuid;
110         uint32_t c0_cssel; /* Cache size selection.  */
111         uint32_t c1_sys; /* System control register.  */
112         uint32_t c1_coproc; /* Coprocessor access register.  */
113         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
114         uint32_t c1_scr; /* secure config register.  */
115         uint32_t c2_base0; /* MMU translation table base 0.  */
116         uint32_t c2_base0_hi; /* MMU translation table base 0, high 32 bits */
117         uint32_t c2_base1; /* MMU translation table base 0.  */
118         uint32_t c2_base1_hi; /* MMU translation table base 1, high 32 bits */
119         uint32_t c2_control; /* MMU translation table base control.  */
120         uint32_t c2_mask; /* MMU translation table base selection mask.  */
121         uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
122         uint32_t c2_data; /* MPU data cachable bits.  */
123         uint32_t c2_insn; /* MPU instruction cachable bits.  */
124         uint32_t c3; /* MMU domain access control register
125                         MPU write buffer control.  */
126         uint32_t c5_insn; /* Fault status registers.  */
127         uint32_t c5_data;
128         uint32_t c6_region[8]; /* MPU base/size registers.  */
129         uint32_t c6_insn; /* Fault address registers.  */
130         uint32_t c6_data;
131         uint32_t c7_par;  /* Translation result. */
132         uint32_t c7_par_hi;  /* Translation result, high 32 bits */
133         uint32_t c9_insn; /* Cache lockdown registers.  */
134         uint32_t c9_data;
135         uint32_t c9_pmcr; /* performance monitor control register */
136         uint32_t c9_pmcnten; /* perf monitor counter enables */
137         uint32_t c9_pmovsr; /* perf monitor overflow status */
138         uint32_t c9_pmxevtyper; /* perf monitor event type */
139         uint32_t c9_pmuserenr; /* perf monitor user enable */
140         uint32_t c9_pminten; /* perf monitor interrupt enables */
141         uint32_t c13_fcse; /* FCSE PID.  */
142         uint32_t c13_context; /* Context ID.  */
143         uint32_t c13_tls1; /* User RW Thread register.  */
144         uint32_t c13_tls2; /* User RO Thread register.  */
145         uint32_t c13_tls3; /* Privileged Thread register.  */
146         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
147         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
148         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
149         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
150         uint32_t c15_threadid; /* TI debugger thread-ID.  */
151         uint32_t c15_config_base_address; /* SCU base address.  */
152         uint32_t c15_diagnostic; /* diagnostic register */
153         uint32_t c15_power_diagnostic;
154         uint32_t c15_power_control; /* power control */
155     } cp15;
156
157     struct {
158         uint32_t other_sp;
159         uint32_t vecbase;
160         uint32_t basepri;
161         uint32_t control;
162         int current_sp;
163         int exception;
164         int pending_exception;
165     } v7m;
166
167     /* Thumb-2 EE state.  */
168     uint32_t teecr;
169     uint32_t teehbr;
170
171     /* VFP coprocessor state.  */
172     struct {
173         float64 regs[32];
174
175         uint32_t xregs[16];
176         /* We store these fpcsr fields separately for convenience.  */
177         int vec_len;
178         int vec_stride;
179
180         /* scratch space when Tn are not sufficient.  */
181         uint32_t scratch[8];
182
183         /* fp_status is the "normal" fp status. standard_fp_status retains
184          * values corresponding to the ARM "Standard FPSCR Value", ie
185          * default-NaN, flush-to-zero, round-to-nearest and is used by
186          * any operations (generally Neon) which the architecture defines
187          * as controlled by the standard FPSCR value rather than the FPSCR.
188          *
189          * To avoid having to transfer exception bits around, we simply
190          * say that the FPSCR cumulative exception flags are the logical
191          * OR of the flags in the two fp statuses. This relies on the
192          * only thing which needs to read the exception flags being
193          * an explicit FPSCR read.
