Update VERSION for v7.2.0-rc3
[qemu.git] / docs / devel / qom.rst
1 ===========================
2 The QEMU Object Model (QOM)
3 ===========================
4
5 .. highlight:: c
6
7 The QEMU Object Model provides a framework for registering user creatable
8 types and instantiating objects from those types.  QOM provides the following
9 features:
10
11 - System for dynamically registering types
12 - Support for single-inheritance of types
13 - Multiple inheritance of stateless interfaces
14
15 .. code-block:: c
16    :caption: Creating a minimal type
17
18    #include "qdev.h"
19
20    #define TYPE_MY_DEVICE "my-device"
21
22    // No new virtual functions: we can reuse the typedef for the
23    // superclass.
24    typedef DeviceClass MyDeviceClass;
25    typedef struct MyDevice
26    {
27        DeviceState parent;
28
29        int reg0, reg1, reg2;
30    } MyDevice;
31
32    static const TypeInfo my_device_info = {
33        .name = TYPE_MY_DEVICE,
34        .parent = TYPE_DEVICE,
35        .instance_size = sizeof(MyDevice),
36    };
37
38    static void my_device_register_types(void)
39    {
40        type_register_static(&my_device_info);
41    }
42
43    type_init(my_device_register_types)
44
45 In the above example, we create a simple type that is described by #TypeInfo.
46 #TypeInfo describes information about the type including what it inherits
47 from, the instance and class size, and constructor/destructor hooks.
48
49 Alternatively several static types could be registered using helper macro
50 DEFINE_TYPES()
51
52 .. code-block:: c
53
54    static const TypeInfo device_types_info[] = {
55        {
56            .name = TYPE_MY_DEVICE_A,
57            .parent = TYPE_DEVICE,
58            .instance_size = sizeof(MyDeviceA),
59        },
60        {
61            .name = TYPE_MY_DEVICE_B,
62            .parent = TYPE_DEVICE,
63            .instance_size = sizeof(MyDeviceB),
64        },
65    };
66
67    DEFINE_TYPES(device_types_info)
68
69 Every type has an #ObjectClass associated with it.  #ObjectClass derivatives
70 are instantiated dynamically but there is only ever one instance for any
71 given type.  The #ObjectClass typically holds a table of function pointers
72 for the virtual methods implemented by this type.
73
74 Using object_new(), a new #Object derivative will be instantiated.  You can
75 cast an #Object to a subclass (or base-class) type using
76 object_dynamic_cast().  You typically want to define macro wrappers around
77 OBJECT_CHECK() and OBJECT_CLASS_CHECK() to make it easier to convert to a
78 specific type:
79
80 .. code-block:: c
81    :caption: Typecasting macros
82
83    #define MY_DEVICE_GET_CLASS(obj) \
84       OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE)
85    #define MY_DEVICE_CLASS(klass) \
86       OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE)
87    #define MY_DEVICE(obj) \
88       OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE)
89
90 In case the ObjectClass implementation can be built as module a
91 module_obj() line must be added to make sure qemu loads the module
92 when the object is needed.
93
94 .. code-block:: c
95
96    module_obj(TYPE_MY_DEVICE);
97
98 Class Initialization
99 ====================
100
101 Before an object is initialized, the class for the object must be
102 initialized.  There is only one class object for all instance objects
103 that is created lazily.
104
105 Classes are initialized by first initializing any parent classes (if
106 necessary).  After the parent class object has initialized, it will be
107 copied into the current class object and any additional storage in the
108 class object is zero filled.
109
110 The effect of this is that classes automatically inherit any virtual
111 function pointers that the parent class has already initialized.  All
112 other fields will be zero filled.
