linux-user: Add support for btrfs ioctls used to manage quota
[qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
23
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
28 #include "tcg/tcg.h"
29 #include "hw/qdev-core.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/boards.h"
33 #include "hw/xen/xen.h"
34 #endif
35 #include "sysemu/kvm.h"
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/qtest.h"
39 #include "qemu/timer.h"
40 #include "qemu/config-file.h"
41 #include "qemu/error-report.h"
42 #include "qemu/qemu-print.h"
43 #if defined(CONFIG_USER_ONLY)
44 #include "qemu.h"
45 #else /* !CONFIG_USER_ONLY */
46 #include "exec/memory.h"
47 #include "exec/ioport.h"
48 #include "sysemu/dma.h"
49 #include "sysemu/hostmem.h"
50 #include "sysemu/hw_accel.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/xen-mapcache.h"
53 #include "trace/trace-root.h"
54
55 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
56 #include <linux/falloc.h>
57 #endif
58
59 #endif
60 #include "qemu/rcu_queue.h"
61 #include "qemu/main-loop.h"
62 #include "translate-all.h"
63 #include "sysemu/replay.h"
64
65 #include "exec/memory-internal.h"
66 #include "exec/ram_addr.h"
67 #include "exec/log.h"
68
69 #include "qemu/pmem.h"
70
71 #include "migration/vmstate.h"
72
73 #include "qemu/range.h"
74 #ifndef _WIN32
75 #include "qemu/mmap-alloc.h"
76 #endif
77
78 #include "monitor/monitor.h"
79
80 #ifdef CONFIG_LIBDAXCTL
81 #include <daxctl/libdaxctl.h>
82 #endif
83
84 //#define DEBUG_SUBPAGE
85
86 #if !defined(CONFIG_USER_ONLY)
87 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
88 * are protected by the ramlist lock.
89 */
90 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
91
92 static MemoryRegion *system_memory;
93 static MemoryRegion *system_io;
94
95 AddressSpace address_space_io;
96 AddressSpace address_space_memory;
97
98 static MemoryRegion io_mem_unassigned;
99 #endif
100
101 uintptr_t qemu_host_page_size;
102 intptr_t qemu_host_page_mask;
103
104 #if !defined(CONFIG_USER_ONLY)
105 /* 0 = Do not count executed instructions.
106 1 = Precise instruction counting.
107 2 = Adaptive rate instruction counting. */
108 int use_icount;
109
110 typedef struct PhysPageEntry PhysPageEntry;
111
112 struct PhysPageEntry {
113 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
114 uint32_t skip : 6;
115 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
116 uint32_t ptr : 26;
117 };
118
119 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
120
121 /* Size of the L2 (and L3, etc) page tables. */
122 #define ADDR_SPACE_BITS 64
123
124 #define P_L2_BITS 9
125 #define P_L2_SIZE (1 << P_L2_BITS)
126
127 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
128
129 typedef PhysPageEntry Node[P_L2_SIZE];
130
131 typedef struct PhysPageMap {
132 struct rcu_head rcu;
133
134 unsigned sections_nb;
135 unsigned sections_nb_alloc;
136 unsigned nodes_nb;
137 unsigned nodes_nb_alloc;
138 Node *nodes;
139 MemoryRegionSection *sections;
140 } PhysPageMap;
141
142 struct AddressSpaceDispatch {
143 MemoryRegionSection *mru_section;
144 /* This is a multi-level map on the physical address space.
145 * The bottom level has pointers to MemoryRegionSections.
146 */
147 PhysPageEntry phys_map;
148 PhysPageMap map;
149 };
150
151 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
152 typedef struct subpage_t {
153 MemoryRegion iomem;
154 FlatView *fv;
155 hwaddr base;
156 uint16_t sub_section[];
157 } subpage_t;
158
159 #define PHYS_SECTION_UNASSIGNED 0
160
161 static void io_mem_init(void);
162 static void memory_map_init(void);
163 static void tcg_log_global_after_sync(MemoryListener *listener);
164 static void tcg_commit(MemoryListener *listener);
165
166 /**
167 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
168 * @cpu: the CPU whose AddressSpace this is
169 * @as: the AddressSpace itself
170 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
171 * @tcg_as_listener: listener for tracking changes to the AddressSpace
172 */
173 struct CPUAddressSpace {
174 CPUState *cpu;
175 AddressSpace *as;
176 struct AddressSpaceDispatch *memory_dispatch;
177 MemoryListener tcg_as_listener;
178 };
179
180 struct DirtyBitmapSnapshot {
181 ram_addr_t start;
182 ram_addr_t end;
183 unsigned long dirty[];
184 };
185
186 #endif
187
188 #if !defined(CONFIG_USER_ONLY)
189
190 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
191 {
192 static unsigned alloc_hint = 16;
193 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
194 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
195 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
196 alloc_hint = map->nodes_nb_alloc;
197 }
198 }
199
200 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
201 {
202 unsigned i;
203 uint32_t ret;
204 PhysPageEntry e;
205 PhysPageEntry *p;
206
207 ret = map->nodes_nb++;
208 p = map->nodes[ret];
209 assert(ret != PHYS_MAP_NODE_NIL);
210 assert(ret != map->nodes_nb_alloc);
211
212 e.skip = leaf ? 0 : 1;
213 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
214 for (i = 0; i < P_L2_SIZE; ++i) {
215 memcpy(&p[i], &e, sizeof(e));
216 }
217 return ret;
218 }
219
220 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
221 hwaddr *index, uint64_t *nb, uint16_t leaf,
222 int level)
223 {
224 PhysPageEntry *p;
225 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
226
227 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
228 lp->ptr = phys_map_node_alloc(map, level == 0);
229 }
230 p = map->nodes[lp->ptr];
231 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
232
233 while (*nb && lp < &p[P_L2_SIZE]) {
234 if ((*index & (step - 1)) == 0 && *nb >= step) {
235 lp->skip = 0;
236 lp->ptr = leaf;
237 *index += step;
238 *nb -= step;
239 } else {
240 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
241 }
242 ++lp;
243 }
244 }
245
246 static void phys_page_set(AddressSpaceDispatch *d,
247 hwaddr index, uint64_t nb,
248 uint16_t leaf)
249 {
250 /* Wildly overreserve - it doesn't matter much. */
251 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
252
253 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
254 }
255
256 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
257 * and update our entry so we can skip it and go directly to the destination.
258 */
259 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
260 {
261 unsigned valid_ptr = P_L2_SIZE;
262 int valid = 0;
263 PhysPageEntry *p;
264 int i;
265
266 if (lp->ptr == PHYS_MAP_NODE_NIL) {
267 return;
268 }
269
270 p = nodes[lp->ptr];
271 for (i = 0; i < P_L2_SIZE; i++) {
272 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
273 continue;
274 }
275
276 valid_ptr = i;
277 valid++;
278 if (p[i].skip) {
279 phys_page_compact(&p[i], nodes);
280 }
281 }
282
283 /* We can only compress if there's only one child. */
284 if (valid != 1) {
285 return;
286 }
287
288 assert(valid_ptr < P_L2_SIZE);
289
290 /* Don't compress if it won't fit in the # of bits we have. */
291 if (P_L2_LEVELS >= (1 << 6) &&
292 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
293 return;
294 }
295
296 lp->ptr = p[valid_ptr].ptr;
297 if (!p[valid_ptr].skip) {
298 /* If our only child is a leaf, make this a leaf. */
299 /* By design, we should have made this node a leaf to begin with so we
300 * should never reach here.
301 * But since it's so simple to handle this, let's do it just in case we
302 * change this rule.
303 */
304 lp->skip = 0;
305 } else {
306 lp->skip += p[valid_ptr].skip;
307 }
308 }
309
310 void address_space_dispatch_compact(AddressSpaceDispatch *d)
311 {
312 if (d->phys_map.skip) {
313 phys_page_compact(&d->phys_map, d->map.nodes);
314 }
315 }
316
317 static inline bool section_covers_addr(const MemoryRegionSection *section,
318 hwaddr addr)
319 {
320 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
321 * the section must cover the entire address space.
322 */
323 return int128_gethi(section->size) ||
324 range_covers_byte(section->offset_within_address_space,
325 int128_getlo(section->size), addr);
326 }
327
328 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
329 {
330 PhysPageEntry lp = d->phys_map, *p;
331 Node *nodes = d->map.nodes;
332 MemoryRegionSection *sections = d->map.sections;
333 hwaddr index = addr >> TARGET_PAGE_BITS;
334 int i;
335
336 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
337 if (lp.ptr == PHYS_MAP_NODE_NIL) {
338 return &sections[PHYS_SECTION_UNASSIGNED];
339 }
340 p = nodes[lp.ptr];
341 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
342 }
343
344 if (section_covers_addr(&sections[lp.ptr], addr)) {
345 return &sections[lp.ptr];
346 } else {
347 return &sections[PHYS_SECTION_UNASSIGNED];
348 }
349 }
350
351 /* Called from RCU critical section */
352 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
353 hwaddr addr,
354 bool resolve_subpage)
355 {
356 MemoryRegionSection *section = atomic_read(&d->mru_section);
357 subpage_t *subpage;
358
359 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
360 !section_covers_addr(section, addr)) {
361 section = phys_page_find(d, addr);
362 atomic_set(&d->mru_section, section);
363 }
364 if (resolve_subpage && section->mr->subpage) {
365 subpage = container_of(section->mr, subpage_t, iomem);
366 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
367 }
368 return section;
369 }
370
371 /* Called from RCU critical section */
372 static MemoryRegionSection *
373 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
374 hwaddr *plen, bool resolve_subpage)
375 {
376 MemoryRegionSection *section;
377 MemoryRegion *mr;
378 Int128 diff;
379
380 section = address_space_lookup_region(d, addr, resolve_subpage);
381 /* Compute offset within MemoryRegionSection */
382 addr -= section->offset_within_address_space;
383
384 /* Compute offset within MemoryRegion */
385 *xlat = addr + section->offset_within_region;
386
387 mr = section->mr;
388
389 /* MMIO registers can be expected to perform full-width accesses based only
390 * on their address, without considering adjacent registers that could
391 * decode to completely different MemoryRegions. When such registers
392 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
393 * regions overlap wildly. For this reason we cannot clamp the accesses
394 * here.
395 *
396 * If the length is small (as is the case for address_space_ldl/stl),
397 * everything works fine. If the incoming length is large, however,
398 * the caller really has to do the clamping through memory_access_size.
399 */
400 if (memory_region_is_ram(mr)) {
401 diff = int128_sub(section->size, int128_make64(addr));
402 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
403 }
404 return section;
405 }
406
407 /**
408 * address_space_translate_iommu - translate an address through an IOMMU
409 * memory region and then through the target address space.
410 *
411 * @iommu_mr: the IOMMU memory region that we start the translation from
412 * @addr: the address to be translated through the MMU
413 * @xlat: the translated address offset within the destination memory region.
414 * It cannot be %NULL.
415 * @plen_out: valid read/write length of the translated address. It
416 * cannot be %NULL.
417 * @page_mask_out: page mask for the translated address. This
418 * should only be meaningful for IOMMU translated
419 * addresses, since there may be huge pages that this bit
420 * would tell. It can be %NULL if we don't care about it.
421 * @is_write: whether the translation operation is for write
422 * @is_mmio: whether this can be MMIO, set true if it can
423 * @target_as: the address space targeted by the IOMMU
424 * @attrs: transaction attributes
425 *
426 * This function is called from RCU critical section. It is the common
427 * part of flatview_do_translate and address_space_translate_cached.
428 */
429 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
430 hwaddr *xlat,
431 hwaddr *plen_out,
432 hwaddr *page_mask_out,
433 bool is_write,
434 bool is_mmio,
435 AddressSpace **target_as,
436 MemTxAttrs attrs)
437 {
438 MemoryRegionSection *section;
439 hwaddr page_mask = (hwaddr)-1;
440
441 do {
442 hwaddr addr = *xlat;
443 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
444 int iommu_idx = 0;
445 IOMMUTLBEntry iotlb;
446
447 if (imrc->attrs_to_index) {
448 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
449 }
450
451 iotlb = imrc->translate(iommu_mr, addr, is_write ?
452 IOMMU_WO : IOMMU_RO, iommu_idx);
453
454 if (!(iotlb.perm & (1 << is_write))) {
455 goto unassigned;
456 }
457
458 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
459 | (addr & iotlb.addr_mask));
460 page_mask &= iotlb.addr_mask;
461 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
462 *target_as = iotlb.target_as;
463
464 section = address_space_translate_internal(
465 address_space_to_dispatch(iotlb.target_as), addr, xlat,
466 plen_out, is_mmio);
467
468 iommu_mr = memory_region_get_iommu(section->mr);
469 } while (unlikely(iommu_mr));
470
471 if (page_mask_out) {
472 *page_mask_out = page_mask;
473 }
474 return *section;
475
476 unassigned:
477 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
478 }
479
480 /**
481 * flatview_do_translate - translate an address in FlatView
482 *
483 * @fv: the flat view that we want to translate on
484 * @addr: the address to be translated in above address space
485 * @xlat: the translated address offset within memory region. It
486 * cannot be @NULL.
