4 * The code in this source file is derived from release 2a of the SoftFloat
5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6 * some later contributions) are provided under that license, as detailed below.
7 * It has subsequently been modified by contributors to the QEMU Project,
8 * so some portions are provided under:
9 * the SoftFloat-2a license
13 * Any future contributions to this file after December 1st 2014 will be
14 * taken to be licensed under the Softfloat-2a license unless specifically
15 * indicated otherwise.
19 ===============================================================================
20 This C source file is part of the SoftFloat IEC/IEEE Floating-point
21 Arithmetic Package, Release 2a.
23 Written by John R. Hauser. This work was made possible in part by the
24 International Computer Science Institute, located at Suite 600, 1947 Center
25 Street, Berkeley, California 94704. Funding was partially provided by the
26 National Science Foundation under grant MIP-9311980. The original version
27 of this code was written as part of a project to build a fixed-point vector
28 processor in collaboration with the University of California at Berkeley,
29 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
30 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31 arithmetic/SoftFloat.html'.
33 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
34 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35 TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
36 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
39 Derivative works are acceptable, even for commercial purposes, so long as
40 (1) they include prominent notice that the work is derivative, and (2) they
41 include prominent notice akin to these four paragraphs for those parts of
42 this code that are retained.
44 ===============================================================================
48 * Copyright (c) 2006, Fabrice Bellard
49 * All rights reserved.
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions are met:
54 * 1. Redistributions of source code must retain the above copyright notice,
55 * this list of conditions and the following disclaimer.
57 * 2. Redistributions in binary form must reproduce the above copyright notice,
58 * this list of conditions and the following disclaimer in the documentation
59 * and/or other materials provided with the distribution.
61 * 3. Neither the name of the copyright holder nor the names of its contributors
62 * may be used to endorse or promote products derived from this software without
63 * specific prior written permission.
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75 * THE POSSIBILITY OF SUCH DAMAGE.
78 /* Portions of this work are licensed under the terms of the GNU GPL,
79 * version 2 or later. See the COPYING file in the top-level directory.
82 /* softfloat (and in particular the code in softfloat-specialize.h) is
83 * target-dependent and needs the TARGET_* macros.
85 #include "qemu/osdep.h"
87 #include "fpu/softfloat.h"
89 /* We only need stdlib for abort() */
91 /*----------------------------------------------------------------------------
92 | Primitive arithmetic functions, including multi-word arithmetic, and
93 | division and square root approximations. (Can be specialized to target if
95 *----------------------------------------------------------------------------*/
96 #include "softfloat-macros.h"
98 /*----------------------------------------------------------------------------
99 | Functions and definitions to determine: (1) whether tininess for underflow
100 | is detected before or after rounding by default, (2) what (if anything)
101 | happens when exceptions are raised, (3) how signaling NaNs are distinguished
102 | from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
103 | are propagated from function inputs to output. These details are target-
105 *----------------------------------------------------------------------------*/
106 #include "softfloat-specialize.h"
108 /*----------------------------------------------------------------------------
109 | Returns the fraction bits of the half-precision floating-point value `a'.
110 *----------------------------------------------------------------------------*/
112 static inline uint32_t extractFloat16Frac(float16 a
)
114 return float16_val(a
) & 0x3ff;
117 /*----------------------------------------------------------------------------
118 | Returns the exponent bits of the half-precision floating-point value `a'.
119 *----------------------------------------------------------------------------*/
121 static inline int extractFloat16Exp(float16 a
)
123 return (float16_val(a
) >> 10) & 0x1f;
126 /*----------------------------------------------------------------------------
127 | Returns the sign bit of the single-precision floating-point value `a'.
128 *----------------------------------------------------------------------------*/
130 static inline flag
extractFloat16Sign(float16 a
)
132 return float16_val(a
)>>15;
135 /*----------------------------------------------------------------------------
136 | Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
137 | and 7, and returns the properly rounded 32-bit integer corresponding to the
138 | input. If `zSign' is 1, the input is negated before being converted to an
139 | integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point input
140 | is simply rounded to an integer, with the inexact exception raised if the
141 | input cannot be represented exactly as an integer. However, if the fixed-
142 | point input is too large, the invalid exception is raised and the largest
143 | positive or negative integer is returned.
144 *----------------------------------------------------------------------------*/
146 static int32_t roundAndPackInt32(flag zSign
, uint64_t absZ
, float_status
*status
)
149 flag roundNearestEven
;
150 int8_t roundIncrement
, roundBits
;
153 roundingMode
= status
->float_rounding_mode
;
154 roundNearestEven
= ( roundingMode
== float_round_nearest_even
);
155 switch (roundingMode
) {
156 case float_round_nearest_even
:
157 case float_round_ties_away
:
158 roundIncrement
= 0x40;
160 case float_round_to_zero
:
164 roundIncrement
= zSign ?
0 : 0x7f;
166 case float_round_down
:
167 roundIncrement
= zSign ?
0x7f : 0;
172 roundBits
= absZ
& 0x7F;
173 absZ
= ( absZ
+ roundIncrement
)>>7;
174 absZ
&= ~ ( ( ( roundBits
^ 0x40 ) == 0 ) & roundNearestEven
);
176 if ( zSign
) z
= - z
;
177 if ( ( absZ
>>32 ) || ( z
&& ( ( z
< 0 ) ^ zSign
) ) ) {
178 float_raise(float_flag_invalid
, status
);
179 return zSign ?
(int32_t) 0x80000000 : 0x7FFFFFFF;
182 status
->float_exception_flags
|= float_flag_inexact
;
188 /*----------------------------------------------------------------------------
189 | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
190 | `absZ1', with binary point between bits 63 and 64 (between the input words),
191 | and returns the properly rounded 64-bit integer corresponding to the input.
192 | If `zSign' is 1, the input is negated before being converted to an integer.
193 | Ordinarily, the fixed-point input is simply rounded to an integer, with
194 | the inexact exception raised if the input cannot be represented exactly as
195 | an integer. However, if the fixed-point input is too large, the invalid
196 | exception is raised and the largest positive or negative integer is
198 *----------------------------------------------------------------------------*/
200 static int64_t roundAndPackInt64(flag zSign
, uint64_t absZ0
, uint64_t absZ1
,
201 float_status
*status
)
204 flag roundNearestEven
, increment
;
207 roundingMode
= status
->float_rounding_mode
;
208 roundNearestEven
= ( roundingMode
== float_round_nearest_even
);
209 switch (roundingMode
) {
210 case float_round_nearest_even
:
211 case float_round_ties_away
:
212 increment
= ((int64_t) absZ1
< 0);
214 case float_round_to_zero
:
218 increment
= !zSign
&& absZ1
;
220 case float_round_down
:
221 increment
= zSign
&& absZ1
;
228 if ( absZ0
== 0 ) goto overflow
;
229 absZ0
&= ~ ( ( (uint64_t) ( absZ1
<<1 ) == 0 ) & roundNearestEven
);
232 if ( zSign
) z
= - z
;
233 if ( z
&& ( ( z
< 0 ) ^ zSign
) ) {
235 float_raise(float_flag_invalid
, status
);
237 zSign ?
(int64_t) LIT64( 0x8000000000000000 )
238 : LIT64( 0x7FFFFFFFFFFFFFFF );
241 status
->float_exception_flags
|= float_flag_inexact
;
247 /*----------------------------------------------------------------------------
248 | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
249 | `absZ1', with binary point between bits 63 and 64 (between the input words),
250 | and returns the properly rounded 64-bit unsigned integer corresponding to the
251 | input. Ordinarily, the fixed-point input is simply rounded to an integer,
252 | with the inexact exception raised if the input cannot be represented exactly
253 | as an integer. However, if the fixed-point input is too large, the invalid
254 | exception is raised and the largest unsigned integer is returned.
255 *----------------------------------------------------------------------------*/
257 static int64_t roundAndPackUint64(flag zSign
, uint64_t absZ0
,
258 uint64_t absZ1
, float_status
*status
)
261 flag roundNearestEven
, increment
;
263 roundingMode
= status
->float_rounding_mode
;
264 roundNearestEven
= (roundingMode
== float_round_nearest_even
);
265 switch (roundingMode
) {
266 case float_round_nearest_even
:
267 case float_round_ties_away
:
268 increment
= ((int64_t)absZ1
< 0);
270 case float_round_to_zero
:
274 increment
= !zSign
&& absZ1
;
276 case float_round_down
:
277 increment
= zSign
&& absZ1
;
285 float_raise(float_flag_invalid
, status
);
286 return LIT64(0xFFFFFFFFFFFFFFFF);
288 absZ0
&= ~(((uint64_t)(absZ1
<<1) == 0) & roundNearestEven
);
291 if (zSign
&& absZ0
) {
292 float_raise(float_flag_invalid
, status
);
297 status
->float_exception_flags
|= float_flag_inexact
;
302 /*----------------------------------------------------------------------------
303 | Returns the fraction bits of the single-precision floating-point value `a'.
304 *----------------------------------------------------------------------------*/
306 static inline uint32_t extractFloat32Frac( float32 a
)
309 return float32_val(a
) & 0x007FFFFF;
313 /*----------------------------------------------------------------------------
314 | Returns the exponent bits of the single-precision floating-point value `a'.
315 *----------------------------------------------------------------------------*/
317 static inline int extractFloat32Exp(float32 a
)
320 return ( float32_val(a
)>>23 ) & 0xFF;
324 /*----------------------------------------------------------------------------
325 | Returns the sign bit of the single-precision floating-point value `a'.
326 *----------------------------------------------------------------------------*/
328 static inline flag
extractFloat32Sign( float32 a
)
331 return float32_val(a
)>>31;
335 /*----------------------------------------------------------------------------
336 | If `a' is denormal and we are in flush-to-zero mode then set the
337 | input-denormal exception and return zero. Otherwise just return the value.
338 *----------------------------------------------------------------------------*/
339 float32
float32_squash_input_denormal(float32 a
, float_status
*status
)
341 if (status
->flush_inputs_to_zero
) {
342 if (extractFloat32Exp(a
) == 0 && extractFloat32Frac(a
) != 0) {
343 float_raise(float_flag_input_denormal
, status
);
344 return make_float32(float32_val(a
) & 0x80000000);
350 /*----------------------------------------------------------------------------
351 | Normalizes the subnormal single-precision floating-point value represented
352 | by the denormalized significand `aSig'. The normalized exponent and
353 | significand are stored at the locations pointed to by `zExpPtr' and
354 | `zSigPtr', respectively.
355 *----------------------------------------------------------------------------*/
358 normalizeFloat32Subnormal(uint32_t aSig
, int *zExpPtr
, uint32_t *zSigPtr
)
362 shiftCount
= countLeadingZeros32( aSig
) - 8;
363 *zSigPtr
= aSig
<<shiftCount
;
364 *zExpPtr
= 1 - shiftCount
;
368 /*----------------------------------------------------------------------------
369 | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
370 | single-precision floating-point value, returning the result. After being
371 | shifted into the proper positions, the three fields are simply added
372 | together to form the result. This means that any integer portion of `zSig'
373 | will be added into the exponent. Since a properly normalized significand
374 | will have an integer portion equal to 1, the `zExp' input should be 1 less
375 | than the desired result exponent whenever `zSig' is a complete, normalized
377 *----------------------------------------------------------------------------*/
379 static inline float32
packFloat32(flag zSign
, int zExp
, uint32_t zSig
)
383 ( ( (uint32_t) zSign
)<<31 ) + ( ( (uint32_t) zExp
)<<23 ) + zSig
);
387 /*----------------------------------------------------------------------------
388 | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
389 | and significand `zSig', and returns the proper single-precision floating-
390 | point value corresponding to the abstract input. Ordinarily, the abstract
391 | value is simply rounded and packed into the single-precision format, with
392 | the inexact exception raised if the abstract input cannot be represented
393 | exactly. However, if the abstract value is too large, the overflow and
394 | inexact exceptions are raised and an infinity or maximal finite value is
395 | returned. If the abstract value is too small, the input value is rounded to
396 | a subnormal number, and the underflow and inexact exceptions are raised if
397 | the abstract input cannot be represented exactly as a subnormal single-
398 | precision floating-point number.
399 | The input significand `zSig' has its binary point between bits 30
400 | and 29, which is 7 bits to the left of the usual location. This shifted
401 | significand must be normalized or smaller. If `zSig' is not normalized,
402 | `zExp' must be 0; in that case, the result returned is a subnormal number,
403 | and it must not require rounding. In the usual case that `zSig' is
404 | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
405 | The handling of underflow and overflow follows the IEC/IEEE Standard for
406 | Binary Floating-Point Arithmetic.
407 *----------------------------------------------------------------------------*/
409 static float32
roundAndPackFloat32(flag zSign
, int zExp
, uint32_t zSig
,
410 float_status
*status
)
413 flag roundNearestEven
;
414 int8_t roundIncrement
, roundBits
;
417 roundingMode
= status
->float_rounding_mode
;
418 roundNearestEven
= ( roundingMode
== float_round_nearest_even
);
419 switch (roundingMode
) {
420 case float_round_nearest_even
:
421 case float_round_ties_away
:
422 roundIncrement
= 0x40;
424 case float_round_to_zero
:
428 roundIncrement
= zSign ?
0 : 0x7f;
430 case float_round_down
:
431 roundIncrement
= zSign ?
