migration: fix parameter validation on ram load
[qemu.git] / arch_init.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #ifndef _WIN32
28 #include <sys/types.h>
29 #include <sys/mman.h>
30 #endif
31 #include "config.h"
32 #include "monitor/monitor.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "sysemu/arch_init.h"
37 #include "audio/audio.h"
38 #include "hw/i386/pc.h"
39 #include "hw/pci/pci.h"
40 #include "hw/audio/audio.h"
41 #include "sysemu/kvm.h"
42 #include "migration/migration.h"
43 #include "hw/i386/smbios.h"
44 #include "exec/address-spaces.h"
45 #include "hw/audio/pcspk.h"
46 #include "migration/page_cache.h"
47 #include "qemu/config-file.h"
48 #include "qemu/error-report.h"
49 #include "qmp-commands.h"
50 #include "trace.h"
51 #include "exec/cpu-all.h"
52 #include "exec/ram_addr.h"
53 #include "hw/acpi/acpi.h"
54 #include "qemu/host-utils.h"
55
56 #ifdef DEBUG_ARCH_INIT
57 #define DPRINTF(fmt, ...) \
58 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
59 #else
60 #define DPRINTF(fmt, ...) \
61 do { } while (0)
62 #endif
63
64 #ifdef TARGET_SPARC
65 int graphic_width = 1024;
66 int graphic_height = 768;
67 int graphic_depth = 8;
68 #else
69 int graphic_width = 800;
70 int graphic_height = 600;
71 int graphic_depth = 32;
72 #endif
73
74
75 #if defined(TARGET_ALPHA)
76 #define QEMU_ARCH QEMU_ARCH_ALPHA
77 #elif defined(TARGET_ARM)
78 #define QEMU_ARCH QEMU_ARCH_ARM
79 #elif defined(TARGET_CRIS)
80 #define QEMU_ARCH QEMU_ARCH_CRIS
81 #elif defined(TARGET_I386)
82 #define QEMU_ARCH QEMU_ARCH_I386
83 #elif defined(TARGET_M68K)
84 #define QEMU_ARCH QEMU_ARCH_M68K
85 #elif defined(TARGET_LM32)
86 #define QEMU_ARCH QEMU_ARCH_LM32
87 #elif defined(TARGET_MICROBLAZE)
88 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
89 #elif defined(TARGET_MIPS)
90 #define QEMU_ARCH QEMU_ARCH_MIPS
91 #elif defined(TARGET_MOXIE)
92 #define QEMU_ARCH QEMU_ARCH_MOXIE
93 #elif defined(TARGET_OPENRISC)
94 #define QEMU_ARCH QEMU_ARCH_OPENRISC
95 #elif defined(TARGET_PPC)
96 #define QEMU_ARCH QEMU_ARCH_PPC
97 #elif defined(TARGET_S390X)
98 #define QEMU_ARCH QEMU_ARCH_S390X
99 #elif defined(TARGET_SH4)
100 #define QEMU_ARCH QEMU_ARCH_SH4
101 #elif defined(TARGET_SPARC)
102 #define QEMU_ARCH QEMU_ARCH_SPARC
103 #elif defined(TARGET_XTENSA)
104 #define QEMU_ARCH QEMU_ARCH_XTENSA
105 #elif defined(TARGET_UNICORE32)
106 #define QEMU_ARCH QEMU_ARCH_UNICORE32
107 #elif defined(TARGET_TRICORE)
108 #define QEMU_ARCH QEMU_ARCH_TRICORE
109 #endif
110
111 const uint32_t arch_type = QEMU_ARCH;
112 static bool mig_throttle_on;
113 static int dirty_rate_high_cnt;
114 static void check_guest_throttling(void);
115
116 static uint64_t bitmap_sync_count;
117
118 /***********************************************************/
119 /* ram save/restore */
120
121 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
122 #define RAM_SAVE_FLAG_COMPRESS 0x02
123 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
124 #define RAM_SAVE_FLAG_PAGE 0x08
125 #define RAM_SAVE_FLAG_EOS 0x10
126 #define RAM_SAVE_FLAG_CONTINUE 0x20
127 #define RAM_SAVE_FLAG_XBZRLE 0x40
128 /* 0x80 is reserved in migration.h start with 0x100 next */
129
130 static struct defconfig_file {
131 const char *filename;
132 /* Indicates it is an user config file (disabled by -no-user-config) */
133 bool userconfig;
134 } default_config_files[] = {
135 { CONFIG_QEMU_CONFDIR "/qemu.conf", true },
136 { CONFIG_QEMU_CONFDIR "/target-" TARGET_NAME ".conf", true },
137 { NULL }, /* end of list */
138 };
139
140 static const uint8_t ZERO_TARGET_PAGE[TARGET_PAGE_SIZE];
141
142 int qemu_read_default_config_files(bool userconfig)
143 {
144 int ret;
145 struct defconfig_file *f;
146
147 for (f = default_config_files; f->filename; f++) {
148 if (!userconfig && f->userconfig) {
149 continue;
150 }
151 ret = qemu_read_config_file(f->filename);
152 if (ret < 0 && ret != -ENOENT) {
153 return ret;
154 }
155 }
156
157 return 0;
158 }
159
160 static inline bool is_zero_range(uint8_t *p, uint64_t size)
161 {
162 return buffer_find_nonzero_offset(p, size) == size;
163 }
164
165 /* struct contains XBZRLE cache and a static page
166 used by the compression */
167 static struct {
168 /* buffer used for XBZRLE encoding */
169 uint8_t *encoded_buf;
170 /* buffer for storing page content */
171 uint8_t *current_buf;
172 /* Cache for XBZRLE, Protected by lock. */
173 PageCache *cache;
174 QemuMutex lock;
175 } XBZRLE;
176
177 /* buffer used for XBZRLE decoding */
178 static uint8_t *xbzrle_decoded_buf;
179
180 static void XBZRLE_cache_lock(void)
181 {
182 if (migrate_use_xbzrle())
183 qemu_mutex_lock(&XBZRLE.lock);
184 }
185
186 static void XBZRLE_cache_unlock(void)
187 {
188 if (migrate_use_xbzrle())
189 qemu_mutex_unlock(&XBZRLE.lock);
190 }
191
192 /*
193 * called from qmp_migrate_set_cache_size in main thread, possibly while
194 * a migration is in progress.
