meson: convert hw/vfio
[qemu.git] / bsd-user / qemu.h
1 /*
2 * qemu bsd user mode definition
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see <http://www.gnu.org/licenses/>.
16 */
17 #ifndef QEMU_H
18 #define QEMU_H
19
20
21 #include "cpu.h"
22 #include "exec/cpu_ldst.h"
23
24 #undef DEBUG_REMAP
25 #ifdef DEBUG_REMAP
26 #endif /* DEBUG_REMAP */
27
28 #include "exec/user/abitypes.h"
29
30 enum BSDType {
31 target_freebsd,
32 target_netbsd,
33 target_openbsd,
34 };
35 extern enum BSDType bsd_type;
36
37 #include "syscall_defs.h"
38 #include "target_syscall.h"
39 #include "target_signal.h"
40 #include "exec/gdbstub.h"
41
42 #if defined(CONFIG_USE_NPTL)
43 #define THREAD __thread
44 #else
45 #define THREAD
46 #endif
47
48 /* This struct is used to hold certain information about the image.
49 * Basically, it replicates in user space what would be certain
50 * task_struct fields in the kernel
51 */
52 struct image_info {
53 abi_ulong load_addr;
54 abi_ulong start_code;
55 abi_ulong end_code;
56 abi_ulong start_data;
57 abi_ulong end_data;
58 abi_ulong start_brk;
59 abi_ulong brk;
60 abi_ulong start_mmap;
61 abi_ulong mmap;
62 abi_ulong rss;
63 abi_ulong start_stack;
64 abi_ulong entry;
65 abi_ulong code_offset;
66 abi_ulong data_offset;
67 int personality;
68 };
69
70 #define MAX_SIGQUEUE_SIZE 1024
71
72 struct sigqueue {
73 struct sigqueue *next;
74 //target_siginfo_t info;
75 };
76
77 struct emulated_sigtable {
78 int pending; /* true if signal is pending */
79 struct sigqueue *first;
80 struct sigqueue info; /* in order to always have memory for the
81 first signal, we put it here */
82 };
83
84 /* NOTE: we force a big alignment so that the stack stored after is
85 aligned too */
86 typedef struct TaskState {
87 pid_t ts_tid; /* tid (or pid) of this task */
88
89 struct TaskState *next;
90 int used; /* non zero if used */
91 struct image_info *info;
92
93 struct emulated_sigtable sigtab[TARGET_NSIG];
94 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
95 struct sigqueue *first_free; /* first free siginfo queue entry */
96 int signal_pending; /* non zero if a signal may be pending */
97
98 uint8_t stack[];
99 } __attribute__((aligned(16))) TaskState;
100
101 void init_task_state(TaskState *ts);
102 extern const char *qemu_uname_release;
103 extern unsigned long mmap_min_addr;
104
105 /* ??? See if we can avoid exposing so much of the loader internals. */
106 /*
107 * MAX_ARG_PAGES defines the number of pages allocated for arguments
108 * and envelope for the new program. 32 should suffice, this gives
109 * a maximum env+arg of 128kB w/4KB pages!
110 */
111 #define MAX_ARG_PAGES 32
112
113 /*
114 * This structure is used to hold the arguments that are
115 * used when loading binaries.