194          */
195         float_status fp_status;
196         float_status standard_fp_status;
197     } vfp;
198     uint32_t exclusive_addr;
199     uint32_t exclusive_val;
200     uint32_t exclusive_high;
201 #if defined(CONFIG_USER_ONLY)
202     uint32_t exclusive_test;
203     uint32_t exclusive_info;
204 #endif
205
206     /* iwMMXt coprocessor state.  */
207     struct {
208         uint64_t regs[16];
209         uint64_t val;
210
211         uint32_t cregs[16];
212     } iwmmxt;
213
214     /* For mixed endian mode.  */
215     bool bswap_code;
216
217 #if defined(CONFIG_USER_ONLY)
218     /* For usermode syscall translation.  */
219     int eabi;
220 #endif
221
222     CPU_COMMON
223
224     /* These fields after the common ones so they are preserved on reset.  */
225
226     /* Internal CPU feature flags.  */
227     uint64_t features;
228
229     void *nvic;
230     const struct arm_boot_info *boot_info;
231 } CPUARMState;
232
233 #include "cpu-qom.h"
234
235 ARMCPU *cpu_arm_init(const char *cpu_model);
236 void arm_translate_init(void);
237 int cpu_arm_exec(CPUARMState *s);
238 void do_interrupt(CPUARMState *);
239 void switch_mode(CPUARMState *, int);
240 uint32_t do_arm_semihosting(CPUARMState *env);
241
242 /* you can call this signal handler from your SIGBUS and SIGSEGV
243    signal handlers to inform the virtual CPU of exceptions. non zero
244    is returned if the signal was handled by the virtual CPU.  */
245 int cpu_arm_signal_handler(int host_signum, void *pinfo,
246                            void *puc);
247 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
248                               int mmu_idx);
249 #define cpu_handle_mmu_fault cpu_arm_handle_mmu_fault
250
251 static inline void cpu_set_tls(CPUARMState *env, target_ulong newtls)
252 {
253   env->cp15.c13_tls2 = newtls;
254 }
255
256 #define CPSR_M (0x1f)
257 #define CPSR_T (1 << 5)
258 #define CPSR_F (1 << 6)
259 #define CPSR_I (1 << 7)
260 #define CPSR_A (1 << 8)
261 #define CPSR_E (1 << 9)
262 #define CPSR_IT_2_7 (0xfc00)
263 #define CPSR_GE (0xf << 16)
264 #define CPSR_RESERVED (0xf << 20)
265 #define CPSR_J (1 << 24)
266 #define CPSR_IT_0_1 (3 << 25)
267 #define CPSR_Q (1 << 27)
268 #define CPSR_V (1 << 28)
269 #define CPSR_C (1 << 29)
270 #define CPSR_Z (1 << 30)
271 #define CPSR_N (1 << 31)
272 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
273
274 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
275 #define CACHED_CPSR_BITS (CPSR_T | CPSR_GE | CPSR_IT | CPSR_Q | CPSR_NZCV)
276 /* Bits writable in user mode.  */
277 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
278 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
279 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
280
281 /* Return the current CPSR value.  */
282 uint32_t cpsr_read(CPUARMState *env);
283 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.  */
284 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
285
286 /* Return the current xPSR value.  */
287 static inline uint32_t xpsr_read(CPUARMState *env)
288 {
289     int ZF;
290     ZF = (env->ZF == 0);
291     return (env->NF & 0x80000000) | (ZF << 30)
292         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
293         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
294         | ((env->condexec_bits & 0xfc) << 8)
295         | env->v7m.exception;
296 }
297
298 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
299 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
300 {
301     if (mask & CPSR_NZCV) {
302         env->ZF = (~val) & CPSR_Z;
303         env->NF = val;
304         env->CF = (val >> 29) & 1;
305         env->VF = (val << 3) & 0x80000000;
306     }
307     if (mask & CPSR_Q)
308         env->QF = ((val & CPSR_Q) != 0);
309     if (mask & (1 << 24))