0x7f : 0;
437 roundBits
= zSig
& 0x7F;
438 if ( 0xFD <= (uint16_t) zExp
) {
440 || ( ( zExp
== 0xFD )
441 && ( (int32_t) ( zSig
+ roundIncrement
) < 0 ) )
443 float_raise(float_flag_overflow
| float_flag_inexact
, status
);
444 return packFloat32( zSign
, 0xFF, - ( roundIncrement
== 0 ));
447 if (status
->flush_to_zero
) {
448 float_raise(float_flag_output_denormal
, status
);
449 return packFloat32(zSign
, 0, 0);
452 (status
->float_detect_tininess
453 == float_tininess_before_rounding
)
455 || ( zSig
+ roundIncrement
< 0x80000000 );
456 shift32RightJamming( zSig
, - zExp
, &zSig
);
458 roundBits
= zSig
& 0x7F;
459 if (isTiny
&& roundBits
) {
460 float_raise(float_flag_underflow
, status
);
465 status
->float_exception_flags
|= float_flag_inexact
;
467 zSig
= ( zSig
+ roundIncrement
)>>7;
468 zSig
&= ~ ( ( ( roundBits
^ 0x40 ) == 0 ) & roundNearestEven
);
469 if ( zSig
== 0 ) zExp
= 0;
470 return packFloat32( zSign
, zExp
, zSig
);
474 /*----------------------------------------------------------------------------
475 | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
476 | and significand `zSig', and returns the proper single-precision floating-
477 | point value corresponding to the abstract input. This routine is just like
478 | `roundAndPackFloat32' except that `zSig' does not have to be normalized.
479 | Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
480 | floating-point exponent.
481 *----------------------------------------------------------------------------*/
484 normalizeRoundAndPackFloat32(flag zSign
, int zExp
, uint32_t zSig
,
485 float_status
*status
)
489 shiftCount
= countLeadingZeros32( zSig
) - 1;
490 return roundAndPackFloat32(zSign
, zExp
- shiftCount
, zSig
<<shiftCount
,
495 /*----------------------------------------------------------------------------
496 | Returns the fraction bits of the double-precision floating-point value `a'.
497 *----------------------------------------------------------------------------*/
499 static inline uint64_t extractFloat64Frac( float64 a
)
502 return float64_val(a
) & LIT64( 0x000FFFFFFFFFFFFF );
506 /*----------------------------------------------------------------------------
507 | Returns the exponent bits of the double-precision floating-point value `a'.
508 *----------------------------------------------------------------------------*/
510 static inline int extractFloat64Exp(float64 a
)
513 return ( float64_val(a
)>>52 ) & 0x7FF;
517 /*----------------------------------------------------------------------------
518 | Returns the sign bit of the double-precision floating-point value `a'.
519 *----------------------------------------------------------------------------*/
521 static inline flag
extractFloat64Sign( float64 a
)
524 return float64_val(a
)>>63;
528 /*----------------------------------------------------------------------------
529 | If `a' is denormal and we are in flush-to-zero mode then set the
530 | input-denormal exception and return zero. Otherwise just return the value.
531 *----------------------------------------------------------------------------*/
532 float64
float64_squash_input_denormal(float64 a
, float_status
*status
)
534 if (status
->flush_inputs_to_zero
) {
535 if (extractFloat64Exp(a
) == 0 && extractFloat64Frac(a
) != 0) {
536 float_raise(float_flag_input_denormal
, status
);
537 return make_float64(float64_val(a
) & (1ULL << 63));
543 /*----------------------------------------------------------------------------
544 | Normalizes the subnormal double-precision floating-point value represented
545 | by the denormalized significand `aSig'. The normalized exponent and
546 | significand are stored at the locations pointed to by `zExpPtr' and
547 | `zSigPtr', respectively.
548 *----------------------------------------------------------------------------*/
551 normalizeFloat64Subnormal(uint64_t aSig
, int *zExpPtr
, uint64_t *zSigPtr
)
555 shiftCount
= countLeadingZeros64( aSig
) - 11;
556 *zSigPtr
= aSig
<<shiftCount
;
557 *zExpPtr
= 1 - shiftCount
;
561 /*----------------------------------------------------------------------------
562 | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
563 | double-precision floating-point value, returning the result. After being
564 | shifted into the proper positions, the three fields are simply added
565 | together to form the result. This means that any integer portion of `zSig'
566 | will be added into the exponent. Since a properly normalized significand
567 | will have an integer portion equal to 1, the `zExp' input should be 1 less
568 | than the desired result exponent whenever `zSig' is a complete, normalized
570 *----------------------------------------------------------------------------*/
572 static inline float64
packFloat64(flag zSign
, int zExp
, uint64_t zSig
)
576 ( ( (uint64_t) zSign
)<<63 ) + ( ( (uint64_t) zExp
)<<52 ) + zSig
);
580 /*----------------------------------------------------------------------------
581 | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
582 | and significand `zSig', and returns the proper double-precision floating-
583 | point value corresponding to the abstract input. Ordinarily, the abstract
584 | value is simply rounded and packed into the double-precision format, with
585 | the inexact exception raised if the abstract input cannot be represented
586 | exactly. However, if the abstract value is too large, the overflow and
587 | inexact exceptions are raised and an infinity or maximal finite value is
588 | returned. If the abstract value is too small, the input value is rounded to
589 | a subnormal number, and the underflow and inexact exceptions are raised if
590 | the abstract input cannot be represented exactly as a subnormal double-
591 | precision floating-point number.
592 | The input significand `zSig' has its binary point between bits 62
593 | and 61, which is 10 bits to the left of the usual location. This shifted
594 | significand must be normalized or smaller. If `zSig' is not normalized,
595 | `zExp' must be 0; in that case, the result returned is a subnormal number,
596 | and it must not require rounding. In the usual case that `zSig' is
597 | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
598 | The handling of underflow and overflow follows the IEC/IEEE Standard for
599 | Binary Floating-Point Arithmetic.
600 *----------------------------------------------------------------------------*/
602 static float64
roundAndPackFloat64(flag zSign
, int zExp
, uint64_t zSig
,
603 float_status
*status
)
606 flag roundNearestEven
;
607 int roundIncrement
, roundBits
;
610 roundingMode
= status
->float_rounding_mode
;
611 roundNearestEven
= ( roundingMode
== float_round_nearest_even
);
612 switch (roundingMode
) {
613 case float_round_nearest_even
:
614 case float_round_ties_away
:
615 roundIncrement
= 0x200;
617 case float_round_to_zero
:
621 roundIncrement
= zSign ?
0 : 0x3ff;
623 case float_round_down
:
624 roundIncrement
= zSign ?
0x3ff : 0;
629 roundBits
= zSig
& 0x3FF;
630 if ( 0x7FD <= (uint16_t) zExp
) {
631 if ( ( 0x7FD < zExp
)
632 || ( ( zExp
== 0x7FD )
633 && ( (int64_t) ( zSig
+ roundIncrement
) < 0 ) )
635 float_raise(float_flag_overflow
| float_flag_inexact
, status
);
636 return packFloat64( zSign
, 0x7FF, - ( roundIncrement
== 0 ));
639 if (status
->flush_to_zero
) {
640 float_raise(float_flag_output_denormal
, status
);
641 return packFloat64(zSign
, 0, 0);
644 (status
->float_detect_tininess
645 == float_tininess_before_rounding
)
647 || ( zSig
+ roundIncrement
< LIT64( 0x8000000000000000 ) );
648 shift64RightJamming( zSig
, - zExp
, &zSig
);
650 roundBits
= zSig
& 0x3FF;
651 if (isTiny
&& roundBits
) {
652 float_raise(float_flag_underflow
, status
);
657 status
->float_exception_flags
|= float_flag_inexact
;
659 zSig
= ( zSig
+ roundIncrement
)>>10;
660 zSig
&= ~ ( ( ( roundBits
^ 0x200 ) == 0 ) & roundNearestEven
);
661 if ( zSig
== 0 ) zExp
= 0;
662 return packFloat64( zSign
, zExp
, zSig
);
666 /*----------------------------------------------------------------------------
667 | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
668 | and significand `zSig', and returns the proper double-precision floating-
669 | point value corresponding to the abstract input. This routine is just like
670 | `roundAndPackFloat64' except that `zSig' does not have to be normalized.
671 | Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
672 | floating-point exponent.
673 *----------------------------------------------------------------------------*/
676 normalizeRoundAndPackFloat64(flag zSign
, int zExp
, uint64_t zSig
,
677 float_status
*status
)
681 shiftCount
= countLeadingZeros64( zSig
) - 1;
682 return roundAndPackFloat64(zSign
, zExp
- shiftCount
, zSig
<<shiftCount
,
687 /*----------------------------------------------------------------------------
688 | Returns the fraction bits of the extended double-precision floating-point
690 *----------------------------------------------------------------------------*/
692 static inline uint64_t extractFloatx80Frac( floatx80 a
)
699 /*----------------------------------------------------------------------------
700 | Returns the exponent bits of the extended double-precision floating-point
702 *----------------------------------------------------------------------------*/
704 static inline int32_t extractFloatx80Exp( floatx80 a
)
707 return a
.high
& 0x7FFF;
711 /*----------------------------------------------------------------------------
712 | Returns the sign bit of the extended double-precision floating-point value
714 *----------------------------------------------------------------------------*/
716 static inline flag
extractFloatx80Sign( floatx80 a
)
723 /*----------------------------------------------------------------------------
724 | Normalizes the subnormal extended double-precision floating-point value
725 | represented by the denormalized significand `aSig'. The normalized exponent
726 | and significand are stored at the locations pointed to by `zExpPtr' and
727 | `zSigPtr', respectively.
728 *----------------------------------------------------------------------------*/
731 normalizeFloatx80Subnormal( uint64_t aSig
, int32_t *zExpPtr
, uint64_t *zSigPtr
)
735 shiftCount
= countLeadingZeros64( aSig
);
736 *zSigPtr
= aSig
<<shiftCount
;
737 *zExpPtr
= 1 - shiftCount
;
741 /*----------------------------------------------------------------------------
742 | Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
743 | extended double-precision floating-point value, returning the result.
744 *----------------------------------------------------------------------------*/
746 static inline floatx80
packFloatx80( flag zSign
, int32_t zExp
, uint64_t zSig
)
751 z
.high
= ( ( (uint16_t) zSign
)<<15 ) + zExp
;
756 /*----------------------------------------------------------------------------
757 | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
758 | and extended significand formed by the concatenation of `zSig0' and `zSig1',
759 | and returns the proper extended double-precision floating-point value
760 | corresponding to the abstract input. Ordinarily, the abstract value is
761 | rounded and packed into the extended double-precision format, with the
762 | inexact exception raised if the abstract input cannot be represented
763 | exactly. However, if the abstract value is too large, the overflow and
764 | inexact exceptions are raised and an infinity or maximal finite value is
765 | returned. If the abstract value is too small, the input value is rounded to
766 | a subnormal number, and the underflow and inexact exceptions are raised if
767 | the abstract input cannot be represented exactly as a subnormal extended
768 | double-precision floating-point number.
769 | If `roundingPrecision' is 32 or 64, the result is rounded to the same
770 | number of bits as single or double precision, respectively. Otherwise, the
771 | result is rounded to the full precision of the extended double-precision
773 | The input significand must be normalized or smaller. If the input
774 | significand is not normalized, `zExp' must be 0; in that case, the result
775 | returned is a subnormal number, and it must not require rounding. The
776 | handling of underflow and overflow follows the IEC/IEEE Standard for Binary
777 | Floating-Point Arithmetic.
778 *----------------------------------------------------------------------------*/
780 static floatx80
roundAndPackFloatx80(int8_t roundingPrecision
, flag zSign
,
781 int32_t zExp
, uint64_t zSig0
, uint64_t zSig1
,
782 float_status
*status
)
785 flag roundNearestEven
, increment
, isTiny
;
786 int64_t roundIncrement
, roundMask
, roundBits
;
788 roundingMode
= status
->float_rounding_mode
;
789 roundNearestEven
= ( roundingMode
== float_round_nearest_even
);
790 if ( roundingPrecision
== 80 ) goto precision80
;
791 if ( roundingPrecision
== 64 ) {
792 roundIncrement
= LIT64( 0x0000000000000400 );
793 roundMask
= LIT64( 0x00000000000007FF );
795 else if ( roundingPrecision
== 32 ) {
796 roundIncrement
= LIT64( 0x0000008000000000 );
797 roundMask
= LIT64( 0x000000FFFFFFFFFF );
802 zSig0
|= ( zSig1
!= 0 );
803 switch (roundingMode
) {
804 case float_round_nearest_even
:
805 case float_round_ties_away
:
807 case float_round_to_zero
:
811 roundIncrement
= zSign ?