487 * @plen_out: valid read/write length of the translated address. It
488 * can be @NULL when we don't care about it.
489 * @page_mask_out: page mask for the translated address. This
490 * should only be meaningful for IOMMU translated
491 * addresses, since there may be huge pages that this bit
492 * would tell. It can be @NULL if we don't care about it.
493 * @is_write: whether the translation operation is for write
494 * @is_mmio: whether this can be MMIO, set true if it can
495 * @target_as: the address space targeted by the IOMMU
496 * @attrs: memory transaction attributes
497 *
498 * This function is called from RCU critical section
499 */
500 static MemoryRegionSection flatview_do_translate(FlatView *fv,
501 hwaddr addr,
502 hwaddr *xlat,
503 hwaddr *plen_out,
504 hwaddr *page_mask_out,
505 bool is_write,
506 bool is_mmio,
507 AddressSpace **target_as,
508 MemTxAttrs attrs)
509 {
510 MemoryRegionSection *section;
511 IOMMUMemoryRegion *iommu_mr;
512 hwaddr plen = (hwaddr)(-1);
513
514 if (!plen_out) {
515 plen_out = &plen;
516 }
517
518 section = address_space_translate_internal(
519 flatview_to_dispatch(fv), addr, xlat,
520 plen_out, is_mmio);
521
522 iommu_mr = memory_region_get_iommu(section->mr);
523 if (unlikely(iommu_mr)) {
524 return address_space_translate_iommu(iommu_mr, xlat,
525 plen_out, page_mask_out,
526 is_write, is_mmio,
527 target_as, attrs);
528 }
529 if (page_mask_out) {
530 /* Not behind an IOMMU, use default page size. */
531 *page_mask_out = ~TARGET_PAGE_MASK;
532 }
533
534 return *section;
535 }
536
537 /* Called from RCU critical section */
538 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
539 bool is_write, MemTxAttrs attrs)
540 {
541 MemoryRegionSection section;
542 hwaddr xlat, page_mask;
543
544 /*
545 * This can never be MMIO, and we don't really care about plen,
546 * but page mask.
547 */
548 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
549 NULL, &page_mask, is_write, false, &as,
550 attrs);
551
552 /* Illegal translation */
553 if (section.mr == &io_mem_unassigned) {
554 goto iotlb_fail;
555 }
556
557 /* Convert memory region offset into address space offset */
558 xlat += section.offset_within_address_space -
559 section.offset_within_region;
560
561 return (IOMMUTLBEntry) {
562 .target_as = as,
563 .iova = addr & ~page_mask,
564 .translated_addr = xlat & ~page_mask,
565 .addr_mask = page_mask,
566 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
567 .perm = IOMMU_RW,
568 };
569
570 iotlb_fail:
571 return (IOMMUTLBEntry) {0};
572 }
573
574 /* Called from RCU critical section */
575 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
576 hwaddr *plen, bool is_write,
577 MemTxAttrs attrs)
578 {
579 MemoryRegion *mr;
580 MemoryRegionSection section;
581 AddressSpace *as = NULL;
582
583 /* This can be MMIO, so setup MMIO bit. */
584 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
585 is_write, true, &as, attrs);
586 mr = section.mr;
587
588 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
589 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
590 *plen = MIN(page, *plen);
591 }
592
593 return mr;
594 }
595
596 typedef struct TCGIOMMUNotifier {
597 IOMMUNotifier n;
598 MemoryRegion *mr;
599 CPUState *cpu;
600 int iommu_idx;
601 bool active;
602 } TCGIOMMUNotifier;
603
604 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
605 {
606 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
607
608 if (!notifier->active) {
609 return;
610 }
611 tlb_flush(notifier->cpu);
612 notifier->active = false;
613 /* We leave the notifier struct on the list to avoid reallocating it later.
614 * Generally the number of IOMMUs a CPU deals with will be small.
615 * In any case we can't unregister the iommu notifier from a notify
616 * callback.
617 */
618 }
619
620 static void tcg_register_iommu_notifier(CPUState *cpu,
621 IOMMUMemoryRegion *iommu_mr,
622 int iommu_idx)
623 {
624 /* Make sure this CPU has an IOMMU notifier registered for this
625 * IOMMU/IOMMU index combination, so that we can flush its TLB
626 * when the IOMMU tells us the mappings we've cached have changed.
627 */
628 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
629 TCGIOMMUNotifier *notifier;
630 Error *err = NULL;
631 int i, ret;
632
633 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
634 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
635 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
636 break;
637 }
638 }
639 if (i == cpu->iommu_notifiers->len) {
640 /* Not found, add a new entry at the end of the array */
641 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
642 notifier = g_new0(TCGIOMMUNotifier, 1);
643 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
644
645 notifier->mr = mr;
646 notifier->iommu_idx = iommu_idx;
647 notifier->cpu = cpu;
648 /* Rather than trying to register interest in the specific part
649 * of the iommu's address space that we've accessed and then
650 * expand it later as subsequent accesses touch more of it, we
651 * just register interest in the whole thing, on the assumption
652 * that iommu reconfiguration will be rare.
653 */
654 iommu_notifier_init(&notifier->n,
655 tcg_iommu_unmap_notify,
656 IOMMU_NOTIFIER_UNMAP,
657 0,
658 HWADDR_MAX,
659 iommu_idx);
660 ret = memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
661 &err);
662 if (ret) {
663 error_report_err(err);
664 exit(1);
665 }
666 }
667
668 if (!notifier->active) {
669 notifier->active = true;
670 }
671 }
672
673 static void tcg_iommu_free_notifier_list(CPUState *cpu)
674 {
675 /* Destroy the CPU's notifier list */
676 int i;
677 TCGIOMMUNotifier *notifier;
678
679 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
680 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
681 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
682 g_free(notifier);
683 }
684 g_array_free(cpu->iommu_notifiers, true);
685 }
686
687 /* Called from RCU critical section */
688 MemoryRegionSection *
689 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
690 hwaddr *xlat, hwaddr *plen,
691 MemTxAttrs attrs, int *prot)
692 {
693 MemoryRegionSection *section;
694 IOMMUMemoryRegion *iommu_mr;
695 IOMMUMemoryRegionClass *imrc;
696 IOMMUTLBEntry iotlb;
697 int iommu_idx;
698 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
699
700 for (;;) {
701 section = address_space_translate_internal(d, addr, &addr, plen, false);
702
703 iommu_mr = memory_region_get_iommu(section->mr);
704 if (!iommu_mr) {
705 break;
706 }
707
708 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
709
710 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
711 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
712 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
713 * doesn't short-cut its translation table walk.
714 */
715 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
716 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
717 | (addr & iotlb.addr_mask));
718 /* Update the caller's prot bits to remove permissions the IOMMU
719 * is giving us a failure response for. If we get down to no
720 * permissions left at all we can give up now.
721 */
722 if (!(iotlb.perm & IOMMU_RO)) {
723 *prot &= ~(PAGE_READ | PAGE_EXEC);
724 }
725 if (!(iotlb.perm & IOMMU_WO)) {
726 *prot &= ~PAGE_WRITE;
727 }
728
729 if (!*prot) {
730 goto translate_fail;
731 }
732
733 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
734 }
735
736 assert(!memory_region_is_iommu(section->mr));
737 *xlat = addr;
738 return section;
739
740 translate_fail:
741 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
742 }
743 #endif
744
745 #if !defined(CONFIG_USER_ONLY)
746
747 static int cpu_common_post_load(void *opaque, int version_id)
748 {
749 CPUState *cpu = opaque;
750
751 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
752 version_id is increased. */
753 cpu->interrupt_request &= ~0x01;
754 tlb_flush(cpu);
755
756 /* loadvm has just updated the content of RAM, bypassing the
757 * usual mechanisms that ensure we flush TBs for writes to
758 * memory we've translated code from. So we must flush all TBs,
759 * which will now be stale.
760 */
761 tb_flush(cpu);
762
763 return 0;
764 }
765
766 static int cpu_common_pre_load(void *opaque)
767 {
768 CPUState *cpu = opaque;
769
770 cpu->exception_index = -1;
771
772 return 0;
773 }
774
775 static bool cpu_common_exception_index_needed(void *opaque)
776 {
777 CPUState *cpu = opaque;
778
779 return tcg_enabled() && cpu->exception_index != -1;
780 }
781
782 static const VMStateDescription vmstate_cpu_common_exception_index = {
783 .name = "cpu_common/exception_index",
784 .version_id = 1,
785 .minimum_version_id = 1,
786 .needed = cpu_common_exception_index_needed,
787 .fields = (VMStateField[]) {
788 VMSTATE_INT32(exception_index, CPUState),
789 VMSTATE_END_OF_LIST()
790 }
791 };
792
793 static bool cpu_common_crash_occurred_needed(void *opaque)
794 {
795 CPUState *cpu = opaque;
796
797 return cpu->crash_occurred;
798 }
799
800 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
801 .name = "cpu_common/crash_occurred",
802 .version_id = 1,
803 .minimum_version_id = 1,
804 .needed = cpu_common_crash_occurred_needed,
805 .fields = (VMStateField[]) {
806 VMSTATE_BOOL(crash_occurred, CPUState),
807 VMSTATE_END_OF_LIST()
808 }
809 };
810
811 const VMStateDescription vmstate_cpu_common = {
812 .name = "cpu_common",
813 .version_id = 1,
814 .minimum_version_id = 1,
815 .pre_load = cpu_common_pre_load,
816 .post_load = cpu_common_post_load,
817 .fields = (VMStateField[]) {
818 VMSTATE_UINT32(halted, CPUState),
819 VMSTATE_UINT32(interrupt_request, CPUState),
820 VMSTATE_END_OF_LIST()
821 },
822 .subsections = (const VMStateDescription*[]) {
823 &vmstate_cpu_common_exception_index,
824 &vmstate_cpu_common_crash_occurred,
825 NULL
826 }
827 };
828
829 void cpu_address_space_init(CPUState *cpu, int asidx,
830 const char *prefix, MemoryRegion *mr)
831 {
832 CPUAddressSpace *newas;
833 AddressSpace *as = g_new0(AddressSpace, 1);
834 char *as_name;
835
836 assert(mr);
837 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
838 address_space_init(as, mr, as_name);
839 g_free(as_name);
840
841 /* Target code should have set num_ases before calling us */
842 assert(asidx < cpu->num_ases);
843
844 if (asidx == 0) {
845 /* address space 0 gets the convenience alias */
846 cpu->as = as;
847 }
848
849 /* KVM cannot currently support multiple address spaces. */
850 assert(asidx == 0 || !kvm_enabled());
851
852 if (!cpu->cpu_ases) {
853 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
854 }
855
856 newas = &cpu->cpu_ases[asidx];
857 newas->cpu = cpu;
858 newas->as = as;
859 if (tcg_enabled()) {
860 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
861 newas->tcg_as_listener.commit = tcg_commit;
862 memory_listener_register(&newas->tcg_as_listener, as);
863 }
864 }
865
866 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
867 {
868 /* Return the AddressSpace corresponding to the specified index */
869 return cpu->cpu_ases[asidx].as;
870 }
871 #endif
872
873 void cpu_exec_unrealizefn(CPUState *cpu)
874 {
875 CPUClass *cc = CPU_GET_CLASS(cpu);
876
877 tlb_destroy(cpu);
878 cpu_list_remove(cpu);
879
880 if (cc->vmsd != NULL) {
881 vmstate_unregister(NULL, cc->vmsd, cpu);
882 }
883 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
884 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
885 }
886 #ifndef CONFIG_USER_ONLY
887 tcg_iommu_free_notifier_list(cpu);
888 #endif
889 }
890
891 Property cpu_common_props[] = {
892 #ifndef CONFIG_USER_ONLY
893 /* Create a memory property for softmmu CPU object,
894 * so users can wire up its memory. (This can't go in hw/core/cpu.c
895 * because that file is compiled only once for both user-mode
896 * and system builds.) The default if no link is set up is to use
897 * the system address space.