310         env->thumb = ((val & (1 << 24)) != 0);
311     if (mask & CPSR_IT_0_1) {
312         env->condexec_bits &= ~3;
313         env->condexec_bits |= (val >> 25) & 3;
314     }
315     if (mask & CPSR_IT_2_7) {
316         env->condexec_bits &= 3;
317         env->condexec_bits |= (val >> 8) & 0xfc;
318     }
319     if (mask & 0x1ff) {
320         env->v7m.exception = val & 0x1ff;
321     }
322 }
323
324 /* Return the current FPSCR value.  */
325 uint32_t vfp_get_fpscr(CPUARMState *env);
326 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
327
328 enum arm_cpu_mode {
329   ARM_CPU_MODE_USR = 0x10,
330   ARM_CPU_MODE_FIQ = 0x11,
331   ARM_CPU_MODE_IRQ = 0x12,
332   ARM_CPU_MODE_SVC = 0x13,
333   ARM_CPU_MODE_ABT = 0x17,
334   ARM_CPU_MODE_UND = 0x1b,
335   ARM_CPU_MODE_SYS = 0x1f
336 };
337
338 /* VFP system registers.  */
339 #define ARM_VFP_FPSID   0
340 #define ARM_VFP_FPSCR   1
341 #define ARM_VFP_MVFR1   6
342 #define ARM_VFP_MVFR0   7
343 #define ARM_VFP_FPEXC   8
344 #define ARM_VFP_FPINST  9
345 #define ARM_VFP_FPINST2 10
346
347 /* iwMMXt coprocessor control registers.  */
348 #define ARM_IWMMXT_wCID         0
349 #define ARM_IWMMXT_wCon         1
350 #define ARM_IWMMXT_wCSSF        2
351 #define ARM_IWMMXT_wCASF        3
352 #define ARM_IWMMXT_wCGR0        8
353 #define ARM_IWMMXT_wCGR1        9
354 #define ARM_IWMMXT_wCGR2        10
355 #define ARM_IWMMXT_wCGR3        11
356
357 /* If adding a feature bit which corresponds to a Linux ELF
358  * HWCAP bit, remember to update the feature-bit-to-hwcap
359  * mapping in linux-user/elfload.c:get_elf_hwcap().
360  */
361 enum arm_features {
362     ARM_FEATURE_VFP,
363     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
364     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
365     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
366     ARM_FEATURE_V6,
367     ARM_FEATURE_V6K,
368     ARM_FEATURE_V7,
369     ARM_FEATURE_THUMB2,
370     ARM_FEATURE_MPU,    /* Only has Memory Protection Unit, not full MMU.  */
371     ARM_FEATURE_VFP3,
372     ARM_FEATURE_VFP_FP16,
373     ARM_FEATURE_NEON,
374     ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
375     ARM_FEATURE_M, /* Microcontroller profile.  */
376     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
377     ARM_FEATURE_THUMB2EE,
378     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
379     ARM_FEATURE_V4T,
380     ARM_FEATURE_V5,
381     ARM_FEATURE_STRONGARM,
382     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
383     ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
384     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
385     ARM_FEATURE_GENERIC_TIMER,
386     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
387     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
388     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
389     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
390     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
391     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
392     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
393     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
394 };
395
396 static inline int arm_feature(CPUARMState *env, int feature)
397 {
398     return (env->features & (1ULL << feature)) != 0;
399 }
400
401 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
402
403 /* Interface between CPU and Interrupt controller.  */
404 void armv7m_nvic_set_pending(void *opaque, int irq);
405 int armv7m_nvic_acknowledge_irq(void *opaque);
406 void armv7m_nvic_complete_irq(void *opaque, int irq);
407
408 /* Interface for defining coprocessor registers.
409  * Registers are defined in tables of arm_cp_reginfo structs
410  * which are passed to define_arm_cp_regs().
