Merge remote-tracking branch 'remotes/elmarco/tags/libslirp-pull-request' into staging
[qemu.git] / gdbstub.c
1 /*
2 * gdb server stub
3 *
4 * This implements a subset of the remote protocol as described in:
5 *
6 * https://sourceware.org/gdb/onlinedocs/gdb/Remote-Protocol.html
7 *
8 * Copyright (c) 2003-2005 Fabrice Bellard
9 *
10 * This library is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 *
23 * SPDX-License-Identifier: LGPL-2.0+
24 */
25
26 #include "qemu/osdep.h"
27 #include "qemu-common.h"
28 #include "qapi/error.h"
29 #include "qemu/error-report.h"
30 #include "qemu/ctype.h"
31 #include "qemu/cutils.h"
32 #include "qemu/module.h"
33 #include "trace/trace-root.h"
34 #ifdef CONFIG_USER_ONLY
35 #include "qemu.h"
36 #else
37 #include "monitor/monitor.h"
38 #include "chardev/char.h"
39 #include "chardev/char-fe.h"
40 #include "sysemu/sysemu.h"
41 #include "exec/gdbstub.h"
42 #include "hw/cpu/cluster.h"
43 #include "hw/boards.h"
44 #endif
45
46 #define MAX_PACKET_LENGTH 4096
47
48 #include "qemu/sockets.h"
49 #include "sysemu/hw_accel.h"
50 #include "sysemu/kvm.h"
51 #include "sysemu/runstate.h"
52 #include "hw/semihosting/semihost.h"
53 #include "exec/exec-all.h"
54 #include "sysemu/replay.h"
55
56 #ifdef CONFIG_USER_ONLY
57 #define GDB_ATTACHED "0"
58 #else
59 #define GDB_ATTACHED "1"
60 #endif
61
62 #ifndef CONFIG_USER_ONLY
63 static int phy_memory_mode;
64 #endif
65
66 static inline int target_memory_rw_debug(CPUState *cpu, target_ulong addr,
67 uint8_t *buf, int len, bool is_write)
68 {
69 CPUClass *cc;
70
71 #ifndef CONFIG_USER_ONLY
72 if (phy_memory_mode) {
73 if (is_write) {
74 cpu_physical_memory_write(addr, buf, len);
75 } else {
76 cpu_physical_memory_read(addr, buf, len);
77 }
78 return 0;
79 }
80 #endif
81
82 cc = CPU_GET_CLASS(cpu);
83 if (cc->memory_rw_debug) {
84 return cc->memory_rw_debug(cpu, addr, buf, len, is_write);
85 }
86 return cpu_memory_rw_debug(cpu, addr, buf, len, is_write);
87 }
88
89 /* Return the GDB index for a given vCPU state.
90 *
91 * For user mode this is simply the thread id. In system mode GDB
92 * numbers CPUs from 1 as 0 is reserved as an "any cpu" index.
93 */
94 static inline int cpu_gdb_index(CPUState *cpu)
95 {
96 #if defined(CONFIG_USER_ONLY)
97 TaskState *ts = (TaskState *) cpu->opaque;
98 return ts->ts_tid;
99 #else
100 return cpu->cpu_index + 1;
101 #endif
102 }
103
104 enum {
105 GDB_SIGNAL_0 = 0,
106 GDB_SIGNAL_INT = 2,
107 GDB_SIGNAL_QUIT = 3,
108 GDB_SIGNAL_TRAP = 5,
109 GDB_SIGNAL_ABRT = 6,
110 GDB_SIGNAL_ALRM = 14,
111 GDB_SIGNAL_IO = 23,
112 GDB_SIGNAL_XCPU = 24,
113 GDB_SIGNAL_UNKNOWN = 143
114 };
115
116 #ifdef CONFIG_USER_ONLY
117
118 /* Map target signal numbers to GDB protocol signal numbers and vice
119 * versa. For user emulation's currently supported systems, we can
120 * assume most signals are defined.