195 * A running migration maybe using the cache and might finish during this
196 * call, hence changes to the cache are protected by XBZRLE.lock().
197 */
198 int64_t xbzrle_cache_resize(int64_t new_size)
199 {
200 PageCache *new_cache;
201 int64_t ret;
202
203 if (new_size < TARGET_PAGE_SIZE) {
204 return -1;
205 }
206
207 XBZRLE_cache_lock();
208
209 if (XBZRLE.cache != NULL) {
210 if (pow2floor(new_size) == migrate_xbzrle_cache_size()) {
211 goto out_new_size;
212 }
213 new_cache = cache_init(new_size / TARGET_PAGE_SIZE,
214 TARGET_PAGE_SIZE);
215 if (!new_cache) {
216 error_report("Error creating cache");
217 ret = -1;
218 goto out;
219 }
220
221 cache_fini(XBZRLE.cache);
222 XBZRLE.cache = new_cache;
223 }
224
225 out_new_size:
226 ret = pow2floor(new_size);
227 out:
228 XBZRLE_cache_unlock();
229 return ret;
230 }
231
232 /* accounting for migration statistics */
233 typedef struct AccountingInfo {
234 uint64_t dup_pages;
235 uint64_t skipped_pages;
236 uint64_t norm_pages;
237 uint64_t iterations;
238 uint64_t xbzrle_bytes;
239 uint64_t xbzrle_pages;
240 uint64_t xbzrle_cache_miss;
241 double xbzrle_cache_miss_rate;
242 uint64_t xbzrle_overflows;
243 } AccountingInfo;
244
245 static AccountingInfo acct_info;
246
247 static void acct_clear(void)
248 {
249 memset(&acct_info, 0, sizeof(acct_info));
250 }
251
252 uint64_t dup_mig_bytes_transferred(void)
253 {
254 return acct_info.dup_pages * TARGET_PAGE_SIZE;
255 }
256
257 uint64_t dup_mig_pages_transferred(void)
258 {
259 return acct_info.dup_pages;
260 }
261
262 uint64_t skipped_mig_bytes_transferred(void)
263 {
264 return acct_info.skipped_pages * TARGET_PAGE_SIZE;
265 }
266
267 uint64_t skipped_mig_pages_transferred(void)
268 {
269 return acct_info.skipped_pages;
270 }
271
272 uint64_t norm_mig_bytes_transferred(void)
273 {
274 return acct_info.norm_pages * TARGET_PAGE_SIZE;
275 }
276
277 uint64_t norm_mig_pages_transferred(void)
278 {
279 return acct_info.norm_pages;
280 }
281
282 uint64_t xbzrle_mig_bytes_transferred(void)
283 {
284 return acct_info.xbzrle_bytes;
285 }
286
287 uint64_t xbzrle_mig_pages_transferred(void)
288 {
289 return acct_info.xbzrle_pages;
290 }
291
292 uint64_t xbzrle_mig_pages_cache_miss(void)
293 {
294 return acct_info.xbzrle_cache_miss;
295 }
296
297 double xbzrle_mig_cache_miss_rate(void)
298 {
299 return acct_info.xbzrle_cache_miss_rate;
300 }
301
302 uint64_t xbzrle_mig_pages_overflow(void)
303 {
304 return acct_info.xbzrle_overflows;
305 }
306
307 static size_t save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
308 int cont, int flag)
309 {
310 size_t size;
311
312 qemu_put_be64(f, offset | cont | flag);
313 size = 8;
314
315 if (!cont) {
316 qemu_put_byte(f, strlen(block->idstr));
317 qemu_put_buffer(f, (uint8_t *)block->idstr,
318 strlen(block->idstr));
319 size += 1 + strlen(block->idstr);
320 }
321 return size;
322 }
323
324 /* This is the last block that we have visited serching for dirty pages
325 */
326 static RAMBlock *last_seen_block;
327 /* This is the last block from where we have sent data */
328 static RAMBlock *last_sent_block;
329 static ram_addr_t last_offset;
330 static unsigned long *migration_bitmap;
331 static uint64_t migration_dirty_pages;
332 static uint32_t last_version;
333 static bool ram_bulk_stage;
334
335 /* Update the xbzrle cache to reflect a page that's been sent as all 0.