0 : roundMask
;
813 case float_round_down
:
814 roundIncrement
= zSign ? roundMask
: 0;
819 roundBits
= zSig0
& roundMask
;
820 if ( 0x7FFD <= (uint32_t) ( zExp
- 1 ) ) {
821 if ( ( 0x7FFE < zExp
)
822 || ( ( zExp
== 0x7FFE ) && ( zSig0
+ roundIncrement
< zSig0
) )
827 if (status
->flush_to_zero
) {
828 float_raise(float_flag_output_denormal
, status
);
829 return packFloatx80(zSign
, 0, 0);
832 (status
->float_detect_tininess
833 == float_tininess_before_rounding
)
835 || ( zSig0
<= zSig0
+ roundIncrement
);
836 shift64RightJamming( zSig0
, 1 - zExp
, &zSig0
);
838 roundBits
= zSig0
& roundMask
;
839 if (isTiny
&& roundBits
) {
840 float_raise(float_flag_underflow
, status
);
843 status
->float_exception_flags
|= float_flag_inexact
;
845 zSig0
+= roundIncrement
;
846 if ( (int64_t) zSig0
< 0 ) zExp
= 1;
847 roundIncrement
= roundMask
+ 1;
848 if ( roundNearestEven
&& ( roundBits
<<1 == roundIncrement
) ) {
849 roundMask
|= roundIncrement
;
851 zSig0
&= ~ roundMask
;
852 return packFloatx80( zSign
, zExp
, zSig0
);
856 status
->float_exception_flags
|= float_flag_inexact
;
858 zSig0
+= roundIncrement
;
859 if ( zSig0
< roundIncrement
) {
861 zSig0
= LIT64( 0x8000000000000000 );
863 roundIncrement
= roundMask
+ 1;
864 if ( roundNearestEven
&& ( roundBits
<<1 == roundIncrement
) ) {
865 roundMask
|= roundIncrement
;
867 zSig0
&= ~ roundMask
;
868 if ( zSig0
== 0 ) zExp
= 0;
869 return packFloatx80( zSign
, zExp
, zSig0
);
871 switch (roundingMode
) {
872 case float_round_nearest_even
:
873 case float_round_ties_away
:
874 increment
= ((int64_t)zSig1
< 0);
876 case float_round_to_zero
:
880 increment
= !zSign
&& zSig1
;
882 case float_round_down
:
883 increment
= zSign
&& zSig1
;
888 if ( 0x7FFD <= (uint32_t) ( zExp
- 1 ) ) {
889 if ( ( 0x7FFE < zExp
)
890 || ( ( zExp
== 0x7FFE )
891 && ( zSig0
== LIT64( 0xFFFFFFFFFFFFFFFF ) )
897 float_raise(float_flag_overflow
| float_flag_inexact
, status
);
898 if ( ( roundingMode
== float_round_to_zero
)
899 || ( zSign
&& ( roundingMode
== float_round_up
) )
900 || ( ! zSign
&& ( roundingMode
== float_round_down
) )
902 return packFloatx80( zSign
, 0x7FFE, ~ roundMask
);
904 return packFloatx80( zSign
, 0x7FFF, LIT64( 0x8000000000000000 ) );
908 (status
->float_detect_tininess
909 == float_tininess_before_rounding
)
912 || ( zSig0
< LIT64( 0xFFFFFFFFFFFFFFFF ) );
913 shift64ExtraRightJamming( zSig0
, zSig1
, 1 - zExp
, &zSig0
, &zSig1
);
915 if (isTiny
&& zSig1
) {
916 float_raise(float_flag_underflow
, status
);
919 status
->float_exception_flags
|= float_flag_inexact
;
921 switch (roundingMode
) {
922 case float_round_nearest_even
:
923 case float_round_ties_away
:
924 increment
= ((int64_t)zSig1
< 0);
926 case float_round_to_zero
:
930 increment
= !zSign
&& zSig1
;
932 case float_round_down
:
933 increment
= zSign
&& zSig1
;
941 ~ ( ( (uint64_t) ( zSig1
<<1 ) == 0 ) & roundNearestEven
);
942 if ( (int64_t) zSig0
< 0 ) zExp
= 1;
944 return packFloatx80( zSign
, zExp
, zSig0
);
948 status
->float_exception_flags
|= float_flag_inexact
;
954 zSig0
= LIT64( 0x8000000000000000 );
957 zSig0
&= ~ ( ( (uint64_t) ( zSig1
<<1 ) == 0 ) & roundNearestEven
);
961 if ( zSig0
== 0 ) zExp
= 0;
963 return packFloatx80( zSign
, zExp
, zSig0
);
967 /*----------------------------------------------------------------------------
968 | Takes an abstract floating-point value having sign `zSign', exponent
969 | `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
970 | and returns the proper extended double-precision floating-point value
971 | corresponding to the abstract input. This routine is just like
972 | `roundAndPackFloatx80' except that the input significand does not have to be
974 *----------------------------------------------------------------------------*/
976 static floatx80
normalizeRoundAndPackFloatx80(int8_t roundingPrecision
,
977 flag zSign
, int32_t zExp
,
978 uint64_t zSig0
, uint64_t zSig1
,
979 float_status
*status
)
988 shiftCount
= countLeadingZeros64( zSig0
);
989 shortShift128Left( zSig0
, zSig1
, shiftCount
, &zSig0
, &zSig1
);
991 return roundAndPackFloatx80(roundingPrecision
, zSign
, zExp
,
992 zSig0
, zSig1
, status
);
996 /*----------------------------------------------------------------------------
997 | Returns the least-significant 64 fraction bits of the quadruple-precision
998 | floating-point value `a'.
999 *----------------------------------------------------------------------------*/
1001 static inline uint64_t extractFloat128Frac1( float128 a
)
1008 /*----------------------------------------------------------------------------
1009 | Returns the most-significant 48 fraction bits of the quadruple-precision
1010 | floating-point value `a'.
1011 *----------------------------------------------------------------------------*/
1013 static inline uint64_t extractFloat128Frac0( float128 a
)
1016 return a
.high
& LIT64( 0x0000FFFFFFFFFFFF );
1020 /*----------------------------------------------------------------------------
1021 | Returns the exponent bits of the quadruple-precision floating-point value
1023 *----------------------------------------------------------------------------*/
1025 static inline int32_t extractFloat128Exp( float128 a
)
1028 return ( a
.high
>>48 ) & 0x7FFF;
1032 /*----------------------------------------------------------------------------
1033 | Returns the sign bit of the quadruple-precision floating-point value `a'.
1034 *----------------------------------------------------------------------------*/
1036 static inline flag
extractFloat128Sign( float128 a
)
1043 /*----------------------------------------------------------------------------
1044 | Normalizes the subnormal quadruple-precision floating-point value
1045 | represented by the denormalized significand formed by the concatenation of
1046 | `aSig0' and `aSig1'. The normalized exponent is stored at the location
1047 | pointed to by `zExpPtr'. The most significant 49 bits of the normalized
1048 | significand are stored at the location pointed to by `zSig0Ptr', and the
1049 | least significant 64 bits of the normalized significand are stored at the
1050 | location pointed to by `zSig1Ptr'.
1051 *----------------------------------------------------------------------------*/
1054 normalizeFloat128Subnormal(
1065 shiftCount
= countLeadingZeros64( aSig1
) - 15;
1066 if ( shiftCount
< 0 ) {
1067 *zSig0Ptr
= aSig1
>>( - shiftCount
);
1068 *zSig1Ptr
= aSig1
<<( shiftCount
& 63 );
1071 *zSig0Ptr
= aSig1
<<shiftCount
;
1074 *zExpPtr
= - shiftCount
- 63;
1077 shiftCount
= countLeadingZeros64( aSig0
) - 15;
1078 shortShift128Left( aSig0
, aSig1
, shiftCount
, zSig0Ptr
, zSig1Ptr
);
1079 *zExpPtr
= 1 - shiftCount
;
1084 /*----------------------------------------------------------------------------
1085 | Packs the sign `zSign', the exponent `zExp', and the significand formed
1086 | by the concatenation of `zSig0' and `zSig1' into a quadruple-precision
1087 | floating-point value, returning the result. After being shifted into the
1088 | proper positions, the three fields `zSign', `zExp', and `zSig0' are simply
1089 | added together to form the most significant 32 bits of the result. This
1090 | means that any integer portion of `zSig0' will be added into the exponent.
1091 | Since a properly normalized significand will have an integer portion equal
1092 | to 1, the `zExp' input should be 1 less than the desired result exponent
1093 | whenever `zSig0' and `zSig1' concatenated form a complete, normalized
1095 *----------------------------------------------------------------------------*/
1097 static inline float128
1098 packFloat128( flag zSign
, int32_t zExp
, uint64_t zSig0
, uint64_t zSig1
)
1103 z
.high
= ( ( (uint64_t) zSign
)<<63 ) + ( ( (uint64_t) zExp
)<<48 ) + zSig0
;
1108 /*----------------------------------------------------------------------------
1109 | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
1110 | and extended significand formed by the concatenation of `zSig0', `zSig1',
1111 | and `zSig2', and returns the proper quadruple-precision floating-point value
1112 | corresponding to the abstract input. Ordinarily, the abstract value is
1113 | simply rounded and packed into the quadruple-precision format, with the
1114 | inexact exception raised if the abstract input cannot be represented
1115 | exactly. However, if the abstract value is too large, the overflow and
1116 | inexact exceptions are raised and an infinity or maximal finite value is
1117 | returned. If the abstract value is too small, the input value is rounded to
1118 | a subnormal number, and the underflow and inexact exceptions are raised if
1119 | the abstract input cannot be represented exactly as a subnormal quadruple-
1120 | precision floating-point number.
1121 | The input significand must be normalized or smaller. If the input
1122 | significand is not normalized, `zExp' must be 0; in that case, the result
1123 | returned is a subnormal number, and it must not require rounding. In the
1124 | usual case that the input significand is normalized, `zExp' must be 1 less
1125 | than the ``true'' floating-point exponent. The handling of underflow and
1126 | overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1127 *----------------------------------------------------------------------------*/
1129 static float128
roundAndPackFloat128(flag zSign
, int32_t zExp
,
1130 uint64_t zSig0
, uint64_t zSig1
,
1131 uint64_t zSig2
, float_status
*status
)
1133 int8_t roundingMode
;
1134 flag roundNearestEven
, increment
, isTiny
;
1136 roundingMode
= status
->float_rounding_mode
;
1137 roundNearestEven
= ( roundingMode
== float_round_nearest_even
);
1138 switch (roundingMode
) {
1139 case float_round_nearest_even
:
1140 case float_round_ties_away
:
1141 increment
= ((int64_t)zSig2
< 0);
1143 case float_round_to_zero
:
1146 case float_round_up
:
1147 increment
= !zSign
&& zSig2
;
1149 case float_round_down
:
1150 increment
= zSign
&& zSig2
;
1155 if ( 0x7FFD <= (uint32_t) zExp
) {
1156 if ( ( 0x7FFD < zExp
)
1157 || ( ( zExp
== 0x7FFD )
1159 LIT64( 0x0001FFFFFFFFFFFF ),
1160 LIT64( 0xFFFFFFFFFFFFFFFF ),
1167 float_raise(float_flag_overflow
| float_flag_inexact
, status
);
1168 if ( ( roundingMode
== float_round_to_zero
)
1169 || ( zSign
&& ( roundingMode
== float_round_up
) )
1170 || ( ! zSign
&& ( roundingMode
== float_round_down
) )
1176 LIT64( 0x0000FFFFFFFFFFFF ),
1177 LIT64( 0xFFFFFFFFFFFFFFFF )
1180 return packFloat128( zSign
, 0x7FFF, 0, 0 );
1183 if (status
->flush_to_zero
) {
1184 float_raise(float_flag_output_denormal
, status
);
1185 return packFloat128(zSign
, 0, 0, 0);
1188 (status
->float_detect_tininess
1189 == float_tininess_before_rounding
)
1195 LIT64( 0x0001FFFFFFFFFFFF ),
1196 LIT64( 0xFFFFFFFFFFFFFFFF )
1198 shift128ExtraRightJamming(
1199 zSig0
, zSig1
, zSig2
, - zExp
, &zSig0
, &zSig1
, &zSig2
);
1201 if (isTiny
&& zSig2
) {
1202 float_raise(float_flag_underflow
, status
);
1204 switch (roundingMode
) {
1205 case float_round_nearest_even
:
1206 case float_round_ties_away
:
1207 increment
= ((int64_t)zSig2
< 0);
1209 case float_round_to_zero
:
1212 case float_round_up
:
1213 increment
= !zSign
&& zSig2
;
1215 case float_round_down
:
1216 increment
= zSign
&& zSig2
;
1224 status
->float_exception_flags
|= float_flag_inexact
;
1227 add128( zSig0
, zSig1
, 0, 1, &zSig0
, &zSig1
);
1228 zSig1
&= ~ ( ( zSig2
+ zSig2
== 0 ) & roundNearestEven
);
1231 if ( ( zSig0
| zSig1
) == 0 ) zExp
= 0;
1233 return packFloat128( zSign
, zExp
, zSig0
, zSig1
);
1237 /*----------------------------------------------------------------------------
1238 | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
1239 | and significand formed by the concatenation of `zSig0' and `zSig1', and
1240 | returns the proper quadruple-precision floating-point value corresponding
1241 | to the abstract input. This routine is just like `roundAndPackFloat128'
1242 | except that the input significand has fewer bits and does not have to be
1243 | normalized. In all cases, `zExp' must be 1 less than the ``true'' floating-
1245 *----------------------------------------------------------------------------*/
1247 static float128
normalizeRoundAndPackFloat128(flag zSign
, int32_t zExp
,
1248 uint64_t zSig0
, uint64_t zSig1
,
1249 float_status
*status
)
1259 shiftCount
= countLeadingZeros64( zSig0
) - 15;
1260 if ( 0 <= shiftCount
) {
1262 shortShift128Left( zSig0
, zSig1
, shiftCount
, &zSig0
, &zSig1
);
1265 shift128ExtraRightJamming(
1266 zSig0
, zSig1
, 0, - shiftCount
, &zSig0
, &zSig1
, &zSig2
);
1269 return roundAndPackFloat128(zSign
, zExp
, zSig0
, zSig1
, zSig2
, status
);
1273 /*----------------------------------------------------------------------------
1274 | Returns the result of converting the 32-bit two's complement integer `a'
1275 | to the single-precision floating-point format. The conversion is performed
1276 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1277 *----------------------------------------------------------------------------*/
1279 float32
int32_to_float32(int32_t a
, float_status
*status
)
1283 if ( a
== 0 ) return float32_zero
;
1284 if ( a
== (int32_t) 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
1286 return normalizeRoundAndPackFloat32(zSign
, 0x9C, zSign ?
-a
: a
, status
);
1289 /*----------------------------------------------------------------------------
1290 | Returns the result of converting the 32-bit two's complement integer `a'
1291 | to the double-precision floating-point format. The conversion is performed
1292 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1293 *----------------------------------------------------------------------------*/
1295 float64
int32_to_float64(int32_t a
, float_status
*status
)
1302 if ( a
== 0 ) return float64_zero
;
1304 absA
= zSign ?
- a
: a
;
1305 shiftCount
= countLeadingZeros32( absA
) + 21;
1307 return packFloat64( zSign
, 0x432 - shiftCount
, zSig
<<shiftCount
);
1311 /*----------------------------------------------------------------------------
1312 | Returns the result of converting the 32-bit two's complement integer `a'
1313 | to the extended double-precision floating-point format. The conversion
1314 | is performed according to the IEC/IEEE Standard for Binary Floating-Point
1316 *----------------------------------------------------------------------------*/
1318 floatx80
int32_to_floatx80(int32_t a
, float_status
*status
)
1325 if ( a
== 0 ) return packFloatx80( 0, 0, 0 );
1327 absA
= zSign ?