411  */
412
413 /* When looking up a coprocessor register we look for it
414  * via an integer which encodes all of:
415  *  coprocessor number
416  *  Crn, Crm, opc1, opc2 fields
417  *  32 or 64 bit register (ie is it accessed via MRC/MCR
418  *    or via MRRC/MCRR?)
419  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
420  * (In this case crn and opc2 should be zero.)
421  */
422 #define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2)   \
423     (((cp) << 16) | ((is64) << 15) | ((crn) << 11) |    \
424      ((crm) << 7) | ((opc1) << 3) | (opc2))
425
426 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
427  * special-behaviour cp reg and bits [15..8] indicate what behaviour
428  * it has. Otherwise it is a simple cp reg, where CONST indicates that
429  * TCG can assume the value to be constant (ie load at translate time)
430  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
431  * indicates that the TB should not be ended after a write to this register
432  * (the default is that the TB ends after cp writes). OVERRIDE permits
433  * a register definition to override a previous definition for the
434  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
435  * old must have the OVERRIDE bit set.
436  */
437 #define ARM_CP_SPECIAL 1
438 #define ARM_CP_CONST 2
439 #define ARM_CP_64BIT 4
440 #define ARM_CP_SUPPRESS_TB_END 8
441 #define ARM_CP_OVERRIDE 16
442 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
443 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
444 #define ARM_LAST_SPECIAL ARM_CP_WFI
445 /* Used only as a terminator for ARMCPRegInfo lists */
446 #define ARM_CP_SENTINEL 0xffff
447 /* Mask of only the flag bits in a type field */
448 #define ARM_CP_FLAG_MASK 0x1f
449
450 /* Return true if cptype is a valid type field. This is used to try to
451  * catch errors where the sentinel has been accidentally left off the end
452  * of a list of registers.
453  */
454 static inline bool cptype_valid(int cptype)
455 {
456     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
457         || ((cptype & ARM_CP_SPECIAL) &&
458             (cptype <= ARM_LAST_SPECIAL));
459 }
460
461 /* Access rights:
462  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
463  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
464  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
465  * (ie any of the privileged modes in Secure state, or Monitor mode).
466  * If a register is accessible in one privilege level it's always accessible
467  * in higher privilege levels too. Since "Secure PL1" also follows this rule
468  * (ie anything visible in PL2 is visible in S-PL1, some things are only
469  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
470  * terminology a little and call this PL3.
471  *
472  * If access permissions for a register are more complex than can be
473  * described with these bits, then use a laxer set of restrictions, and
474  * do the more restrictive/complex check inside a helper function.
475  */
476 #define PL3_R 0x80
477 #define PL3_W 0x40
478 #define PL2_R (0x20 | PL3_R)
479 #define PL2_W (0x10 | PL3_W)
480 #define PL1_R (0x08 | PL2_R)
481 #define PL1_W (0x04 | PL2_W)
482 #define PL0_R (0x02 | PL1_R)
483 #define PL0_W (0x01 | PL1_W)
484
485 #define PL3_RW (PL3_R | PL3_W)
486 #define PL2_RW (PL2_R | PL2_W)
487 #define PL1_RW (PL1_R | PL1_W)
488 #define PL0_RW (PL0_R | PL0_W)
489
490 static inline int arm_current_pl(CPUARMState *env)
491 {
492     if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
493         return 0;
494     }
495     /* We don't currently implement the Virtualization or TrustZone
496      * extensions, so PL2 and PL3 don't exist for us.
497      */
498     return 1;
499 }
500
501 typedef struct ARMCPRegInfo ARMCPRegInfo;
502
503 /* Access functions for coprocessor registers. These should return
504  * 0 on success, or one of the EXCP_* constants if access should cause
505  * an exception (in which case *value is not written).