898 */
899 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
900 MemoryRegion *),
901 #endif
902 DEFINE_PROP_END_OF_LIST(),
903 };
904
905 void cpu_exec_initfn(CPUState *cpu)
906 {
907 cpu->as = NULL;
908 cpu->num_ases = 0;
909
910 #ifndef CONFIG_USER_ONLY
911 cpu->thread_id = qemu_get_thread_id();
912 cpu->memory = system_memory;
913 object_ref(OBJECT(cpu->memory));
914 #endif
915 }
916
917 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
918 {
919 CPUClass *cc = CPU_GET_CLASS(cpu);
920 static bool tcg_target_initialized;
921
922 cpu_list_add(cpu);
923
924 if (tcg_enabled() && !tcg_target_initialized) {
925 tcg_target_initialized = true;
926 cc->tcg_initialize();
927 }
928 tlb_init(cpu);
929
930 qemu_plugin_vcpu_init_hook(cpu);
931
932 #ifdef CONFIG_USER_ONLY
933 assert(cc->vmsd == NULL);
934 #else /* !CONFIG_USER_ONLY */
935 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
936 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
937 }
938 if (cc->vmsd != NULL) {
939 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
940 }
941
942 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
943 #endif
944 }
945
946 const char *parse_cpu_option(const char *cpu_option)
947 {
948 ObjectClass *oc;
949 CPUClass *cc;
950 gchar **model_pieces;
951 const char *cpu_type;
952
953 model_pieces = g_strsplit(cpu_option, ",", 2);
954 if (!model_pieces[0]) {
955 error_report("-cpu option cannot be empty");
956 exit(1);
957 }
958
959 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
960 if (oc == NULL) {
961 error_report("unable to find CPU model '%s'", model_pieces[0]);
962 g_strfreev(model_pieces);
963 exit(EXIT_FAILURE);
964 }
965
966 cpu_type = object_class_get_name(oc);
967 cc = CPU_CLASS(oc);
968 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
969 g_strfreev(model_pieces);
970 return cpu_type;
971 }
972
973 #if defined(CONFIG_USER_ONLY)
974 void tb_invalidate_phys_addr(target_ulong addr)
975 {
976 mmap_lock();
977 tb_invalidate_phys_page_range(addr, addr + 1);
978 mmap_unlock();
979 }
980
981 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
982 {
983 tb_invalidate_phys_addr(pc);
984 }
985 #else
986 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
987 {
988 ram_addr_t ram_addr;
989 MemoryRegion *mr;
990 hwaddr l = 1;
991
992 if (!tcg_enabled()) {
993 return;
994 }
995
996 RCU_READ_LOCK_GUARD();
997 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
998 if (!(memory_region_is_ram(mr)
999 || memory_region_is_romd(mr))) {
1000 return;
1001 }
1002 ram_addr = memory_region_get_ram_addr(mr) + addr;
1003 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1);
1004 }
1005
1006 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1007 {
1008 /*
1009 * There may not be a virtual to physical translation for the pc
1010 * right now, but there may exist cached TB for this pc.
1011 * Flush the whole TB cache to force re-translation of such TBs.
1012 * This is heavyweight, but we're debugging anyway.
1013 */
1014 tb_flush(cpu);
1015 }
1016 #endif
1017
1018 #ifndef CONFIG_USER_ONLY
1019 /* Add a watchpoint. */
1020 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1021 int flags, CPUWatchpoint **watchpoint)
1022 {
1023 CPUWatchpoint *wp;
1024 vaddr in_page;
1025
1026 /* forbid ranges which are empty or run off the end of the address space */
1027 if (len == 0 || (addr + len - 1) < addr) {
1028 error_report("tried to set invalid watchpoint at %"
1029 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1030 return -EINVAL;
1031 }
1032 wp = g_malloc(sizeof(*wp));
1033
1034 wp->vaddr = addr;
1035 wp->len = len;
1036 wp->flags = flags;
1037
1038 /* keep all GDB-injected watchpoints in front */
1039 if (flags & BP_GDB) {
1040 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1041 } else {
1042 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1043 }
1044
1045 in_page = -(addr | TARGET_PAGE_MASK);
1046 if (len <= in_page) {
1047 tlb_flush_page(cpu, addr);
1048 } else {
1049 tlb_flush(cpu);
1050 }
1051
1052 if (watchpoint)
1053 *watchpoint = wp;
1054 return 0;
1055 }
1056
1057 /* Remove a specific watchpoint. */
1058 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1059 int flags)
1060 {
1061 CPUWatchpoint *wp;
1062
1063 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1064 if (addr == wp->vaddr && len == wp->len
1065 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1066 cpu_watchpoint_remove_by_ref(cpu, wp);
1067 return 0;
1068 }
1069 }
1070 return -ENOENT;
1071 }
1072
1073 /* Remove a specific watchpoint by reference. */
1074 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1075 {
1076 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1077
1078 tlb_flush_page(cpu, watchpoint->vaddr);
1079
1080 g_free(watchpoint);
1081 }
1082
1083 /* Remove all matching watchpoints. */
1084 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1085 {
1086 CPUWatchpoint *wp, *next;
1087
1088 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1089 if (wp->flags & mask) {
1090 cpu_watchpoint_remove_by_ref(cpu, wp);
1091 }
1092 }
1093 }
1094
1095 /* Return true if this watchpoint address matches the specified
1096 * access (ie the address range covered by the watchpoint overlaps
1097 * partially or completely with the address range covered by the
1098 * access).
1099 */
1100 static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
1101 vaddr addr, vaddr len)
1102 {
1103 /* We know the lengths are non-zero, but a little caution is
1104 * required to avoid errors in the case where the range ends
1105 * exactly at the top of the address space and so addr + len
1106 * wraps round to zero.
1107 */
1108 vaddr wpend = wp->vaddr + wp->len - 1;
1109 vaddr addrend = addr + len - 1;
1110
1111 return !(addr > wpend || wp->vaddr > addrend);
1112 }
1113
1114 /* Return flags for watchpoints that match addr + prot. */
1115 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
1116 {
1117 CPUWatchpoint *wp;
1118 int ret = 0;
1119
1120 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1121 if (watchpoint_address_matches(wp, addr, len)) {
1122 ret |= wp->flags;
1123 }
1124 }
1125 return ret;
1126 }
1127 #endif /* !CONFIG_USER_ONLY */
1128
1129 /* Add a breakpoint. */
1130 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1131 CPUBreakpoint **breakpoint)
1132 {
1133 CPUBreakpoint *bp;
1134
1135 bp = g_malloc(sizeof(*bp));
1136
1137 bp->pc = pc;
1138 bp->flags = flags;
1139
1140 /* keep all GDB-injected breakpoints in front */
1141 if (flags & BP_GDB) {
1142 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1143 } else {
1144 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1145 }
1146
1147 breakpoint_invalidate(cpu, pc);
1148
1149 if (breakpoint) {
1150 *breakpoint = bp;
1151 }
1152 return 0;
1153 }
1154
1155 /* Remove a specific breakpoint. */
1156 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1157 {
1158 CPUBreakpoint *bp;
1159
1160 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1161 if (bp->pc == pc && bp->flags == flags) {
1162 cpu_breakpoint_remove_by_ref(cpu, bp);
1163 return 0;
1164 }
1165 }
1166 return -ENOENT;
1167 }
1168
1169 /* Remove a specific breakpoint by reference. */
1170 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1171 {
1172 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1173
1174 breakpoint_invalidate(cpu, breakpoint->pc);
1175
1176 g_free(breakpoint);
1177 }
1178
1179 /* Remove all matching breakpoints. */
1180 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1181 {
1182 CPUBreakpoint *bp, *next;
1183
1184 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1185 if (bp->flags & mask) {
1186 cpu_breakpoint_remove_by_ref(cpu, bp);
1187 }
1188 }
1189 }
1190
1191 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1192 CPU loop after each instruction */
1193 void cpu_single_step(CPUState *cpu, int enabled)
1194 {
1195 if (cpu->singlestep_enabled != enabled) {
1196 cpu->singlestep_enabled = enabled;
1197 if (kvm_enabled()) {
1198 kvm_update_guest_debug(cpu, 0);
1199 } else {
1200 /* must flush all the translated code to avoid inconsistencies */
1201 /* XXX: only flush what is necessary */
1202 tb_flush(cpu);
1203 }
1204 }
1205 }
1206
1207 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1208 {
1209 va_list ap;
1210 va_list ap2;
1211
1212 va_start(ap, fmt);
1213 va_copy(ap2, ap);
1214 fprintf(stderr, "qemu: fatal: ");
1215 vfprintf(stderr, fmt, ap);
1216 fprintf(stderr, "\n");
1217 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1218 if (qemu_log_separate()) {
1219 FILE *logfile = qemu_log_lock();
1220 qemu_log("qemu: fatal: ");
1221 qemu_log_vprintf(fmt, ap2);
1222 qemu_log("\n");
1223 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1224 qemu_log_flush();
1225 qemu_log_unlock(logfile);
1226 qemu_log_close();
1227 }
1228 va_end(ap2);
1229 va_end(ap);
1230 replay_finish();
1231 #if defined(CONFIG_USER_ONLY)
1232 {
1233 struct sigaction act;
1234 sigfillset(&act.sa_mask);
1235 act.sa_handler = SIG_DFL;
1236 act.sa_flags = 0;
1237 sigaction(SIGABRT, &act, NULL);
1238 }
1239 #endif
1240 abort();
1241 }
1242
1243 #if !defined(CONFIG_USER_ONLY)
1244 /* Called from RCU critical section */
1245 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1246 {
1247 RAMBlock *block;
1248
1249 block = atomic_rcu_read(&ram_list.mru_block);
1250 if (block && addr - block->offset < block->max_length) {
1251 return block;
1252 }
1253 RAMBLOCK_FOREACH(block) {
1254 if (addr - block->offset < block->max_length) {
1255 goto found;
1256 }
1257 }
1258
1259 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1260 abort();
1261
1262 found:
1263 /* It is safe to write mru_block outside the iothread lock. This
1264 * is what happens:
1265 *
1266 * mru_block = xxx
1267 * rcu_read_unlock()
1268 * xxx removed from list
1269 * rcu_read_lock()
1270 * read mru_block
1271 * mru_block = NULL;
1272 * call_rcu(reclaim_ramblock, xxx);
1273 * rcu_read_unlock()
1274 *
1275 * atomic_rcu_set is not needed here. The block was already published
1276 * when it was placed into the list. Here we're just making an extra
1277 * copy of the pointer.
1278 */
1279 ram_list.mru_block = block;
1280 return block;
1281 }
1282
1283 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1284 {
1285 CPUState *cpu;
1286 ram_addr_t start1;
1287 RAMBlock *block;
1288 ram_addr_t end;
1289
1290 assert(tcg_enabled());
1291 end = TARGET_PAGE_ALIGN(start + length);
1292 start &= TARGET_PAGE_MASK;
1293
1294 RCU_READ_LOCK_GUARD();
1295 block = qemu_get_ram_block(start);
1296 assert(block == qemu_get_ram_block(end - 1));
1297 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1298 CPU_FOREACH(cpu) {
1299 tlb_reset_dirty(cpu, start1, length);
1300 }
1301 }
1302
1303 /* Note: start and end must be within the same ram block. */
1304 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1305 ram_addr_t length,
1306 unsigned client)
1307 {
1308 DirtyMemoryBlocks *blocks;
1309 unsigned long end, page, start_page;
1310 bool dirty = false;
1311 RAMBlock *ramblock;
1312 uint64_t mr_offset, mr_size;
1313
1314 if (length == 0) {
1315 return false;
1316 }
1317
1318 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1319 start_page = start >> TARGET_PAGE_BITS;
1320 page = start_page;
1321
1322 WITH_RCU_READ_LOCK_GUARD() {
1323 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1324 ramblock = qemu_get_ram_block(start);
1325 /* Range sanity check on the ramblock */
1326 assert(start >= ramblock->offset &&
1327 start + length <= ramblock->offset + ramblock->used_length);
1328
1329 while (page < end) {
1330 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1331 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1332 unsigned long num = MIN(end - page,
1333 DIRTY_MEMORY_BLOCK_SIZE - offset);
1334
1335 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1336 offset, num);
1337 page += num;
1338 }
1339
1340 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
1341 mr_size = (end - start_page) << TARGET_PAGE_BITS;
1342 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1343 }
1344
1345 if (dirty && tcg_enabled()) {
1346 tlb_reset_dirty_range_all(start, length);
1347 }
1348
1349 return dirty;
1350 }
1351
1352 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1353 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1354 {
1355 DirtyMemoryBlocks *blocks;
1356 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1357 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1358 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1359 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1360 DirtyBitmapSnapshot *snap;
1361 unsigned long page, end, dest;
1362
1363 snap = g_malloc0(sizeof(*snap) +
1364 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1365 snap->start = first;
1366 snap->end = last;
1367
1368 page = first >> TARGET_PAGE_BITS;
1369 end = last >> TARGET_PAGE_BITS;
1370 dest = 0;
1371
1372 WITH_RCU_READ_LOCK_GUARD() {
1373 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1374
1375 while (page < end) {
1376 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1377 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1378 unsigned long num = MIN(end - page,
1379 DIRTY_MEMORY_BLOCK_SIZE - offset);
1380
1381 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1382 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1383 offset >>= BITS_PER_LEVEL;
1384
1385 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1386 blocks->blocks[idx] + offset,
1387 num);
1388 page += num;
1389 dest += num >> BITS_PER_LEVEL;
1390 }
1391 }
1392
1393 if (tcg_enabled()) {
1394 tlb_reset_dirty_range_all(start, length);
1395 }
1396
1397 memory_region_clear_dirty_bitmap(mr, offset, length);
1398
1399 return snap;
1400 }
1401
1402 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1403 ram_addr_t start,
1404 ram_addr_t length)
1405 {
1406 unsigned long page, end;
1407
1408 assert(start >= snap->start);
1409 assert(start + length <= snap->end);
1410
1411 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1412 page = (start - snap->start) >> TARGET_PAGE_BITS;
1413
1414 while (page < end) {
1415 if (test_bit(page, snap->dirty)) {
1416 return true;
1417 }
1418 page++;
1419 }
1420 return false;
1421 }
1422
1423 /* Called from RCU critical section */
1424 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1425 MemoryRegionSection *section)
1426 {
1427 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1428 return section - d->map.sections;
1429 }
1430 #endif /* defined(CONFIG_USER_ONLY) */
1431
1432 #if !defined(CONFIG_USER_ONLY)
1433
1434 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1435 uint16_t section);
1436 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1437
1438 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1439 qemu_anon_ram_alloc;
1440
1441 /*
1442 * Set a custom physical guest memory alloator.