113
114 Once all of the parent classes have been initialized, #TypeInfo::class_init
115 is called to let the class being instantiated provide default initialize for
116 its virtual functions.  Here is how the above example might be modified
117 to introduce an overridden virtual function:
118
119 .. code-block:: c
120    :caption: Overriding a virtual function
121
122    #include "qdev.h"
123
124    void my_device_class_init(ObjectClass *klass, void *class_data)
125    {
126        DeviceClass *dc = DEVICE_CLASS(klass);
127        dc->reset = my_device_reset;
128    }
129
130    static const TypeInfo my_device_info = {
131        .name = TYPE_MY_DEVICE,
132        .parent = TYPE_DEVICE,
133        .instance_size = sizeof(MyDevice),
134        .class_init = my_device_class_init,
135    };
136
137 Introducing new virtual methods requires a class to define its own
138 struct and to add a .class_size member to the #TypeInfo.  Each method
139 will also have a wrapper function to call it easily:
140
141 .. code-block:: c
142    :caption: Defining an abstract class
143
144    #include "qdev.h"
145
146    typedef struct MyDeviceClass
147    {
148        DeviceClass parent;
149
150        void (*frobnicate) (MyDevice *obj);
151    } MyDeviceClass;
152
153    static const TypeInfo my_device_info = {
154        .name = TYPE_MY_DEVICE,
155        .parent = TYPE_DEVICE,
156        .instance_size = sizeof(MyDevice),
157        .abstract = true, // or set a default in my_device_class_init
158        .class_size = sizeof(MyDeviceClass),
159    };
160
161    void my_device_frobnicate(MyDevice *obj)
162    {
163        MyDeviceClass *klass = MY_DEVICE_GET_CLASS(obj);
164
165        klass->frobnicate(obj);
166    }
167
168 Interfaces
169 ==========
170
171 Interfaces allow a limited form of multiple inheritance.  Instances are
172 similar to normal types except for the fact that are only defined by
173 their classes and never carry any state.  As a consequence, a pointer to
174 an interface instance should always be of incomplete type in order to be
175 sure it cannot be dereferenced.  That is, you should define the
176 'typedef struct SomethingIf SomethingIf' so that you can pass around
177 ``SomethingIf *si`` arguments, but not define a ``struct SomethingIf { ... }``.
178 The only things you can validly do with a ``SomethingIf *`` are to pass it as
179 an argument to a method on its corresponding SomethingIfClass, or to
180 dynamically cast it to an object that implements the interface.
181
182 Methods
183 =======
184
185 A *method* is a function within the namespace scope of
186 a class. It usually operates on the object instance by passing it as a
187 strongly-typed first argument.
188 If it does not operate on an object instance, it is dubbed
189 *class method*.
190
191 Methods cannot be overloaded. That is, the #ObjectClass and method name
192 uniquely identity the function to be called; the signature does not vary
193 except for trailing varargs.
194
195 Methods are always *virtual*. Overriding a method in
196 #TypeInfo.class_init of a subclass leads to any user of the class obtained
197 via OBJECT_GET_CLASS() accessing the overridden function.
198 The original function is not automatically invoked. It is the responsibility
199 of the overriding class to determine whether and when to invoke the method
200 being overridden.
201
202 To invoke the method being overridden, the preferred solution is to store
203 the original value in the overriding class before overriding the method.
204 This corresponds to ``{super,base}.method(...)`` in Java and C#
205 respectively; this frees the overriding class from hardcoding its parent
206 class, which someone might choose to change at some point.
207
208 .. code-block:: c
209    :caption: Overriding a virtual method
210
211    typedef struct MyState MyState;
212
213    typedef void (*MyDoSomething)(MyState *obj);
214
215    typedef struct MyClass {
216        ObjectClass parent_class;
217
218        MyDoSomething do_something;
219    } MyClass;
220
221    static void my_do_something(MyState *obj)
222    {
223        // do something
224    }
225
226    static void my_class_init(ObjectClass *oc, void *data)
227    {
228        MyClass *mc = MY_CLASS(oc);
229
230        mc->do_something = my_do_something;
231    }
232
233    static const TypeInfo my_type_info = {
234        .name = TYPE_MY,
235        .parent = TYPE_OBJECT,
236        .instance_size = sizeof(MyState),
237        .class_size = sizeof(MyClass),
238        .class_init = my_class_init,
239    };
240
241    typedef struct DerivedClass {
242        MyClass parent_class;
243
244        MyDoSomething parent_do_something;
245    } DerivedClass;
246
247    static void derived_do_something(MyState *obj)
248    {
249        DerivedClass *dc = DERIVED_GET_CLASS(obj);
250
251        // do something here
252        dc->parent_do_something(obj);
253        // do something else here
254    }
255
256    static void derived_class_init(ObjectClass *oc, void *data)
257    {
258        MyClass *mc = MY_CLASS(oc);
259        DerivedClass *dc = DERIVED_CLASS(oc);
260
261        dc->parent_do_something = mc->do_something;
262        mc->do_something = derived_do_something;
263    }
264
265    static const TypeInfo derived_type_info = {
266        .name = TYPE_DERIVED,
267        .parent = TYPE_MY,
268        .class_size = sizeof(DerivedClass),
269        .class_init = derived_class_init,
270    };
271
272 Alternatively, object_class_by_name() can be used to obtain the class and
273 its non-overridden methods for a specific type. This would correspond to
274 ``MyClass::method(...)`` in C++.