506  */
507 typedef int CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque,
508                      uint64_t *value);
509 typedef int CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
510                       uint64_t value);
511 /* Hook function for register reset */
512 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
513
514 #define CP_ANY 0xff
515
516 /* Definition of an ARM coprocessor register */
517 struct ARMCPRegInfo {
518     /* Name of register (useful mainly for debugging, need not be unique) */
519     const char *name;
520     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
521      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
522      * 'wildcard' field -- any value of that field in the MRC/MCR insn
523      * will be decoded to this register. The register read and write
524      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
525      * used by the program, so it is possible to register a wildcard and
526      * then behave differently on read/write if necessary.
527      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
528      * must both be zero.
529      */
530     uint8_t cp;
531     uint8_t crn;
532     uint8_t crm;
533     uint8_t opc1;
534     uint8_t opc2;
535     /* Register type: ARM_CP_* bits/values */
536     int type;
537     /* Access rights: PL*_[RW] */
538     int access;
539     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
540      * this register was defined: can be used to hand data through to the
541      * register read/write functions, since they are passed the ARMCPRegInfo*.
542      */
543     void *opaque;
544     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
545      * fieldoffset is non-zero, the reset value of the register.
546      */
547     uint64_t resetvalue;
548     /* Offset of the field in CPUARMState for this register. This is not
549      * needed if either:
550      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
551      *  2. both readfn and writefn are specified
552      */
553     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
554     /* Function for handling reads of this register. If NULL, then reads
555      * will be done by loading from the offset into CPUARMState specified
556      * by fieldoffset.
557      */
558     CPReadFn *readfn;
559     /* Function for handling writes of this register. If NULL, then writes
560      * will be done by writing to the offset into CPUARMState specified
561      * by fieldoffset.
562      */
563     CPWriteFn *writefn;
564     /* Function for resetting the register. If NULL, then reset will be done
565      * by writing resetvalue to the field specified in fieldoffset. If
566      * fieldoffset is 0 then no reset will be done.
567      */
568     CPResetFn *resetfn;
569 };
570
571 /* Macros which are lvalues for the field in CPUARMState for the
572  * ARMCPRegInfo *ri.
573  */
574 #define CPREG_FIELD32(env, ri) \
575     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
576 #define CPREG_FIELD64(env, ri) \
577     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
578
579 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
580
581 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
582                                     const ARMCPRegInfo *regs, void *opaque);
583 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
584                                        const ARMCPRegInfo *regs, void *opaque);
585 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
586 {
587     define_arm_cp_regs_with_opaque(cpu, regs, 0);
588 }
589 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
590 {
591     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
592 }
593 const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp);
594
595 /* CPWriteFn that can be used to implement writes-ignored behaviour */
596 int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
597                         uint64_t value);
598 /* CPReadFn that can be used for read-as-zero behaviour */
599 int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value);
600
601 static inline bool cp_access_ok(CPUARMState *env,
602                                 const ARMCPRegInfo *ri, int isread)
603 {
604     return (ri->access >> ((arm_current_pl(env) * 2) + isread)) & 1;
605 }
606
607 /* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
608    Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
609    conventional cores (ie. Application or Realtime profile).  */
610
611 #define IS_M(env) arm_feature(env, ARM_FEATURE_M)
612
613 #define ARM_CPUID_TI915T      0x54029152
614 #define ARM_CPUID_TI925T      0x54029252
615
616 #if defined(CONFIG_USER_ONLY)
617 #define TARGET_PAGE_BITS 12
618 #else
619 /* The ARM MMU allows 1k pages.  */
620 /* ??? Linux doesn't actually use these, and they're deprecated in recent