1443 * Accelerators with unusual needs may need this. Hopefully, we can
1444 * get rid of it eventually.
1445 */
1446 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1447 {
1448 phys_mem_alloc = alloc;
1449 }
1450
1451 static uint16_t phys_section_add(PhysPageMap *map,
1452 MemoryRegionSection *section)
1453 {
1454 /* The physical section number is ORed with a page-aligned
1455 * pointer to produce the iotlb entries. Thus it should
1456 * never overflow into the page-aligned value.
1457 */
1458 assert(map->sections_nb < TARGET_PAGE_SIZE);
1459
1460 if (map->sections_nb == map->sections_nb_alloc) {
1461 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1462 map->sections = g_renew(MemoryRegionSection, map->sections,
1463 map->sections_nb_alloc);
1464 }
1465 map->sections[map->sections_nb] = *section;
1466 memory_region_ref(section->mr);
1467 return map->sections_nb++;
1468 }
1469
1470 static void phys_section_destroy(MemoryRegion *mr)
1471 {
1472 bool have_sub_page = mr->subpage;
1473
1474 memory_region_unref(mr);
1475
1476 if (have_sub_page) {
1477 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1478 object_unref(OBJECT(&subpage->iomem));
1479 g_free(subpage);
1480 }
1481 }
1482
1483 static void phys_sections_free(PhysPageMap *map)
1484 {
1485 while (map->sections_nb > 0) {
1486 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1487 phys_section_destroy(section->mr);
1488 }
1489 g_free(map->sections);
1490 g_free(map->nodes);
1491 }
1492
1493 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1494 {
1495 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1496 subpage_t *subpage;
1497 hwaddr base = section->offset_within_address_space
1498 & TARGET_PAGE_MASK;
1499 MemoryRegionSection *existing = phys_page_find(d, base);
1500 MemoryRegionSection subsection = {
1501 .offset_within_address_space = base,
1502 .size = int128_make64(TARGET_PAGE_SIZE),
1503 };
1504 hwaddr start, end;
1505
1506 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1507
1508 if (!(existing->mr->subpage)) {
1509 subpage = subpage_init(fv, base);
1510 subsection.fv = fv;
1511 subsection.mr = &subpage->iomem;
1512 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1513 phys_section_add(&d->map, &subsection));
1514 } else {
1515 subpage = container_of(existing->mr, subpage_t, iomem);
1516 }
1517 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1518 end = start + int128_get64(section->size) - 1;
1519 subpage_register(subpage, start, end,
1520 phys_section_add(&d->map, section));
1521 }
1522
1523
1524 static void register_multipage(FlatView *fv,
1525 MemoryRegionSection *section)
1526 {
1527 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1528 hwaddr start_addr = section->offset_within_address_space;
1529 uint16_t section_index = phys_section_add(&d->map, section);
1530 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1531 TARGET_PAGE_BITS));
1532
1533 assert(num_pages);
1534 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1535 }
1536
1537 /*
1538 * The range in *section* may look like this:
1539 *
1540 * |s|PPPPPPP|s|
1541 *
1542 * where s stands for subpage and P for page.
1543 */
1544 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1545 {
1546 MemoryRegionSection remain = *section;
1547 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1548
1549 /* register first subpage */
1550 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1551 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1552 - remain.offset_within_address_space;
1553
1554 MemoryRegionSection now = remain;
1555 now.size = int128_min(int128_make64(left), now.size);
1556 register_subpage(fv, &now);
1557 if (int128_eq(remain.size, now.size)) {
1558 return;
1559 }
1560 remain.size = int128_sub(remain.size, now.size);
1561 remain.offset_within_address_space += int128_get64(now.size);
1562 remain.offset_within_region += int128_get64(now.size);
1563 }
1564
1565 /* register whole pages */
1566 if (int128_ge(remain.size, page_size)) {
1567 MemoryRegionSection now = remain;
1568 now.size = int128_and(now.size, int128_neg(page_size));
1569 register_multipage(fv, &now);
1570 if (int128_eq(remain.size, now.size)) {
1571 return;
1572 }
1573 remain.size = int128_sub(remain.size, now.size);
1574 remain.offset_within_address_space += int128_get64(now.size);
1575 remain.offset_within_region += int128_get64(now.size);
1576 }
1577
1578 /* register last subpage */
1579 register_subpage(fv, &remain);
1580 }
1581
1582 void qemu_flush_coalesced_mmio_buffer(void)
1583 {
1584 if (kvm_enabled())
1585 kvm_flush_coalesced_mmio_buffer();
1586 }
1587
1588 void qemu_mutex_lock_ramlist(void)
1589 {
1590 qemu_mutex_lock(&ram_list.mutex);
1591 }
1592
1593 void qemu_mutex_unlock_ramlist(void)
1594 {
1595 qemu_mutex_unlock(&ram_list.mutex);
1596 }
1597
1598 void ram_block_dump(Monitor *mon)
1599 {
1600 RAMBlock *block;
1601 char *psize;
1602
1603 RCU_READ_LOCK_GUARD();
1604 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1605 "Block Name", "PSize", "Offset", "Used", "Total");
1606 RAMBLOCK_FOREACH(block) {
1607 psize = size_to_str(block->page_size);
1608 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1609 " 0x%016" PRIx64 "\n", block->idstr, psize,
1610 (uint64_t)block->offset,
1611 (uint64_t)block->used_length,
1612 (uint64_t)block->max_length);
1613 g_free(psize);
1614 }
1615 }
1616
1617 #ifdef __linux__
1618 /*
1619 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1620 * may or may not name the same files / on the same filesystem now as
1621 * when we actually open and map them. Iterate over the file
1622 * descriptors instead, and use qemu_fd_getpagesize().
1623 */
1624 static int find_min_backend_pagesize(Object *obj, void *opaque)
1625 {
1626 long *hpsize_min = opaque;
1627
1628 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1629 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1630 long hpsize = host_memory_backend_pagesize(backend);
1631
1632 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1633 *hpsize_min = hpsize;
1634 }
1635 }
1636
1637 return 0;
1638 }
1639
1640 static int find_max_backend_pagesize(Object *obj, void *opaque)
1641 {
1642 long *hpsize_max = opaque;
1643
1644 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1645 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1646 long hpsize = host_memory_backend_pagesize(backend);
1647
1648 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1649 *hpsize_max = hpsize;
1650 }
1651 }
1652
1653 return 0;
1654 }
1655
1656 /*
1657 * TODO: We assume right now that all mapped host memory backends are
1658 * used as RAM, however some might be used for different purposes.
1659 */
1660 long qemu_minrampagesize(void)
1661 {
1662 long hpsize = LONG_MAX;
1663 Object *memdev_root = object_resolve_path("/objects", NULL);
1664
1665 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1666 return hpsize;
1667 }
1668
1669 long qemu_maxrampagesize(void)
1670 {
1671 long pagesize = 0;
1672 Object *memdev_root = object_resolve_path("/objects", NULL);
1673
1674 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1675 return pagesize;
1676 }
1677 #else
1678 long qemu_minrampagesize(void)
1679 {
1680 return qemu_real_host_page_size;
1681 }
1682 long qemu_maxrampagesize(void)
1683 {
1684 return qemu_real_host_page_size;
1685 }
1686 #endif
1687
1688 #ifdef CONFIG_POSIX
1689 static int64_t get_file_size(int fd)
1690 {
1691 int64_t size;
1692 #if defined(__linux__)
1693 struct stat st;
1694
1695 if (fstat(fd, &st) < 0) {
1696 return -errno;
1697 }
1698
1699 /* Special handling for devdax character devices */
1700 if (S_ISCHR(st.st_mode)) {
1701 g_autofree char *subsystem_path = NULL;
1702 g_autofree char *subsystem = NULL;
1703
1704 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1705 major(st.st_rdev), minor(st.st_rdev));
1706 subsystem = g_file_read_link(subsystem_path, NULL);
1707
1708 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1709 g_autofree char *size_path = NULL;
1710 g_autofree char *size_str = NULL;
1711
1712 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1713 major(st.st_rdev), minor(st.st_rdev));
1714
1715 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1716 return g_ascii_strtoll(size_str, NULL, 0);
1717 }
1718 }
1719 }
1720 #endif /* defined(__linux__) */
1721
1722 /* st.st_size may be zero for special files yet lseek(2) works */
1723 size = lseek(fd, 0, SEEK_END);
1724 if (size < 0) {
1725 return -errno;
1726 }
1727 return size;
1728 }
1729
1730 static int64_t get_file_align(int fd)
1731 {
1732 int64_t align = -1;
1733 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1734 struct stat st;
1735
1736 if (fstat(fd, &st) < 0) {
1737 return -errno;
1738 }
1739
1740 /* Special handling for devdax character devices */
1741 if (S_ISCHR(st.st_mode)) {
1742 g_autofree char *path = NULL;
1743 g_autofree char *rpath = NULL;
1744 struct daxctl_ctx *ctx;
1745 struct daxctl_region *region;
1746 int rc = 0;
1747
1748 path = g_strdup_printf("/sys/dev/char/%d:%d",
1749 major(st.st_rdev), minor(st.st_rdev));
1750 rpath = realpath(path, NULL);
1751
1752 rc = daxctl_new(&ctx);
1753 if (rc) {
1754 return -1;
1755 }
1756
1757 daxctl_region_foreach(ctx, region) {
1758 if (strstr(rpath, daxctl_region_get_path(region))) {
1759 align = daxctl_region_get_align(region);
1760 break;
1761 }
1762 }
1763 daxctl_unref(ctx);
1764 }
1765 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1766
1767 return align;
1768 }
1769
1770 static int file_ram_open(const char *path,
1771 const char *region_name,
1772 bool *created,
1773 Error **errp)
1774 {
1775 char *filename;
1776 char *sanitized_name;
1777 char *c;
1778 int fd = -1;
1779
1780 *created = false;
1781 for (;;) {
1782 fd = open(path, O_RDWR);
1783 if (fd >= 0) {
1784 /* @path names an existing file, use it */
1785 break;
1786 }
1787 if (errno == ENOENT) {
1788 /* @path names a file that doesn't exist, create it */
1789 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1790 if (fd >= 0) {
1791 *created = true;
1792 break;
1793 }
1794 } else if (errno == EISDIR) {
1795 /* @path names a directory, create a file there */
1796 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1797 sanitized_name = g_strdup(region_name);
1798 for (c = sanitized_name; *c != '\0'; c++) {
1799 if (*c == '/') {
1800 *c = '_';
1801 }
1802 }
1803
1804 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1805 sanitized_name);
1806 g_free(sanitized_name);
1807
1808 fd = mkstemp(filename);
1809 if (fd >= 0) {
1810 unlink(filename);
1811 g_free(filename);
1812 break;
1813 }
1814 g_free(filename);
1815 }
1816 if (errno != EEXIST && errno != EINTR) {
1817 error_setg_errno(errp, errno,
1818 "can't open backing store %s for guest RAM",
1819 path);
1820 return -1;
1821 }
1822 /*
1823 * Try again on EINTR and EEXIST. The latter happens when
1824 * something else creates the file between our two open().