336 * The important thing is that a stale (not-yet-0'd) page be replaced
337 * by the new data.
338 * As a bonus, if the page wasn't in the cache it gets added so that
339 * when a small write is made into the 0'd page it gets XBZRLE sent
340 */
341 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
342 {
343 if (ram_bulk_stage || !migrate_use_xbzrle()) {
344 return;
345 }
346
347 /* We don't care if this fails to allocate a new cache page
348 * as long as it updated an old one */
349 cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE);
350 }
351
352 #define ENCODING_FLAG_XBZRLE 0x1
353
354 static int save_xbzrle_page(QEMUFile *f, uint8_t **current_data,
355 ram_addr_t current_addr, RAMBlock *block,
356 ram_addr_t offset, int cont, bool last_stage)
357 {
358 int encoded_len = 0, bytes_sent = -1;
359 uint8_t *prev_cached_page;
360
361 if (!cache_is_cached(XBZRLE.cache, current_addr)) {
362 acct_info.xbzrle_cache_miss++;
363 if (!last_stage) {
364 if (cache_insert(XBZRLE.cache, current_addr, *current_data) == -1) {
365 return -1;
366 } else {
367 /* update *current_data when the page has been
368 inserted into cache */
369 *current_data = get_cached_data(XBZRLE.cache, current_addr);
370 }
371 }
372 return -1;
373 }
374
375 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
376
377 /* save current buffer into memory */
378 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
379
380 /* XBZRLE encoding (if there is no overflow) */
381 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
382 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
383 TARGET_PAGE_SIZE);
384 if (encoded_len == 0) {
385 DPRINTF("Skipping unmodified page\n");
386 return 0;
387 } else if (encoded_len == -1) {
388 DPRINTF("Overflow\n");
389 acct_info.xbzrle_overflows++;
390 /* update data in the cache */
391 if (!last_stage) {
392 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
393 *current_data = prev_cached_page;
394 }
395 return -1;
396 }
397
398 /* we need to update the data in the cache, in order to get the same data */
399 if (!last_stage) {
400 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
401 }
402
403 /* Send XBZRLE based compressed page */
404 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
405 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
406 qemu_put_be16(f, encoded_len);
407 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
408 bytes_sent += encoded_len + 1 + 2;
409 acct_info.xbzrle_pages++;
410 acct_info.xbzrle_bytes += bytes_sent;
411
412 return bytes_sent;
413 }
414
415 static inline
416 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
417 ram_addr_t start)
418 {
419 unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
420 unsigned long nr = base + (start >> TARGET_PAGE_BITS);
421 uint64_t mr_size = TARGET_PAGE_ALIGN(memory_region_size(mr));
422 unsigned long size = base + (mr_size >> TARGET_PAGE_BITS);
423
424 unsigned long next;
425
426 if (ram_bulk_stage && nr > base) {
427 next = nr + 1;
428 } else {
429 next = find_next_bit(migration_bitmap, size, nr);
430 }
431
432 if (next < size) {
433 clear_bit(next, migration_bitmap);
434 migration_dirty_pages--;
435 }
436 return (next - base) << TARGET_PAGE_BITS;
437 }
438
439 static inline bool migration_bitmap_set_dirty(ram_addr_t addr)
440 {
441 bool ret;
442 int nr = addr >> TARGET_PAGE_BITS;
443
444 ret = test_and_set_bit(nr, migration_bitmap);
445
446 if (!ret) {
447 migration_dirty_pages++;
448 }
449 return ret;
450 }
451
452 static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length)
453 {
454 ram_addr_t addr;
455 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
456
457 /* start address is aligned at the start of a word? */
458 if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) {
459 int k;
460 int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
461 unsigned long *src = ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION];
462
463 for (k = page; k < page + nr; k++) {
464 if (src[k]) {
465 unsigned long new_dirty;
466 new_dirty = ~migration_bitmap[k];
467 migration_bitmap[k] |= src[k];
468 new_dirty &= src[k];
469 migration_dirty_pages += ctpopl(new_dirty);
470 src[k] = 0;
471 }
472 }
473 } else {
474 for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
475 if (cpu_physical_memory_get_dirty(start + addr,
476 TARGET_PAGE_SIZE,
477 DIRTY_MEMORY_MIGRATION)) {
478 cpu_physical_memory_reset_dirty(start + addr,
479 TARGET_PAGE_SIZE,
480 DIRTY_MEMORY_MIGRATION);
481 migration_bitmap_set_dirty(start + addr);
482 }
483 }
484 }
485 }
486
487
488 /* Needs iothread lock! */
489
490 static void migration_bitmap_sync(void)
491 {
492 RAMBlock *block;
493 uint64_t num_dirty_pages_init = migration_dirty_pages;
494 MigrationState *s = migrate_get_current();
495 static int64_t start_time;
496 static int64_t bytes_xfer_prev;
497 static int64_t num_dirty_pages_period;
498 int64_t end_time;
499 int64_t bytes_xfer_now;
500 static uint64_t xbzrle_cache_miss_prev;
501 static uint64_t iterations_prev;
502
503 bitmap_sync_count++;
504
505 if (!bytes_xfer_prev) {
506 bytes_xfer_prev = ram_bytes_transferred();
507 }
508
509 if (!start_time) {
510 start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
511 }
512
513 trace_migration_bitmap_sync_start();
514 address_space_sync_dirty_bitmap(&address_space_memory);
515
516 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
517 migration_bitmap_sync_range(block->mr->ram_addr, block->length);
518 }
519 trace_migration_bitmap_sync_end(migration_dirty_pages
520 - num_dirty_pages_init);
521 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
522 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
523
524 /* more than 1 second = 1000 millisecons */
525 if (end_time > start_time + 1000) {
526 if (migrate_auto_converge()) {
527 /* The following detection logic can be refined later. For now:
528 Check to see if the dirtied bytes is 50% more than the approx.
529 amount of bytes that just got transferred since the last time we
530 were in this routine. If that happens >N times (for now N==4)
531 we turn on the throttle down logic */
532 bytes_xfer_now = ram_bytes_transferred();
533 if (s->dirty_pages_rate &&
534 (num_dirty_pages_period * TARGET_PAGE_SIZE >
535 (bytes_xfer_now - bytes_xfer_prev)/2) &&
536 (dirty_rate_high_cnt++ > 4)) {
537 trace_migration_throttle();
538 mig_throttle_on = true;
539 dirty_rate_high_cnt = 0;
540 }
541 bytes_xfer_prev = bytes_xfer_now;
542 } else {
543 mig_throttle_on = false;
544 }
545 if (migrate_use_xbzrle()) {
546 if (iterations_prev != 0) {
547 acct_info.xbzrle_cache_miss_rate =
548 (double)(acct_info.xbzrle_cache_miss -
549 xbzrle_cache_miss_prev) /
550 (acct_info.iterations - iterations_prev);
551 }
552 iterations_prev = acct_info.iterations;
553 xbzrle_cache_miss_prev = acct_info.xbzrle_cache_miss;
554 }
555 s->dirty_pages_rate = num_dirty_pages_period * 1000
556 / (end_time - start_time);
557 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
558 start_time = end_time;
559 num_dirty_pages_period = 0;
560 s->dirty_sync_count = bitmap_sync_count;
561 }
562 }
563
564 /*
565 * ram_save_page: Send the given page to the stream
566 *
567 * Returns: Number of bytes written.
568 */
569 static int ram_save_page(QEMUFile *f, RAMBlock* block, ram_addr_t offset,
570 bool last_stage)
571 {
572 int bytes_sent;
573 int cont;
574 ram_addr_t current_addr;
575 MemoryRegion *mr = block->mr;
576 uint8_t *p;
577 int ret;
578 bool send_async = true;
579
580 cont = (block == last_sent_block) ? RAM_SAVE_FLAG_CONTINUE : 0;
581
582 p = memory_region_get_ram_ptr(mr) + offset;
583
584 /* In doubt sent page as normal */
585 bytes_sent = -1;
586 ret = ram_control_save_page(f, block->offset,
587 offset, TARGET_PAGE_SIZE, &bytes_sent);
588
589 XBZRLE_cache_lock();
590
591 current_addr = block->offset + offset;
592 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
593 if (ret != RAM_SAVE_CONTROL_DELAYED) {
594 if (bytes_sent > 0) {
595 acct_info.norm_pages++;
596 } else if (bytes_sent == 0) {
597 acct_info.dup_pages++;
598 }
599 }
600 } else if (is_zero_range(p, TARGET_PAGE_SIZE)) {
601 acct_info.dup_pages++;
602 bytes_sent = save_block_hdr(f, block, offset, cont,
603 RAM_SAVE_FLAG_COMPRESS);
604 qemu_put_byte(f, 0);
605 bytes_sent++;
606 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
607 * page would be stale
608 */
609 xbzrle_cache_zero_page(current_addr);
610 } else if (!ram_bulk_stage && migrate_use_xbzrle()) {
611 bytes_sent = save_xbzrle_page(f, &p, current_addr, block,
612 offset, cont, last_stage);
613 if (!last_stage) {
614 /* Can't send this cached data async, since the cache page
615 * might get updated before it gets to the wire
616 */
617 send_async = false;
618 }
619 }
620
621 /* XBZRLE overflow or normal page */
622 if (bytes_sent == -1) {
623 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE);
624 if (send_async) {
625 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE);
626 } else {
627 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
628 }
629 bytes_sent += TARGET_PAGE_SIZE;
630 acct_info.norm_pages++;
631 }
632
633 XBZRLE_cache_unlock();
634
635 return bytes_sent;
636 }
637
638 /*
639 * ram_find_and_save_block: Finds a page to send and sends it to f
640 *
641 * Returns: The number of bytes written.