116 */
117 struct linux_binprm {
118 char buf[128];
119 void *page[MAX_ARG_PAGES];
120 abi_ulong p;
121 int fd;
122 int e_uid, e_gid;
123 int argc, envc;
124 char **argv;
125 char **envp;
126 char * filename; /* Name of binary */
127 };
128
129 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
130 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
131 abi_ulong stringp, int push_ptr);
132 int loader_exec(const char * filename, char ** argv, char ** envp,
133 struct target_pt_regs * regs, struct image_info *infop);
134
135 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
136 struct image_info * info);
137 int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
138 struct image_info * info);
139
140 abi_long memcpy_to_target(abi_ulong dest, const void *src,
141 unsigned long len);
142 void target_set_brk(abi_ulong new_brk);
143 abi_long do_brk(abi_ulong new_brk);
144 void syscall_init(void);
145 abi_long do_freebsd_syscall(void *cpu_env, int num, abi_long arg1,
146 abi_long arg2, abi_long arg3, abi_long arg4,
147 abi_long arg5, abi_long arg6, abi_long arg7,
148 abi_long arg8);
149 abi_long do_netbsd_syscall(void *cpu_env, int num, abi_long arg1,
150 abi_long arg2, abi_long arg3, abi_long arg4,
151 abi_long arg5, abi_long arg6);
152 abi_long do_openbsd_syscall(void *cpu_env, int num, abi_long arg1,
153 abi_long arg2, abi_long arg3, abi_long arg4,
154 abi_long arg5, abi_long arg6);
155 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
156 extern THREAD CPUState *thread_cpu;
157 void cpu_loop(CPUArchState *env);
158 char *target_strerror(int err);
159 int get_osversion(void);
160 void fork_start(void);
161 void fork_end(int child);
162
163 #include "qemu/log.h"
164
165 /* strace.c */
166 struct syscallname {
167 int nr;
168 const char *name;
169 const char *format;
170 void (*call)(const struct syscallname *,
171 abi_long, abi_long, abi_long,
172 abi_long, abi_long, abi_long);
173 void (*result)(const struct syscallname *, abi_long);
174 };
175
176 void
177 print_freebsd_syscall(int num,
178 abi_long arg1, abi_long arg2, abi_long arg3,
179 abi_long arg4, abi_long arg5, abi_long arg6);
180 void print_freebsd_syscall_ret(int num, abi_long ret);
181 void
182 print_netbsd_syscall(int num,
183 abi_long arg1, abi_long arg2, abi_long arg3,
184 abi_long arg4, abi_long arg5, abi_long arg6);
185 void print_netbsd_syscall_ret(int num, abi_long ret);
186 void
187 print_openbsd_syscall(int num,
188 abi_long arg1, abi_long arg2, abi_long arg3,
189 abi_long arg4, abi_long arg5, abi_long arg6);
190 void print_openbsd_syscall_ret(int num, abi_long ret);
191 extern int do_strace;
192
193 /* signal.c */
194 void process_pending_signals(CPUArchState *cpu_env);
195 void signal_init(void);
196 //int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info);
197 //void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
198 //void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
199 long do_sigreturn(CPUArchState *env);
200 long do_rt_sigreturn(CPUArchState *env);
201 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
202
203 /* mmap.c */
204 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
205 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
206 int flags, int fd, abi_ulong offset);
207 int target_munmap(abi_ulong start, abi_ulong len);
208 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
209 abi_ulong new_size, unsigned long flags,
210 abi_ulong new_addr);
211 int target_msync(abi_ulong start, abi_ulong len, int flags);
212 extern unsigned long last_brk;
213 void mmap_fork_start(void);
214 void mmap_fork_end(int child);
215
216 /* main.c */
217 extern unsigned long x86_stack_size;
218
219 /* user access */
220
221 #define VERIFY_READ 0
222 #define VERIFY_WRITE 1 /* implies read access */
223
224 static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
225 {
226 return page_check_range((target_ulong)addr, size,
227 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
228 }
229
230 /* NOTE __get_user and __put_user use host pointers and don't check access. */
231 /* These are usually used to access struct data members once the
232 * struct has been locked - usually with lock_user_struct().
233 */
234 #define __put_user(x, hptr)\
235 ({\
236 int size = sizeof(*hptr);\
237 switch(size) {\
238 case 1:\
239 *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\
240 break;\
241 case 2:\
242 *(uint16_t *)(hptr) = tswap16((typeof(*hptr))(x));\
243 break;\
244 case 4:\
245 *(uint32_t *)(hptr) = tswap32((typeof(*hptr))(x));\
246 break;\
247 case 8:\
248 *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\
249 break;\
250 default:\
251 abort();\
252 }\
253 0;\
254 })
255
256 #define __get_user(x, hptr) \
257 ({\
258 int size = sizeof(*hptr);\
259 switch(size) {\
260 case 1:\
261 x = (typeof(*hptr))*(uint8_t *)(hptr);\
262 break;\
263 case 2:\
264 x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\
265 break;\
266 case 4:\
267 x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\
268 break;\
269 case 8:\
270 x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\
271 break;\
272 default:\
273 /* avoid warning */\
274 x = 0;\
275 abort();\
276 }\
277 0;\
278 })
279
280 /* put_user()/get_user() take a guest address and check access */
281 /* These are usually used to access an atomic data type, such as an int,
282 * that has been passed by address. These internally perform locking
283 * and unlocking on the data type.