1825 */
1826 }
1827
1828 return fd;
1829 }
1830
1831 static void *file_ram_alloc(RAMBlock *block,
1832 ram_addr_t memory,
1833 int fd,
1834 bool truncate,
1835 Error **errp)
1836 {
1837 void *area;
1838
1839 block->page_size = qemu_fd_getpagesize(fd);
1840 if (block->mr->align % block->page_size) {
1841 error_setg(errp, "alignment 0x%" PRIx64
1842 " must be multiples of page size 0x%zx",
1843 block->mr->align, block->page_size);
1844 return NULL;
1845 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1846 error_setg(errp, "alignment 0x%" PRIx64
1847 " must be a power of two", block->mr->align);
1848 return NULL;
1849 }
1850 block->mr->align = MAX(block->page_size, block->mr->align);
1851 #if defined(__s390x__)
1852 if (kvm_enabled()) {
1853 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1854 }
1855 #endif
1856
1857 if (memory < block->page_size) {
1858 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1859 "or larger than page size 0x%zx",
1860 memory, block->page_size);
1861 return NULL;
1862 }
1863
1864 memory = ROUND_UP(memory, block->page_size);
1865
1866 /*
1867 * ftruncate is not supported by hugetlbfs in older
1868 * hosts, so don't bother bailing out on errors.
1869 * If anything goes wrong with it under other filesystems,
1870 * mmap will fail.
1871 *
1872 * Do not truncate the non-empty backend file to avoid corrupting
1873 * the existing data in the file. Disabling shrinking is not
1874 * enough. For example, the current vNVDIMM implementation stores
1875 * the guest NVDIMM labels at the end of the backend file. If the
1876 * backend file is later extended, QEMU will not be able to find
1877 * those labels. Therefore, extending the non-empty backend file
1878 * is disabled as well.
1879 */
1880 if (truncate && ftruncate(fd, memory)) {
1881 perror("ftruncate");
1882 }
1883
1884 area = qemu_ram_mmap(fd, memory, block->mr->align,
1885 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
1886 if (area == MAP_FAILED) {
1887 error_setg_errno(errp, errno,
1888 "unable to map backing store for guest RAM");
1889 return NULL;
1890 }
1891
1892 block->fd = fd;
1893 return area;
1894 }
1895 #endif
1896
1897 /* Allocate space within the ram_addr_t space that governs the
1898 * dirty bitmaps.
1899 * Called with the ramlist lock held.
1900 */
1901 static ram_addr_t find_ram_offset(ram_addr_t size)
1902 {
1903 RAMBlock *block, *next_block;
1904 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1905
1906 assert(size != 0); /* it would hand out same offset multiple times */
1907
1908 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1909 return 0;
1910 }
1911
1912 RAMBLOCK_FOREACH(block) {
1913 ram_addr_t candidate, next = RAM_ADDR_MAX;
1914
1915 /* Align blocks to start on a 'long' in the bitmap
1916 * which makes the bitmap sync'ing take the fast path.
1917 */
1918 candidate = block->offset + block->max_length;
1919 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1920
1921 /* Search for the closest following block
1922 * and find the gap.
1923 */
1924 RAMBLOCK_FOREACH(next_block) {
1925 if (next_block->offset >= candidate) {
1926 next = MIN(next, next_block->offset);
1927 }
1928 }
1929
1930 /* If it fits remember our place and remember the size
1931 * of gap, but keep going so that we might find a smaller
1932 * gap to fill so avoiding fragmentation.
1933 */
1934 if (next - candidate >= size && next - candidate < mingap) {
1935 offset = candidate;
1936 mingap = next - candidate;
1937 }
1938
1939 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1940 }
1941
1942 if (offset == RAM_ADDR_MAX) {
1943 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1944 (uint64_t)size);
1945 abort();
1946 }
1947
1948 trace_find_ram_offset(size, offset);
1949
1950 return offset;
1951 }
1952
1953 static unsigned long last_ram_page(void)
1954 {
1955 RAMBlock *block;
1956 ram_addr_t last = 0;
1957
1958 RCU_READ_LOCK_GUARD();
1959 RAMBLOCK_FOREACH(block) {
1960 last = MAX(last, block->offset + block->max_length);
1961 }
1962 return last >> TARGET_PAGE_BITS;
1963 }
1964
1965 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1966 {
1967 int ret;
1968
1969 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1970 if (!machine_dump_guest_core(current_machine)) {
1971 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1972 if (ret) {
1973 perror("qemu_madvise");
1974 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1975 "but dump_guest_core=off specified\n");
1976 }
1977 }
1978 }
1979
1980 const char *qemu_ram_get_idstr(RAMBlock *rb)
1981 {
1982 return rb->idstr;
1983 }
1984
1985 void *qemu_ram_get_host_addr(RAMBlock *rb)
1986 {
1987 return rb->host;
1988 }
1989
1990 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1991 {
1992 return rb->offset;
1993 }
1994
1995 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1996 {
1997 return rb->used_length;
1998 }
1999
2000 bool qemu_ram_is_shared(RAMBlock *rb)
2001 {
2002 return rb->flags & RAM_SHARED;
2003 }
2004
2005 /* Note: Only set at the start of postcopy */
2006 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2007 {
2008 return rb->flags & RAM_UF_ZEROPAGE;
2009 }
2010
2011 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2012 {
2013 rb->flags |= RAM_UF_ZEROPAGE;
2014 }
2015
2016 bool qemu_ram_is_migratable(RAMBlock *rb)
2017 {
2018 return rb->flags & RAM_MIGRATABLE;
2019 }
2020
2021 void qemu_ram_set_migratable(RAMBlock *rb)
2022 {
2023 rb->flags |= RAM_MIGRATABLE;
2024 }
2025
2026 void qemu_ram_unset_migratable(RAMBlock *rb)
2027 {
2028 rb->flags &= ~RAM_MIGRATABLE;
2029 }
2030
2031 /* Called with iothread lock held. */
2032 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2033 {
2034 RAMBlock *block;
2035
2036 assert(new_block);
2037 assert(!new_block->idstr[0]);
2038
2039 if (dev) {
2040 char *id = qdev_get_dev_path(dev);
2041 if (id) {
2042 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2043 g_free(id);
2044 }
2045 }
2046 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2047
2048 RCU_READ_LOCK_GUARD();
2049 RAMBLOCK_FOREACH(block) {
2050 if (block != new_block &&
2051 !strcmp(block->idstr, new_block->idstr)) {
2052 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2053 new_block->idstr);
2054 abort();
2055 }
2056 }
2057 }
2058
2059 /* Called with iothread lock held. */
2060 void qemu_ram_unset_idstr(RAMBlock *block)
2061 {
2062 /* FIXME: arch_init.c assumes that this is not called throughout
2063 * migration. Ignore the problem since hot-unplug during migration
2064 * does not work anyway.
2065 */
2066 if (block) {
2067 memset(block->idstr, 0, sizeof(block->idstr));
2068 }
2069 }
2070
2071 size_t qemu_ram_pagesize(RAMBlock *rb)
2072 {
2073 return rb->page_size;
2074 }
2075
2076 /* Returns the largest size of page in use */
2077 size_t qemu_ram_pagesize_largest(void)
2078 {
2079 RAMBlock *block;
2080 size_t largest = 0;
2081
2082 RAMBLOCK_FOREACH(block) {
2083 largest = MAX(largest, qemu_ram_pagesize(block));
2084 }
2085
2086 return largest;
2087 }
2088
2089 static int memory_try_enable_merging(void *addr, size_t len)
2090 {
2091 if (!machine_mem_merge(current_machine)) {
2092 /* disabled by the user */
2093 return 0;
2094 }
2095
2096 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2097 }
2098
2099 /* Only legal before guest might have detected the memory size: e.g. on
2100 * incoming migration, or right after reset.
2101 *
2102 * As memory core doesn't know how is memory accessed, it is up to
2103 * resize callback to update device state and/or add assertions to detect
2104 * misuse, if necessary.
2105 */
2106 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2107 {
2108 const ram_addr_t unaligned_size = newsize;
2109
2110 assert(block);
2111
2112 newsize = HOST_PAGE_ALIGN(newsize);
2113
2114 if (block->used_length == newsize) {
2115 /*
2116 * We don't have to resize the ram block (which only knows aligned
2117 * sizes), however, we have to notify if the unaligned size changed.
2118 */
2119 if (unaligned_size != memory_region_size(block->mr)) {
2120 memory_region_set_size(block->mr, unaligned_size);
2121 if (block->resized) {
2122 block->resized(block->idstr, unaligned_size, block->host);
2123 }
2124 }
2125 return 0;
2126 }
2127
2128 if (!(block->flags & RAM_RESIZEABLE)) {
2129 error_setg_errno(errp, EINVAL,
2130 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2131 " in != 0x" RAM_ADDR_FMT, block->idstr,
2132 newsize, block->used_length);
2133 return -EINVAL;
2134 }
2135
2136 if (block->max_length < newsize) {
2137 error_setg_errno(errp, EINVAL,
2138 "Length too large: %s: 0x" RAM_ADDR_FMT
2139 " > 0x" RAM_ADDR_FMT, block->idstr,
2140 newsize, block->max_length);
2141 return -EINVAL;
2142 }
2143
2144 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2145 block->used_length = newsize;
2146 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2147 DIRTY_CLIENTS_ALL);
2148 memory_region_set_size(block->mr, unaligned_size);
2149 if (block->resized) {
2150 block->resized(block->idstr, unaligned_size, block->host);
2151 }
2152 return 0;
2153 }
2154
2155 /*
2156 * Trigger sync on the given ram block for range [start, start + length]
2157 * with the backing store if one is available.
2158 * Otherwise no-op.
2159 * @Note: this is supposed to be a synchronous op.
2160 */
2161 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
2162 {
2163 /* The requested range should fit in within the block range */
2164 g_assert((start + length) <= block->used_length);
2165
2166 #ifdef CONFIG_LIBPMEM
2167 /* The lack of support for pmem should not block the sync */
2168 if (ramblock_is_pmem(block)) {
2169 void *addr = ramblock_ptr(block, start);
2170 pmem_persist(addr, length);
2171 return;
2172 }
2173 #endif
2174 if (block->fd >= 0) {
2175 /**
2176 * Case there is no support for PMEM or the memory has not been
2177 * specified as persistent (or is not one) - use the msync.
2178 * Less optimal but still achieves the same goal
2179 */
2180 void *addr = ramblock_ptr(block, start);
2181 if (qemu_msync(addr, length, block->fd)) {
2182 warn_report("%s: failed to sync memory range: start: "
2183 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
2184 __func__, start, length);
2185 }
2186 }
2187 }
2188
2189 /* Called with ram_list.mutex held */
2190 static void dirty_memory_extend(ram_addr_t old_ram_size,
2191 ram_addr_t new_ram_size)
2192 {
2193 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2194 DIRTY_MEMORY_BLOCK_SIZE);
2195 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2196 DIRTY_MEMORY_BLOCK_SIZE);
2197 int i;
2198
2199 /* Only need to extend if block count increased */
2200 if (new_num_blocks <= old_num_blocks) {
2201 return;
2202 }
2203
2204 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2205 DirtyMemoryBlocks *old_blocks;
2206 DirtyMemoryBlocks *new_blocks;
2207 int j;
2208
2209 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2210 new_blocks = g_malloc(sizeof(*new_blocks) +
2211 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2212
2213 if (old_num_blocks) {
2214 memcpy(new_blocks->blocks, old_blocks->blocks,
2215 old_num_blocks * sizeof(old_blocks->blocks[0]));
2216 }
2217
2218 for (j = old_num_blocks; j < new_num_blocks; j++) {
2219 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2220 }
2221
2222 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2223
2224 if (old_blocks) {
2225 g_free_rcu(old_blocks, rcu);
2226 }
2227 }
2228 }
2229
2230 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2231 {
2232 RAMBlock *block;
2233 RAMBlock *last_block = NULL;
2234 ram_addr_t old_ram_size, new_ram_size;
2235 Error *err = NULL;
2236
2237 old_ram_size = last_ram_page();
2238
2239 qemu_mutex_lock_ramlist();
2240 new_block->offset = find_ram_offset(new_block->max_length);
2241
2242 if (!new_block->host) {
2243 if (xen_enabled()) {
2244 xen_ram_alloc(new_block->offset, new_block->max_length,
2245 new_block->mr, &err);
2246 if (err) {
2247 error_propagate(errp, err);
2248 qemu_mutex_unlock_ramlist();
2249 return;
2250 }
2251 } else {
2252 new_block->host = phys_mem_alloc(new_block->max_length,
2253 &new_block->mr->align, shared);
2254 if (!new_block->host) {
2255 error_setg_errno(errp, errno,
2256 "cannot set up guest memory '%s'",
2257 memory_region_name(new_block->mr));
2258 qemu_mutex_unlock_ramlist();
2259 return;
2260 }
2261 memory_try_enable_merging(new_block->host, new_block->max_length);
2262 }
2263 }
2264
2265 new_ram_size = MAX(old_ram_size,
2266 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2267 if (new_ram_size > old_ram_size) {
2268 dirty_memory_extend(old_ram_size, new_ram_size);
2269 }
2270 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2271 * QLIST (which has an RCU-friendly variant) does not have insertion at
2272 * tail, so save the last element in last_block.
