Merge tag 'pull-testing-gdbstub-plugins-gitdm-061022-3' of https://github.com/stsquad...
[qemu.git] / dump / dump.c
1 /*
2 * QEMU dump
3 *
4 * Copyright Fujitsu, Corp. 2011, 2012
5 *
6 * Authors:
7 * Wen Congyang <wency@cn.fujitsu.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
11 *
12 */
13
14 #include "qemu/osdep.h"
15 #include "qemu/cutils.h"
16 #include "elf.h"
17 #include "exec/hwaddr.h"
18 #include "monitor/monitor.h"
19 #include "sysemu/kvm.h"
20 #include "sysemu/dump.h"
21 #include "sysemu/memory_mapping.h"
22 #include "sysemu/runstate.h"
23 #include "sysemu/cpus.h"
24 #include "qapi/error.h"
25 #include "qapi/qapi-commands-dump.h"
26 #include "qapi/qapi-events-dump.h"
27 #include "qapi/qmp/qerror.h"
28 #include "qemu/error-report.h"
29 #include "qemu/main-loop.h"
30 #include "hw/misc/vmcoreinfo.h"
31 #include "migration/blocker.h"
32
33 #ifdef TARGET_X86_64
34 #include "win_dump.h"
35 #endif
36
37 #include <zlib.h>
38 #ifdef CONFIG_LZO
39 #include <lzo/lzo1x.h>
40 #endif
41 #ifdef CONFIG_SNAPPY
42 #include <snappy-c.h>
43 #endif
44 #ifndef ELF_MACHINE_UNAME
45 #define ELF_MACHINE_UNAME "Unknown"
46 #endif
47
48 #define MAX_GUEST_NOTE_SIZE (1 << 20) /* 1MB should be enough */
49
50 static Error *dump_migration_blocker;
51
52 #define ELF_NOTE_SIZE(hdr_size, name_size, desc_size) \
53 ((DIV_ROUND_UP((hdr_size), 4) + \
54 DIV_ROUND_UP((name_size), 4) + \
55 DIV_ROUND_UP((desc_size), 4)) * 4)
56
57 static inline bool dump_is_64bit(DumpState *s)
58 {
59 return s->dump_info.d_class == ELFCLASS64;
60 }
61
62 uint16_t cpu_to_dump16(DumpState *s, uint16_t val)
63 {
64 if (s->dump_info.d_endian == ELFDATA2LSB) {
65 val = cpu_to_le16(val);
66 } else {
67 val = cpu_to_be16(val);
68 }
69
70 return val;
71 }
72
73 uint32_t cpu_to_dump32(DumpState *s, uint32_t val)
74 {
75 if (s->dump_info.d_endian == ELFDATA2LSB) {
76 val = cpu_to_le32(val);
77 } else {
78 val = cpu_to_be32(val);
79 }
80
81 return val;
82 }
83
84 uint64_t cpu_to_dump64(DumpState *s, uint64_t val)
85 {
86 if (s->dump_info.d_endian == ELFDATA2LSB) {
87 val = cpu_to_le64(val);
88 } else {
89 val = cpu_to_be64(val);
90 }
91
92 return val;
93 }
94
95 static int dump_cleanup(DumpState *s)
96 {
97 guest_phys_blocks_free(&s->guest_phys_blocks);
98 memory_mapping_list_free(&s->list);
99 close(s->fd);
100 g_free(s->guest_note);
101 s->guest_note = NULL;
102 if (s->resume) {
103 if (s->detached) {
104 qemu_mutex_lock_iothread();
105 }
106 vm_start();
107 if (s->detached) {
108 qemu_mutex_unlock_iothread();
109 }
110 }
111 migrate_del_blocker(dump_migration_blocker);
112
113 return 0;
114 }
115
116 static int fd_write_vmcore(const void *buf, size_t size, void *opaque)
117 {
118 DumpState *s = opaque;
119 size_t written_size;
120
121 written_size = qemu_write_full(s->fd, buf, size);
122 if (written_size != size) {
123 return -errno;
124 }
125
126 return 0;
127 }
128
129 static void write_elf64_header(DumpState *s, Error **errp)
130 {
131 /*
132 * phnum in the elf header is 16 bit, if we have more segments we
133 * set phnum to PN_XNUM and write the real number of segments to a
134 * special section.
135 */
136 uint16_t phnum = MIN(s->phdr_num, PN_XNUM);
137 Elf64_Ehdr elf_header;
138 int ret;
139
140 memset(&elf_header, 0, sizeof(Elf64_Ehdr));
141 memcpy(&elf_header, ELFMAG, SELFMAG);
142 elf_header.e_ident[EI_CLASS] = ELFCLASS64;
143 elf_header.e_ident[EI_DATA] = s->dump_info.d_endian;
144 elf_header.e_ident[EI_VERSION] = EV_CURRENT;
145 elf_header.e_type = cpu_to_dump16(s, ET_CORE);
146 elf_header.e_machine = cpu_to_dump16(s, s->dump_info.d_machine);
147 elf_header.e_version = cpu_to_dump32(s, EV_CURRENT);
148 elf_header.e_ehsize = cpu_to_dump16(s, sizeof(elf_header));
149 elf_header.e_phoff = cpu_to_dump64(s, s->phdr_offset);
150 elf_header.e_phentsize = cpu_to_dump16(s, sizeof(Elf64_Phdr));
151 elf_header.e_phnum = cpu_to_dump16(s, phnum);
152 if (s->shdr_num) {
153 elf_header.e_shoff = cpu_to_dump64(s, s->shdr_offset);
154 elf_header.e_shentsize = cpu_to_dump16(s, sizeof(Elf64_Shdr));
155 elf_header.e_shnum = cpu_to_dump16(s, s->shdr_num);
156 }
157
158 ret = fd_write_vmcore(&elf_header, sizeof(elf_header), s);
159 if (ret < 0) {
160 error_setg_errno(errp, -ret, "dump: failed to write elf header");
161 }
162 }
163
164 static void write_elf32_header(DumpState *s, Error **errp)
165 {
166 /*
167 * phnum in the elf header is 16 bit, if we have more segments we
168 * set phnum to PN_XNUM and write the real number of segments to a
169 * special section.
170 */
171 uint16_t phnum = MIN(s->phdr_num, PN_XNUM);
172 Elf32_Ehdr elf_header;
173 int ret;
174
175 memset(&elf_header, 0, sizeof(Elf32_Ehdr));
176 memcpy(&elf_header, ELFMAG, SELFMAG);
177 elf_header.e_ident[EI_CLASS] = ELFCLASS32;
178 elf_header.e_ident[EI_DATA] = s->dump_info.d_endian;
179 elf_header.e_ident[EI_VERSION] = EV_CURRENT;
180 elf_header.e_type = cpu_to_dump16(s, ET_CORE);
181 elf_header.e_machine = cpu_to_dump16(s, s->dump_info.d_machine);
182 elf_header.e_version = cpu_to_dump32(s, EV_CURRENT);
183 elf_header.e_ehsize = cpu_to_dump16(s, sizeof(elf_header));
184 elf_header.e_phoff = cpu_to_dump32(s, s->phdr_offset);
185 elf_header.e_phentsize = cpu_to_dump16(s, sizeof(Elf32_Phdr));
186 elf_header.e_phnum = cpu_to_dump16(s, phnum);
187 if (s->shdr_num) {
188 elf_header.e_shoff = cpu_to_dump32(s, s->shdr_offset);
189 elf_header.e_shentsize = cpu_to_dump16(s, sizeof(Elf32_Shdr));
190 elf_header.e_shnum = cpu_to_dump16(s, s->shdr_num);
191 }
192
193 ret = fd_write_vmcore(&elf_header, sizeof(elf_header), s);
194 if (ret < 0) {
195 error_setg_errno(errp, -ret, "dump: failed to write elf header");
196 }
197 }
198
199 static void write_elf64_load(DumpState *s, MemoryMapping *memory_mapping,
200 int phdr_index, hwaddr offset,
201 hwaddr filesz, Error **errp)
202 {
203 Elf64_Phdr phdr;
204 int ret;
205
206 memset(&phdr, 0, sizeof(Elf64_Phdr));
207 phdr.p_type = cpu_to_dump32(s, PT_LOAD);
208 phdr.p_offset = cpu_to_dump64(s, offset);
209 phdr.p_paddr = cpu_to_dump64(s, memory_mapping->phys_addr);
210 phdr.p_filesz = cpu_to_dump64(s, filesz);
211 phdr.p_memsz = cpu_to_dump64(s, memory_mapping->length);
212 phdr.p_vaddr = cpu_to_dump64(s, memory_mapping->virt_addr) ?: phdr.p_paddr;
213
214 assert(memory_mapping->length >= filesz);
215
216 ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s);
217 if (ret < 0) {
218 error_setg_errno(errp, -ret,
219 "dump: failed to write program header table");
220 }
221 }
222
223 static void write_elf32_load(DumpState *s, MemoryMapping *memory_mapping,
224 int phdr_index, hwaddr offset,
225 hwaddr filesz, Error **errp)
226 {
227 Elf32_Phdr phdr;
228 int ret;
229
230 memset(&phdr, 0, sizeof(Elf32_Phdr));