121 */
122
123 static int gdb_signal_table[] = {
124 0,
125 TARGET_SIGHUP,
126 TARGET_SIGINT,
127 TARGET_SIGQUIT,
128 TARGET_SIGILL,
129 TARGET_SIGTRAP,
130 TARGET_SIGABRT,
131 -1, /* SIGEMT */
132 TARGET_SIGFPE,
133 TARGET_SIGKILL,
134 TARGET_SIGBUS,
135 TARGET_SIGSEGV,
136 TARGET_SIGSYS,
137 TARGET_SIGPIPE,
138 TARGET_SIGALRM,
139 TARGET_SIGTERM,
140 TARGET_SIGURG,
141 TARGET_SIGSTOP,
142 TARGET_SIGTSTP,
143 TARGET_SIGCONT,
144 TARGET_SIGCHLD,
145 TARGET_SIGTTIN,
146 TARGET_SIGTTOU,
147 TARGET_SIGIO,
148 TARGET_SIGXCPU,
149 TARGET_SIGXFSZ,
150 TARGET_SIGVTALRM,
151 TARGET_SIGPROF,
152 TARGET_SIGWINCH,
153 -1, /* SIGLOST */
154 TARGET_SIGUSR1,
155 TARGET_SIGUSR2,
156 #ifdef TARGET_SIGPWR
157 TARGET_SIGPWR,
158 #else
159 -1,
160 #endif
161 -1, /* SIGPOLL */
162 -1,
163 -1,
164 -1,
165 -1,
166 -1,
167 -1,
168 -1,
169 -1,
170 -1,
171 -1,
172 -1,
173 #ifdef __SIGRTMIN
174 __SIGRTMIN + 1,
175 __SIGRTMIN + 2,
176 __SIGRTMIN + 3,
177 __SIGRTMIN + 4,
178 __SIGRTMIN + 5,
179 __SIGRTMIN + 6,
180 __SIGRTMIN + 7,
181 __SIGRTMIN + 8,
182 __SIGRTMIN + 9,
183 __SIGRTMIN + 10,
184 __SIGRTMIN + 11,
185 __SIGRTMIN + 12,
186 __SIGRTMIN + 13,
187 __SIGRTMIN + 14,
188 __SIGRTMIN + 15,
189 __SIGRTMIN + 16,
190 __SIGRTMIN + 17,
191 __SIGRTMIN + 18,
192 __SIGRTMIN + 19,
193 __SIGRTMIN + 20,
194 __SIGRTMIN + 21,
195 __SIGRTMIN + 22,
196 __SIGRTMIN + 23,
197 __SIGRTMIN + 24,
198 __SIGRTMIN + 25,
199 __SIGRTMIN + 26,
200 __SIGRTMIN + 27,
201 __SIGRTMIN + 28,
202 __SIGRTMIN + 29,
203 __SIGRTMIN + 30,
204 __SIGRTMIN + 31,
205 -1, /* SIGCANCEL */
206 __SIGRTMIN,
207 __SIGRTMIN + 32,
208 __SIGRTMIN + 33,
209 __SIGRTMIN + 34,
210 __SIGRTMIN + 35,
211 __SIGRTMIN + 36,
212 __SIGRTMIN + 37,
213 __SIGRTMIN + 38,
214 __SIGRTMIN + 39,
215 __SIGRTMIN + 40,
216 __SIGRTMIN + 41,
217 __SIGRTMIN + 42,
218 __SIGRTMIN + 43,
219 __SIGRTMIN + 44,
220 __SIGRTMIN + 45,
221 __SIGRTMIN + 46,
222 __SIGRTMIN + 47,
223 __SIGRTMIN + 48,
224 __SIGRTMIN + 49,
225 __SIGRTMIN + 50,
226 __SIGRTMIN + 51,
227 __SIGRTMIN + 52,
228 __SIGRTMIN + 53,
229 __SIGRTMIN + 54,
230 __SIGRTMIN + 55,
231 __SIGRTMIN + 56,
232 __SIGRTMIN + 57,
233 __SIGRTMIN + 58,
234 __SIGRTMIN + 59,
235 __SIGRTMIN + 60,
236 __SIGRTMIN + 61,
237 __SIGRTMIN + 62,
238 __SIGRTMIN + 63,
239 __SIGRTMIN + 64,
240 __SIGRTMIN + 65,
241 __SIGRTMIN + 66,
242 __SIGRTMIN + 67,
243 __SIGRTMIN + 68,
244 __SIGRTMIN + 69,
245 __SIGRTMIN + 70,
246 __SIGRTMIN + 71,
247 __SIGRTMIN + 72,
248 __SIGRTMIN + 73,
249 __SIGRTMIN + 74,
250 __SIGRTMIN + 75,
251 __SIGRTMIN + 76,
252 __SIGRTMIN + 77,
253 __SIGRTMIN + 78,
254 __SIGRTMIN + 79,
255 __SIGRTMIN + 80,
256 __SIGRTMIN + 81,
257 __SIGRTMIN + 82,
258 __SIGRTMIN + 83,
259 __SIGRTMIN + 84,
260 __SIGRTMIN + 85,
261 __SIGRTMIN + 86,
262 __SIGRTMIN + 87,
263 __SIGRTMIN + 88,
264 __SIGRTMIN + 89,
265 __SIGRTMIN + 90,
266 __SIGRTMIN + 91,
267 __SIGRTMIN + 92,
268 __SIGRTMIN + 93,
269 __SIGRTMIN + 94,
270 __SIGRTMIN + 95,
271 -1, /* SIGINFO */
272 -1, /* UNKNOWN */
273 -1, /* DEFAULT */
274 -1,
275 -1,
276 -1,
277 -1,
278 -1,
279 -1
280 #endif
281 };
282 #else
283 /* In system mode we only need SIGINT and SIGTRAP; other signals
284 are not yet supported. */
285
286 enum {
287 TARGET_SIGINT = 2,
288 TARGET_SIGTRAP = 5
289 };
290
291 static int gdb_signal_table[] = {
292 -1,
293 -1,
294 TARGET_SIGINT,
295 -1,
296 -1,
297 TARGET_SIGTRAP
298 };
299 #endif
300
301 #ifdef CONFIG_USER_ONLY
302 static int target_signal_to_gdb (int sig)
303 {
304 int i;
305 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
306 if (gdb_signal_table[i] == sig)
307 return i;
308 return GDB_SIGNAL_UNKNOWN;
309 }
310 #endif
311
312 static int gdb_signal_to_target (int sig)
313 {
314 if (sig < ARRAY_SIZE (gdb_signal_table))
315 return gdb_signal_table[sig];
316 else
317 return -1;
318 }
319
320 typedef struct GDBRegisterState {