2273 */
2274 RAMBLOCK_FOREACH(block) {
2275 last_block = block;
2276 if (block->max_length < new_block->max_length) {
2277 break;
2278 }
2279 }
2280 if (block) {
2281 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2282 } else if (last_block) {
2283 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2284 } else { /* list is empty */
2285 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2286 }
2287 ram_list.mru_block = NULL;
2288
2289 /* Write list before version */
2290 smp_wmb();
2291 ram_list.version++;
2292 qemu_mutex_unlock_ramlist();
2293
2294 cpu_physical_memory_set_dirty_range(new_block->offset,
2295 new_block->used_length,
2296 DIRTY_CLIENTS_ALL);
2297
2298 if (new_block->host) {
2299 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2300 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2301 /*
2302 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2303 * Configure it unless the machine is a qtest server, in which case
2304 * KVM is not used and it may be forked (eg for fuzzing purposes).
2305 */
2306 if (!qtest_enabled()) {
2307 qemu_madvise(new_block->host, new_block->max_length,
2308 QEMU_MADV_DONTFORK);
2309 }
2310 ram_block_notify_add(new_block->host, new_block->max_length);
2311 }
2312 }
2313
2314 #ifdef CONFIG_POSIX
2315 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2316 uint32_t ram_flags, int fd,
2317 Error **errp)
2318 {
2319 RAMBlock *new_block;
2320 Error *local_err = NULL;
2321 int64_t file_size, file_align;
2322
2323 /* Just support these ram flags by now. */
2324 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2325
2326 if (xen_enabled()) {
2327 error_setg(errp, "-mem-path not supported with Xen");
2328 return NULL;
2329 }
2330
2331 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2332 error_setg(errp,
2333 "host lacks kvm mmu notifiers, -mem-path unsupported");
2334 return NULL;
2335 }
2336
2337 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2338 /*
2339 * file_ram_alloc() needs to allocate just like
2340 * phys_mem_alloc, but we haven't bothered to provide
2341 * a hook there.
2342 */
2343 error_setg(errp,
2344 "-mem-path not supported with this accelerator");
2345 return NULL;
2346 }
2347
2348 size = HOST_PAGE_ALIGN(size);
2349 file_size = get_file_size(fd);
2350 if (file_size > 0 && file_size < size) {
2351 error_setg(errp, "backing store size 0x%" PRIx64
2352 " does not match 'size' option 0x" RAM_ADDR_FMT,
2353 file_size, size);
2354 return NULL;
2355 }
2356
2357 file_align = get_file_align(fd);
2358 if (file_align > 0 && mr && file_align > mr->align) {
2359 error_setg(errp, "backing store align 0x%" PRIx64
2360 " is larger than 'align' option 0x%" PRIx64,
2361 file_align, mr->align);
2362 return NULL;
2363 }
2364
2365 new_block = g_malloc0(sizeof(*new_block));
2366 new_block->mr = mr;
2367 new_block->used_length = size;
2368 new_block->max_length = size;
2369 new_block->flags = ram_flags;
2370 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2371 if (!new_block->host) {
2372 g_free(new_block);
2373 return NULL;
2374 }
2375
2376 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2377 if (local_err) {
2378 g_free(new_block);
2379 error_propagate(errp, local_err);
2380 return NULL;
2381 }
2382 return new_block;
2383
2384 }
2385
2386
2387 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2388 uint32_t ram_flags, const char *mem_path,
2389 Error **errp)
2390 {
2391 int fd;
2392 bool created;
2393 RAMBlock *block;
2394
2395 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2396 if (fd < 0) {
2397 return NULL;
2398 }
2399
2400 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2401 if (!block) {
2402 if (created) {
2403 unlink(mem_path);
2404 }
2405 close(fd);
2406 return NULL;
2407 }
2408
2409 return block;
2410 }
2411 #endif
2412
2413 static
2414 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2415 void (*resized)(const char*,
2416 uint64_t length,
2417 void *host),
2418 void *host, bool resizeable, bool share,
2419 MemoryRegion *mr, Error **errp)
2420 {
2421 RAMBlock *new_block;
2422 Error *local_err = NULL;
2423
2424 size = HOST_PAGE_ALIGN(size);
2425 max_size = HOST_PAGE_ALIGN(max_size);
2426 new_block = g_malloc0(sizeof(*new_block));
2427 new_block->mr = mr;
2428 new_block->resized = resized;
2429 new_block->used_length = size;
2430 new_block->max_length = max_size;
2431 assert(max_size >= size);
2432 new_block->fd = -1;
2433 new_block->page_size = qemu_real_host_page_size;
2434 new_block->host = host;
2435 if (host) {
2436 new_block->flags |= RAM_PREALLOC;
2437 }
2438 if (resizeable) {
2439 new_block->flags |= RAM_RESIZEABLE;
2440 }
2441 ram_block_add(new_block, &local_err, share);
2442 if (local_err) {
2443 g_free(new_block);
2444 error_propagate(errp, local_err);
2445 return NULL;
2446 }
2447 return new_block;
2448 }
2449
2450 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2451 MemoryRegion *mr, Error **errp)
2452 {
2453 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2454 false, mr, errp);
2455 }
2456
2457 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2458 MemoryRegion *mr, Error **errp)
2459 {
2460 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2461 share, mr, errp);
2462 }
2463
2464 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2465 void (*resized)(const char*,
2466 uint64_t length,
2467 void *host),
2468 MemoryRegion *mr, Error **errp)
2469 {
2470 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2471 false, mr, errp);
2472 }
2473
2474 static void reclaim_ramblock(RAMBlock *block)
2475 {
2476 if (block->flags & RAM_PREALLOC) {
2477 ;
2478 } else if (xen_enabled()) {
2479 xen_invalidate_map_cache_entry(block->host);
2480 #ifndef _WIN32
2481 } else if (block->fd >= 0) {
2482 qemu_ram_munmap(block->fd, block->host, block->max_length);
2483 close(block->fd);
2484 #endif
2485 } else {
2486 qemu_anon_ram_free(block->host, block->max_length);
2487 }
2488 g_free(block);
2489 }
2490
2491 void qemu_ram_free(RAMBlock *block)
2492 {
2493 if (!block) {
2494 return;
2495 }
2496
2497 if (block->host) {
2498 ram_block_notify_remove(block->host, block->max_length);
2499 }
2500
2501 qemu_mutex_lock_ramlist();
2502 QLIST_REMOVE_RCU(block, next);
2503 ram_list.mru_block = NULL;
2504 /* Write list before version */
2505 smp_wmb();
2506 ram_list.version++;
2507 call_rcu(block, reclaim_ramblock, rcu);
2508 qemu_mutex_unlock_ramlist();
2509 }
2510
2511 #ifndef _WIN32
2512 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2513 {
2514 RAMBlock *block;
2515 ram_addr_t offset;
2516 int flags;
2517 void *area, *vaddr;
2518
2519 RAMBLOCK_FOREACH(block) {
2520 offset = addr - block->offset;
2521 if (offset < block->max_length) {
2522 vaddr = ramblock_ptr(block, offset);
2523 if (block->flags & RAM_PREALLOC) {
2524 ;
2525 } else if (xen_enabled()) {
2526 abort();
2527 } else {
2528 flags = MAP_FIXED;
2529 if (block->fd >= 0) {
2530 flags |= (block->flags & RAM_SHARED ?
2531 MAP_SHARED : MAP_PRIVATE);
2532 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2533 flags, block->fd, offset);
2534 } else {
2535 /*
2536 * Remap needs to match alloc. Accelerators that
2537 * set phys_mem_alloc never remap. If they did,
2538 * we'd need a remap hook here.
2539 */
2540 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2541
2542 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2543 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2544 flags, -1, 0);
2545 }
2546 if (area != vaddr) {
2547 error_report("Could not remap addr: "
2548 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2549 length, addr);
2550 exit(1);
2551 }
2552 memory_try_enable_merging(vaddr, length);
2553 qemu_ram_setup_dump(vaddr, length);
2554 }
2555 }
2556 }
2557 }
2558 #endif /* !_WIN32 */
2559
2560 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2561 * This should not be used for general purpose DMA. Use address_space_map
2562 * or address_space_rw instead. For local memory (e.g. video ram) that the
2563 * device owns, use memory_region_get_ram_ptr.
2564 *
2565 * Called within RCU critical section.
2566 */
2567 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2568 {
2569 RAMBlock *block = ram_block;
2570
2571 if (block == NULL) {
2572 block = qemu_get_ram_block(addr);
2573 addr -= block->offset;
2574 }
2575
2576 if (xen_enabled() && block->host == NULL) {
2577 /* We need to check if the requested address is in the RAM
2578 * because we don't want to map the entire memory in QEMU.
2579 * In that case just map until the end of the page.
2580 */
2581 if (block->offset == 0) {
2582 return xen_map_cache(addr, 0, 0, false);
2583 }
2584
2585 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2586 }
2587 return ramblock_ptr(block, addr);
2588 }
2589
2590 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2591 * but takes a size argument.
2592 *
2593 * Called within RCU critical section.
2594 */
2595 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2596 hwaddr *size, bool lock)
2597 {
2598 RAMBlock *block = ram_block;
2599 if (*size == 0) {
2600 return NULL;
2601 }
2602
2603 if (block == NULL) {
2604 block = qemu_get_ram_block(addr);
2605 addr -= block->offset;
2606 }
2607 *size = MIN(*size, block->max_length - addr);
2608
2609 if (xen_enabled() && block->host == NULL) {
2610 /* We need to check if the requested address is in the RAM
2611 * because we don't want to map the entire memory in QEMU.
2612 * In that case just map the requested area.
2613 */
2614 if (block->offset == 0) {
2615 return xen_map_cache(addr, *size, lock, lock);
2616 }
2617
2618 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2619 }
2620
2621 return ramblock_ptr(block, addr);
2622 }
2623
2624 /* Return the offset of a hostpointer within a ramblock */
2625 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2626 {
2627 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2628 assert((uintptr_t)host >= (uintptr_t)rb->host);
2629 assert(res < rb->max_length);
2630
2631 return res;
2632 }
2633
2634 /*
2635 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2636 * in that RAMBlock.
2637 *
2638 * ptr: Host pointer to look up
2639 * round_offset: If true round the result offset down to a page boundary
2640 * *ram_addr: set to result ram_addr
2641 * *offset: set to result offset within the RAMBlock
2642 *
2643 * Returns: RAMBlock (or NULL if not found)
2644 *
2645 * By the time this function returns, the returned pointer is not protected
2646 * by RCU anymore. If the caller is not within an RCU critical section and
2647 * does not hold the iothread lock, it must have other means of protecting the
2648 * pointer, such as a reference to the region that includes the incoming
2649 * ram_addr_t.
2650 */
2651 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2652 ram_addr_t *offset)
2653 {
2654 RAMBlock *block;
2655 uint8_t *host = ptr;
2656
2657 if (xen_enabled()) {
2658 ram_addr_t ram_addr;
2659 RCU_READ_LOCK_GUARD();
2660 ram_addr = xen_ram_addr_from_mapcache(ptr);
2661 block = qemu_get_ram_block(ram_addr);
2662 if (block) {
2663 *offset = ram_addr - block->offset;
2664 }
2665 return block;
2666 }
2667
2668 RCU_READ_LOCK_GUARD();
2669 block = atomic_rcu_read(&ram_list.mru_block);
2670 if (block && block->host && host - block->host < block->max_length) {
2671 goto found;
2672 }
2673
2674 RAMBLOCK_FOREACH(block) {
2675 /* This case append when the block is not mapped. */
2676 if (block->host == NULL) {
2677 continue;
2678 }
2679 if (host - block->host < block->max_length) {
2680 goto found;
2681 }
2682 }
2683
2684 return NULL;
2685
2686 found:
2687 *offset = (host - block->host);
2688 if (round_offset) {
2689 *offset &= TARGET_PAGE_MASK;
2690 }
2691 return block;
2692 }
2693
2694 /*
2695 * Finds the named RAMBlock
2696 *
2697 * name: The name of RAMBlock to find
2698 *
2699 * Returns: RAMBlock (or NULL if not found)
2700 */
2701 RAMBlock *qemu_ram_block_by_name(const char *name)
2702 {
2703 RAMBlock *block;
2704
2705 RAMBLOCK_FOREACH(block) {
2706 if (!strcmp(name, block->idstr)) {
2707 return block;
2708 }
2709 }
2710
2711 return NULL;
2712 }
2713
2714 /* Some of the softmmu routines need to translate from a host pointer
2715 (typically a TLB entry) back to a ram offset. */
2716 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2717 {
2718 RAMBlock *block;
2719 ram_addr_t offset;
2720
2721 block = qemu_ram_block_from_host(ptr, false, &offset);
2722 if (!block) {
2723 return RAM_ADDR_INVALID;
2724 }
2725
2726 return block->offset + offset;
2727 }
2728
2729 /* Generate a debug exception if a watchpoint has been hit. */
2730 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
2731 MemTxAttrs attrs, int flags, uintptr_t ra)
2732 {
2733 CPUClass *cc = CPU_GET_CLASS(cpu);
2734 CPUWatchpoint *wp;
2735
2736 assert(tcg_enabled());
2737 if (cpu->watchpoint_hit) {
2738 /*
2739 * We re-entered the check after replacing the TB.