231 phdr.p_type = cpu_to_dump32(s, PT_LOAD);
232 phdr.p_offset = cpu_to_dump32(s, offset);
233 phdr.p_paddr = cpu_to_dump32(s, memory_mapping->phys_addr);
234 phdr.p_filesz = cpu_to_dump32(s, filesz);
235 phdr.p_memsz = cpu_to_dump32(s, memory_mapping->length);
236 phdr.p_vaddr =
237 cpu_to_dump32(s, memory_mapping->virt_addr) ?: phdr.p_paddr;
238
239 assert(memory_mapping->length >= filesz);
240
241 ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s);
242 if (ret < 0) {
243 error_setg_errno(errp, -ret,
244 "dump: failed to write program header table");
245 }
246 }
247
248 static void write_elf64_phdr_note(DumpState *s, Elf64_Phdr *phdr)
249 {
250 memset(phdr, 0, sizeof(*phdr));
251 phdr->p_type = cpu_to_dump32(s, PT_NOTE);
252 phdr->p_offset = cpu_to_dump64(s, s->note_offset);
253 phdr->p_paddr = 0;
254 phdr->p_filesz = cpu_to_dump64(s, s->note_size);
255 phdr->p_memsz = cpu_to_dump64(s, s->note_size);
256 phdr->p_vaddr = 0;
257 }
258
259 static inline int cpu_index(CPUState *cpu)
260 {
261 return cpu->cpu_index + 1;
262 }
263
264 static void write_guest_note(WriteCoreDumpFunction f, DumpState *s,
265 Error **errp)
266 {
267 int ret;
268
269 if (s->guest_note) {
270 ret = f(s->guest_note, s->guest_note_size, s);
271 if (ret < 0) {
272 error_setg(errp, "dump: failed to write guest note");
273 }
274 }
275 }
276
277 static void write_elf64_notes(WriteCoreDumpFunction f, DumpState *s,
278 Error **errp)
279 {
280 CPUState *cpu;
281 int ret;
282 int id;
283
284 CPU_FOREACH(cpu) {
285 id = cpu_index(cpu);
286 ret = cpu_write_elf64_note(f, cpu, id, s);
287 if (ret < 0) {
288 error_setg(errp, "dump: failed to write elf notes");
289 return;
290 }
291 }
292
293 CPU_FOREACH(cpu) {
294 ret = cpu_write_elf64_qemunote(f, cpu, s);
295 if (ret < 0) {
296 error_setg(errp, "dump: failed to write CPU status");
297 return;
298 }
299 }
300
301 write_guest_note(f, s, errp);
302 }
303
304 static void write_elf32_phdr_note(DumpState *s, Elf32_Phdr *phdr)
305 {
306 memset(phdr, 0, sizeof(*phdr));
307 phdr->p_type = cpu_to_dump32(s, PT_NOTE);
308 phdr->p_offset = cpu_to_dump32(s, s->note_offset);
309 phdr->p_paddr = 0;
310 phdr->p_filesz = cpu_to_dump32(s, s->note_size);
311 phdr->p_memsz = cpu_to_dump32(s, s->note_size);
312 phdr->p_vaddr = 0;
313 }
314
315 static void write_elf32_notes(WriteCoreDumpFunction f, DumpState *s,
316 Error **errp)
317 {
318 CPUState *cpu;
319 int ret;
320 int id;
321
322 CPU_FOREACH(cpu) {
323 id = cpu_index(cpu);
324 ret = cpu_write_elf32_note(f, cpu, id, s);
325 if (ret < 0) {
326 error_setg(errp, "dump: failed to write elf notes");
327 return;
328 }
329 }
330
331 CPU_FOREACH(cpu) {
332 ret = cpu_write_elf32_qemunote(f, cpu, s);
333 if (ret < 0) {
334 error_setg(errp, "dump: failed to write CPU status");
335 return;
336 }
337 }
338
339 write_guest_note(f, s, errp);
340 }
341
342 static void write_elf_phdr_note(DumpState *s, Error **errp)
343 {
344 ERRP_GUARD();
345 Elf32_Phdr phdr32;
346 Elf64_Phdr phdr64;
347 void *phdr;
348 size_t size;
349 int ret;
350
351 if (dump_is_64bit(s)) {
352 write_elf64_phdr_note(s, &phdr64);
353 size = sizeof(phdr64);
354 phdr = &phdr64;
355 } else {
356 write_elf32_phdr_note(s, &phdr32);
357 size = sizeof(phdr32);
358 phdr = &phdr32;
359 }
360
361 ret = fd_write_vmcore(phdr, size, s);
362 if (ret < 0) {
363 error_setg_errno(errp, -ret,
364 "dump: failed to write program header table");
365 }
366 }
367
368 static void write_elf_section(DumpState *s, int type, Error **errp)
369 {
370 Elf32_Shdr shdr32;
371 Elf64_Shdr shdr64;
372 int shdr_size;
373 void *shdr;
374 int ret;
375
376 if (type == 0) {
377 shdr_size = sizeof(Elf32_Shdr);
378 memset(&shdr32, 0, shdr_size);
379 shdr32.sh_info = cpu_to_dump32(s, s->phdr_num);
380 shdr = &shdr32;
381 } else {
382 shdr_size = sizeof(Elf64_Shdr);
383 memset(&shdr64, 0, shdr_size);
384 shdr64.sh_info = cpu_to_dump32(s, s->phdr_num);
385 shdr = &shdr64;
386 }
387
388 ret = fd_write_vmcore(shdr, shdr_size, s);
389 if (ret < 0) {
390 error_setg_errno(errp, -ret,
391 "dump: failed to write section header table");
392 }
393 }
394
395 static void write_data(DumpState *s, void *buf, int length, Error **errp)
396 {
397 int ret;
398
399 ret = fd_write_vmcore(buf, length, s);
400 if (ret < 0) {
401 error_setg_errno(errp, -ret, "dump: failed to save memory");
402 } else {
403 s->written_size += length;
404 }
405 }
406
407 /* write the memory to vmcore. 1 page per I/O. */
408 static void write_memory(DumpState *s, GuestPhysBlock *block, ram_addr_t start,
409 int64_t size, Error **errp)
410 {
411 ERRP_GUARD();
412 int64_t i;
413
414 for (i = 0; i < size / s->dump_info.page_size; i++) {
415 write_data(s, block->host_addr + start + i * s->dump_info.page_size,
416 s->dump_info.page_size, errp);
417 if (*errp) {
418 return;
419 }
420 }
421
422 if ((size % s->dump_info.page_size) != 0) {
423 write_data(s, block->host_addr + start + i * s->dump_info.page_size,
424 size % s->dump_info.page_size, errp);
425 if (*errp) {
426 return;
427 }
428 }
429 }
430
431 /* get the memory's offset and size in the vmcore */
432 static void get_offset_range(hwaddr phys_addr,
433 ram_addr_t mapping_length,
434 DumpState *s,
435 hwaddr *p_offset,
436 hwaddr *p_filesz)
437 {
438 GuestPhysBlock *block;
439 hwaddr offset = s->memory_offset;
440 int64_t size_in_block, start;
441
442 /* When the memory is not stored into vmcore, offset will be -1 */
443 *p_offset = -1;
444 *p_filesz = 0;
445
446 if (s->has_filter) {
447 if (phys_addr < s->begin || phys_addr >= s->begin + s->length) {
448 return;
449 }
450 }
451
452 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
453 if (s->has_filter) {
454 if (block->target_start >= s->begin + s->length ||
455 block->target_end <= s->begin) {
456 /* This block is out of the range */
457 continue;
458 }
459
460 if (s->begin <= block->target_start) {
461 start = block->target_start;
462 } else {
463 start = s->begin;
464 }
465
466 size_in_block = block->target_end - start;
467 if (s->begin + s->length < block->target_end) {
468 size_in_block -= block->target_end - (s->begin + s->length);
469 }
470 } else {
471 start = block->target_start;
472 size_in_block = block->target_end - block->target_start;
473 }
474
475 if (phys_addr >= start && phys_addr < start + size_in_block) {
476 *p_offset = phys_addr - start + offset;
477
478 /* The offset range mapped from the vmcore file must not spill over
479 * the GuestPhysBlock, clamp it. The rest of the mapping will be
480 * zero-filled in memory at load time; see
481 * <http://refspecs.linuxbase.org/elf/gabi4+/ch5.pheader.html>.
482 */
483 *p_filesz = phys_addr + mapping_length <= start + size_in_block ?