642 * 0 means no dirty pages
643 */
644
645 static int ram_find_and_save_block(QEMUFile *f, bool last_stage)
646 {
647 RAMBlock *block = last_seen_block;
648 ram_addr_t offset = last_offset;
649 bool complete_round = false;
650 int bytes_sent = 0;
651 MemoryRegion *mr;
652
653 if (!block)
654 block = QTAILQ_FIRST(&ram_list.blocks);
655
656 while (true) {
657 mr = block->mr;
658 offset = migration_bitmap_find_and_reset_dirty(mr, offset);
659 if (complete_round && block == last_seen_block &&
660 offset >= last_offset) {
661 break;
662 }
663 if (offset >= block->length) {
664 offset = 0;
665 block = QTAILQ_NEXT(block, next);
666 if (!block) {
667 block = QTAILQ_FIRST(&ram_list.blocks);
668 complete_round = true;
669 ram_bulk_stage = false;
670 }
671 } else {
672 bytes_sent = ram_save_page(f, block, offset, last_stage);
673
674 /* if page is unmodified, continue to the next */
675 if (bytes_sent > 0) {
676 last_sent_block = block;
677 break;
678 }
679 }
680 }
681 last_seen_block = block;
682 last_offset = offset;
683
684 return bytes_sent;
685 }
686
687 static uint64_t bytes_transferred;
688
689 void acct_update_position(QEMUFile *f, size_t size, bool zero)
690 {
691 uint64_t pages = size / TARGET_PAGE_SIZE;
692 if (zero) {
693 acct_info.dup_pages += pages;
694 } else {
695 acct_info.norm_pages += pages;
696 bytes_transferred += size;
697 qemu_update_position(f, size);
698 }
699 }
700
701 static ram_addr_t ram_save_remaining(void)
702 {
703 return migration_dirty_pages;
704 }
705
706 uint64_t ram_bytes_remaining(void)
707 {
708 return ram_save_remaining() * TARGET_PAGE_SIZE;
709 }
710
711 uint64_t ram_bytes_transferred(void)
712 {
713 return bytes_transferred;
714 }
715
716 uint64_t ram_bytes_total(void)
717 {
718 RAMBlock *block;
719 uint64_t total = 0;
720
721 QTAILQ_FOREACH(block, &ram_list.blocks, next)
722 total += block->length;
723
724 return total;
725 }
726
727 void free_xbzrle_decoded_buf(void)
728 {
729 g_free(xbzrle_decoded_buf);
730 xbzrle_decoded_buf = NULL;
731 }
732
733 static void migration_end(void)
734 {
735 if (migration_bitmap) {
736 memory_global_dirty_log_stop();
737 g_free(migration_bitmap);
738 migration_bitmap = NULL;
739 }
740
741 XBZRLE_cache_lock();
742 if (XBZRLE.cache) {
743 cache_fini(XBZRLE.cache);
744 g_free(XBZRLE.encoded_buf);
745 g_free(XBZRLE.current_buf);
746 XBZRLE.cache = NULL;
747 XBZRLE.encoded_buf = NULL;
748 XBZRLE.current_buf = NULL;
749 }
750 XBZRLE_cache_unlock();
751 }
752
753 static void ram_migration_cancel(void *opaque)
754 {
755 migration_end();
756 }
757
758 static void reset_ram_globals(void)
759 {
760 last_seen_block = NULL;
761 last_sent_block = NULL;
762 last_offset = 0;
763 last_version = ram_list.version;
764 ram_bulk_stage = true;
765 }
766
767 #define MAX_WAIT 50 /* ms, half buffered_file limit */
768
769 static int ram_save_setup(QEMUFile *f, void *opaque)
770 {
771 RAMBlock *block;
772 int64_t ram_bitmap_pages; /* Size of bitmap in pages, including gaps */
773
774 mig_throttle_on = false;
775 dirty_rate_high_cnt = 0;
776 bitmap_sync_count = 0;
777
778 if (migrate_use_xbzrle()) {
779 XBZRLE_cache_lock();
780 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
781 TARGET_PAGE_SIZE,
782 TARGET_PAGE_SIZE);
783 if (!XBZRLE.cache) {
784 XBZRLE_cache_unlock();
785 error_report("Error creating cache");
786 return -1;
787 }
788 XBZRLE_cache_unlock();
789
790 /* We prefer not to abort if there is no memory */
791 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
792 if (!XBZRLE.encoded_buf) {
793 error_report("Error allocating encoded_buf");
794 return -1;
795 }
796
797 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
798 if (!XBZRLE.current_buf) {
799 error_report("Error allocating current_buf");
800 g_free(XBZRLE.encoded_buf);
801 XBZRLE.encoded_buf = NULL;
802 return -1;
803 }
804
805 acct_clear();
806 }
807
808 qemu_mutex_lock_iothread();
809 qemu_mutex_lock_ramlist();
810 bytes_transferred = 0;
811 reset_ram_globals();
812
813 ram_bitmap_pages = last_ram_offset() >> TARGET_PAGE_BITS;
814 migration_bitmap = bitmap_new(ram_bitmap_pages);
815 bitmap_set(migration_bitmap, 0, ram_bitmap_pages);
816
817 /*
818 * Count the total number of pages used by ram blocks not including any
819 * gaps due to alignment or unplugs.
820 */
821 migration_dirty_pages = 0;
822 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
823 uint64_t block_pages;
824
825 block_pages = block->length >> TARGET_PAGE_BITS;
826 migration_dirty_pages += block_pages;
827 }
828
829 memory_global_dirty_log_start();
830 migration_bitmap_sync();
831 qemu_mutex_unlock_iothread();
832
833 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
834
835 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
836 qemu_put_byte(f, strlen(block->idstr));
837 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
838 qemu_put_be64(f, block->length);
839 }
840
841 qemu_mutex_unlock_ramlist();
842
843 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
844 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
845
846 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
847
848 return 0;
849 }
850
851 static int ram_save_iterate(QEMUFile *f, void *opaque)
852 {
853 int ret;
854 int i;
855 int64_t t0;
856 int total_sent = 0;
857
858 qemu_mutex_lock_ramlist();
859
860 if (ram_list.version != last_version) {
861 reset_ram_globals();
862 }
863
864 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
865
866 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
867 i = 0;
868 while ((ret = qemu_file_rate_limit(f)) == 0) {
869 int bytes_sent;
870
871 bytes_sent = ram_find_and_save_block(f, false);
872 /* no more blocks to sent */
873 if (bytes_sent == 0) {
874 break;
875 }
876 total_sent += bytes_sent;
877 acct_info.iterations++;
878 check_guest_throttling();
879 /* we want to check in the 1st loop, just in case it was the 1st time
880 and we had to sync the dirty bitmap.