2740 * Now raise the debug interrupt so that it will
2741 * trigger after the current instruction.
2742 */
2743 qemu_mutex_lock_iothread();
2744 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2745 qemu_mutex_unlock_iothread();
2746 return;
2747 }
2748
2749 addr = cc->adjust_watchpoint_address(cpu, addr, len);
2750 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2751 if (watchpoint_address_matches(wp, addr, len)
2752 && (wp->flags & flags)) {
2753 if (flags == BP_MEM_READ) {
2754 wp->flags |= BP_WATCHPOINT_HIT_READ;
2755 } else {
2756 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2757 }
2758 wp->hitaddr = MAX(addr, wp->vaddr);
2759 wp->hitattrs = attrs;
2760 if (!cpu->watchpoint_hit) {
2761 if (wp->flags & BP_CPU &&
2762 !cc->debug_check_watchpoint(cpu, wp)) {
2763 wp->flags &= ~BP_WATCHPOINT_HIT;
2764 continue;
2765 }
2766 cpu->watchpoint_hit = wp;
2767
2768 mmap_lock();
2769 tb_check_watchpoint(cpu, ra);
2770 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2771 cpu->exception_index = EXCP_DEBUG;
2772 mmap_unlock();
2773 cpu_loop_exit_restore(cpu, ra);
2774 } else {
2775 /* Force execution of one insn next time. */
2776 cpu->cflags_next_tb = 1 | curr_cflags();
2777 mmap_unlock();
2778 if (ra) {
2779 cpu_restore_state(cpu, ra, true);
2780 }
2781 cpu_loop_exit_noexc(cpu);
2782 }
2783 }
2784 } else {
2785 wp->flags &= ~BP_WATCHPOINT_HIT;
2786 }
2787 }
2788 }
2789
2790 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2791 MemTxAttrs attrs, void *buf, hwaddr len);
2792 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2793 const void *buf, hwaddr len);
2794 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2795 bool is_write, MemTxAttrs attrs);
2796
2797 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2798 unsigned len, MemTxAttrs attrs)
2799 {
2800 subpage_t *subpage = opaque;
2801 uint8_t buf[8];
2802 MemTxResult res;
2803
2804 #if defined(DEBUG_SUBPAGE)
2805 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2806 subpage, len, addr);
2807 #endif
2808 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2809 if (res) {
2810 return res;
2811 }
2812 *data = ldn_p(buf, len);
2813 return MEMTX_OK;
2814 }
2815
2816 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2817 uint64_t value, unsigned len, MemTxAttrs attrs)
2818 {
2819 subpage_t *subpage = opaque;
2820 uint8_t buf[8];
2821
2822 #if defined(DEBUG_SUBPAGE)
2823 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2824 " value %"PRIx64"\n",
2825 __func__, subpage, len, addr, value);
2826 #endif
2827 stn_p(buf, len, value);
2828 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2829 }
2830
2831 static bool subpage_accepts(void *opaque, hwaddr addr,
2832 unsigned len, bool is_write,
2833 MemTxAttrs attrs)
2834 {
2835 subpage_t *subpage = opaque;
2836 #if defined(DEBUG_SUBPAGE)
2837 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2838 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2839 #endif
2840
2841 return flatview_access_valid(subpage->fv, addr + subpage->base,
2842 len, is_write, attrs);
2843 }
2844
2845 static const MemoryRegionOps subpage_ops = {
2846 .read_with_attrs = subpage_read,
2847 .write_with_attrs = subpage_write,
2848 .impl.min_access_size = 1,
2849 .impl.max_access_size = 8,
2850 .valid.min_access_size = 1,
2851 .valid.max_access_size = 8,
2852 .valid.accepts = subpage_accepts,
2853 .endianness = DEVICE_NATIVE_ENDIAN,
2854 };
2855
2856 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2857 uint16_t section)
2858 {
2859 int idx, eidx;
2860
2861 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2862 return -1;
2863 idx = SUBPAGE_IDX(start);
2864 eidx = SUBPAGE_IDX(end);
2865 #if defined(DEBUG_SUBPAGE)
2866 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2867 __func__, mmio, start, end, idx, eidx, section);
2868 #endif
2869 for (; idx <= eidx; idx++) {
2870 mmio->sub_section[idx] = section;
2871 }
2872
2873 return 0;
2874 }
2875
2876 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2877 {
2878 subpage_t *mmio;
2879
2880 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2881 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2882 mmio->fv = fv;
2883 mmio->base = base;
2884 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2885 NULL, TARGET_PAGE_SIZE);
2886 mmio->iomem.subpage = true;
2887 #if defined(DEBUG_SUBPAGE)
2888 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2889 mmio, base, TARGET_PAGE_SIZE);
2890 #endif
2891
2892 return mmio;
2893 }
2894
2895 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2896 {
2897 assert(fv);
2898 MemoryRegionSection section = {
2899 .fv = fv,
2900 .mr = mr,
2901 .offset_within_address_space = 0,
2902 .offset_within_region = 0,
2903 .size = int128_2_64(),
2904 };
2905
2906 return phys_section_add(map, &section);
2907 }
2908
2909 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2910 hwaddr index, MemTxAttrs attrs)
2911 {
2912 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2913 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2914 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2915 MemoryRegionSection *sections = d->map.sections;
2916
2917 return &sections[index & ~TARGET_PAGE_MASK];
2918 }
2919
2920 static void io_mem_init(void)
2921 {
2922 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2923 NULL, UINT64_MAX);
2924 }
2925
2926 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2927 {
2928 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2929 uint16_t n;
2930
2931 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2932 assert(n == PHYS_SECTION_UNASSIGNED);
2933
2934 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2935
2936 return d;
2937 }
2938
2939 void address_space_dispatch_free(AddressSpaceDispatch *d)
2940 {
2941 phys_sections_free(&d->map);
2942 g_free(d);
2943 }
2944
2945 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2946 {
2947 }
2948
2949 static void tcg_log_global_after_sync(MemoryListener *listener)
2950 {
2951 CPUAddressSpace *cpuas;
2952
2953 /* Wait for the CPU to end the current TB. This avoids the following
2954 * incorrect race:
2955 *
2956 * vCPU migration
2957 * ---------------------- -------------------------
2958 * TLB check -> slow path
2959 * notdirty_mem_write
2960 * write to RAM
2961 * mark dirty
2962 * clear dirty flag
2963 * TLB check -> fast path
2964 * read memory
2965 * write to RAM
2966 *
2967 * by pushing the migration thread's memory read after the vCPU thread has
2968 * written the memory.
2969 */
2970 if (replay_mode == REPLAY_MODE_NONE) {
2971 /*
2972 * VGA can make calls to this function while updating the screen.
2973 * In record/replay mode this causes a deadlock, because
2974 * run_on_cpu waits for rr mutex. Therefore no races are possible
2975 * in this case and no need for making run_on_cpu when
2976 * record/replay is not enabled.
2977 */
2978 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2979 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2980 }
2981 }
2982
2983 static void tcg_commit(MemoryListener *listener)
2984 {
2985 CPUAddressSpace *cpuas;
2986 AddressSpaceDispatch *d;
2987
2988 assert(tcg_enabled());
2989 /* since each CPU stores ram addresses in its TLB cache, we must
2990 reset the modified entries */
2991 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2992 cpu_reloading_memory_map();
2993 /* The CPU and TLB are protected by the iothread lock.
2994 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2995 * may have split the RCU critical section.
2996 */
2997 d = address_space_to_dispatch(cpuas->as);
2998 atomic_rcu_set(&cpuas->memory_dispatch, d);
2999 tlb_flush(cpuas->cpu);
3000 }
3001
3002 static void memory_map_init(void)
3003 {
3004 system_memory = g_malloc(sizeof(*system_memory));
3005
3006 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3007 address_space_init(&address_space_memory, system_memory, "memory");
3008
3009 system_io = g_malloc(sizeof(*system_io));
3010 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3011 65536);
3012 address_space_init(&address_space_io, system_io, "I/O");
3013 }
3014
3015 MemoryRegion *get_system_memory(void)
3016 {
3017 return system_memory;
3018 }
3019
3020 MemoryRegion *get_system_io(void)
3021 {
3022 return system_io;
3023 }
3024
3025 #endif /* !defined(CONFIG_USER_ONLY) */
3026
3027 /* physical memory access (slow version, mainly for debug) */
3028 #if defined(CONFIG_USER_ONLY)
3029 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3030 void *ptr, target_ulong len, bool is_write)
3031 {
3032 int flags;
3033 target_ulong l, page;
3034 void * p;
3035 uint8_t *buf = ptr;
3036
3037 while (len > 0) {
3038 page = addr & TARGET_PAGE_MASK;
3039 l = (page + TARGET_PAGE_SIZE) - addr;
3040 if (l > len)
3041 l = len;
3042 flags = page_get_flags(page);
3043 if (!(flags & PAGE_VALID))
3044 return -1;
3045 if (is_write) {
3046 if (!(flags & PAGE_WRITE))
3047 return -1;
3048 /* XXX: this code should not depend on lock_user */
3049 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3050 return -1;
3051 memcpy(p, buf, l);
3052 unlock_user(p, addr, l);
3053 } else {
3054 if (!(flags & PAGE_READ))
3055 return -1;
3056 /* XXX: this code should not depend on lock_user */
3057 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3058 return -1;
3059 memcpy(buf, p, l);
3060 unlock_user(p, addr, 0);
3061 }
3062 len -= l;
3063 buf += l;
3064 addr += l;
3065 }
3066 return 0;
3067 }
3068
3069 #else
3070
3071 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3072 hwaddr length)
3073 {
3074 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3075 addr += memory_region_get_ram_addr(mr);
3076
3077 /* No early return if dirty_log_mask is or becomes 0, because
3078 * cpu_physical_memory_set_dirty_range will still call
3079 * xen_modified_memory.
3080 */
3081 if (dirty_log_mask) {
3082 dirty_log_mask =
3083 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3084 }
3085 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3086 assert(tcg_enabled());
3087 tb_invalidate_phys_range(addr, addr + length);
3088 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3089 }
3090 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3091 }
3092
3093 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3094 {
3095 /*
3096 * In principle this function would work on other memory region types too,
3097 * but the ROM device use case is the only one where this operation is
3098 * necessary. Other memory regions should use the
3099 * address_space_read/write() APIs.