484 mapping_length :
485 size_in_block - (phys_addr - start);
486 return;
487 }
488
489 offset += size_in_block;
490 }
491 }
492
493 static void write_elf_loads(DumpState *s, Error **errp)
494 {
495 ERRP_GUARD();
496 hwaddr offset, filesz;
497 MemoryMapping *memory_mapping;
498 uint32_t phdr_index = 1;
499
500 QTAILQ_FOREACH(memory_mapping, &s->list.head, next) {
501 get_offset_range(memory_mapping->phys_addr,
502 memory_mapping->length,
503 s, &offset, &filesz);
504 if (dump_is_64bit(s)) {
505 write_elf64_load(s, memory_mapping, phdr_index++, offset,
506 filesz, errp);
507 } else {
508 write_elf32_load(s, memory_mapping, phdr_index++, offset,
509 filesz, errp);
510 }
511
512 if (*errp) {
513 return;
514 }
515
516 if (phdr_index >= s->phdr_num) {
517 break;
518 }
519 }
520 }
521
522 static void write_elf_notes(DumpState *s, Error **errp)
523 {
524 if (dump_is_64bit(s)) {
525 write_elf64_notes(fd_write_vmcore, s, errp);
526 } else {
527 write_elf32_notes(fd_write_vmcore, s, errp);
528 }
529 }
530
531 /* write elf header, PT_NOTE and elf note to vmcore. */
532 static void dump_begin(DumpState *s, Error **errp)
533 {
534 ERRP_GUARD();
535
536 /*
537 * the vmcore's format is:
538 * --------------
539 * | elf header |
540 * --------------
541 * | PT_NOTE |
542 * --------------
543 * | PT_LOAD |
544 * --------------
545 * | ...... |
546 * --------------
547 * | PT_LOAD |
548 * --------------
549 * | sec_hdr |
550 * --------------
551 * | elf note |
552 * --------------
553 * | memory |
554 * --------------
555 *
556 * we only know where the memory is saved after we write elf note into
557 * vmcore.
558 */
559
560 /* write elf header to vmcore */
561 if (dump_is_64bit(s)) {
562 write_elf64_header(s, errp);
563 } else {
564 write_elf32_header(s, errp);
565 }
566 if (*errp) {
567 return;
568 }
569
570 /* write PT_NOTE to vmcore */
571 write_elf_phdr_note(s, errp);
572 if (*errp) {
573 return;
574 }
575
576 /* write all PT_LOAD to vmcore */
577 write_elf_loads(s, errp);
578 if (*errp) {
579 return;
580 }
581
582 /* write section to vmcore */
583 if (s->shdr_num) {
584 write_elf_section(s, 1, errp);
585 if (*errp) {
586 return;
587 }
588 }
589
590 /* write notes to vmcore */
591 write_elf_notes(s, errp);
592 }
593
594 static int get_next_block(DumpState *s, GuestPhysBlock *block)
595 {
596 while (1) {
597 block = QTAILQ_NEXT(block, next);
598 if (!block) {
599 /* no more block */
600 return 1;
601 }
602
603 s->start = 0;
604 s->next_block = block;
605 if (s->has_filter) {
606 if (block->target_start >= s->begin + s->length ||
607 block->target_end <= s->begin) {
608 /* This block is out of the range */
609 continue;
610 }
611
612 if (s->begin > block->target_start) {
613 s->start = s->begin - block->target_start;
614 }
615 }
616
617 return 0;
618 }
619 }
620
621 /* write all memory to vmcore */
622 static void dump_iterate(DumpState *s, Error **errp)
623 {
624 ERRP_GUARD();
625 GuestPhysBlock *block;
626 int64_t size;
627
628 do {
629 block = s->next_block;
630
631 size = block->target_end - block->target_start;
632 if (s->has_filter) {
633 size -= s->start;
634 if (s->begin + s->length < block->target_end) {
635 size -= block->target_end - (s->begin + s->length);
636 }
637 }
638 write_memory(s, block, s->start, size, errp);
639 if (*errp) {
640 return;
641 }
642
643 } while (!get_next_block(s, block));
644 }
645
646 static void create_vmcore(DumpState *s, Error **errp)
647 {
648 ERRP_GUARD();
649
650 dump_begin(s, errp);
651 if (*errp) {
652 return;
653 }
654
655 dump_iterate(s, errp);
656 }
657
658 static int write_start_flat_header(int fd)
659 {
660 MakedumpfileHeader *mh;
661 int ret = 0;
662
663 QEMU_BUILD_BUG_ON(sizeof *mh > MAX_SIZE_MDF_HEADER);
664 mh = g_malloc0(MAX_SIZE_MDF_HEADER);
665
666 memcpy(mh->signature, MAKEDUMPFILE_SIGNATURE,
667 MIN(sizeof mh->signature, sizeof MAKEDUMPFILE_SIGNATURE));
668
669 mh->type = cpu_to_be64(TYPE_FLAT_HEADER);
670 mh->version = cpu_to_be64(VERSION_FLAT_HEADER);
671
672 size_t written_size;
673 written_size = qemu_write_full(fd, mh, MAX_SIZE_MDF_HEADER);
674 if (written_size != MAX_SIZE_MDF_HEADER) {
675 ret = -1;
676 }
677
678 g_free(mh);
679 return ret;
680 }
681
682 static int write_end_flat_header(int fd)
683 {
684 MakedumpfileDataHeader mdh;
685
686 mdh.offset = END_FLAG_FLAT_HEADER;
687 mdh.buf_size = END_FLAG_FLAT_HEADER;
688
689 size_t written_size;
690 written_size = qemu_write_full(fd, &mdh, sizeof(mdh));
691 if (written_size != sizeof(mdh)) {
692 return -1;
693 }
694
695 return 0;
696 }
697
698 static int write_buffer(int fd, off_t offset, const void *buf, size_t size)
699 {
700 size_t written_size;
701 MakedumpfileDataHeader mdh;
702
703 mdh.offset = cpu_to_be64(offset);
704 mdh.buf_size = cpu_to_be64(size);
705
706 written_size = qemu_write_full(fd, &mdh, sizeof(mdh));
707 if (written_size != sizeof(mdh)) {
708 return -1;
709 }
710
711 written_size = qemu_write_full(fd, buf, size);
712 if (written_size != size) {
713 return -1;
714 }
715
716 return 0;
717 }
718
719 static int buf_write_note(const void *buf, size_t size, void *opaque)
720 {
721 DumpState *s = opaque;
722
723 /* note_buf is not enough */
724 if (s->note_buf_offset + size > s->note_size) {
725 return -1;
726 }
727
728 memcpy(s->note_buf + s->note_buf_offset, buf, size);
729
730 s->note_buf_offset += size;
731
732 return 0;
733 }
734
735 /*
736 * This function retrieves various sizes from an elf header.
737 *
738 * @note has to be a valid ELF note. The return sizes are unmodified
739 * (not padded or rounded up to be multiple of 4).