- a
: a
;
1328 shiftCount
= countLeadingZeros32( absA
) + 32;
1330 return packFloatx80( zSign
, 0x403E - shiftCount
, zSig
<<shiftCount
);
1334 /*----------------------------------------------------------------------------
1335 | Returns the result of converting the 32-bit two's complement integer `a' to
1336 | the quadruple-precision floating-point format. The conversion is performed
1337 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1338 *----------------------------------------------------------------------------*/
1340 float128
int32_to_float128(int32_t a
, float_status
*status
)
1347 if ( a
== 0 ) return packFloat128( 0, 0, 0, 0 );
1349 absA
= zSign ?
- a
: a
;
1350 shiftCount
= countLeadingZeros32( absA
) + 17;
1352 return packFloat128( zSign
, 0x402E - shiftCount
, zSig0
<<shiftCount
, 0 );
1356 /*----------------------------------------------------------------------------
1357 | Returns the result of converting the 64-bit two's complement integer `a'
1358 | to the single-precision floating-point format. The conversion is performed
1359 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1360 *----------------------------------------------------------------------------*/
1362 float32
int64_to_float32(int64_t a
, float_status
*status
)
1368 if ( a
== 0 ) return float32_zero
;
1370 absA
= zSign ?
- a
: a
;
1371 shiftCount
= countLeadingZeros64( absA
) - 40;
1372 if ( 0 <= shiftCount
) {
1373 return packFloat32( zSign
, 0x95 - shiftCount
, absA
<<shiftCount
);
1377 if ( shiftCount
< 0 ) {
1378 shift64RightJamming( absA
, - shiftCount
, &absA
);
1381 absA
<<= shiftCount
;
1383 return roundAndPackFloat32(zSign
, 0x9C - shiftCount
, absA
, status
);
1388 /*----------------------------------------------------------------------------
1389 | Returns the result of converting the 64-bit two's complement integer `a'
1390 | to the double-precision floating-point format. The conversion is performed
1391 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1392 *----------------------------------------------------------------------------*/
1394 float64
int64_to_float64(int64_t a
, float_status
*status
)
1398 if ( a
== 0 ) return float64_zero
;
1399 if ( a
== (int64_t) LIT64( 0x8000000000000000 ) ) {
1400 return packFloat64( 1, 0x43E, 0 );
1403 return normalizeRoundAndPackFloat64(zSign
, 0x43C, zSign ?
-a
: a
, status
);
1406 /*----------------------------------------------------------------------------
1407 | Returns the result of converting the 64-bit two's complement integer `a'
1408 | to the extended double-precision floating-point format. The conversion
1409 | is performed according to the IEC/IEEE Standard for Binary Floating-Point
1411 *----------------------------------------------------------------------------*/
1413 floatx80
int64_to_floatx80(int64_t a
, float_status
*status
)
1419 if ( a
== 0 ) return packFloatx80( 0, 0, 0 );
1421 absA
= zSign ?
- a
: a
;
1422 shiftCount
= countLeadingZeros64( absA
);
1423 return packFloatx80( zSign
, 0x403E - shiftCount
, absA
<<shiftCount
);
1427 /*----------------------------------------------------------------------------
1428 | Returns the result of converting the 64-bit two's complement integer `a' to
1429 | the quadruple-precision floating-point format. The conversion is performed
1430 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1431 *----------------------------------------------------------------------------*/
1433 float128
int64_to_float128(int64_t a
, float_status
*status
)
1439 uint64_t zSig0
, zSig1
;
1441 if ( a
== 0 ) return packFloat128( 0, 0, 0, 0 );
1443 absA
= zSign ?
- a
: a
;
1444 shiftCount
= countLeadingZeros64( absA
) + 49;
1445 zExp
= 0x406E - shiftCount
;
1446 if ( 64 <= shiftCount
) {
1455 shortShift128Left( zSig0
, zSig1
, shiftCount
, &zSig0
, &zSig1
);
1456 return packFloat128( zSign
, zExp
, zSig0
, zSig1
);
1460 /*----------------------------------------------------------------------------
1461 | Returns the result of converting the 64-bit unsigned integer `a'
1462 | to the single-precision floating-point format. The conversion is performed
1463 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1464 *----------------------------------------------------------------------------*/
1466 float32
uint64_to_float32(uint64_t a
, float_status
*status
)
1471 return float32_zero
;
1474 /* Determine (left) shift needed to put first set bit into bit posn 23
1475 * (since packFloat32() expects the binary point between bits 23 and 22);
1476 * this is the fast case for smallish numbers.
1478 shiftcount
= countLeadingZeros64(a
) - 40;
1479 if (shiftcount
>= 0) {
1480 return packFloat32(0, 0x95 - shiftcount
, a
<< shiftcount
);
1482 /* Otherwise we need to do a round-and-pack. roundAndPackFloat32()
1483 * expects the binary point between bits 30 and 29, hence the + 7.
1486 if (shiftcount
< 0) {
1487 shift64RightJamming(a
, -shiftcount
, &a
);
1492 return roundAndPackFloat32(0, 0x9c - shiftcount
, a
, status
);
1495 /*----------------------------------------------------------------------------
1496 | Returns the result of converting the 64-bit unsigned integer `a'
1497 | to the double-precision floating-point format. The conversion is performed
1498 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1499 *----------------------------------------------------------------------------*/
1501 float64
uint64_to_float64(uint64_t a
, float_status
*status
)
1507 return float64_zero
;
1510 shiftcount
= countLeadingZeros64(a
) - 1;
1511 if (shiftcount
< 0) {
1512 shift64RightJamming(a
, -shiftcount
, &a
);
1516 return roundAndPackFloat64(0, exp
- shiftcount
, a
, status
);
1519 /*----------------------------------------------------------------------------
1520 | Returns the result of converting the 64-bit unsigned integer `a'
1521 | to the quadruple-precision floating-point format. The conversion is performed
1522 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1523 *----------------------------------------------------------------------------*/
1525 float128
uint64_to_float128(uint64_t a
, float_status
*status
)
1528 return float128_zero
;
1530 return normalizeRoundAndPackFloat128(0, 0x406E, a
, 0, status
);
1533 /*----------------------------------------------------------------------------
1534 | Returns the result of converting the single-precision floating-point value
1535 | `a' to the 32-bit two's complement integer format. The conversion is
1536 | performed according to the IEC/IEEE Standard for Binary Floating-Point
1537 | Arithmetic---which means in particular that the conversion is rounded
1538 | according to the current rounding mode. If `a' is a NaN, the largest
1539 | positive integer is returned. Otherwise, if the conversion overflows, the
1540 | largest integer with the same sign as `a' is returned.
1541 *----------------------------------------------------------------------------*/
1543 int32_t float32_to_int32(float32 a
, float_status
*status
)
1551 a
= float32_squash_input_denormal(a
, status
);
1552 aSig
= extractFloat32Frac( a
);
1553 aExp
= extractFloat32Exp( a
);
1554 aSign
= extractFloat32Sign( a
);
1555 if ( ( aExp
== 0xFF ) && aSig
) aSign
= 0;
1556 if ( aExp
) aSig
|= 0x00800000;
1557 shiftCount
= 0xAF - aExp
;
1560 if ( 0 < shiftCount
) shift64RightJamming( aSig64
, shiftCount
, &aSig64
);
1561 return roundAndPackInt32(aSign
, aSig64
, status
);
1565 /*----------------------------------------------------------------------------
1566 | Returns the result of converting the single-precision floating-point value
1567 | `a' to the 32-bit two's complement integer format. The conversion is
1568 | performed according to the IEC/IEEE Standard for Binary Floating-Point
1569 | Arithmetic, except that the conversion is always rounded toward zero.
1570 | If `a' is a NaN, the largest positive integer is returned. Otherwise, if
1571 | the conversion overflows, the largest integer with the same sign as `a' is
1573 *----------------------------------------------------------------------------*/
1575 int32_t float32_to_int32_round_to_zero(float32 a
, float_status
*status
)
1582 a
= float32_squash_input_denormal(a
, status
);
1584 aSig
= extractFloat32Frac( a
);
1585 aExp
= extractFloat32Exp( a
);
1586 aSign
= extractFloat32Sign( a
);
1587 shiftCount
= aExp
- 0x9E;
1588 if ( 0 <= shiftCount
) {
1589 if ( float32_val(a
) != 0xCF000000 ) {
1590 float_raise(float_flag_invalid
, status
);
1591 if ( ! aSign
|| ( ( aExp
== 0xFF ) && aSig
) ) return 0x7FFFFFFF;
1593 return (int32_t) 0x80000000;
1595 else if ( aExp
<= 0x7E ) {
1597 status
->float_exception_flags
|= float_flag_inexact
;
1601 aSig
= ( aSig
| 0x00800000 )<<8;
1602 z
= aSig
>>( - shiftCount
);
1603 if ( (uint32_t) ( aSig
<<( shiftCount
& 31 ) ) ) {
1604 status
->float_exception_flags
|= float_flag_inexact
;
1606 if ( aSign
) z
= - z
;
1611 /*----------------------------------------------------------------------------
1612 | Returns the result of converting the single-precision floating-point value
1613 | `a' to the 16-bit two's complement integer format. The conversion is
1614 | performed according to the IEC/IEEE Standard for Binary Floating-Point
1615 | Arithmetic, except that the conversion is always rounded toward zero.
1616 | If `a' is a NaN, the largest positive integer is returned. Otherwise, if
1617 | the conversion overflows, the largest integer with the same sign as `a' is
1619 *----------------------------------------------------------------------------*/
1621 int16_t float32_to_int16_round_to_zero(float32 a
, float_status
*status
)
1629 aSig
= extractFloat32Frac( a
);
1630 aExp
= extractFloat32Exp( a
);
1631 aSign
= extractFloat32Sign( a
);
1632 shiftCount
= aExp
- 0x8E;
1633 if ( 0 <= shiftCount
) {
1634 if ( float32_val(a
) != 0xC7000000 ) {
1635 float_raise(float_flag_invalid
, status
);
1636 if ( ! aSign
|| ( ( aExp
== 0xFF ) && aSig
) ) {
1640 return (int32_t) 0xffff8000;
1642 else if ( aExp
<= 0x7E ) {
1643 if ( aExp
| aSig
) {
1644 status
->float_exception_flags
|= float_flag_inexact
;
1649 aSig
= ( aSig
| 0x00800000 )<<8;
1650 z
= aSig
>>( - shiftCount
);
1651 if ( (uint32_t) ( aSig
<<( shiftCount
& 31 ) ) ) {
1652 status
->float_exception_flags
|= float_flag_inexact
;
1661 /*----------------------------------------------------------------------------
1662 | Returns the result of converting the single-precision floating-point value
1663 | `a' to the 64-bit two's complement integer format. The conversion is
1664 | performed according to the IEC/IEEE Standard for Binary Floating-Point
1665 | Arithmetic---which means in particular that the conversion is rounded
1666 | according to the current rounding mode. If `a' is a NaN, the largest
1667 | positive integer is returned. Otherwise, if the conversion overflows, the
1668 | largest integer with the same sign as `a' is returned.
1669 *----------------------------------------------------------------------------*/
1671 int64_t float32_to_int64(float32 a
, float_status
*status
)
1677 uint64_t aSig64
, aSigExtra
;
1678 a
= float32_squash_input_denormal(a
, status
);
1680 aSig
= extractFloat32Frac( a
);
1681 aExp
= extractFloat32Exp( a
);
1682 aSign
= extractFloat32Sign( a
);
1683 shiftCount
= 0xBE - aExp
;
1684 if ( shiftCount
< 0 ) {
1685 float_raise(float_flag_invalid
, status
);
1686 if ( ! aSign
|| ( ( aExp
== 0xFF ) && aSig
) ) {
1687 return LIT64( 0x7FFFFFFFFFFFFFFF );
1689 return (int64_t) LIT64( 0x8000000000000000 );
1691 if ( aExp
) aSig
|= 0x00800000;
1694 shift64ExtraRightJamming( aSig64
, 0, shiftCount
, &aSig64
, &aSigExtra
);
1695 return roundAndPackInt64(aSign
, aSig64
, aSigExtra
, status
);
1699 /*----------------------------------------------------------------------------
1700 | Returns the result of converting the single-precision floating-point value
1701 | `a' to the 64-bit unsigned integer format. The conversion is
1702 | performed according to the IEC/IEEE Standard for Binary Floating-Point
1703 | Arithmetic---which means in particular that the conversion is rounded
1704 | according to the current rounding mode. If `a' is a NaN, the largest
1705 | unsigned integer is returned. Otherwise, if the conversion overflows, the
1706 | largest unsigned integer is returned. If the 'a' is negative, the result
1707 | is rounded and zero is returned; values that do not round to zero will
1708 | raise the inexact exception flag.
1709 *----------------------------------------------------------------------------*/
1711 uint64_t float32_to_uint64(float32 a
, float_status
*status
)
1717 uint64_t aSig64
, aSigExtra
;
1718 a
= float32_squash_input_denormal(a
, status
);
1720 aSig
= extractFloat32Frac(a
);
1721 aExp
= extractFloat32Exp(a
);
1722 aSign
= extractFloat32Sign(a
);
1723 if ((aSign
) && (aExp
> 126)) {
1724 float_raise(float_flag_invalid
, status
);
1725 if (float32_is_any_nan(a
)) {
1726 return LIT64(0xFFFFFFFFFFFFFFFF);
1731 shiftCount
= 0xBE - aExp
;
1735 if (shiftCount
< 0) {
1736 float_raise(float_flag_invalid
, status
);
1737 return LIT64(0xFFFFFFFFFFFFFFFF);
1742 shift64ExtraRightJamming(aSig64
, 0, shiftCount
, &aSig64
, &aSigExtra
);
1743 return roundAndPackUint64(aSign
, aSig64
, aSigExtra
, status
);
1746 /*----------------------------------------------------------------------------
1747 | Returns the result of converting the single-precision floating-point value
1748 | `a' to the 64-bit unsigned integer format. The conversion is
1749 | performed according to the IEC/IEEE Standard for Binary Floating-Point
1750 | Arithmetic, except that the conversion is always rounded toward zero. If
1751 | `a' is a NaN, the largest unsigned integer is returned. Otherwise, if the
1752 | conversion overflows, the largest unsigned integer is returned. If the
1753 | 'a' is negative, the result is rounded and zero is returned; values that do
1754 | not round to zero will raise the inexact flag.