881 qemu_get_clock_ns() is a bit expensive, so we only check each some
882 iterations
883 */
884 if ((i & 63) == 0) {
885 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
886 if (t1 > MAX_WAIT) {
887 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
888 t1, i);
889 break;
890 }
891 }
892 i++;
893 }
894
895 qemu_mutex_unlock_ramlist();
896
897 /*
898 * Must occur before EOS (or any QEMUFile operation)
899 * because of RDMA protocol.
900 */
901 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
902
903 bytes_transferred += total_sent;
904
905 /*
906 * Do not count these 8 bytes into total_sent, so that we can
907 * return 0 if no page had been dirtied.
908 */
909 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
910 bytes_transferred += 8;
911
912 ret = qemu_file_get_error(f);
913 if (ret < 0) {
914 return ret;
915 }
916
917 return total_sent;
918 }
919
920 static int ram_save_complete(QEMUFile *f, void *opaque)
921 {
922 qemu_mutex_lock_ramlist();
923 migration_bitmap_sync();
924
925 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
926
927 /* try transferring iterative blocks of memory */
928
929 /* flush all remaining blocks regardless of rate limiting */
930 while (true) {
931 int bytes_sent;
932
933 bytes_sent = ram_find_and_save_block(f, true);
934 /* no more blocks to sent */
935 if (bytes_sent == 0) {
936 break;
937 }
938 bytes_transferred += bytes_sent;
939 }
940
941 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
942 migration_end();
943
944 qemu_mutex_unlock_ramlist();
945 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
946
947 return 0;
948 }
949
950 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
951 {
952 uint64_t remaining_size;
953
954 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
955
956 if (remaining_size < max_size) {
957 qemu_mutex_lock_iothread();
958 migration_bitmap_sync();
959 qemu_mutex_unlock_iothread();
960 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
961 }
962 return remaining_size;
963 }
964
965 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
966 {
967 unsigned int xh_len;
968 int xh_flags;
969
970 if (!xbzrle_decoded_buf) {
971 xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE);
972 }
973
974 /* extract RLE header */
975 xh_flags = qemu_get_byte(f);
976 xh_len = qemu_get_be16(f);
977
978 if (xh_flags != ENCODING_FLAG_XBZRLE) {
979 error_report("Failed to load XBZRLE page - wrong compression!");
980 return -1;
981 }
982
983 if (xh_len > TARGET_PAGE_SIZE) {
984 error_report("Failed to load XBZRLE page - len overflow!");
985 return -1;
986 }
987 /* load data and decode */
988 qemu_get_buffer(f, xbzrle_decoded_buf, xh_len);
989
990 /* decode RLE */
991 if (xbzrle_decode_buffer(xbzrle_decoded_buf, xh_len, host,
992 TARGET_PAGE_SIZE) == -1) {
993 error_report("Failed to load XBZRLE page - decode error!");
994 return -1;
995 }
996
997 return 0;
998 }
999
1000 static inline void *host_from_stream_offset(QEMUFile *f,
1001 ram_addr_t offset,
1002 int flags)
1003 {
1004 static RAMBlock *block = NULL;
1005 char id[256];
1006 uint8_t len;
1007
1008 if (flags & RAM_SAVE_FLAG_CONTINUE) {
1009 if (!block || block->length <= offset) {
1010 error_report("Ack, bad migration stream!");
1011 return NULL;
1012 }
1013
1014 return memory_region_get_ram_ptr(block->mr) + offset;
1015 }
1016
1017 len = qemu_get_byte(f);
1018 qemu_get_buffer(f, (uint8_t *)id, len);
1019 id[len] = 0;
1020
1021 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1022 if (!strncmp(id, block->idstr, sizeof(id)) && block->length > offset) {
1023 return memory_region_get_ram_ptr(block->mr) + offset;
1024 }
1025 }
1026
1027 error_report("Can't find block %s!", id);
1028 return NULL;
1029 }
1030
1031 /*
1032 * If a page (or a whole RDMA chunk) has been
1033 * determined to be zero, then zap it.