740 */
741 static void get_note_sizes(DumpState *s, const void *note,
742 uint64_t *note_head_size,
743 uint64_t *name_size,
744 uint64_t *desc_size)
745 {
746 uint64_t note_head_sz;
747 uint64_t name_sz;
748 uint64_t desc_sz;
749
750 if (dump_is_64bit(s)) {
751 const Elf64_Nhdr *hdr = note;
752 note_head_sz = sizeof(Elf64_Nhdr);
753 name_sz = tswap64(hdr->n_namesz);
754 desc_sz = tswap64(hdr->n_descsz);
755 } else {
756 const Elf32_Nhdr *hdr = note;
757 note_head_sz = sizeof(Elf32_Nhdr);
758 name_sz = tswap32(hdr->n_namesz);
759 desc_sz = tswap32(hdr->n_descsz);
760 }
761
762 if (note_head_size) {
763 *note_head_size = note_head_sz;
764 }
765 if (name_size) {
766 *name_size = name_sz;
767 }
768 if (desc_size) {
769 *desc_size = desc_sz;
770 }
771 }
772
773 static bool note_name_equal(DumpState *s,
774 const uint8_t *note, const char *name)
775 {
776 int len = strlen(name) + 1;
777 uint64_t head_size, name_size;
778
779 get_note_sizes(s, note, &head_size, &name_size, NULL);
780 head_size = ROUND_UP(head_size, 4);
781
782 return name_size == len && memcmp(note + head_size, name, len) == 0;
783 }
784
785 /* write common header, sub header and elf note to vmcore */
786 static void create_header32(DumpState *s, Error **errp)
787 {
788 ERRP_GUARD();
789 DiskDumpHeader32 *dh = NULL;
790 KdumpSubHeader32 *kh = NULL;
791 size_t size;
792 uint32_t block_size;
793 uint32_t sub_hdr_size;
794 uint32_t bitmap_blocks;
795 uint32_t status = 0;
796 uint64_t offset_note;
797
798 /* write common header, the version of kdump-compressed format is 6th */
799 size = sizeof(DiskDumpHeader32);
800 dh = g_malloc0(size);
801
802 memcpy(dh->signature, KDUMP_SIGNATURE, SIG_LEN);
803 dh->header_version = cpu_to_dump32(s, 6);
804 block_size = s->dump_info.page_size;
805 dh->block_size = cpu_to_dump32(s, block_size);
806 sub_hdr_size = sizeof(struct KdumpSubHeader32) + s->note_size;
807 sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size);
808 dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size);
809 /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */
810 dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX));
811 dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus);
812 bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2;
813 dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks);
814 strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine));
815
816 if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) {
817 status |= DUMP_DH_COMPRESSED_ZLIB;
818 }
819 #ifdef CONFIG_LZO
820 if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) {
821 status |= DUMP_DH_COMPRESSED_LZO;
822 }
823 #endif
824 #ifdef CONFIG_SNAPPY
825 if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) {
826 status |= DUMP_DH_COMPRESSED_SNAPPY;
827 }
828 #endif
829 dh->status = cpu_to_dump32(s, status);
830
831 if (write_buffer(s->fd, 0, dh, size) < 0) {
832 error_setg(errp, "dump: failed to write disk dump header");
833 goto out;
834 }
835
836 /* write sub header */
837 size = sizeof(KdumpSubHeader32);
838 kh = g_malloc0(size);
839
840 /* 64bit max_mapnr_64 */
841 kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr);
842 kh->phys_base = cpu_to_dump32(s, s->dump_info.phys_base);
843 kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL);
844
845 offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size;
846 if (s->guest_note &&
847 note_name_equal(s, s->guest_note, "VMCOREINFO")) {
848 uint64_t hsize, name_size, size_vmcoreinfo_desc, offset_vmcoreinfo;
849
850 get_note_sizes(s, s->guest_note,
851 &hsize, &name_size, &size_vmcoreinfo_desc);
852 offset_vmcoreinfo = offset_note + s->note_size - s->guest_note_size +
853 (DIV_ROUND_UP(hsize, 4) + DIV_ROUND_UP(name_size, 4)) * 4;
854 kh->offset_vmcoreinfo = cpu_to_dump64(s, offset_vmcoreinfo);
855 kh->size_vmcoreinfo = cpu_to_dump32(s, size_vmcoreinfo_desc);
856 }
857
858 kh->offset_note = cpu_to_dump64(s, offset_note);
859 kh->note_size = cpu_to_dump32(s, s->note_size);
860
861 if (write_buffer(s->fd, DISKDUMP_HEADER_BLOCKS *
862 block_size, kh, size) < 0) {
863 error_setg(errp, "dump: failed to write kdump sub header");
864 goto out;
865 }
866
867 /* write note */
868 s->note_buf = g_malloc0(s->note_size);
869 s->note_buf_offset = 0;
870
871 /* use s->note_buf to store notes temporarily */
872 write_elf32_notes(buf_write_note, s, errp);
873 if (*errp) {
874 goto out;
875 }
876 if (write_buffer(s->fd, offset_note, s->note_buf,
877 s->note_size) < 0) {
878 error_setg(errp, "dump: failed to write notes");
879 goto out;
880 }
881
882 /* get offset of dump_bitmap */
883 s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) *
884 block_size;
885
886 /* get offset of page */
887 s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) *
888 block_size;
889
890 out:
891 g_free(dh);
892 g_free(kh);
893 g_free(s->note_buf);
894 }
895
896 /* write common header, sub header and elf note to vmcore */
897 static void create_header64(DumpState *s, Error **errp)
898 {
899 ERRP_GUARD();
900 DiskDumpHeader64 *dh = NULL;
901 KdumpSubHeader64 *kh = NULL;
902 size_t size;
903 uint32_t block_size;
904 uint32_t sub_hdr_size;
905 uint32_t bitmap_blocks;
906 uint32_t status = 0;
907 uint64_t offset_note;
908
909 /* write common header, the version of kdump-compressed format is 6th */
910 size = sizeof(DiskDumpHeader64);
911 dh = g_malloc0(size);
912
913 memcpy(dh->signature, KDUMP_SIGNATURE, SIG_LEN);
914 dh->header_version = cpu_to_dump32(s, 6);
915 block_size = s->dump_info.page_size;
916 dh->block_size = cpu_to_dump32(s, block_size);
917 sub_hdr_size = sizeof(struct KdumpSubHeader64) + s->note_size;
918 sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size);
919 dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size);
920 /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */
921 dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX));
922 dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus);
923 bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2;
924 dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks);
925 strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine));
926
927 if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) {
928 status |= DUMP_DH_COMPRESSED_ZLIB;
929 }
930 #ifdef CONFIG_LZO
931 if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) {
932 status |= DUMP_DH_COMPRESSED_LZO;
933 }
934 #endif
935 #ifdef CONFIG_SNAPPY
936 if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) {
937 status |= DUMP_DH_COMPRESSED_SNAPPY;
938 }
939 #endif
940 dh->status = cpu_to_dump32(s, status);
941
942 if (write_buffer(s->fd, 0, dh, size) < 0) {
943 error_setg(errp, "dump: failed to write disk dump header");
944 goto out;
945 }
946
947 /* write sub header */
948 size = sizeof(KdumpSubHeader64);
949 kh = g_malloc0(size);
950
951 /* 64bit max_mapnr_64 */
952 kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr);
953 kh->phys_base = cpu_to_dump64(s, s->dump_info.phys_base);
954 kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL);
955
956 offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size;
957 if (s->guest_note &&
958 note_name_equal(s, s->guest_note, "VMCOREINFO")) {
959 uint64_t hsize, name_size, size_vmcoreinfo_desc, offset_vmcoreinfo;
960
961 get_note_sizes(s, s->guest_note,
962 &hsize, &name_size, &size_vmcoreinfo_desc);
963 offset_vmcoreinfo = offset_note + s->note_size - s->guest_note_size +
964 (DIV_ROUND_UP(hsize, 4) + DIV_ROUND_UP(name_size, 4)) * 4;
965 kh->offset_vmcoreinfo = cpu_to_dump64(s, offset_vmcoreinfo);
966 kh->size_vmcoreinfo = cpu_to_dump64(s, size_vmcoreinfo_desc);
967 }
968
969 kh->offset_note = cpu_to_dump64(s, offset_note);
970 kh->note_size = cpu_to_dump64(s, s->note_size);
971
972 if (write_buffer(s->fd, DISKDUMP_HEADER_BLOCKS *
973 block_size, kh, size) < 0) {
974 error_setg(errp, "dump: failed to write kdump sub header");
975 goto out;
976 }
977
978 /* write note */
979 s->note_buf = g_malloc0(s->note_size);
980 s->note_buf_offset = 0;
981
982 /* use s->note_buf to store notes temporarily */
983 write_elf64_notes(buf_write_note, s, errp);
984 if (*errp) {
985 goto out;
986 }
987
988 if (write_buffer(s->fd, offset_note, s->note_buf,
989 s->note_size) < 0) {
990 error_setg(errp, "dump: failed to write notes");
991 goto out;
992 }
993
994 /* get offset of dump_bitmap */
995 s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) *
996 block_size;
997
998 /* get offset of page */
999 s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) *
1000 block_size;
1001
1002 out:
1003 g_free(dh);
1004 g_free(kh);
1005 g_free(s->note_buf);
1006 }
1007
1008 static void write_dump_header(DumpState *s, Error **errp)
1009 {
1010 if (dump_is_64bit(s)) {
1011 create_header64(s, errp);
1012 } else {
1013 create_header32(s, errp);
1014 }
1015 }
1016
1017 static size_t dump_bitmap_get_bufsize(DumpState *s)
1018 {
1019 return s->dump_info.page_size;
1020 }
1021
1022 /*
1023 * set dump_bitmap sequencely. the bit before last_pfn is not allowed to be
1024 * rewritten, so if need to set the first bit, set last_pfn and pfn to 0.
1025 * set_dump_bitmap will always leave the recently set bit un-sync. And setting
1026 * (last bit + sizeof(buf) * 8) to 0 will do flushing the content in buf into
1027 * vmcore, ie. synchronizing un-sync bit into vmcore.
1028 */
1029 static int set_dump_bitmap(uint64_t last_pfn, uint64_t pfn, bool value,
1030 uint8_t *buf, DumpState *s)
1031 {
1032 off_t old_offset, new_offset;
1033 off_t offset_bitmap1, offset_bitmap2;
1034 uint32_t byte, bit;
1035 size_t bitmap_bufsize = dump_bitmap_get_bufsize(s);
1036 size_t bits_per_buf = bitmap_bufsize * CHAR_BIT;
1037
1038 /* should not set the previous place */
1039 assert(last_pfn <= pfn);
1040
1041 /*
1042 * if the bit needed to be set is not cached in buf, flush the data in buf
1043 * to vmcore firstly.
1044 * making new_offset be bigger than old_offset can also sync remained data
1045 * into vmcore.