284 */
285 #define put_user(x, gaddr, target_type) \
286 ({ \
287 abi_ulong __gaddr = (gaddr); \
288 target_type *__hptr; \
289 abi_long __ret; \
290 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
291 __ret = __put_user((x), __hptr); \
292 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
293 } else \
294 __ret = -TARGET_EFAULT; \
295 __ret; \
296 })
297
298 #define get_user(x, gaddr, target_type) \
299 ({ \
300 abi_ulong __gaddr = (gaddr); \
301 target_type *__hptr; \
302 abi_long __ret; \
303 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
304 __ret = __get_user((x), __hptr); \
305 unlock_user(__hptr, __gaddr, 0); \
306 } else { \
307 /* avoid warning */ \
308 (x) = 0; \
309 __ret = -TARGET_EFAULT; \
310 } \
311 __ret; \
312 })
313
314 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
315 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
316 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
317 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
318 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
319 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
320 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
321 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
322 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
323 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
324
325 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
326 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
327 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
328 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
329 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
330 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
331 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
332 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
333 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
334 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
335
336 /* copy_from_user() and copy_to_user() are usually used to copy data
337 * buffers between the target and host. These internally perform
338 * locking/unlocking of the memory.
339 */
340 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
341 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
342
343 /* Functions for accessing guest memory. The tget and tput functions
344 read/write single values, byteswapping as necessary. The lock_user function
345 gets a pointer to a contiguous area of guest memory, but does not perform
346 any byteswapping. lock_user may return either a pointer to the guest
347 memory, or a temporary buffer. */
348
349 /* Lock an area of guest memory into the host. If copy is true then the
350 host area will have the same contents as the guest. */
351 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
352 {
353 if (!access_ok(type, guest_addr, len))
354 return NULL;
355 #ifdef DEBUG_REMAP
356 {
357 void *addr;
358 addr = g_malloc(len);
359 if (copy)
360 memcpy(addr, g2h(guest_addr), len);
361 else
362 memset(addr, 0, len);
363 return addr;
364 }
365 #else
366 return g2h(guest_addr);
367 #endif
368 }
369
370 /* Unlock an area of guest memory. The first LEN bytes must be
371 flushed back to guest memory. host_ptr = NULL is explicitly
372 allowed and does nothing. */
373 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
374 long len)
375 {
376
377 #ifdef DEBUG_REMAP
378 if (!host_ptr)
379 return;
380 if (host_ptr == g2h(guest_addr))
381 return;
382 if (len > 0)
383 memcpy(g2h(guest_addr), host_ptr, len);
384 g_free(host_ptr);
385 #endif
386 }
387
388 /* Return the length of a string in target memory or -TARGET_EFAULT if
389 access error. */
390 abi_long target_strlen(abi_ulong gaddr);
391
392 /* Like lock_user but for null terminated strings. */
393 static inline void *lock_user_string(abi_ulong guest_addr)
394 {
395 abi_long len;
396 len = target_strlen(guest_addr);
397 if (len < 0)
398 return NULL;
399 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
400 }
401
402 /* Helper macros for locking/unlocking a target struct. */
403 #define lock_user_struct(type, host_ptr, guest_addr, copy) \
404 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
405 #define unlock_user_struct(host_ptr, guest_addr, copy) \
406 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
407
408 #if defined(CONFIG_USE_NPTL)
409 #include <pthread.h>
410 #endif
411
412 #endif /* QEMU_H */