3100 */
3101 assert(memory_region_is_romd(mr));
3102
3103 invalidate_and_set_dirty(mr, addr, size);
3104 }
3105
3106 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3107 {
3108 unsigned access_size_max = mr->ops->valid.max_access_size;
3109
3110 /* Regions are assumed to support 1-4 byte accesses unless
3111 otherwise specified. */
3112 if (access_size_max == 0) {
3113 access_size_max = 4;
3114 }
3115
3116 /* Bound the maximum access by the alignment of the address. */
3117 if (!mr->ops->impl.unaligned) {
3118 unsigned align_size_max = addr & -addr;
3119 if (align_size_max != 0 && align_size_max < access_size_max) {
3120 access_size_max = align_size_max;
3121 }
3122 }
3123
3124 /* Don't attempt accesses larger than the maximum. */
3125 if (l > access_size_max) {
3126 l = access_size_max;
3127 }
3128 l = pow2floor(l);
3129
3130 return l;
3131 }
3132
3133 static bool prepare_mmio_access(MemoryRegion *mr)
3134 {
3135 bool unlocked = !qemu_mutex_iothread_locked();
3136 bool release_lock = false;
3137
3138 if (unlocked && mr->global_locking) {
3139 qemu_mutex_lock_iothread();
3140 unlocked = false;
3141 release_lock = true;
3142 }
3143 if (mr->flush_coalesced_mmio) {
3144 if (unlocked) {
3145 qemu_mutex_lock_iothread();
3146 }
3147 qemu_flush_coalesced_mmio_buffer();
3148 if (unlocked) {
3149 qemu_mutex_unlock_iothread();
3150 }
3151 }
3152
3153 return release_lock;
3154 }
3155
3156 /* Called within RCU critical section. */
3157 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3158 MemTxAttrs attrs,
3159 const void *ptr,
3160 hwaddr len, hwaddr addr1,
3161 hwaddr l, MemoryRegion *mr)
3162 {
3163 uint8_t *ram_ptr;
3164 uint64_t val;
3165 MemTxResult result = MEMTX_OK;
3166 bool release_lock = false;
3167 const uint8_t *buf = ptr;
3168
3169 for (;;) {
3170 if (!memory_access_is_direct(mr, true)) {
3171 release_lock |= prepare_mmio_access(mr);
3172 l = memory_access_size(mr, l, addr1);
3173 /* XXX: could force current_cpu to NULL to avoid
3174 potential bugs */
3175 val = ldn_he_p(buf, l);
3176 result |= memory_region_dispatch_write(mr, addr1, val,
3177 size_memop(l), attrs);
3178 } else {
3179 /* RAM case */
3180 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3181 memcpy(ram_ptr, buf, l);
3182 invalidate_and_set_dirty(mr, addr1, l);
3183 }
3184
3185 if (release_lock) {
3186 qemu_mutex_unlock_iothread();
3187 release_lock = false;
3188 }
3189
3190 len -= l;
3191 buf += l;
3192 addr += l;
3193
3194 if (!len) {
3195 break;
3196 }
3197
3198 l = len;
3199 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3200 }
3201
3202 return result;
3203 }
3204
3205 /* Called from RCU critical section. */
3206 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3207 const void *buf, hwaddr len)
3208 {
3209 hwaddr l;
3210 hwaddr addr1;
3211 MemoryRegion *mr;
3212 MemTxResult result = MEMTX_OK;
3213
3214 l = len;
3215 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3216 result = flatview_write_continue(fv, addr, attrs, buf, len,
3217 addr1, l, mr);
3218
3219 return result;
3220 }
3221
3222 /* Called within RCU critical section. */
3223 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3224 MemTxAttrs attrs, void *ptr,
3225 hwaddr len, hwaddr addr1, hwaddr l,
3226 MemoryRegion *mr)
3227 {
3228 uint8_t *ram_ptr;
3229 uint64_t val;
3230 MemTxResult result = MEMTX_OK;
3231 bool release_lock = false;
3232 uint8_t *buf = ptr;
3233
3234 for (;;) {
3235 if (!memory_access_is_direct(mr, false)) {
3236 /* I/O case */
3237 release_lock |= prepare_mmio_access(mr);
3238 l = memory_access_size(mr, l, addr1);
3239 result |= memory_region_dispatch_read(mr, addr1, &val,
3240 size_memop(l), attrs);
3241 stn_he_p(buf, l, val);
3242 } else {
3243 /* RAM case */
3244 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3245 memcpy(buf, ram_ptr, l);
3246 }
3247
3248 if (release_lock) {
3249 qemu_mutex_unlock_iothread();
3250 release_lock = false;
3251 }
3252
3253 len -= l;
3254 buf += l;
3255 addr += l;
3256
3257 if (!len) {
3258 break;
3259 }
3260
3261 l = len;
3262 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3263 }
3264
3265 return result;
3266 }
3267
3268 /* Called from RCU critical section. */
3269 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3270 MemTxAttrs attrs, void *buf, hwaddr len)
3271 {
3272 hwaddr l;
3273 hwaddr addr1;
3274 MemoryRegion *mr;
3275
3276 l = len;
3277 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3278 return flatview_read_continue(fv, addr, attrs, buf, len,
3279 addr1, l, mr);
3280 }
3281
3282 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3283 MemTxAttrs attrs, void *buf, hwaddr len)
3284 {
3285 MemTxResult result = MEMTX_OK;
3286 FlatView *fv;
3287
3288 if (len > 0) {
3289 RCU_READ_LOCK_GUARD();
3290 fv = address_space_to_flatview(as);
3291 result = flatview_read(fv, addr, attrs, buf, len);
3292 }
3293
3294 return result;
3295 }
3296
3297 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3298 MemTxAttrs attrs,
3299 const void *buf, hwaddr len)
3300 {
3301 MemTxResult result = MEMTX_OK;
3302 FlatView *fv;
3303
3304 if (len > 0) {
3305 RCU_READ_LOCK_GUARD();
3306 fv = address_space_to_flatview(as);
3307 result = flatview_write(fv, addr, attrs, buf, len);
3308 }
3309
3310 return result;
3311 }
3312
3313 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3314 void *buf, hwaddr len, bool is_write)
3315 {
3316 if (is_write) {
3317 return address_space_write(as, addr, attrs, buf, len);
3318 } else {
3319 return address_space_read_full(as, addr, attrs, buf, len);
3320 }
3321 }
3322
3323 void cpu_physical_memory_rw(hwaddr addr, void *buf,
3324 hwaddr len, bool is_write)
3325 {
3326 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3327 buf, len, is_write);
3328 }
3329
3330 enum write_rom_type {
3331 WRITE_DATA,
3332 FLUSH_CACHE,
3333 };
3334
3335 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3336 hwaddr addr,
3337 MemTxAttrs attrs,
3338 const void *ptr,
3339 hwaddr len,
3340 enum write_rom_type type)
3341 {
3342 hwaddr l;
3343 uint8_t *ram_ptr;
3344 hwaddr addr1;
3345 MemoryRegion *mr;
3346 const uint8_t *buf = ptr;
3347
3348 RCU_READ_LOCK_GUARD();
3349 while (len > 0) {
3350 l = len;
3351 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3352
3353 if (!(memory_region_is_ram(mr) ||
3354 memory_region_is_romd(mr))) {
3355 l = memory_access_size(mr, l, addr1);
3356 } else {
3357 /* ROM/RAM case */
3358 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3359 switch (type) {
3360 case WRITE_DATA:
3361 memcpy(ram_ptr, buf, l);
3362 invalidate_and_set_dirty(mr, addr1, l);
3363 break;
3364 case FLUSH_CACHE:
3365 flush_icache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr + l);
3366 break;
3367 }
3368 }
3369 len -= l;
3370 buf += l;
3371 addr += l;
3372 }
3373 return MEMTX_OK;
3374 }
3375
3376 /* used for ROM loading : can write in RAM and ROM */
3377 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3378 MemTxAttrs attrs,
3379 const void *buf, hwaddr len)
3380 {
3381 return address_space_write_rom_internal(as, addr, attrs,
3382 buf, len, WRITE_DATA);
3383 }
3384
3385 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3386 {
3387 /*
3388 * This function should do the same thing as an icache flush that was
3389 * triggered from within the guest. For TCG we are always cache coherent,
3390 * so there is no need to flush anything. For KVM / Xen we need to flush
3391 * the host's instruction cache at least.
3392 */
3393 if (tcg_enabled()) {
3394 return;
3395 }
3396
3397 address_space_write_rom_internal(&address_space_memory,
3398 start, MEMTXATTRS_UNSPECIFIED,
3399 NULL, len, FLUSH_CACHE);
3400 }
3401
3402 typedef struct {
3403 MemoryRegion *mr;
3404 void *buffer;
3405 hwaddr addr;
3406 hwaddr len;
3407 bool in_use;
3408 } BounceBuffer;
3409
3410 static BounceBuffer bounce;
3411
3412 typedef struct MapClient {
3413 QEMUBH *bh;
3414 QLIST_ENTRY(MapClient) link;
3415 } MapClient;
3416
3417 QemuMutex map_client_list_lock;
3418 static QLIST_HEAD(, MapClient) map_client_list
3419 = QLIST_HEAD_INITIALIZER(map_client_list);
3420
3421 static void cpu_unregister_map_client_do(MapClient *client)
3422 {
3423 QLIST_REMOVE(client, link);
3424 g_free(client);
3425 }
3426
3427 static void cpu_notify_map_clients_locked(void)
3428 {
3429 MapClient *client;
3430
3431 while (!QLIST_EMPTY(&map_client_list)) {
3432 client = QLIST_FIRST(&map_client_list);
3433 qemu_bh_schedule(client->bh);
3434 cpu_unregister_map_client_do(client);
3435 }
3436 }
3437
3438 void cpu_register_map_client(QEMUBH *bh)
3439 {
3440 MapClient *client = g_malloc(sizeof(*client));
3441
3442 qemu_mutex_lock(&map_client_list_lock);
3443 client->bh = bh;
3444 QLIST_INSERT_HEAD(&map_client_list, client, link);
3445 if (!atomic_read(&bounce.in_use)) {
3446 cpu_notify_map_clients_locked();
3447 }
3448 qemu_mutex_unlock(&map_client_list_lock);
3449 }
3450
3451 void cpu_exec_init_all(void)
3452 {
3453 qemu_mutex_init(&ram_list.mutex);
3454 /* The data structures we set up here depend on knowing the page size,
3455 * so no more changes can be made after this point.
3456 * In an ideal world, nothing we did before we had finished the
3457 * machine setup would care about the target page size, and we could
3458 * do this much later, rather than requiring board models to state
3459 * up front what their requirements are.
3460 */
3461 finalize_target_page_bits();
3462 io_mem_init();
3463 memory_map_init();
3464 qemu_mutex_init(&map_client_list_lock);
3465 }
3466
3467 void cpu_unregister_map_client(QEMUBH *bh)
3468 {
3469 MapClient *client;
3470
3471 qemu_mutex_lock(&map_client_list_lock);
3472 QLIST_FOREACH(client, &map_client_list, link) {
3473 if (client->bh == bh) {
3474 cpu_unregister_map_client_do(client);
3475 break;
3476 }
3477 }
3478 qemu_mutex_unlock(&map_client_list_lock);
3479 }
3480
3481 static void cpu_notify_map_clients(void)
3482 {
3483 qemu_mutex_lock(&map_client_list_lock);
3484 cpu_notify_map_clients_locked();
3485 qemu_mutex_unlock(&map_client_list_lock);
3486 }
3487
3488 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3489 bool is_write, MemTxAttrs attrs)
3490 {
3491 MemoryRegion *mr;
3492 hwaddr l, xlat;
3493
3494 while (len > 0) {
3495 l = len;
3496 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3497 if (!memory_access_is_direct(mr, is_write)) {
3498 l = memory_access_size(mr, l, addr);
3499 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3500 return false;
3501 }
3502 }
3503
3504 len -= l;
3505 addr += l;
3506 }
3507 return true;
3508 }
3509
3510 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3511 hwaddr len, bool is_write,
3512 MemTxAttrs attrs)
3513 {
3514 FlatView *fv;
3515 bool result;
3516
3517 RCU_READ_LOCK_GUARD();
3518 fv = address_space_to_flatview(as);
3519 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3520 return result;
3521 }
3522
3523 static hwaddr
3524 flatview_extend_translation(FlatView *fv, hwaddr addr,
3525 hwaddr target_len,
3526 MemoryRegion *mr, hwaddr base, hwaddr len,
3527 bool is_write, MemTxAttrs attrs)
3528 {
3529 hwaddr done = 0;
3530 hwaddr xlat;
3531 MemoryRegion *this_mr;
3532
3533 for (;;) {
3534 target_len -= len;
3535 addr += len;
3536 done += len;
3537 if (target_len == 0) {
3538 return done;
3539 }
3540
3541 len = target_len;
3542 this_mr = flatview_translate(fv, addr, &xlat,
3543 &len, is_write, attrs);
3544 if (this_mr != mr || xlat != base + done) {
3545 return done;
3546 }
3547 }
3548 }
3549
3550 /* Map a physical memory region into a host virtual address.
3551 * May map a subset of the requested range, given by and returned in *plen.
3552 * May return NULL if resources needed to perform the mapping are exhausted.
3553 * Use only for reads OR writes - not for read-modify-write operations.
3554 * Use cpu_register_map_client() to know when retrying the map operation is
3555 * likely to succeed.
3556 */
3557 void *address_space_map(AddressSpace *as,
3558 hwaddr addr,
3559 hwaddr *plen,
3560 bool is_write,
3561 MemTxAttrs attrs)
3562 {
3563 hwaddr len = *plen;
3564 hwaddr l, xlat;
3565 MemoryRegion *mr;
3566 void *ptr;
3567 FlatView *fv;
3568
3569 if (len == 0) {
3570 return NULL;
3571 }
3572
3573 l = len;
3574 RCU_READ_LOCK_GUARD();
3575 fv = address_space_to_flatview(as);
3576 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3577
3578 if (!memory_access_is_direct(mr, is_write)) {
3579 if (atomic_xchg(&bounce.in_use, true)) {
3580 *