1046 */
1047 old_offset = bitmap_bufsize * (last_pfn / bits_per_buf);
1048 new_offset = bitmap_bufsize * (pfn / bits_per_buf);
1049
1050 while (old_offset < new_offset) {
1051 /* calculate the offset and write dump_bitmap */
1052 offset_bitmap1 = s->offset_dump_bitmap + old_offset;
1053 if (write_buffer(s->fd, offset_bitmap1, buf,
1054 bitmap_bufsize) < 0) {
1055 return -1;
1056 }
1057
1058 /* dump level 1 is chosen, so 1st and 2nd bitmap are same */
1059 offset_bitmap2 = s->offset_dump_bitmap + s->len_dump_bitmap +
1060 old_offset;
1061 if (write_buffer(s->fd, offset_bitmap2, buf,
1062 bitmap_bufsize) < 0) {
1063 return -1;
1064 }
1065
1066 memset(buf, 0, bitmap_bufsize);
1067 old_offset += bitmap_bufsize;
1068 }
1069
1070 /* get the exact place of the bit in the buf, and set it */
1071 byte = (pfn % bits_per_buf) / CHAR_BIT;
1072 bit = (pfn % bits_per_buf) % CHAR_BIT;
1073 if (value) {
1074 buf[byte] |= 1u << bit;
1075 } else {
1076 buf[byte] &= ~(1u << bit);
1077 }
1078
1079 return 0;
1080 }
1081
1082 static uint64_t dump_paddr_to_pfn(DumpState *s, uint64_t addr)
1083 {
1084 int target_page_shift = ctz32(s->dump_info.page_size);
1085
1086 return (addr >> target_page_shift) - ARCH_PFN_OFFSET;
1087 }
1088
1089 static uint64_t dump_pfn_to_paddr(DumpState *s, uint64_t pfn)
1090 {
1091 int target_page_shift = ctz32(s->dump_info.page_size);
1092
1093 return (pfn + ARCH_PFN_OFFSET) << target_page_shift;
1094 }
1095
1096 /*
1097 * exam every page and return the page frame number and the address of the page.
1098 * bufptr can be NULL. note: the blocks here is supposed to reflect guest-phys
1099 * blocks, so block->target_start and block->target_end should be interal
1100 * multiples of the target page size.
1101 */
1102 static bool get_next_page(GuestPhysBlock **blockptr, uint64_t *pfnptr,
1103 uint8_t **bufptr, DumpState *s)
1104 {
1105 GuestPhysBlock *block = *blockptr;
1106 hwaddr addr, target_page_mask = ~((hwaddr)s->dump_info.page_size - 1);
1107 uint8_t *buf;
1108
1109 /* block == NULL means the start of the iteration */
1110 if (!block) {
1111 block = QTAILQ_FIRST(&s->guest_phys_blocks.head);
1112 *blockptr = block;
1113 assert((block->target_start & ~target_page_mask) == 0);
1114 assert((block->target_end & ~target_page_mask) == 0);
1115 *pfnptr = dump_paddr_to_pfn(s, block->target_start);
1116 if (bufptr) {
1117 *bufptr = block->host_addr;
1118 }
1119 return true;
1120 }
1121
1122 *pfnptr = *pfnptr + 1;
1123 addr = dump_pfn_to_paddr(s, *pfnptr);
1124
1125 if ((addr >= block->target_start) &&
1126 (addr + s->dump_info.page_size <= block->target_end)) {
1127 buf = block->host_addr + (addr - block->target_start);
1128 } else {
1129 /* the next page is in the next block */
1130 block = QTAILQ_NEXT(block, next);
1131 *blockptr = block;
1132 if (!block) {
1133 return false;
1134 }
1135 assert((block->target_start & ~target_page_mask) == 0);
1136 assert((block->target_end & ~target_page_mask) == 0);
1137 *pfnptr = dump_paddr_to_pfn(s, block->target_start);
1138 buf = block->host_addr;
1139 }
1140
1141 if (bufptr) {
1142 *bufptr = buf;
1143 }
1144
1145 return true;
1146 }
1147
1148 static void write_dump_bitmap(DumpState *s, Error **errp)
1149 {
1150 int ret = 0;
1151 uint64_t last_pfn, pfn;
1152 void *dump_bitmap_buf;
1153 size_t num_dumpable;
1154 GuestPhysBlock *block_iter = NULL;
1155 size_t bitmap_bufsize = dump_bitmap_get_bufsize(s);
1156 size_t bits_per_buf = bitmap_bufsize * CHAR_BIT;
1157
1158 /* dump_bitmap_buf is used to store dump_bitmap temporarily */
1159 dump_bitmap_buf = g_malloc0(bitmap_bufsize);
1160
1161 num_dumpable = 0;
1162 last_pfn = 0;
1163
1164 /*
1165 * exam memory page by page, and set the bit in dump_bitmap corresponded
1166 * to the existing page.
1167 */
1168 while (get_next_page(&block_iter, &pfn, NULL, s)) {
1169 ret = set_dump_bitmap(last_pfn, pfn, true, dump_bitmap_buf, s);
1170 if (ret < 0) {
1171 error_setg(errp, "dump: failed to set dump_bitmap");
1172 goto out;
1173 }
1174
1175 last_pfn = pfn;
1176 num_dumpable++;
1177 }
1178
1179 /*
1180 * set_dump_bitmap will always leave the recently set bit un-sync. Here we
1181 * set the remaining bits from last_pfn to the end of the bitmap buffer to
1182 * 0. With those set, the un-sync bit will be synchronized into the vmcore.
1183 */
1184 if (num_dumpable > 0) {
1185 ret = set_dump_bitmap(last_pfn, last_pfn + bits_per_buf, false,
1186 dump_bitmap_buf, s);
1187 if (ret < 0) {
1188 error_setg(errp, "dump: failed to sync dump_bitmap");
1189 goto out;
1190 }
1191 }
1192
1193 /* number of dumpable pages that will be dumped later */
1194 s->num_dumpable = num_dumpable;
1195
1196 out:
1197 g_free(dump_bitmap_buf);
1198 }
1199
1200 static void prepare_data_cache(DataCache *data_cache, DumpState *s,
1201 off_t offset)
1202 {
1203 data_cache->fd = s->fd;
1204 data_cache->data_size = 0;
1205 data_cache->buf_size = 4 * dump_bitmap_get_bufsize(s);
1206 data_cache->buf = g_malloc0(data_cache->buf_size);
1207 data_cache->offset = offset;
1208 }
1209
1210 static int write_cache(DataCache *dc, const void *buf, size_t size,
1211 bool flag_sync)
1212 {
1213 /*
1214 * dc->buf_size should not be less than size, otherwise dc will never be
1215 * enough
1216 */
1217 assert(size <= dc->buf_size);
1218
1219 /*
1220 * if flag_sync is set, synchronize data in dc->buf into vmcore.