1755 *----------------------------------------------------------------------------*/
1757 uint64_t float32_to_uint64_round_to_zero(float32 a
, float_status
*status
)
1759 signed char current_rounding_mode
= status
->float_rounding_mode
;
1760 set_float_rounding_mode(float_round_to_zero
, status
);
1761 int64_t v
= float32_to_uint64(a
, status
);
1762 set_float_rounding_mode(current_rounding_mode
, status
);
1766 /*----------------------------------------------------------------------------
1767 | Returns the result of converting the single-precision floating-point value
1768 | `a' to the 64-bit two's complement integer format. The conversion is
1769 | performed according to the IEC/IEEE Standard for Binary Floating-Point
1770 | Arithmetic, except that the conversion is always rounded toward zero. If
1771 | `a' is a NaN, the largest positive integer is returned. Otherwise, if the
1772 | conversion overflows, the largest integer with the same sign as `a' is
1774 *----------------------------------------------------------------------------*/
1776 int64_t float32_to_int64_round_to_zero(float32 a
, float_status
*status
)
1784 a
= float32_squash_input_denormal(a
, status
);
1786 aSig
= extractFloat32Frac( a
);
1787 aExp
= extractFloat32Exp( a
);
1788 aSign
= extractFloat32Sign( a
);
1789 shiftCount
= aExp
- 0xBE;
1790 if ( 0 <= shiftCount
) {
1791 if ( float32_val(a
) != 0xDF000000 ) {
1792 float_raise(float_flag_invalid
, status
);
1793 if ( ! aSign
|| ( ( aExp
== 0xFF ) && aSig
) ) {
1794 return LIT64( 0x7FFFFFFFFFFFFFFF );
1797 return (int64_t) LIT64( 0x8000000000000000 );
1799 else if ( aExp
<= 0x7E ) {
1801 status
->float_exception_flags
|= float_flag_inexact
;
1805 aSig64
= aSig
| 0x00800000;
1807 z
= aSig64
>>( - shiftCount
);
1808 if ( (uint64_t) ( aSig64
<<( shiftCount
& 63 ) ) ) {
1809 status
->float_exception_flags
|= float_flag_inexact
;
1811 if ( aSign
) z
= - z
;
1816 /*----------------------------------------------------------------------------
1817 | Returns the result of converting the single-precision floating-point value
1818 | `a' to the double-precision floating-point format. The conversion is
1819 | performed according to the IEC/IEEE Standard for Binary Floating-Point
1821 *----------------------------------------------------------------------------*/
1823 float64
float32_to_float64(float32 a
, float_status
*status
)
1828 a
= float32_squash_input_denormal(a
, status
);
1830 aSig
= extractFloat32Frac( a
);
1831 aExp
= extractFloat32Exp( a
);
1832 aSign
= extractFloat32Sign( a
);
1833 if ( aExp
== 0xFF ) {
1835 return commonNaNToFloat64(float32ToCommonNaN(a
, status
), status
);
1837 return packFloat64( aSign
, 0x7FF, 0 );
1840 if ( aSig
== 0 ) return packFloat64( aSign
, 0, 0 );
1841 normalizeFloat32Subnormal( aSig
, &aExp
, &aSig
);
1844 return packFloat64( aSign
, aExp
+ 0x380, ( (uint64_t) aSig
)<<29 );
1848 /*----------------------------------------------------------------------------
1849 | Returns the result of converting the single-precision floating-point value
1850 | `a' to the extended double-precision floating-point format. The conversion
1851 | is performed according to the IEC/IEEE Standard for Binary Floating-Point
1853 *----------------------------------------------------------------------------*/
1855 floatx80
float32_to_floatx80(float32 a
, float_status
*status
)
1861 a
= float32_squash_input_denormal(a
, status
);
1862 aSig
= extractFloat32Frac( a
);
1863 aExp
= extractFloat32Exp( a
);
1864 aSign
= extractFloat32Sign( a
);
1865 if ( aExp
== 0xFF ) {
1867 return commonNaNToFloatx80(float32ToCommonNaN(a
, status
), status
);
1869 return packFloatx80( aSign
, 0x7FFF, LIT64( 0x8000000000000000 ) );
1872 if ( aSig
== 0 ) return packFloatx80( aSign
, 0, 0 );
1873 normalizeFloat32Subnormal( aSig
, &aExp
, &aSig
);
1876 return packFloatx80( aSign
, aExp
+ 0x3F80, ( (uint64_t) aSig
)<<40 );
1880 /*----------------------------------------------------------------------------
1881 | Returns the result of converting the single-precision floating-point value
1882 | `a' to the double-precision floating-point format. The conversion is
1883 | performed according to the IEC/IEEE Standard for Binary Floating-Point
1885 *----------------------------------------------------------------------------*/
1887 float128
float32_to_float128(float32 a
, float_status
*status
)
1893 a
= float32_squash_input_denormal(a
, status
);
1894 aSig
= extractFloat32Frac( a
);
1895 aExp
= extractFloat32Exp( a
);
1896 aSign
= extractFloat32Sign( a
);
1897 if ( aExp
== 0xFF ) {
1899 return commonNaNToFloat128(float32ToCommonNaN(a
, status
), status
);
1901 return packFloat128( aSign
, 0x7FFF, 0, 0 );
1904 if ( aSig
== 0 ) return packFloat128( aSign
, 0, 0, 0 );
1905 normalizeFloat32Subnormal( aSig
, &aExp
, &aSig
);
1908 return packFloat128( aSign
, aExp
+ 0x3F80, ( (uint64_t) aSig
)<<25, 0 );
1912 /*----------------------------------------------------------------------------
1913 | Rounds the single-precision floating-point value `a' to an integer, and
1914 | returns the result as a single-precision floating-point value. The
1915 | operation is performed according to the IEC/IEEE Standard for Binary
1916 | Floating-Point Arithmetic.
1917 *----------------------------------------------------------------------------*/
1919 float32
float32_round_to_int(float32 a
, float_status
*status
)
1923 uint32_t lastBitMask
, roundBitsMask
;
1925 a
= float32_squash_input_denormal(a
, status
);
1927 aExp
= extractFloat32Exp( a
);
1928 if ( 0x96 <= aExp
) {
1929 if ( ( aExp
== 0xFF ) && extractFloat32Frac( a
) ) {
1930 return propagateFloat32NaN(a
, a
, status
);
1934 if ( aExp
<= 0x7E ) {
1935 if ( (uint32_t) ( float32_val(a
)<<1 ) == 0 ) return a
;
1936 status
->float_exception_flags
|= float_flag_inexact
;
1937 aSign
= extractFloat32Sign( a
);
1938 switch (status
->float_rounding_mode
) {
1939 case float_round_nearest_even
:
1940 if ( ( aExp
== 0x7E ) && extractFloat32Frac( a
) ) {
1941 return packFloat32( aSign
, 0x7F, 0 );
1944 case float_round_ties_away
:
1946 return packFloat32(aSign
, 0x7F, 0);
1949 case float_round_down
:
1950 return make_float32(aSign ?
0xBF800000 : 0);
1951 case float_round_up
:
1952 return make_float32(aSign ?
0x80000000 : 0x3F800000);
1954 return packFloat32( aSign
, 0, 0 );
1957 lastBitMask
<<= 0x96 - aExp
;
1958 roundBitsMask
= lastBitMask
- 1;
1960 switch (status
->float_rounding_mode
) {
1961 case float_round_nearest_even
:
1962 z
+= lastBitMask
>>1;
1963 if ((z
& roundBitsMask
) == 0) {
1967 case float_round_ties_away
:
1968 z
+= lastBitMask
>> 1;
1970 case float_round_to_zero
:
1972 case float_round_up
:
1973 if (!extractFloat32Sign(make_float32(z
))) {
1977 case float_round_down
:
1978 if (extractFloat32Sign(make_float32(z
))) {
1985 z
&= ~ roundBitsMask
;
1986 if (z
!= float32_val(a
)) {
1987 status
->float_exception_flags
|= float_flag_inexact
;
1989 return make_float32(z
);
1993 /*----------------------------------------------------------------------------
1994 | Returns the result of adding the absolute values of the single-precision
1995 | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
1996 | before being returned. `zSign' is ignored if the result is a NaN.
1997 | The addition is performed according to the IEC/IEEE Standard for Binary
1998 | Floating-Point Arithmetic.
1999 *----------------------------------------------------------------------------*/
2001 static float32
addFloat32Sigs(float32 a
, float32 b
, flag zSign
,
2002 float_status
*status
)
2004 int aExp
, bExp
, zExp
;
2005 uint32_t aSig
, bSig
, zSig
;
2008 aSig
= extractFloat32Frac( a
);
2009 aExp
= extractFloat32Exp( a
);
2010 bSig
= extractFloat32Frac( b
);
2011 bExp
= extractFloat32Exp( b
);
2012 expDiff
= aExp
- bExp
;
2015 if ( 0 < expDiff
) {
2016 if ( aExp
== 0xFF ) {
2018 return propagateFloat32NaN(a
, b
, status
);
2028 shift32RightJamming( bSig
, expDiff
, &bSig
);
2031 else if ( expDiff
< 0 ) {
2032 if ( bExp
== 0xFF ) {
2034 return propagateFloat32NaN(a
, b
, status
);
2036 return packFloat32( zSign
, 0xFF, 0 );
2044 shift32RightJamming( aSig
, - expDiff
, &aSig
);
2048 if ( aExp
== 0xFF ) {
2050 return propagateFloat32NaN(a
, b
, status
);
2055 if (status
->flush_to_zero
) {
2057 float_raise(float_flag_output_denormal
, status
);
2059 return packFloat32(zSign
, 0, 0);
2061 return packFloat32( zSign
, 0, ( aSig
+ bSig
)>>6 );
2063 zSig
= 0x40000000 + aSig
+ bSig
;
2068 zSig
= ( aSig
+ bSig
)<<1;
2070 if ( (int32_t) zSig
< 0 ) {
2075 return roundAndPackFloat32(zSign
, zExp
, zSig
, status
);
2079 /*----------------------------------------------------------------------------
2080 | Returns the result of subtracting the absolute values of the single-
2081 | precision floating-point values `a' and `b'. If `zSign' is 1, the
2082 | difference is negated before being returned. `zSign' is ignored if the
2083 | result is a NaN. The subtraction is performed according to the IEC/IEEE
2084 | Standard for Binary Floating-Point Arithmetic.
2085 *----------------------------------------------------------------------------*/
2087 static float32
subFloat32Sigs(float32 a
, float32 b
, flag zSign
,
2088 float_status
*status
)
2090 int aExp
, bExp
, zExp
;
2091 uint32_t aSig
, bSig
, zSig
;
2094 aSig
= extractFloat32Frac( a
);
2095 aExp
= extractFloat32Exp( a
);
2096 bSig
= extractFloat32Frac( b
);
2097 bExp
= extractFloat32Exp( b
);
2098 expDiff
= aExp
- bExp
;
2101 if ( 0 < expDiff
) goto aExpBigger
;
2102 if ( expDiff
< 0 ) goto bExpBigger
;
2103 if ( aExp
== 0xFF ) {
2105 return propagateFloat32NaN(a
, b
, status
);
2107 float_raise(float_flag_invalid
, status
);
2108 return float32_default_nan
;
2114 if ( bSig
< aSig
) goto aBigger
;
2115 if ( aSig
< bSig
) goto bBigger
;
2116 return packFloat32(status
->float_rounding_mode
== float_round_down
, 0, 0);
2118 if ( bExp
== 0xFF ) {
2120 return propagateFloat32NaN(a
, b
, status
);
2122 return packFloat32( zSign
^ 1, 0xFF, 0 );
2130 shift32RightJamming( aSig
, - expDiff
, &aSig
);
2136 goto normalizeRoundAndPack
;
2138 if ( aExp
== 0xFF ) {
2140 return propagateFloat32NaN(a
, b
, status
);
2150 shift32RightJamming( bSig
, expDiff
, &bSig
);
2155 normalizeRoundAndPack
:
2157 return normalizeRoundAndPackFloat32(zSign
, zExp
, zSig
, status
);
2161 /*----------------------------------------------------------------------------
2162 | Returns the result of adding the single-precision floating-point values `a'
2163 | and `b'. The operation is performed according to the IEC/IEEE Standard for
2164 | Binary Floating-Point Arithmetic.
2165 *----------------------------------------------------------------------------*/
2167 float32
float32_add(float32 a
, float32 b
, float_status
*status
)
2170 a
= float32_squash_input_denormal(a
, status
);
2171 b
= float32_squash_input_denormal(b
, status
);
2173 aSign
= extractFloat32Sign( a
);
2174 bSign
= extractFloat32Sign( b
);
2175 if ( aSign
== bSign
) {
2176 return addFloat32Sigs(a
, b
, aSign
, status
);
2179 return subFloat32Sigs(a
, b
, aSign
, status
);
2184 /*----------------------------------------------------------------------------
2185 | Returns the result of subtracting the single-precision floating-point values
2186 | `a' and `b'. The operation is performed according to the IEC/IEEE Standard
2187 | for Binary Floating-Point Arithmetic.
2188 *----------------------------------------------------------------------------*/
2190 float32
float32_sub(float32 a
, float32 b
, float_status
*status
)
2193 a
= float32_squash_input_denormal(a
, status
);
2194 b
= float32_squash_input_denormal(b
, status
);
2196 aSign
= extractFloat32Sign( a
);
2197 bSign
= extractFloat32Sign( b
);
2198 if ( aSign
== bSign
) {
2199 return subFloat32Sigs(a
, b
, aSign
, status
);
2202 return addFloat32Sigs(a
, b
, aSign
, status
);
2207 /*----------------------------------------------------------------------------
2208 | Returns the result of multiplying the single-precision floating-point values
2209 | `a' and `b'. The operation is performed according to the IEC/IEEE Standard
2210 | for Binary Floating-Point Arithmetic.