275
276 The first example of such a QOM method was #CPUClass.reset,
277 another example is #DeviceClass.realize.
278
279 Standard type declaration and definition macros
280 ===============================================
281
282 A lot of the code outlined above follows a standard pattern and naming
283 convention. To reduce the amount of boilerplate code that needs to be
284 written for a new type there are two sets of macros to generate the
285 common parts in a standard format.
286
287 A type is declared using the OBJECT_DECLARE macro family. In types
288 which do not require any virtual functions in the class, the
289 OBJECT_DECLARE_SIMPLE_TYPE macro is suitable, and is commonly placed
290 in the header file:
291
292 .. code-block:: c
293    :caption: Declaring a simple type
294
295    OBJECT_DECLARE_SIMPLE_TYPE(MyDevice, MY_DEVICE)
296
297 This is equivalent to the following:
298
299 .. code-block:: c
300    :caption: Expansion from declaring a simple type
301
302    typedef struct MyDevice MyDevice;
303    typedef struct MyDeviceClass MyDeviceClass;
304
305    G_DEFINE_AUTOPTR_CLEANUP_FUNC(MyDeviceClass, object_unref)
306
307    #define MY_DEVICE_GET_CLASS(void *obj) \
308            OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE)
309    #define MY_DEVICE_CLASS(void *klass) \
310            OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE)
311    #define MY_DEVICE(void *obj)
312            OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE)
313
314    struct MyDeviceClass {
315        DeviceClass parent_class;
316    };
317
318 The 'struct MyDevice' needs to be declared separately.
319 If the type requires virtual functions to be declared in the class
320 struct, then the alternative OBJECT_DECLARE_TYPE() macro can be
321 used. This does the same as OBJECT_DECLARE_SIMPLE_TYPE(), but without
322 the 'struct MyDeviceClass' definition.
323
324 To implement the type, the OBJECT_DEFINE macro family is available.
325 In the simple case the OBJECT_DEFINE_TYPE macro is suitable:
326
327 .. code-block:: c
328    :caption: Defining a simple type
329
330    OBJECT_DEFINE_TYPE(MyDevice, my_device, MY_DEVICE, DEVICE)
331
332 This is equivalent to the following:
333
334 .. code-block:: c
335    :caption: Expansion from defining a simple type
336
337    static void my_device_finalize(Object *obj);
338    static void my_device_class_init(ObjectClass *oc, void *data);
339    static void my_device_init(Object *obj);
340
341    static const TypeInfo my_device_info = {
342        .parent = TYPE_DEVICE,
343        .name = TYPE_MY_DEVICE,
344        .instance_size = sizeof(MyDevice),
345        .instance_init = my_device_init,
346        .instance_finalize = my_device_finalize,
347        .class_size = sizeof(MyDeviceClass),
348        .class_init = my_device_class_init,
349    };
350
351    static void
352    my_device_register_types(void)
353    {
354        type_register_static(&my_device_info);
355    }
356    type_init(my_device_register_types);
357
358 This is sufficient to get the type registered with the type
359 system, and the three standard methods now need to be implemented
360 along with any other logic required for the type.
361
362 If the type needs to implement one or more interfaces, then the
363 OBJECT_DEFINE_TYPE_WITH_INTERFACES() macro can be used instead.
364 This accepts an array of interface type names.
365
366 .. code-block:: c
367    :caption: Defining a simple type implementing interfaces
368
369    OBJECT_DEFINE_TYPE_WITH_INTERFACES(MyDevice, my_device,
370                                       MY_DEVICE, DEVICE,
371                                       { TYPE_USER_CREATABLE },
372                                       { NULL })
373
374 If the type is not intended to be instantiated, then the
375 OBJECT_DEFINE_ABSTRACT_TYPE() macro can be used instead:
376
377 .. code-block:: c
378    :caption: Defining a simple abstract type
379
380    OBJECT_DEFINE_ABSTRACT_TYPE(MyDevice, my_device,
381                                MY_DEVICE, DEVICE)
382
383
384
385 API Reference
386 -------------
387
388 .. kernel-doc:: include/qom/object.h