1221 * otherwise check if the space is enough for caching data in buf, if not,
1222 * write the data in dc->buf to dc->fd and reset dc->buf
1223 */
1224 if ((!flag_sync && dc->data_size + size > dc->buf_size) ||
1225 (flag_sync && dc->data_size > 0)) {
1226 if (write_buffer(dc->fd, dc->offset, dc->buf, dc->data_size) < 0) {
1227 return -1;
1228 }
1229
1230 dc->offset += dc->data_size;
1231 dc->data_size = 0;
1232 }
1233
1234 if (!flag_sync) {
1235 memcpy(dc->buf + dc->data_size, buf, size);
1236 dc->data_size += size;
1237 }
1238
1239 return 0;
1240 }
1241
1242 static void free_data_cache(DataCache *data_cache)
1243 {
1244 g_free(data_cache->buf);
1245 }
1246
1247 static size_t get_len_buf_out(size_t page_size, uint32_t flag_compress)
1248 {
1249 switch (flag_compress) {
1250 case DUMP_DH_COMPRESSED_ZLIB:
1251 return compressBound(page_size);
1252
1253 case DUMP_DH_COMPRESSED_LZO:
1254 /*
1255 * LZO will expand incompressible data by a little amount. Please check
1256 * the following URL to see the expansion calculation:
1257 * http://www.oberhumer.com/opensource/lzo/lzofaq.php
1258 */
1259 return page_size + page_size / 16 + 64 + 3;
1260
1261 #ifdef CONFIG_SNAPPY
1262 case DUMP_DH_COMPRESSED_SNAPPY:
1263 return snappy_max_compressed_length(page_size);
1264 #endif
1265 }
1266 return 0;
1267 }
1268
1269 static void write_dump_pages(DumpState *s, Error **errp)
1270 {
1271 int ret = 0;
1272 DataCache page_desc, page_data;
1273 size_t len_buf_out, size_out;
1274 #ifdef CONFIG_LZO
1275 lzo_bytep wrkmem = NULL;
1276 #endif
1277 uint8_t *buf_out = NULL;
1278 off_t offset_desc, offset_data;
1279 PageDescriptor pd, pd_zero;
1280 uint8_t *buf;
1281 GuestPhysBlock *block_iter = NULL;
1282 uint64_t pfn_iter;
1283
1284 /* get offset of page_desc and page_data in dump file */
1285 offset_desc = s->offset_page;
1286 offset_data = offset_desc + sizeof(PageDescriptor) * s->num_dumpable;
1287
1288 prepare_data_cache(&page_desc, s, offset_desc);
1289 prepare_data_cache(&page_data, s, offset_data);
1290
1291 /* prepare buffer to store compressed data */
1292 len_buf_out = get_len_buf_out(s->dump_info.page_size, s->flag_compress);
1293 assert(len_buf_out != 0);
1294
1295 #ifdef CONFIG_LZO
1296 wrkmem = g_malloc(LZO1X_1_MEM_COMPRESS);
1297 #endif
1298
1299 buf_out = g_malloc(len_buf_out);
1300
1301 /*
1302 * init zero page's page_desc and page_data, because every zero page
1303 * uses the same page_data
1304 */
1305 pd_zero.size = cpu_to_dump32(s, s->dump_info.page_size);
1306 pd_zero.flags = cpu_to_dump32(s, 0);
1307 pd_zero.offset = cpu_to_dump64(s, offset_data);
1308 pd_zero.page_flags = cpu_to_dump64(s, 0);
1309 buf = g_malloc0(s->dump_info.page_size);
1310 ret = write_cache(&page_data, buf, s->dump_info.page_size, false);
1311 g_free(buf);
1312 if (ret < 0) {
1313 error_setg(errp, "dump: failed to write page data (zero page)");
1314 goto out;
1315 }
1316
1317 offset_data += s->dump_info.page_size;
1318
1319 /*
1320 * dump memory to vmcore page by page. zero page will all be resided in the
1321 * first page of page section
1322 */
1323 while (get_next_page(&block_iter, &pfn_iter, &buf, s)) {
1324 /* check zero page */
1325 if (buffer_is_zero(buf, s->dump_info.page_size)) {
1326 ret = write_cache(&page_desc, &pd_zero, sizeof(PageDescriptor),
1327 false);
1328 if (ret < 0) {
1329 error_setg(errp, "dump: failed to write page desc");
1330 goto out;
1331 }
1332 } else {
1333 /*
1334 * not zero page, then:
1335 * 1. compress the page
1336 * 2. write the compressed page into the cache of page_data
1337 * 3. get page desc of the compressed page and write it into the
1338 * cache of page_desc
1339 *
1340 * only one compression format will be used here, for
1341 * s->flag_compress is set. But when compression fails to work,
1342 * we fall back to save in plaintext.
1343 */
1344 size_out = len_buf_out;
1345 if ((s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) &&
1346 (compress2(buf_out, (uLongf *)&size_out, buf,
1347 s->dump_info.page_size, Z_BEST_SPEED) == Z_OK) &&
1348 (size_out < s->dump_info.page_size)) {
1349 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_ZLIB);
1350 pd.size = cpu_to_dump32(s, size_out);
1351
1352 ret = write_cache(&page_data, buf_out, size_out, false);
1353 if (ret < 0) {
1354 error_setg(errp, "dump: failed to write page data");
1355 goto out;
1356 }
1357 #ifdef CONFIG_LZO
1358 } else if ((s->flag_compress & DUMP_DH_COMPRESSED_LZO) &&
1359 (lzo1x_1_compress(buf, s->dump_info.page_size, buf_out,
1360 (lzo_uint *)&size_out, wrkmem) == LZO_E_OK) &&
1361 (size_out < s->dump_info.page_size)) {
1362 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_LZO);
1363 pd.size = cpu_to_dump32(s, size_out);
1364
1365 ret = write_cache(&page_data, buf_out, size_out, false);
1366 if (ret < 0) {
1367 error_setg(errp, "dump: failed to write page data");
1368 goto out;
1369 }
1370 #endif
1371 #ifdef CONFIG_SNAPPY
1372 } else if ((s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) &&
1373 (snappy_compress((char *)buf, s->dump_info.page_size,
1374 (char *)buf_out, &size_out) == SNAPPY_OK) &&
1375 (size_out < s->dump_info.page_size)) {
1376 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_SNAPPY);
1377 pd.size = cpu_to_dump32(s, size_out);
1378
1379 ret = write_cache(&page_data, buf_out, size_out, false);
1380 if (ret < 0) {
1381 error_setg(errp, "dump: failed to write page data");
1382 goto out;
1383 }
1384 #endif
1385 } else {
1386 /*
1387 * fall back to save in plaintext, size_out should be
1388 * assigned the target's page size
1389 */
1390 pd.flags = cpu_to_dump32(s, 0);
1391 size_out = s->dump_info.page_size;
1392 pd.size = cpu_to_dump32(s, size_out);
1393
1394 ret = write_cache(&page_data, buf,
1395 s->dump_info.page_size, false);
1396 if (ret < 0) {
1397 error_setg(errp, "dump: failed to write page data");
1398 goto out;
1399 }
1400 }
1401
1402 /* get and write page desc here */
1403 pd.page_flags = cpu_to_dump64(s, 0);
1404 pd.offset = cpu_to_dump64(s, offset_data);
1405 offset_data += size_out;
1406
1407 ret = write_cache(&page_desc, &pd, sizeof(PageDescriptor), false);
1408 if (ret < 0) {
1409 error_setg(errp, "dump: failed to write page desc");
1410 goto out;
1411 }
1412 }
1413 s->written_size += s->dump_info.page_size;
1414 }
1415
1416 ret = write_cache(&page_desc, NULL, 0, true);
1417 if (ret < 0) {
1418 error_setg(errp, "dump: failed to sync cache for page_desc");
1419 goto out;
1420 }
1421 ret = write_cache(&page_data, NULL, 0, true);
1422 if (ret < 0) {
1423 error_setg(errp, "dump: failed to sync cache for page_data");
1424 goto out;
1425 }
1426
1427 out:
1428 free_data_cache(&page_desc);
1429 free_data_cache(&page_data);
1430
1431 #ifdef CONFIG_LZO
1432 g_free(wrkmem);
1433 #endif
1434
1435 g_free(buf_out);
1436 }
1437
1438 static void create_kdump_vmcore(DumpState *s, Error **errp)
1439 {
1440 ERRP_GUARD();
1441 int ret;
1442
1443 /*
1444 * the kdump-compressed format is:
1445 * File offset
1446 * +------------------------------------------+ 0x0
1447 * | main header (struct disk_dump_header) |
1448 * |------------------------------------------+ block 1
1449 * | sub header (struct kdump_sub_header) |
1450 * |------------------------------------------+ block 2
1451 * | 1st-dump_bitmap |
1452 * |------------------------------------------+ block 2 + X blocks
1453 * | 2nd-dump_bitmap | (aligned by block)
1454 * |------------------------------------------+ block 2 + 2 * X blocks
1455 * | page desc for pfn 0 (struct page_desc) | (aligned by block)
1456 * | page desc for pfn 1 (struct page_desc) |
1457 * | : |
1458 * |------------------------------------------| (not aligned by block)
1459 * | page data (pfn 0) |
1460 * | page data (pfn 1) |
1461 * | : |
1462 * +------------------------------------------+
1463 */
1464
1465 ret = write_start_flat_header(s->fd);
1466 if (ret < 0) {
1467 error_setg(errp, "dump: failed to write start flat header");
1468 return;
1469 }
1470