2211 *----------------------------------------------------------------------------*/
2213 float32
float32_mul(float32 a
, float32 b
, float_status
*status
)
2215 flag aSign
, bSign
, zSign
;
2216 int aExp
, bExp
, zExp
;
2217 uint32_t aSig
, bSig
;
2221 a
= float32_squash_input_denormal(a
, status
);
2222 b
= float32_squash_input_denormal(b
, status
);
2224 aSig
= extractFloat32Frac( a
);
2225 aExp
= extractFloat32Exp( a
);
2226 aSign
= extractFloat32Sign( a
);
2227 bSig
= extractFloat32Frac( b
);
2228 bExp
= extractFloat32Exp( b
);
2229 bSign
= extractFloat32Sign( b
);
2230 zSign
= aSign
^ bSign
;
2231 if ( aExp
== 0xFF ) {
2232 if ( aSig
|| ( ( bExp
== 0xFF ) && bSig
) ) {
2233 return propagateFloat32NaN(a
, b
, status
);
2235 if ( ( bExp
| bSig
) == 0 ) {
2236 float_raise(float_flag_invalid
, status
);
2237 return float32_default_nan
;
2239 return packFloat32( zSign
, 0xFF, 0 );
2241 if ( bExp
== 0xFF ) {
2243 return propagateFloat32NaN(a
, b
, status
);
2245 if ( ( aExp
| aSig
) == 0 ) {
2246 float_raise(float_flag_invalid
, status
);
2247 return float32_default_nan
;
2249 return packFloat32( zSign
, 0xFF, 0 );
2252 if ( aSig
== 0 ) return packFloat32( zSign
, 0, 0 );
2253 normalizeFloat32Subnormal( aSig
, &aExp
, &aSig
);
2256 if ( bSig
== 0 ) return packFloat32( zSign
, 0, 0 );
2257 normalizeFloat32Subnormal( bSig
, &bExp
, &bSig
);
2259 zExp
= aExp
+ bExp
- 0x7F;
2260 aSig
= ( aSig
| 0x00800000 )<<7;
2261 bSig
= ( bSig
| 0x00800000 )<<8;
2262 shift64RightJamming( ( (uint64_t) aSig
) * bSig
, 32, &zSig64
);
2264 if ( 0 <= (int32_t) ( zSig
<<1 ) ) {
2268 return roundAndPackFloat32(zSign
, zExp
, zSig
, status
);
2272 /*----------------------------------------------------------------------------
2273 | Returns the result of dividing the single-precision floating-point value `a'
2274 | by the corresponding value `b'. The operation is performed according to the
2275 | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
2276 *----------------------------------------------------------------------------*/
2278 float32
float32_div(float32 a
, float32 b
, float_status
*status
)
2280 flag aSign
, bSign
, zSign
;
2281 int aExp
, bExp
, zExp
;
2282 uint32_t aSig
, bSig
, zSig
;
2283 a
= float32_squash_input_denormal(a
, status
);
2284 b
= float32_squash_input_denormal(b
, status
);
2286 aSig
= extractFloat32Frac( a
);
2287 aExp
= extractFloat32Exp( a
);
2288 aSign
= extractFloat32Sign( a
);
2289 bSig
= extractFloat32Frac( b
);
2290 bExp
= extractFloat32Exp( b
);
2291 bSign
= extractFloat32Sign( b
);
2292 zSign
= aSign
^ bSign
;
2293 if ( aExp
== 0xFF ) {
2295 return propagateFloat32NaN(a
, b
, status
);
2297 if ( bExp
== 0xFF ) {
2299 return propagateFloat32NaN(a
, b
, status
);
2301 float_raise(float_flag_invalid
, status
);
2302 return float32_default_nan
;
2304 return packFloat32( zSign
, 0xFF, 0 );
2306 if ( bExp
== 0xFF ) {
2308 return propagateFloat32NaN(a
, b
, status
);
2310 return packFloat32( zSign
, 0, 0 );
2314 if ( ( aExp
| aSig
) == 0 ) {
2315 float_raise(float_flag_invalid
, status
);
2316 return float32_default_nan
;
2318 float_raise(float_flag_divbyzero
, status
);
2319 return packFloat32( zSign
, 0xFF, 0 );
2321 normalizeFloat32Subnormal( bSig
, &bExp
, &bSig
);
2324 if ( aSig
== 0 ) return packFloat32( zSign
, 0, 0 );
2325 normalizeFloat32Subnormal( aSig
, &aExp
, &aSig
);
2327 zExp
= aExp
- bExp
+ 0x7D;
2328 aSig
= ( aSig
| 0x00800000 )<<7;
2329 bSig
= ( bSig
| 0x00800000 )<<8;
2330 if ( bSig
<= ( aSig
+ aSig
) ) {
2334 zSig
= ( ( (uint64_t) aSig
)<<32 ) / bSig
;
2335 if ( ( zSig
& 0x3F ) == 0 ) {
2336 zSig
|= ( (uint64_t) bSig
* zSig
!= ( (uint64_t) aSig
)<<32 );
2338 return roundAndPackFloat32(zSign
, zExp
, zSig
, status
);
2342 /*----------------------------------------------------------------------------
2343 | Returns the remainder of the single-precision floating-point value `a'
2344 | with respect to the corresponding value `b'. The operation is performed
2345 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
2346 *----------------------------------------------------------------------------*/
2348 float32
float32_rem(float32 a
, float32 b
, float_status
*status
)
2351 int aExp
, bExp
, expDiff
;
2352 uint32_t aSig
, bSig
;
2354 uint64_t aSig64
, bSig64
, q64
;
2355 uint32_t alternateASig
;
2357 a
= float32_squash_input_denormal(a
, status
);
2358 b
= float32_squash_input_denormal(b
, status
);
2360 aSig
= extractFloat32Frac( a
);
2361 aExp
= extractFloat32Exp( a
);
2362 aSign
= extractFloat32Sign( a
);
2363 bSig
= extractFloat32Frac( b
);
2364 bExp
= extractFloat32Exp( b
);
2365 if ( aExp
== 0xFF ) {
2366 if ( aSig
|| ( ( bExp
== 0xFF ) && bSig
) ) {
2367 return propagateFloat32NaN(a
, b
, status
);
2369 float_raise(float_flag_invalid
, status
);
2370 return float32_default_nan
;
2372 if ( bExp
== 0xFF ) {
2374 return propagateFloat32NaN(a
, b
, status
);
2380 float_raise(float_flag_invalid
, status
);
2381 return float32_default_nan
;
2383 normalizeFloat32Subnormal( bSig
, &bExp
, &bSig
);
2386 if ( aSig
== 0 ) return a
;
2387 normalizeFloat32Subnormal( aSig
, &aExp
, &aSig
);
2389 expDiff
= aExp
- bExp
;
2392 if ( expDiff
< 32 ) {
2395 if ( expDiff
< 0 ) {
2396 if ( expDiff
< -1 ) return a
;
2399 q
= ( bSig
<= aSig
);
2400 if ( q
) aSig
-= bSig
;
2401 if ( 0 < expDiff
) {
2402 q
= ( ( (uint64_t) aSig
)<<32 ) / bSig
;
2405 aSig
= ( ( aSig
>>1 )<<( expDiff
- 1 ) ) - bSig
* q
;
2413 if ( bSig
<= aSig
) aSig
-= bSig
;
2414 aSig64
= ( (uint64_t) aSig
)<<40;
2415 bSig64
= ( (uint64_t) bSig
)<<40;
2417 while ( 0 < expDiff
) {
2418 q64
= estimateDiv128To64( aSig64
, 0, bSig64
);
2419 q64
= ( 2 < q64
) ? q64
- 2 : 0;
2420 aSig64
= - ( ( bSig
* q64
)<<38 );
2424 q64
= estimateDiv128To64( aSig64
, 0, bSig64
);
2425 q64
= ( 2 < q64
) ? q64
- 2 : 0;
2426 q
= q64
>>( 64 - expDiff
);
2428 aSig
= ( ( aSig64
>>33 )<<( expDiff
- 1 ) ) - bSig
* q
;
2431 alternateASig
= aSig
;
2434 } while ( 0 <= (int32_t) aSig
);
2435 sigMean
= aSig
+ alternateASig
;
2436 if ( ( sigMean
< 0 ) || ( ( sigMean
== 0 ) && ( q
& 1 ) ) ) {
2437 aSig
= alternateASig
;
2439 zSign
= ( (int32_t) aSig
< 0 );
2440 if ( zSign
) aSig
= - aSig
;
2441 return normalizeRoundAndPackFloat32(aSign
^ zSign
, bExp
, aSig
, status
);
2444 /*----------------------------------------------------------------------------
2445 | Returns the result of multiplying the single-precision floating-point values
2446 | `a' and `b' then adding 'c', with no intermediate rounding step after the
2447 | multiplication. The operation is performed according to the IEC/IEEE
2448 | Standard for Binary Floating-Point Arithmetic 754-2008.
2449 | The flags argument allows the caller to select negation of the
2450 | addend, the intermediate product, or the final result. (The difference
2451 | between this and having the caller do a separate negation is that negating
2452 | externally will flip the sign bit on NaNs.)
2453 *----------------------------------------------------------------------------*/
2455 float32
float32_muladd(float32 a
, float32 b
, float32 c
, int flags
,
2456 float_status
*status
)
2458 flag aSign
, bSign
, cSign
, zSign
;
2459 int aExp
, bExp
, cExp
, pExp
, zExp
, expDiff
;
2460 uint32_t aSig
, bSig
, cSig
;
2461 flag pInf
, pZero
, pSign
;
2462 uint64_t pSig64
, cSig64
, zSig64
;
2465 flag signflip
, infzero
;
2467 a
= float32_squash_input_denormal(a
, status
);
2468 b
= float32_squash_input_denormal(b
, status
);
2469 c
= float32_squash_input_denormal(c
, status
);
2470 aSig
= extractFloat32Frac(a
);
2471 aExp
= extractFloat32Exp(a
);
2472 aSign
= extractFloat32Sign(a
);
2473 bSig
= extractFloat32Frac(b
);
2474 bExp
= extractFloat32Exp(b
);
2475 bSign
= extractFloat32Sign(b
);
2476 cSig
= extractFloat32Frac(c
);
2477 cExp
= extractFloat32Exp(c
);
2478 cSign
= extractFloat32Sign(c
);
2480 infzero
= ((aExp
== 0 && aSig
== 0 && bExp
== 0xff && bSig
== 0) ||
2481 (aExp
== 0xff && aSig
== 0 && bExp
== 0 && bSig
== 0));
2483 /* It is implementation-defined whether the cases of (0,inf,qnan)
2484 * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
2485 * they return if they do), so we have to hand this information
2486 * off to the target-specific pick-a-NaN routine.
2488 if (((aExp
== 0xff) && aSig
) ||
2489 ((bExp
== 0xff) && bSig
) ||
2490 ((cExp
== 0xff) && cSig
)) {
2491 return propagateFloat32MulAddNaN(a
, b
, c
, infzero
, status
);
2495 float_raise(float_flag_invalid
, status
);
2496 return float32_default_nan
;
2499 if (flags
& float_muladd_negate_c
) {
2503 signflip
= (flags
& float_muladd_negate_result
) ?
1 : 0;
2505 /* Work out the sign and type of the product */
2506 pSign
= aSign
^ bSign
;
2507 if (flags
& float_muladd_negate_product
) {
2510 pInf
= (aExp
== 0xff) || (bExp
== 0xff);
2511 pZero
= ((aExp
| aSig
) == 0) || ((bExp
| bSig
) == 0);
2514 if (pInf
&& (pSign
^ cSign
)) {
2515 /* addition of opposite-signed infinities => InvalidOperation */
2516 float_raise(float_flag_invalid
, status
);
2517 return float32_default_nan
;
2519 /* Otherwise generate an infinity of the same sign */
2520 return packFloat32(cSign
^ signflip
, 0xff, 0);
2524 return packFloat32(pSign
^ signflip
, 0xff, 0);
2530 /* Adding two exact zeroes */
2531 if (pSign
== cSign
) {
2533 } else if (status
->float_rounding_mode
== float_round_down
) {
2538 return packFloat32(zSign
^ signflip
, 0, 0);
2540 /* Exact zero plus a denorm */
2541 if (status
->flush_to_zero
) {
2542 float_raise(float_flag_output_denormal
, status
);
2543 return packFloat32(cSign
^ signflip
, 0, 0);
2546 /* Zero plus something non-zero : just return the something */
2547 if (flags
& float_muladd_halve_result
) {
2549 normalizeFloat32Subnormal(cSig
, &cExp
, &cSig
);
2551 /* Subtract one to halve, and one again because roundAndPackFloat32
2552 * wants one less than the true exponent.
2555 cSig
= (cSig
| 0x00800000) << 7;
2556 return roundAndPackFloat32(cSign
^ signflip
, cExp
, cSig
, status
);
2558 return packFloat32(cSign
^ signflip
, cExp
, cSig
);
2562 normalizeFloat32Subnormal(aSig
, &aExp
, &aSig
);
2565 normalizeFloat32Subnormal(bSig
, &bExp
, &bSig
);
2568 /* Calculate the actual result a * b + c */
2570 /* Multiply first; this is easy. */
2571 /* NB: we subtract 0x7e where float32_mul() subtracts 0x7f
2572 * because we want the true exponent, not the "one-less-than"
2573 * flavour that roundAndPackFloat32() takes.