621    architecture revisions.  Maybe a configure option to disable them.  */
622 #define TARGET_PAGE_BITS 10
623 #endif
624
625 #define TARGET_PHYS_ADDR_SPACE_BITS 40
626 #define TARGET_VIRT_ADDR_SPACE_BITS 32
627
628 static inline CPUARMState *cpu_init(const char *cpu_model)
629 {
630     ARMCPU *cpu = cpu_arm_init(cpu_model);
631     if (cpu) {
632         return &cpu->env;
633     }
634     return NULL;
635 }
636
637 #define cpu_exec cpu_arm_exec
638 #define cpu_gen_code cpu_arm_gen_code
639 #define cpu_signal_handler cpu_arm_signal_handler
640 #define cpu_list arm_cpu_list
641
642 #define CPU_SAVE_VERSION 9
643
644 /* MMU modes definitions */
645 #define MMU_MODE0_SUFFIX _kernel
646 #define MMU_MODE1_SUFFIX _user
647 #define MMU_USER_IDX 1
648 static inline int cpu_mmu_index (CPUARMState *env)
649 {
650     return (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR ? 1 : 0;
651 }
652
653 #if defined(CONFIG_USER_ONLY)
654 static inline void cpu_clone_regs(CPUARMState *env, target_ulong newsp)
655 {
656     if (newsp)
657         env->regs[13] = newsp;
658     env->regs[0] = 0;
659 }
660 #endif
661
662 #include "exec/cpu-all.h"
663
664 /* Bit usage in the TB flags field: */
665 #define ARM_TBFLAG_THUMB_SHIFT      0
666 #define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
667 #define ARM_TBFLAG_VECLEN_SHIFT     1
668 #define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
669 #define ARM_TBFLAG_VECSTRIDE_SHIFT  4
670 #define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
671 #define ARM_TBFLAG_PRIV_SHIFT       6
672 #define ARM_TBFLAG_PRIV_MASK        (1 << ARM_TBFLAG_PRIV_SHIFT)
673 #define ARM_TBFLAG_VFPEN_SHIFT      7
674 #define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
675 #define ARM_TBFLAG_CONDEXEC_SHIFT   8
676 #define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
677 #define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
678 #define ARM_TBFLAG_BSWAP_CODE_MASK  (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
679 /* Bits 31..17 are currently unused. */
680
681 /* some convenience accessor macros */
682 #define ARM_TBFLAG_THUMB(F) \
683     (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
684 #define ARM_TBFLAG_VECLEN(F) \
685     (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
686 #define ARM_TBFLAG_VECSTRIDE(F) \
687     (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
688 #define ARM_TBFLAG_PRIV(F) \
689     (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
690 #define ARM_TBFLAG_VFPEN(F) \
691     (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
692 #define ARM_TBFLAG_CONDEXEC(F) \
693     (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
694 #define ARM_TBFLAG_BSWAP_CODE(F) \
695     (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
696
697 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
698                                         target_ulong *cs_base, int *flags)
699 {
700     int privmode;
701     *pc = env->regs[15];
702     *cs_base = 0;
703     *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
704         | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
705         | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
706         | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
707         | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
708     if (arm_feature(env, ARM_FEATURE_M)) {
709         privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
710     } else {
711         privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
712     }
713     if (privmode) {
714         *flags |= ARM_TBFLAG_PRIV_MASK;
715     }
716     if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
717         *flags |= ARM_TBFLAG_VFPEN_MASK;
718     }
719 }
720
721 static inline bool cpu_has_work(CPUState *cpu)
722 {
723     CPUARMState *env = &ARM_CPU(cpu)->env;
724
725     return env->interrupt_request &
726         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB);
727 }
728
729 #include "exec/exec-all.h"
730
731 static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
732 {
733     env->regs[15] = tb->pc;
734 }
735
736 /* Load an instruction and return it in the standard little-endian order */
737 static inline uint32_t arm_ldl_code(CPUARMState *env, uint32_t addr,
738                                     bool do_swap)
739 {
740     uint32_t insn = cpu_ldl_code(env, addr);
741     if (do_swap) {
742         return bswap32(insn);
743     }
744     return insn;
745 }
746
747 /* Ditto, for a halfword (Thumb) instruction */
748 static inline uint16_t arm_lduw_code(CPUARMState *env, uint32_t addr,
749                                      bool do_swap)
750 {
751     uint16_t insn = cpu_lduw_code(env, addr);
752     if (do_swap) {
753         return bswap16(insn);
754     }
755     return insn;
756 }
757
758 #endif