1034 */
1035 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
1036 {
1037 if (ch != 0 || !is_zero_range(host, size)) {
1038 memset(host, ch, size);
1039 }
1040 }
1041
1042 static int ram_load(QEMUFile *f, void *opaque, int version_id)
1043 {
1044 int flags = 0, ret = 0;
1045 static uint64_t seq_iter;
1046
1047 seq_iter++;
1048
1049 if (version_id != 4) {
1050 ret = -EINVAL;
1051 }
1052
1053 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
1054 ram_addr_t addr, total_ram_bytes;
1055 void *host;
1056 uint8_t ch;
1057
1058 addr = qemu_get_be64(f);
1059 flags = addr & ~TARGET_PAGE_MASK;
1060 addr &= TARGET_PAGE_MASK;
1061
1062 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
1063 case RAM_SAVE_FLAG_MEM_SIZE:
1064 /* Synchronize RAM block list */
1065 total_ram_bytes = addr;
1066 while (!ret && total_ram_bytes) {
1067 RAMBlock *block;
1068 uint8_t len;
1069 char id[256];
1070 ram_addr_t length;
1071
1072 len = qemu_get_byte(f);
1073 qemu_get_buffer(f, (uint8_t *)id, len);
1074 id[len] = 0;
1075 length = qemu_get_be64(f);
1076
1077 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1078 if (!strncmp(id, block->idstr, sizeof(id))) {
1079 if (block->length != length) {
1080 error_report("Length mismatch: %s: 0x" RAM_ADDR_FMT
1081 " in != 0x" RAM_ADDR_FMT, id, length,
1082 block->length);
1083 ret = -EINVAL;
1084 }
1085 break;
1086 }
1087 }
1088
1089 if (!block) {
1090 error_report("Unknown ramblock \"%s\", cannot "
1091 "accept migration", id);
1092 ret = -EINVAL;
1093 }
1094
1095 total_ram_bytes -= length;
1096 }
1097 break;
1098 case RAM_SAVE_FLAG_COMPRESS:
1099 host = host_from_stream_offset(f, addr, flags);
1100 if (!host) {
1101 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1102 ret = -EINVAL;
1103 break;
1104 }
1105
1106 ch = qemu_get_byte(f);
1107 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
1108 break;
1109 case RAM_SAVE_FLAG_PAGE:
1110 host = host_from_stream_offset(f, addr, flags);
1111 if (!host) {
1112 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1113 ret = -EINVAL;
1114 break;
1115 }
1116
1117 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
1118 break;
1119 case RAM_SAVE_FLAG_XBZRLE:
1120 host = host_from_stream_offset(f, addr, flags);
1121 if (!host) {
1122 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1123 ret = -EINVAL;
1124 break;
1125 }
1126
1127 if (load_xbzrle(f, addr, host) < 0) {
1128 error_report("Failed to decompress XBZRLE page at "
1129 RAM_ADDR_FMT, addr);
1130 ret = -EINVAL;
1131 break;
1132 }
1133 break;
1134 case RAM_SAVE_FLAG_EOS:
1135 /* normal exit */
1136 break;
1137 default:
1138 if (flags & RAM_SAVE_FLAG_HOOK) {
1139 ram_control_load_hook(f, flags);
1140 } else {
1141 error_report("Unknown combination of migration flags: %#x",
1142 flags);
1143 ret = -EINVAL;
1144 }
1145 }
1146 if (!ret) {
1147 ret = qemu_file_get_error(f);
1148 }
1149 }
1150
1151 DPRINTF("Completed load of VM with exit code %d seq iteration "
1152 "%" PRIu64 "\n", ret, seq_iter);
1153 return ret;
1154 }
1155
1156 static SaveVMHandlers savevm_ram_handlers = {
1157 .save_live_setup = ram_save_setup,
1158 .save_live_iterate = ram_save_iterate,
1159 .save_live_complete = ram_save_complete,
1160 .save_live_pending = ram_save_pending,
1161 .load_state = ram_load,
1162 .cancel = ram_migration_cancel,
1163 };
1164
1165 void ram_mig_init(void)
1166 {
1167 qemu_mutex_init(&XBZRLE.lock);
1168 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, NULL);
1169 }
1170
1171 struct soundhw {
1172 const char *name;
1173 const char *descr;
1174 int enabled;
1175 int isa;
1176 union {
1177 int (*init_isa) (ISABus *bus);
1178 int (*init_pci) (PCIBus *bus);
1179 } init;
1180 };
1181
1182 static struct soundhw soundhw[9];
1183 static int soundhw_count;
1184
1185 void isa_register_soundhw(const char *name, const char *descr,
1186 int (*init_isa)(ISABus *bus))
1187 {
1188 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1189 soundhw[soundhw_count].name = name;
1190 soundhw[soundhw_count].descr = descr;
1191 soundhw[soundhw_count].isa = 1;
1192 soundhw[soundhw_count].init.init_isa = init_isa;
1193 soundhw_count++;
1194 }
1195
1196 void pci_register_soundhw(const char *name, const char *descr,
1197 int (*init_pci)(PCIBus *bus))
1198 {
1199 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1200 soundhw[soundhw_count].name = name;
1201 soundhw[soundhw_count].descr = descr;
1202 soundhw[soundhw_count].isa = 0;
1203 soundhw[soundhw_count].init.init_pci = init_pci;
1204 soundhw_count++;
1205 }
1206
1207 void select_soundhw(const char *optarg)
1208 {
1209 struct soundhw *c;
1210
1211 if (is_help_option(optarg)) {