2575 pExp
= aExp
+ bExp
- 0x7e;
2576 aSig
= (aSig
| 0x00800000) << 7;
2577 bSig
= (bSig
| 0x00800000) << 8;
2578 pSig64
= (uint64_t)aSig
* bSig
;
2579 if ((int64_t)(pSig64
<< 1) >= 0) {
2584 zSign
= pSign
^ signflip
;
2586 /* Now pSig64 is the significand of the multiply, with the explicit bit in
2591 /* Throw out the special case of c being an exact zero now */
2592 shift64RightJamming(pSig64
, 32, &pSig64
);
2594 if (flags
& float_muladd_halve_result
) {
2597 return roundAndPackFloat32(zSign
, pExp
- 1,
2600 normalizeFloat32Subnormal(cSig
, &cExp
, &cSig
);
2603 cSig64
= (uint64_t)cSig
<< (62 - 23);
2604 cSig64
|= LIT64(0x4000000000000000);
2605 expDiff
= pExp
- cExp
;
2607 if (pSign
== cSign
) {
2610 /* scale c to match p */
2611 shift64RightJamming(cSig64
, expDiff
, &cSig64
);
2613 } else if (expDiff
< 0) {
2614 /* scale p to match c */
2615 shift64RightJamming(pSig64
, -expDiff
, &pSig64
);
2618 /* no scaling needed */
2621 /* Add significands and make sure explicit bit ends up in posn 62 */
2622 zSig64
= pSig64
+ cSig64
;
2623 if ((int64_t)zSig64
< 0) {
2624 shift64RightJamming(zSig64
, 1, &zSig64
);
2631 shift64RightJamming(cSig64
, expDiff
, &cSig64
);
2632 zSig64
= pSig64
- cSig64
;
2634 } else if (expDiff
< 0) {
2635 shift64RightJamming(pSig64
, -expDiff
, &pSig64
);
2636 zSig64
= cSig64
- pSig64
;
2641 if (cSig64
< pSig64
) {
2642 zSig64
= pSig64
- cSig64
;
2643 } else if (pSig64
< cSig64
) {
2644 zSig64
= cSig64
- pSig64
;
2649 if (status
->float_rounding_mode
== float_round_down
) {
2652 return packFloat32(zSign
, 0, 0);
2656 /* Normalize to put the explicit bit back into bit 62. */
2657 shiftcount
= countLeadingZeros64(zSig64
) - 1;
2658 zSig64
<<= shiftcount
;
2661 if (flags
& float_muladd_halve_result
) {
2665 shift64RightJamming(zSig64
, 32, &zSig64
);
2666 return roundAndPackFloat32(zSign
, zExp
, zSig64
, status
);
2670 /*----------------------------------------------------------------------------
2671 | Returns the square root of the single-precision floating-point value `a'.
2672 | The operation is performed according to the IEC/IEEE Standard for Binary
2673 | Floating-Point Arithmetic.
2674 *----------------------------------------------------------------------------*/
2676 float32
float32_sqrt(float32 a
, float_status
*status
)
2680 uint32_t aSig
, zSig
;
2682 a
= float32_squash_input_denormal(a
, status
);
2684 aSig
= extractFloat32Frac( a
);
2685 aExp
= extractFloat32Exp( a
);
2686 aSign
= extractFloat32Sign( a
);
2687 if ( aExp
== 0xFF ) {
2689 return propagateFloat32NaN(a
, float32_zero
, status
);
2691 if ( ! aSign
) return a
;
2692 float_raise(float_flag_invalid
, status
);
2693 return float32_default_nan
;
2696 if ( ( aExp
| aSig
) == 0 ) return a
;
2697 float_raise(float_flag_invalid
, status
);
2698 return float32_default_nan
;
2701 if ( aSig
== 0 ) return float32_zero
;
2702 normalizeFloat32Subnormal( aSig
, &aExp
, &aSig
);
2704 zExp
= ( ( aExp
- 0x7F )>>1 ) + 0x7E;
2705 aSig
= ( aSig
| 0x00800000 )<<8;
2706 zSig
= estimateSqrt32( aExp
, aSig
) + 2;
2707 if ( ( zSig
& 0x7F ) <= 5 ) {
2713 term
= ( (uint64_t) zSig
) * zSig
;
2714 rem
= ( ( (uint64_t) aSig
)<<32 ) - term
;
2715 while ( (int64_t) rem
< 0 ) {
2717 rem
+= ( ( (uint64_t) zSig
)<<1 ) | 1;
2719 zSig
|= ( rem
!= 0 );
2721 shift32RightJamming( zSig
, 1, &zSig
);
2723 return roundAndPackFloat32(0, zExp
, zSig
, status
);
2727 /*----------------------------------------------------------------------------
2728 | Returns the binary exponential of the single-precision floating-point value
2729 | `a'. The operation is performed according to the IEC/IEEE Standard for
2730 | Binary Floating-Point Arithmetic.
2732 | Uses the following identities:
2734 | 1. -------------------------------------------------------------------------
2738 | 2. -------------------------------------------------------------------------
2741 | e = 1 + --- + --- + --- + --- + --- + ... + --- + ...
2743 *----------------------------------------------------------------------------*/
2745 static const float64 float32_exp2_coefficients
[15] =
2747 const_float64( 0x3ff0000000000000ll
), /* 1 */
2748 const_float64( 0x3fe0000000000000ll
), /* 2 */
2749 const_float64( 0x3fc5555555555555ll
), /* 3 */
2750 const_float64( 0x3fa5555555555555ll
), /* 4 */
2751 const_float64( 0x3f81111111111111ll
), /* 5 */
2752 const_float64( 0x3f56c16c16c16c17ll
), /* 6 */
2753 const_float64( 0x3f2a01a01a01a01all
), /* 7 */
2754 const_float64( 0x3efa01a01a01a01all
), /* 8 */
2755 const_float64( 0x3ec71de3a556c734ll
), /* 9 */
2756 const_float64( 0x3e927e4fb7789f5cll
), /* 10 */
2757 const_float64( 0x3e5ae64567f544e4ll
), /* 11 */
2758 const_float64( 0x3e21eed8eff8d898ll
), /* 12 */
2759 const_float64( 0x3de6124613a86d09ll
), /* 13 */
2760 const_float64( 0x3da93974a8c07c9dll
), /* 14 */
2761 const_float64( 0x3d6ae7f3e733b81fll
), /* 15 */
2764 float32
float32_exp2(float32 a
, float_status
*status
)
2771 a
= float32_squash_input_denormal(a
, status
);
2773 aSig
= extractFloat32Frac( a
);
2774 aExp
= extractFloat32Exp( a
);
2775 aSign
= extractFloat32Sign( a
);
2777 if ( aExp
== 0xFF) {
2779 return propagateFloat32NaN(a
, float32_zero
, status
);
2781 return (aSign
) ? float32_zero
: a
;
2784 if (aSig
== 0) return float32_one
;
2787 float_raise(float_flag_inexact
, status
);
2789 /* ******************************* */
2790 /* using float64 for approximation */
2791 /* ******************************* */
2792 x
= float32_to_float64(a
, status
);
2793 x
= float64_mul(x
, float64_ln2
, status
);
2797 for (i
= 0 ; i
< 15 ; i
++) {
2800 f
= float64_mul(xn
, float32_exp2_coefficients
[i
], status
);
2801 r
= float64_add(r
, f
, status
);
2803 xn
= float64_mul(xn
, x
, status
);
2806 return float64_to_float32(r
, status
);
2809 /*----------------------------------------------------------------------------
2810 | Returns the binary log of the single-precision floating-point value `a'.
2811 | The operation is performed according to the IEC/IEEE Standard for Binary
2812 | Floating-Point Arithmetic.
2813 *----------------------------------------------------------------------------*/
2814 float32
float32_log2(float32 a
, float_status
*status
)
2818 uint32_t aSig
, zSig
, i
;
2820 a
= float32_squash_input_denormal(a
, status
);
2821 aSig
= extractFloat32Frac( a
);
2822 aExp
= extractFloat32Exp( a
);
2823 aSign
= extractFloat32Sign( a
);
2826 if ( aSig
== 0 ) return packFloat32( 1, 0xFF, 0 );
2827 normalizeFloat32Subnormal( aSig
, &aExp
, &aSig
);
2830 float_raise(float_flag_invalid
, status
);
2831 return float32_default_nan
;
2833 if ( aExp
== 0xFF ) {
2835 return propagateFloat32NaN(a
, float32_zero
, status
);
2845 for (i
= 1 << 22; i
> 0; i
>>= 1) {
2846 aSig
= ( (uint64_t)aSig
* aSig
) >> 23;
2847 if ( aSig
& 0x01000000 ) {
2856 return normalizeRoundAndPackFloat32(zSign
, 0x85, zSig
, status
);
2859 /*----------------------------------------------------------------------------
2860 | Returns 1 if the single-precision floating-point value `a' is equal to
2861 | the corresponding value `b', and 0 otherwise. The invalid exception is
2862 | raised if either operand is a NaN. Otherwise, the comparison is performed
2863 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
2864 *----------------------------------------------------------------------------*/
2866 int float32_eq(float32 a
, float32 b
, float_status
*status
)
2869 a
= float32_squash_input_denormal(a
, status
);
2870 b
= float32_squash_input_denormal(b
, status
);
2872 if ( ( ( extractFloat32Exp( a
) == 0xFF ) && extractFloat32Frac( a
) )
2873 || ( ( extractFloat32Exp( b
) == 0xFF ) && extractFloat32Frac( b
) )
2875 float_raise(float_flag_invalid
, status
);
2878 av
= float32_val(a
);
2879 bv
= float32_val(b
);
2880 return ( av
== bv
) || ( (uint32_t) ( ( av
| bv
)<<1 ) == 0 );
2883 /*----------------------------------------------------------------------------
2884 | Returns 1 if the single-precision floating-point value `a' is less than
2885 | or equal to the corresponding value `b', and 0 otherwise. The invalid
2886 | exception is raised if either operand is a NaN. The comparison is performed
2887 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
2888 *----------------------------------------------------------------------------*/
2890 int float32_le(float32 a
, float32 b
, float_status
*status
)
2894 a
= float32_squash_input_denormal(a
, status
);
2895 b
= float32_squash_input_denormal(b
, status
);
2897 if ( ( ( extractFloat32Exp( a
) == 0xFF ) && extractFloat32Frac( a
) )
2898 || ( ( extractFloat32Exp( b
) == 0xFF ) && extractFloat32Frac( b
) )
2900 float_raise(float_flag_invalid
, status
);
2903 aSign
= extractFloat32Sign( a
);
2904 bSign
= extractFloat32Sign( b
);
2905 av
= float32_val(a
);
2906 bv
= float32_val(b
);
2907 if ( aSign
!= bSign
) return aSign
|| ( (uint32_t) ( ( av
| bv
)<<1 ) == 0 );
2908 return ( av
== bv
) || ( aSign
^ ( av
< bv
) );
2912 /*----------------------------------------------------------------------------
2913 | Returns 1 if the single-precision floating-point value `a' is less than
2914 | the corresponding value `b', and 0 otherwise. The invalid exception is
2915 | raised if either operand is a NaN. The comparison is performed according
2916 | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
2917 *----------------------------------------------------------------------------*/
2919 int float32_lt(float32 a
, float32 b
, float_status
*status
)
2923 a
= float32_squash_input_denormal(a
, status
);
2924 b
= float32_squash_input_denormal(b
, status
);
2926 if ( ( ( extractFloat32Exp( a
) == 0xFF ) && extractFloat32Frac( a
) )
2927 || ( ( extractFloat32Exp( b
) == 0xFF ) && extractFloat32Frac( b
) )
2929 float_raise(float_flag_invalid
, status
);
2932 aSign
= extractFloat32Sign( a
);
2933 bSign
= extractFloat32Sign( b
);
2934 av
= float32_val(a
);
2935 bv
= float32_val(b
);
2936 if ( aSign
!= bSign
) return aSign
&& ( (uint32_t) ( ( av
| bv
)<<1 ) != 0 );
2937 return ( av
!= bv
) && ( aSign
^ ( av
< bv
) );
2941 /*----------------------------------------------------------------------------
2942 | Returns 1 if the single-precision floating-point values `a' and `b' cannot
2943 | be compared, and 0 otherwise. The invalid exception is raised if either
2944 | operand is a NaN. The comparison is performed according to the IEC/IEEE
2945 | Standard for Binary Floating-Point Arithmetic.
2946 *----------------------------------------------------------------------------*/
2948 int float32_unordered(float32 a
, float32 b
, float_status
*status
)
2950 a
= float32_squash_input_denormal(a
, status
);
2951 b
= float32_squash_input_denormal(b
, status
);
2953 if ( ( ( extractFloat32Exp( a
) == 0xFF ) && extractFloat32Frac( a
) )
2954 || ( ( extractFloat32Exp( b
) == 0xFF ) && extractFloat32Frac( b
) )
2956 float_raise(float_flag_invalid
, status
);
2962 /*----------------------------------------------------------------------------
2963 | Returns 1 if the single-precision floating-point value `a' is equal to
2964 | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
2965 | exception. The comparison is performed according to the IEC/IEEE Standard
2966 | for Binary Floating-Point Arithmetic.
2967 *----------------------------------------------------------------------------*/
2969 int float32_eq_quiet(float32 a
, float32 b
, float_status
*status
)
2971 a
= float32_squash_input_denormal(a
, status
);
2972 b
= float32_squash_input_denormal(b
, status
);
2974 if ( ( ( extractFloat32Exp( a
) == 0xFF ) && extractFloat32Frac( a
) )
2975 || ( ( extractFloat32Exp( b
) == 0xFF ) && extractFloat32Frac( b
) )
2977 if ( float32_is_signaling_nan( a
) || float32_is_signaling_nan( b
) ) {
2978 float_raise(float_flag_invalid
, status
);
2982 return ( float32_val(a
) == float32_val(b
) ) ||
2983 ( (uint32_t) ( ( float32_val(a
) | float32_val(b
) )<<1 ) == 0 );
2986 /*----------------------------------------------------------------------------
2987 | Returns 1 if the single-precision floating-point value `a' is less than or
2988 | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
2989 | cause an exception. Otherwise, the comparison is performed according to the
2990 | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
2991 *----------------------------------------------------------------------------*/
2993 int float32_le_quiet(float32 a
, float32 b
, float_status
*status
)
2997 a
= float32_squash_input_denormal(a
, status
);
2998 b
= float32_squash_input_denormal(b
, status
);
3000 if ( ( ( extractFloat32Exp( a
) == 0xFF ) && extractFloat32Frac( a
) )
3001 || ( ( extractFloat32Exp( b
) == 0xFF ) && extractFloat32Frac( b
) )
3003 if ( float32_is_signaling_nan( a
) || float32_is_signaling_nan( b
) ) {
3004 float_raise(float_flag_invalid
, status
);
3008 aSign
= extractFloat32Sign( a
);
3009 bSign
= extractFloat32Sign( b
);
3010 av
= float32_val(a
);
3011 bv
= float32_val(b
);
3012 if ( aSign
!= bSign
) return aSign
|| ( (uint32_t) ( ( av
| bv
)<<1 ) == 0 );
3013 return ( av
== bv
) || ( aSign
^ ( av
< bv
) );
3017 /*----------------------------------------------------------------------------
3018 | Returns 1 if the single-precision floating-point value `a' is less than
3019 | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
3020 | exception. Otherwise, the comparison is performed according to the IEC/IEEE
3021 | Standard for Binary Floating-Point Arithmetic.