1471 write_dump_header(s, errp);
1472 if (*errp) {
1473 return;
1474 }
1475
1476 write_dump_bitmap(s, errp);
1477 if (*errp) {
1478 return;
1479 }
1480
1481 write_dump_pages(s, errp);
1482 if (*errp) {
1483 return;
1484 }
1485
1486 ret = write_end_flat_header(s->fd);
1487 if (ret < 0) {
1488 error_setg(errp, "dump: failed to write end flat header");
1489 return;
1490 }
1491 }
1492
1493 static ram_addr_t get_start_block(DumpState *s)
1494 {
1495 GuestPhysBlock *block;
1496
1497 if (!s->has_filter) {
1498 s->next_block = QTAILQ_FIRST(&s->guest_phys_blocks.head);
1499 return 0;
1500 }
1501
1502 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
1503 if (block->target_start >= s->begin + s->length ||
1504 block->target_end <= s->begin) {
1505 /* This block is out of the range */
1506 continue;
1507 }
1508
1509 s->next_block = block;
1510 if (s->begin > block->target_start) {
1511 s->start = s->begin - block->target_start;
1512 } else {
1513 s->start = 0;
1514 }
1515 return s->start;
1516 }
1517
1518 return -1;
1519 }
1520
1521 static void get_max_mapnr(DumpState *s)
1522 {
1523 GuestPhysBlock *last_block;
1524
1525 last_block = QTAILQ_LAST(&s->guest_phys_blocks.head);
1526 s->max_mapnr = dump_paddr_to_pfn(s, last_block->target_end);
1527 }
1528
1529 static DumpState dump_state_global = { .status = DUMP_STATUS_NONE };
1530
1531 static void dump_state_prepare(DumpState *s)
1532 {
1533 /* zero the struct, setting status to active */
1534 *s = (DumpState) { .status = DUMP_STATUS_ACTIVE };
1535 }
1536
1537 bool qemu_system_dump_in_progress(void)
1538 {
1539 DumpState *state = &dump_state_global;
1540 return (qatomic_read(&state->status) == DUMP_STATUS_ACTIVE);
1541 }
1542
1543 /* calculate total size of memory to be dumped (taking filter into
1544 * acoount.) */
1545 static int64_t dump_calculate_size(DumpState *s)
1546 {
1547 GuestPhysBlock *block;
1548 int64_t size = 0, total = 0, left = 0, right = 0;
1549
1550 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
1551 if (s->has_filter) {
1552 /* calculate the overlapped region. */
1553 left = MAX(s->begin, block->target_start);
1554 right = MIN(s->begin + s->length, block->target_end);
1555 size = right - left;
1556 size = size > 0 ? size : 0;
1557 } else {
1558 /* count the whole region in */
1559 size = (block->target_end - block->target_start);
1560 }
1561 total += size;
1562 }
1563
1564 return total;
1565 }
1566
1567 static void vmcoreinfo_update_phys_base(DumpState *s)
1568 {
1569 uint64_t size, note_head_size, name_size, phys_base;
1570 char **lines;
1571 uint8_t *vmci;
1572 size_t i;
1573
1574 if (!note_name_equal(s, s->guest_note, "VMCOREINFO")) {
1575 return;
1576 }
1577
1578 get_note_sizes(s, s->guest_note, &note_head_size, &name_size, &size);
1579 note_head_size = ROUND_UP(note_head_size, 4);
1580
1581 vmci = s->guest_note + note_head_size + ROUND_UP(name_size, 4);
1582 *(vmci + size) = '\0';
1583
1584 lines = g_strsplit((char *)vmci, "\n", -1);
1585 for (i = 0; lines[i]; i++) {
1586 const char *prefix = NULL;
1587
1588 if (s->dump_info.d_machine == EM_X86_64) {
1589 prefix = "NUMBER(phys_base)=";
1590 } else if (s->dump_info.d_machine == EM_AARCH64) {
1591 prefix = "NUMBER(PHYS_OFFSET)=";
1592 }
1593
1594 if (prefix && g_str_has_prefix(lines[i], prefix)) {
1595 if (qemu_strtou64(lines[i] + strlen(prefix), NULL, 16,
1596 &phys_base) < 0) {
1597 warn_report("Failed to read %s", prefix);
1598 } else {
1599 s->dump_info.phys_base = phys_base;
1600 }
1601 break;
1602 }
1603 }
1604
1605 g_strfreev(lines);
1606 }
1607
1608 static void dump_init(DumpState *s, int fd, bool has_format,
1609 DumpGuestMemoryFormat format, bool paging, bool has_filter,
1610 int64_t begin, int64_t length, Error **errp)
1611 {
1612 ERRP_GUARD();
1613 VMCoreInfoState *vmci = vmcoreinfo_find();
1614 CPUState *cpu;
1615 int nr_cpus;
1616 int ret;
1617
1618 s->has_format = has_format;
1619 s->format = format;
1620 s->written_size = 0;
1621
1622 /* kdump-compressed is conflict with paging and filter */
1623 if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
1624 assert(!paging && !has_filter);
1625 }
1626
1627 if (runstate_is_running()) {
1628 vm_stop(RUN_STATE_SAVE_VM);
1629 s->resume = true;
1630 } else {
1631 s->resume = false;
1632 }
1633
1634 /* If we use KVM, we should synchronize the registers before we get dump
1635 * info or physmap info.
1636 */
1637 cpu_synchronize_all_states();
1638 nr_cpus = 0;
1639 CPU_FOREACH(cpu) {
1640 nr_cpus++;
1641 }
1642
1643 s->fd = fd;
1644 s->has_filter = has_filter;
1645 s->begin = begin;
1646 s->length = length;
1647
1648 memory_mapping_list_init(&s->list);
1649
1650 guest_phys_blocks_init(&s->guest_phys_blocks);
1651 guest_phys_blocks_append(&s->guest_phys_blocks);
1652 s->total_size = dump_calculate_size(s);
1653 #ifdef DEBUG_DUMP_GUEST_MEMORY
1654 fprintf(stderr, "DUMP: total memory to dump: %lu\n", s->total_size);
1655 #endif
1656
1657 /* it does not make sense to dump non-existent memory */
1658 if (!s->total_size) {
1659 error_setg(errp, "dump: no guest memory to dump");
1660 goto cleanup;
1661 }
1662
1663 s->start = get_start_block(s);
1664 if (s->start == -1) {
1665 error_setg(errp, QERR_INVALID_PARAMETER, "begin");
1666 goto cleanup;
1667 }
1668
1669 /* get dump info: endian, class and architecture.
1670 * If the target architecture is not supported, cpu_get_dump_info() will
1671 * return -1.
1672 */
1673 ret = cpu_get_dump_info(&s->dump_info, &s->guest_phys_blocks);
1674 if (ret < 0) {
1675 error_setg(errp, QERR_UNSUPPORTED);
1676 goto cleanup;
1677 }
1678
1679 if (!s->dump_info.page_size) {
1680 s->dump_info.page_size = TARGET_PAGE_SIZE;
1681 }
1682
1683 s->note_size = cpu_get_note_size(s->dump_info.d_class,
1684 s->dump_info.d_machine, nr_cpus);
1685 if (s->note_size < 0) {
1686 error_setg(errp, QERR_UNSUPPORTED);
1687 goto cleanup;
1688 }
1689
1690 /*
1691 * The goal of this block is to (a) update the previously guessed
1692 * phys_base, (b) copy the guest note out of the guest.
1693 * Failure to do so is not fatal for dumping.
1694 */
1695 if (vmci) {
1696 uint64_t addr, note_head_size, name_size, desc_size;
1697 uint32_t size;
1698 uint16_t format;
1699
1700 note_head_size = dump_is_64bit(s) ?
1701 sizeof(Elf64_Nhdr) : sizeof(Elf32_Nhdr);
1702
1703 format = le16_to_cpu(vmci->vmcoreinfo.guest_format);
1704 size = le32_to_cpu(vmci->vmcoreinfo.size);
1705 addr = le64_to_cpu(vmci->vmcoreinfo.paddr);
1706 if (!vmci->has_vmcoreinfo) {
1707 warn_report("guest note is not present");
1708 } else if (size < note_head_size || size > MAX_GUEST_NOTE_SIZE) {
1709 warn_report("guest note size is invalid: %" PRIu32, size);
1710 } else if (format != FW_CFG_VMCOREINFO_FORMAT_ELF) {
1711 warn_report("guest note format is unsupported: %" PRIu16, format);
1712 } else {
1713 s->guest_note = g_malloc(size + 1); /* +1 for adding \0 */
1714 cpu_physical_memory_read(addr, s->guest_note, size);
1715
1716 get_note_sizes(s, s->guest_note, NULL, &name_size, &desc_size);
1717 s->guest_note_size = ELF_NOTE_SIZE(note_head_size, name_size,
1718 desc_size);
1719 if (name_size > MAX_GUEST_NOTE_SIZE ||
1720 desc_size > MAX_GUEST_NOTE_SIZE ||
1721 s->guest_note_size > size) {
1722 warn_report("Invalid guest note header");
1723 g_free(s->guest_note);
1724 s->guest_note = NULL;
1725 } else {
1726 vmcoreinfo_update_phys_base(s);
1727 s->note_size += s->guest_note_size;
1728 }
1729 }
1730 }
1731
1732 /* get memory mapping */
1733 if (paging) {
1734 qemu_get_guest_memory_mapping(&s->list, &s->guest_phys_blocks, errp);
1735 if (*errp) {
1736 goto cleanup;
1737 }
1738 } else {
1739 qemu_get_guest_simple_memory_mapping(&s->list, &s->guest_phys_blocks);
1740 }
1741
1742 s->nr_cpus = nr_cpus;
1743
1744 get_max_mapnr(s);
1745
1746 uint64_t tmp;
1747 tmp = DIV_ROUND_UP(DIV_ROUND_UP(s->max_mapnr, CHAR_BIT),
1748 s->dump_info.page_size);
1749 s->len_dump_bitmap = tmp * s->dump_info.page_size;
1750
1751 /* init for kdump-compressed format */