1212 show_valid_cards:
1213
1214 if (soundhw_count) {
1215 printf("Valid sound card names (comma separated):\n");
1216 for (c = soundhw; c->name; ++c) {
1217 printf ("%-11s %s\n", c->name, c->descr);
1218 }
1219 printf("\n-soundhw all will enable all of the above\n");
1220 } else {
1221 printf("Machine has no user-selectable audio hardware "
1222 "(it may or may not have always-present audio hardware).\n");
1223 }
1224 exit(!is_help_option(optarg));
1225 }
1226 else {
1227 size_t l;
1228 const char *p;
1229 char *e;
1230 int bad_card = 0;
1231
1232 if (!strcmp(optarg, "all")) {
1233 for (c = soundhw; c->name; ++c) {
1234 c->enabled = 1;
1235 }
1236 return;
1237 }
1238
1239 p = optarg;
1240 while (*p) {
1241 e = strchr(p, ',');
1242 l = !e ? strlen(p) : (size_t) (e - p);
1243
1244 for (c = soundhw; c->name; ++c) {
1245 if (!strncmp(c->name, p, l) && !c->name[l]) {
1246 c->enabled = 1;
1247 break;
1248 }
1249 }
1250
1251 if (!c->name) {
1252 if (l > 80) {
1253 error_report("Unknown sound card name (too big to show)");
1254 }
1255 else {
1256 error_report("Unknown sound card name `%.*s'",
1257 (int) l, p);
1258 }
1259 bad_card = 1;
1260 }
1261 p += l + (e != NULL);
1262 }
1263
1264 if (bad_card) {
1265 goto show_valid_cards;
1266 }
1267 }
1268 }
1269
1270 void audio_init(void)
1271 {
1272 struct soundhw *c;
1273 ISABus *isa_bus = (ISABus *) object_resolve_path_type("", TYPE_ISA_BUS, NULL);
1274 PCIBus *pci_bus = (PCIBus *) object_resolve_path_type("", TYPE_PCI_BUS, NULL);
1275
1276 for (c = soundhw; c->name; ++c) {
1277 if (c->enabled) {
1278 if (c->isa) {
1279 if (!isa_bus) {
1280 error_report("ISA bus not available for %s", c->name);
1281 exit(1);
1282 }
1283 c->init.init_isa(isa_bus);
1284 } else {
1285 if (!pci_bus) {
1286 error_report("PCI bus not available for %s", c->name);
1287 exit(1);
1288 }
1289 c->init.init_pci(pci_bus);
1290 }
1291 }
1292 }
1293 }
1294
1295 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1296 {
1297 int ret;
1298
1299 if (strlen(str) != 36) {
1300 return -1;
1301 }
1302
1303 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1304 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1305 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1306 &uuid[15]);
1307
1308 if (ret != 16) {
1309 return -1;
1310 }
1311 return 0;
1312 }
1313
1314 void do_acpitable_option(const QemuOpts *opts)
1315 {
1316 #ifdef TARGET_I386
1317 Error *err = NULL;
1318
1319 acpi_table_add(opts, &err);
1320 if (err) {
1321 error_report("Wrong acpi table provided: %s",
1322 error_get_pretty(err));
1323 error_free(err);
1324 exit(1);
1325 }
1326 #endif
1327 }
1328
1329 void do_smbios_option(QemuOpts *opts)
1330 {
1331 #ifdef TARGET_I386
1332 smbios_entry_add(opts);
1333 #endif
1334 }
1335
1336 void cpudef_init(void)
1337 {
1338 #if defined(cpudef_setup)
1339 cpudef_setup(); /* parse cpu definitions in target config file */
1340 #endif
1341 }
1342
1343 int kvm_available(void)
1344 {
1345 #ifdef CONFIG_KVM
1346 return 1;
1347 #else
1348 return 0;
1349 #endif
1350 }
1351
1352 int xen_available(void)
1353 {
1354 #ifdef CONFIG_XEN
1355 return 1;
1356 #else
1357 return 0;
1358 #endif
1359 }
1360
1361
1362 TargetInfo *qmp_query_target(Error **errp)
1363 {
1364 TargetInfo *info = g_malloc0(sizeof(*info));
1365
1366 info->arch = g_strdup(TARGET_NAME);
1367
1368 return info;
1369 }
1370
1371 /* Stub function that's gets run on the vcpu when its brought out of the
1372 VM to run inside qemu via async_run_on_cpu()*/
1373 static void mig_sleep_cpu(void *opq)
1374 {
1375 qemu_mutex_unlock_iothread();
1376 g_usleep(30*1000);
1377 qemu_mutex_lock_iothread();
1378 }
1379
1380 /* To reduce the dirty rate explicitly disallow the VCPUs from spending
1381 much time in the VM. The migration thread will try to catchup.
1382 Workload will experience a performance drop.
1383 */
1384 static void mig_throttle_guest_down(void)
1385 {
1386 CPUState *cpu;
1387
1388 qemu_mutex_lock_iothread();
1389 CPU_FOREACH(cpu) {
1390 async_run_on_cpu(cpu, mig_sleep_cpu, NULL);
1391 }
1392 qemu_mutex_unlock_iothread();
1393 }
1394
1395 static void check_guest_throttling(void)
1396 {
1397 static int64_t t0;
1398 int64_t t1;
1399
1400 if (!mig_throttle_on) {
1401 return;
1402 }
1403
1404 if (!t0) {
1405 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1406 return;
1407 }
1408
1409 t1 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1410
1411 /* If it has been more than 40 ms since the last time the guest
1412 * was throttled then do it again.
1413 */
1414 if (40 < (t1-t0)/1000000) {
1415 mig_throttle_guest_down();
1416 t0 = t1;
1417 }
1418 }