3022 *----------------------------------------------------------------------------*/
3024 int float32_lt_quiet(float32 a
, float32 b
, float_status
*status
)
3028 a
= float32_squash_input_denormal(a
, status
);
3029 b
= float32_squash_input_denormal(b
, status
);
3031 if ( ( ( extractFloat32Exp( a
) == 0xFF ) && extractFloat32Frac( a
) )
3032 || ( ( extractFloat32Exp( b
) == 0xFF ) && extractFloat32Frac( b
) )
3034 if ( float32_is_signaling_nan( a
) || float32_is_signaling_nan( b
) ) {
3035 float_raise(float_flag_invalid
, status
);
3039 aSign
= extractFloat32Sign( a
);
3040 bSign
= extractFloat32Sign( b
);
3041 av
= float32_val(a
);
3042 bv
= float32_val(b
);
3043 if ( aSign
!= bSign
) return aSign
&& ( (uint32_t) ( ( av
| bv
)<<1 ) != 0 );
3044 return ( av
!= bv
) && ( aSign
^ ( av
< bv
) );
3048 /*----------------------------------------------------------------------------
3049 | Returns 1 if the single-precision floating-point values `a' and `b' cannot
3050 | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The
3051 | comparison is performed according to the IEC/IEEE Standard for Binary
3052 | Floating-Point Arithmetic.
3053 *----------------------------------------------------------------------------*/
3055 int float32_unordered_quiet(float32 a
, float32 b
, float_status
*status
)
3057 a
= float32_squash_input_denormal(a
, status
);
3058 b
= float32_squash_input_denormal(b
, status
);
3060 if ( ( ( extractFloat32Exp( a
) == 0xFF ) && extractFloat32Frac( a
) )
3061 || ( ( extractFloat32Exp( b
) == 0xFF ) && extractFloat32Frac( b
) )
3063 if ( float32_is_signaling_nan( a
) || float32_is_signaling_nan( b
) ) {
3064 float_raise(float_flag_invalid
, status
);
3071 /*----------------------------------------------------------------------------
3072 | Returns the result of converting the double-precision floating-point value
3073 | `a' to the 32-bit two's complement integer format. The conversion is
3074 | performed according to the IEC/IEEE Standard for Binary Floating-Point
3075 | Arithmetic---which means in particular that the conversion is rounded
3076 | according to the current rounding mode. If `a' is a NaN, the largest
3077 | positive integer is returned. Otherwise, if the conversion overflows, the
3078 | largest integer with the same sign as `a' is returned.
3079 *----------------------------------------------------------------------------*/
3081 int32_t float64_to_int32(float64 a
, float_status
*status
)
3087 a
= float64_squash_input_denormal(a
, status
);
3089 aSig
= extractFloat64Frac( a
);
3090 aExp
= extractFloat64Exp( a
);
3091 aSign
= extractFloat64Sign( a
);
3092 if ( ( aExp
== 0x7FF ) && aSig
) aSign
= 0;
3093 if ( aExp
) aSig
|= LIT64( 0x0010000000000000 );
3094 shiftCount
= 0x42C - aExp
;
3095 if ( 0 < shiftCount
) shift64RightJamming( aSig
, shiftCount
, &aSig
);
3096 return roundAndPackInt32(aSign
, aSig
, status
);
3100 /*----------------------------------------------------------------------------
3101 | Returns the result of converting the double-precision floating-point value
3102 | `a' to the 32-bit two's complement integer format. The conversion is
3103 | performed according to the IEC/IEEE Standard for Binary Floating-Point
3104 | Arithmetic, except that the conversion is always rounded toward zero.
3105 | If `a' is a NaN, the largest positive integer is returned. Otherwise, if
3106 | the conversion overflows, the largest integer with the same sign as `a' is
3108 *----------------------------------------------------------------------------*/
3110 int32_t float64_to_int32_round_to_zero(float64 a
, float_status
*status
)
3115 uint64_t aSig
, savedASig
;
3117 a
= float64_squash_input_denormal(a
, status
);
3119 aSig
= extractFloat64Frac( a
);
3120 aExp
= extractFloat64Exp( a
);
3121 aSign
= extractFloat64Sign( a
);
3122 if ( 0x41E < aExp
) {
3123 if ( ( aExp
== 0x7FF ) && aSig
) aSign
= 0;
3126 else if ( aExp
< 0x3FF ) {
3128 status
->float_exception_flags
|= float_flag_inexact
;
3132 aSig
|= LIT64( 0x0010000000000000 );
3133 shiftCount
= 0x433 - aExp
;
3135 aSig
>>= shiftCount
;
3137 if ( aSign
) z
= - z
;
3138 if ( ( z
< 0 ) ^ aSign
) {
3140 float_raise(float_flag_invalid
, status
);
3141 return aSign ?
(int32_t) 0x80000000 : 0x7FFFFFFF;
3143 if ( ( aSig
<<shiftCount
) != savedASig
) {
3144 status
->float_exception_flags
|= float_flag_inexact
;
3150 /*----------------------------------------------------------------------------
3151 | Returns the result of converting the double-precision floating-point value
3152 | `a' to the 16-bit two's complement integer format. The conversion is
3153 | performed according to the IEC/IEEE Standard for Binary Floating-Point
3154 | Arithmetic, except that the conversion is always rounded toward zero.
3155 | If `a' is a NaN, the largest positive integer is returned. Otherwise, if
3156 | the conversion overflows, the largest integer with the same sign as `a' is
3158 *----------------------------------------------------------------------------*/
3160 int16_t float64_to_int16_round_to_zero(float64 a
, float_status
*status
)
3165 uint64_t aSig
, savedASig
;
3168 aSig
= extractFloat64Frac( a
);
3169 aExp
= extractFloat64Exp( a
);
3170 aSign
= extractFloat64Sign( a
);
3171 if ( 0x40E < aExp
) {
3172 if ( ( aExp
== 0x7FF ) && aSig
) {
3177 else if ( aExp
< 0x3FF ) {
3178 if ( aExp
|| aSig
) {
3179 status
->float_exception_flags
|= float_flag_inexact
;
3183 aSig
|= LIT64( 0x0010000000000000 );
3184 shiftCount
= 0x433 - aExp
;
3186 aSig
>>= shiftCount
;
3191 if ( ( (int16_t)z
< 0 ) ^ aSign
) {
3193 float_raise(float_flag_invalid
, status
);
3194 return aSign ?
(int32_t) 0xffff8000 : 0x7FFF;
3196 if ( ( aSig
<<shiftCount
) != savedASig
) {
3197 status
->float_exception_flags
|= float_flag_inexact
;
3202 /*----------------------------------------------------------------------------
3203 | Returns the result of converting the double-precision floating-point value
3204 | `a' to the 64-bit two's complement integer format. The conversion is
3205 | performed according to the IEC/IEEE Standard for Binary Floating-Point
3206 | Arithmetic---which means in particular that the conversion is rounded
3207 | according to the current rounding mode. If `a' is a NaN, the largest
3208 | positive integer is returned. Otherwise, if the conversion overflows, the
3209 | largest integer with the same sign as `a' is returned.
3210 *----------------------------------------------------------------------------*/
3212 int64_t float64_to_int64(float64 a
, float_status
*status
)
3217 uint64_t aSig
, aSigExtra
;
3218 a
= float64_squash_input_denormal(a
, status
);
3220 aSig
= extractFloat64Frac( a
);
3221 aExp
= extractFloat64Exp( a
);
3222 aSign
= extractFloat64Sign( a
);
3223 if ( aExp
) aSig
|= LIT64( 0x0010000000000000 );
3224 shiftCount
= 0x433 - aExp
;
3225 if ( shiftCount
<= 0 ) {
3226 if ( 0x43E < aExp
) {
3227 float_raise(float_flag_invalid
, status
);
3229 || ( ( aExp
== 0x7FF )
3230 && ( aSig
!= LIT64( 0x0010000000000000 ) ) )
3232 return LIT64( 0x7FFFFFFFFFFFFFFF );
3234 return (int64_t) LIT64( 0x8000000000000000 );
3237 aSig
<<= - shiftCount
;
3240 shift64ExtraRightJamming( aSig
, 0, shiftCount
, &aSig
, &aSigExtra
);
3242 return roundAndPackInt64(aSign
, aSig
, aSigExtra
, status
);
3246 /*----------------------------------------------------------------------------
3247 | Returns the result of converting the double-precision floating-point value
3248 | `a' to the 64-bit two's complement integer format. The conversion is
3249 | performed according to the IEC/IEEE Standard for Binary Floating-Point
3250 | Arithmetic, except that the conversion is always rounded toward zero.
3251 | If `a' is a NaN, the largest positive integer is returned. Otherwise, if
3252 | the conversion overflows, the largest integer with the same sign as `a' is
3254 *----------------------------------------------------------------------------*/
3256 int64_t float64_to_int64_round_to_zero(float64 a
, float_status
*status
)
3263 a
= float64_squash_input_denormal(a
, status
);
3265 aSig
= extractFloat64Frac( a
);
3266 aExp
= extractFloat64Exp( a
);
3267 aSign
= extractFloat64Sign( a
);
3268 if ( aExp
) aSig
|= LIT64( 0x0010000000000000 );
3269 shiftCount
= aExp
- 0x433;
3270 if ( 0 <= shiftCount
) {
3271 if ( 0x43E <= aExp
) {
3272 if ( float64_val(a
) != LIT64( 0xC3E0000000000000 ) ) {
3273 float_raise(float_flag_invalid
, status
);
3275 || ( ( aExp
== 0x7FF )
3276 && ( aSig
!= LIT64( 0x0010000000000000 ) ) )
3278 return LIT64( 0x7FFFFFFFFFFFFFFF );
3281 return (int64_t) LIT64( 0x8000000000000000 );
3283 z
= aSig
<<shiftCount
;
3286 if ( aExp
< 0x3FE ) {
3288 status
->float_exception_flags
|= float_flag_inexact
;
3292 z
= aSig
>>( - shiftCount
);
3293 if ( (uint64_t) ( aSig
<<( shiftCount
& 63 ) ) ) {
3294 status
->float_exception_flags
|= float_flag_inexact
;
3297 if ( aSign
) z
= - z
;
3302 /*----------------------------------------------------------------------------
3303 | Returns the result of converting the double-precision floating-point value
3304 | `a' to the single-precision floating-point format. The conversion is
3305 | performed according to the IEC/IEEE Standard for Binary Floating-Point
3307 *----------------------------------------------------------------------------*/
3309 float32
float64_to_float32(float64 a
, float_status
*status
)
3315 a
= float64_squash_input_denormal(a
, status
);
3317 aSig
= extractFloat64Frac( a
);
3318 aExp
= extractFloat64Exp( a
);
3319 aSign
= extractFloat64Sign( a
);
3320 if ( aExp
== 0x7FF ) {
3322 return commonNaNToFloat32(float64ToCommonNaN(a
, status
), status
);
3324 return packFloat32( aSign
, 0xFF, 0 );
3326 shift64RightJamming( aSig
, 22, &aSig
);
3328 if ( aExp
|| zSig
) {
3332 return roundAndPackFloat32(aSign
, aExp
, zSig
, status
);
3337 /*----------------------------------------------------------------------------
3338 | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
3339 | half-precision floating-point value, returning the result. After being
3340 | shifted into the proper positions, the three fields are simply added
3341 | together to form the result. This means that any integer portion of `zSig'
3342 | will be added into the exponent. Since a properly normalized significand
3343 | will have an integer portion equal to 1, the `zExp' input should be 1 less
3344 | than the desired result exponent whenever `zSig' is a complete, normalized
3346 *----------------------------------------------------------------------------*/
3347 static float16
packFloat16(flag zSign
, int zExp
, uint16_t zSig
)
3349 return make_float16(
3350 (((uint32_t)zSign
) << 15) + (((uint32_t)zExp
) << 10) + zSig
);
3353 /*----------------------------------------------------------------------------
3354 | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
3355 | and significand `zSig', and returns the proper half-precision floating-
3356 | point value corresponding to the abstract input. Ordinarily, the abstract
3357 | value is simply rounded and packed into the half-precision format, with
3358 | the inexact exception raised if the abstract input cannot be represented
3359 | exactly. However, if the abstract value is too large, the overflow and
3360 | inexact exceptions are raised and an infinity or maximal finite value is
3361 | returned. If the abstract value is too small, the input value is rounded to
3362 | a subnormal number, and the underflow and inexact exceptions are raised if
3363 | the abstract input cannot be represented exactly as a subnormal half-
3364 | precision floating-point number.
3365 | The `ieee' flag indicates whether to use IEEE standard half precision, or
3366 | ARM-style "alternative representation", which omits the NaN and Inf
3367 | encodings in order to raise the maximum representable exponent by one.
3368 | The input significand `zSig' has its binary point between bits 22
3369 | and 23, which is 13 bits to the left of the usual location. This shifted
3370 | significand must be normalized or smaller. If `zSig' is not normalized,
3371 | `zExp' must be 0; in that case, the result returned is a subnormal number,
3372 | and it must not require rounding. In the usual case that `zSig' is
3373 | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
3374 | Note the slightly odd position of the binary point in zSig compared with the
3375 | other roundAndPackFloat functions. This should probably be fixed if we
3376 | need to implement more float16 routines than just conversion.
3377 | The handling of underflow and overflow follows the IEC/IEEE Standard for