1752 if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
1753 switch (format) {
1754 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB:
1755 s->flag_compress = DUMP_DH_COMPRESSED_ZLIB;
1756 break;
1757
1758 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO:
1759 #ifdef CONFIG_LZO
1760 if (lzo_init() != LZO_E_OK) {
1761 error_setg(errp, "failed to initialize the LZO library");
1762 goto cleanup;
1763 }
1764 #endif
1765 s->flag_compress = DUMP_DH_COMPRESSED_LZO;
1766 break;
1767
1768 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY:
1769 s->flag_compress = DUMP_DH_COMPRESSED_SNAPPY;
1770 break;
1771
1772 default:
1773 s->flag_compress = 0;
1774 }
1775
1776 return;
1777 }
1778
1779 if (s->has_filter) {
1780 memory_mapping_filter(&s->list, s->begin, s->length);
1781 }
1782
1783 /*
1784 * calculate phdr_num
1785 *
1786 * the type of ehdr->e_phnum is uint16_t, so we should avoid overflow
1787 */
1788 s->phdr_num = 1; /* PT_NOTE */
1789 if (s->list.num < UINT16_MAX - 2) {
1790 s->shdr_num = 0;
1791 s->phdr_num += s->list.num;
1792 } else {
1793 /* sh_info of section 0 holds the real number of phdrs */
1794 s->shdr_num = 1;
1795
1796 /* the type of shdr->sh_info is uint32_t, so we should avoid overflow */
1797 if (s->list.num <= UINT32_MAX - 1) {
1798 s->phdr_num += s->list.num;
1799 } else {
1800 s->phdr_num = UINT32_MAX;
1801 }
1802 }
1803
1804 if (dump_is_64bit(s)) {
1805 s->phdr_offset = sizeof(Elf64_Ehdr);
1806 s->shdr_offset = s->phdr_offset + sizeof(Elf64_Phdr) * s->phdr_num;
1807 s->note_offset = s->shdr_offset + sizeof(Elf64_Shdr) * s->shdr_num;
1808 s->memory_offset = s->note_offset + s->note_size;
1809 } else {
1810
1811 s->phdr_offset = sizeof(Elf32_Ehdr);
1812 s->shdr_offset = s->phdr_offset + sizeof(Elf32_Phdr) * s->phdr_num;
1813 s->note_offset = s->shdr_offset + sizeof(Elf32_Shdr) * s->shdr_num;
1814 s->memory_offset = s->note_offset + s->note_size;
1815 }
1816
1817 return;
1818
1819 cleanup:
1820 dump_cleanup(s);
1821 }
1822
1823 /* this operation might be time consuming. */
1824 static void dump_process(DumpState *s, Error **errp)
1825 {
1826 ERRP_GUARD();
1827 DumpQueryResult *result = NULL;
1828
1829 if (s->has_format && s->format == DUMP_GUEST_MEMORY_FORMAT_WIN_DMP) {
1830 #ifdef TARGET_X86_64
1831 create_win_dump(s, errp);
1832 #endif
1833 } else if (s->has_format && s->format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
1834 create_kdump_vmcore(s, errp);
1835 } else {
1836 create_vmcore(s, errp);
1837 }
1838
1839 /* make sure status is written after written_size updates */
1840 smp_wmb();
1841 qatomic_set(&s->status,
1842 (*errp ? DUMP_STATUS_FAILED : DUMP_STATUS_COMPLETED));
1843
1844 /* send DUMP_COMPLETED message (unconditionally) */
1845 result = qmp_query_dump(NULL);
1846 /* should never fail */
1847 assert(result);
1848 qapi_event_send_dump_completed(result, !!*errp, (*errp ?
1849 error_get_pretty(*errp) : NULL));
1850 qapi_free_DumpQueryResult(result);
1851
1852 dump_cleanup(s);
1853 }
1854
1855 static void *dump_thread(void *data)
1856 {
1857 DumpState *s = (DumpState *)data;
1858 dump_process(s, NULL);
1859 return NULL;
1860 }
1861
1862 DumpQueryResult *qmp_query_dump(Error **errp)
1863 {
1864 DumpQueryResult *result = g_new(DumpQueryResult, 1);
1865 DumpState *state = &dump_state_global;
1866 result->status = qatomic_read(&state->status);
1867 /* make sure we are reading status and written_size in order */
1868 smp_rmb();
1869 result->completed = state->written_size;
1870 result->total = state->total_size;
1871 return result;
1872 }
1873
1874 void qmp_dump_guest_memory(bool paging, const char *file,
1875 bool has_detach, bool detach,
1876 bool has_begin, int64_t begin, bool has_length,
1877 int64_t length, bool has_format,
1878 DumpGuestMemoryFormat format, Error **errp)
1879 {
1880 ERRP_GUARD();
1881 const char *p;
1882 int fd = -1;
1883 DumpState *s;
1884 bool detach_p = false;
1885
1886 if (runstate_check(RUN_STATE_INMIGRATE)) {
1887 error_setg(errp, "Dump not allowed during incoming migration.");
1888 return;
1889 }
1890
1891 /* if there is a dump in background, we should wait until the dump
1892 * finished */
1893 if (qemu_system_dump_in_progress()) {
1894 error_setg(errp, "There is a dump in process, please wait.");
1895 return;
1896 }
1897
1898 /*
1899 * kdump-compressed format need the whole memory dumped, so paging or
1900 * filter is not supported here.
1901 */
1902 if ((has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) &&
1903 (paging || has_begin || has_length)) {
1904 error_setg(errp, "kdump-compressed format doesn't support paging or "
1905 "filter");
1906 return;
1907 }
1908 if (has_begin && !has_length) {
1909 error_setg(errp, QERR_MISSING_PARAMETER, "length");
1910 return;
1911 }
1912 if (!has_begin && has_length) {
1913 error_setg(errp, QERR_MISSING_PARAMETER, "begin");
1914 return;
1915 }
1916 if (has_detach) {
1917 detach_p = detach;
1918 }
1919
1920 /* check whether lzo/snappy is supported */
1921 #ifndef CONFIG_LZO
1922 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO) {
1923 error_setg(errp, "kdump-lzo is not available now");
1924 return;
1925 }
1926 #endif
1927
1928 #ifndef CONFIG_SNAPPY
1929 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY) {
1930 error_setg(errp, "kdump-snappy is not available now");
1931 return;
1932 }
1933 #endif
1934
1935 #ifndef TARGET_X86_64
1936 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_WIN_DMP) {
1937 error_setg(errp, "Windows dump is only available for x86-64");
1938 return;
1939 }
1940 #endif
1941
1942 #if !defined(WIN32)
1943 if (strstart(file, "fd:", &p)) {
1944 fd = monitor_get_fd(monitor_cur(), p, errp);
1945 if (fd == -1) {
1946 return;
1947 }
1948 }
1949 #endif
1950
1951 if (strstart(file, "file:", &p)) {
1952 fd = qemu_open_old(p, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, S_IRUSR);
1953 if (fd < 0) {
1954 error_setg_file_open(errp, errno, p);
1955 return;
1956 }
1957 }
1958
1959 if (fd == -1) {
1960 error_setg(errp, QERR_INVALID_PARAMETER, "protocol");
1961 return;
1962 }
1963
1964 if (!dump_migration_blocker) {
1965 error_setg(&dump_migration_blocker,
1966 "Live migration disabled: dump-guest-memory in progress");
1967 }
1968
1969 /*
1970 * Allows even for -only-migratable, but forbid migration during the
1971 * process of dump guest memory.
1972 */
1973 if (migrate_add_blocker_internal(dump_migration_blocker, errp)) {
1974 /* Remember to release the fd before passing it over to dump state */
1975 close(fd);
1976 return;
1977 }
1978
1979 s = &dump_state_global;
1980 dump_state_prepare(s);
1981
1982 dump_init(s, fd, has_format, format, paging, has_begin,
1983 begin, length, errp);
1984 if (*errp) {
1985 qatomic_set(&s->status, DUMP_STATUS_FAILED);
1986 return;
1987 }
1988
1989 if (detach_p) {
1990 /* detached dump */
1991 s->detached = true;
1992 qemu_thread_create(&s->dump_thread, "dump_thread", dump_thread,
1993 s, QEMU_THREAD_DETACHED);
1994 } else {
1995 /* sync dump */
1996 dump_process(s, errp);
1997 }
1998 }
1999
2000 DumpGuestMemoryCapability *qmp_query_dump_guest_memory_capability(Error **errp)
2001 {
2002 DumpGuestMemoryCapability *cap =
2003 g_new0(DumpGuestMemoryCapability, 1);
2004 DumpGuestMemoryFormatList **tail = &cap->formats;
2005
2006 /* elf is always available */
2007 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_ELF);
2008
2009 /* kdump-zlib is always available */
2010 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB);
2011
2012 /* add new item if kdump-lzo is available */
2013 #ifdef CONFIG_LZO
2014 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO);
2015 #endif
2016
2017 /* add new item if kdump-snappy is available */
2018 #ifdef CONFIG_SNAPPY
2019 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY);
2020 #endif
2021
2022 /* Windows dump is available only if target is x86_64 */
2023 #ifdef TARGET_X86_64
2024 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_WIN_DMP);
2025 #endif
2026
2027 return cap;
2028 }