321 int base_reg;
322 int num_regs;
323 gdb_get_reg_cb get_reg;
324 gdb_set_reg_cb set_reg;
325 const char *xml;
326 struct GDBRegisterState *next;
327 } GDBRegisterState;
328
329 typedef struct GDBProcess {
330 uint32_t pid;
331 bool attached;
332
333 char target_xml[1024];
334 } GDBProcess;
335
336 enum RSState {
337 RS_INACTIVE,
338 RS_IDLE,
339 RS_GETLINE,
340 RS_GETLINE_ESC,
341 RS_GETLINE_RLE,
342 RS_CHKSUM1,
343 RS_CHKSUM2,
344 };
345 typedef struct GDBState {
346 bool init; /* have we been initialised? */
347 CPUState *c_cpu; /* current CPU for step/continue ops */
348 CPUState *g_cpu; /* current CPU for other ops */
349 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
350 enum RSState state; /* parsing state */
351 char line_buf[MAX_PACKET_LENGTH];
352 int line_buf_index;
353 int line_sum; /* running checksum */
354 int line_csum; /* checksum at the end of the packet */
355 GByteArray *last_packet;
356 int signal;
357 #ifdef CONFIG_USER_ONLY
358 int fd;
359 char *socket_path;
360 int running_state;
361 #else
362 CharBackend chr;
363 Chardev *mon_chr;
364 #endif
365 bool multiprocess;
366 GDBProcess *processes;
367 int process_num;
368 char syscall_buf[256];
369 gdb_syscall_complete_cb current_syscall_cb;
370 GString *str_buf;
371 GByteArray *mem_buf;
372 } GDBState;
373
374 /* By default use no IRQs and no timers while single stepping so as to
375 * make single stepping like an ICE HW step.
376 */
377 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
378
379 /* Retrieves flags for single step mode. */
380 static int get_sstep_flags(void)
381 {
382 /*
383 * In replay mode all events written into the log should be replayed.
384 * That is why NOIRQ flag is removed in this mode.
385 */
386 if (replay_mode != REPLAY_MODE_NONE) {
387 return SSTEP_ENABLE;
388 } else {
389 return sstep_flags;
390 }
391 }
392
393 static GDBState gdbserver_state;
394
395 static void init_gdbserver_state(void)
396 {
397 g_assert(!gdbserver_state.init);
398 memset(&gdbserver_state, 0, sizeof(GDBState));
399 gdbserver_state.init = true;
400 gdbserver_state.str_buf = g_string_new(NULL);
401 gdbserver_state.mem_buf = g_byte_array_sized_new(MAX_PACKET_LENGTH);
402 gdbserver_state.last_packet = g_byte_array_sized_new(MAX_PACKET_LENGTH + 4);
403 }
404
405 #ifndef CONFIG_USER_ONLY
406 static void reset_gdbserver_state(void)
407 {
408 g_free(gdbserver_state.processes);
409 gdbserver_state.processes = NULL;
410 gdbserver_state.process_num = 0;
411 }
412 #endif
413
414 bool gdb_has_xml;
415
416 #ifdef CONFIG_USER_ONLY
417
418 static int get_char(void)
419 {
420 uint8_t ch;
421 int ret;
422
423 for(;;) {
424 ret = qemu_recv(gdbserver_state.fd, &ch, 1, 0);
425 if (ret < 0) {
426 if (errno == ECONNRESET)
427 gdbserver_state.fd = -1;
428 if (errno != EINTR)
429 return -1;
430 } else if (ret == 0) {
431 close(gdbserver_state.fd);
432 gdbserver_state.fd = -1;
433 return -1;
434 } else {
435 break;
436 }
437 }
438 return ch;
439 }
440 #endif
441
442 static enum {
443 GDB_SYS_UNKNOWN,
444 GDB_SYS_ENABLED,
445 GDB_SYS_DISABLED,
446 } gdb_syscall_mode;
447
448 /* Decide if either remote gdb syscalls or native file IO should be used. */
449 int use_gdb_syscalls(void)
450 {
451 SemihostingTarget target = semihosting_get_target();
452 if (target == SEMIHOSTING_TARGET_NATIVE) {
453 /* -semihosting-config target=native */
454 return false;
455 } else if (target == SEMIHOSTING_TARGET_GDB) {
456 /* -semihosting-config target=gdb */
457 return true;
458 }
459
460 /* -semihosting-config target=auto */
461 /* On the first call check if gdb is connected and remember. */
462 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
463 gdb_syscall_mode = gdbserver_state.init ?
464 GDB_SYS_ENABLED : GDB_SYS_DISABLED;
465 }
466 return gdb_syscall_mode == GDB_SYS_ENABLED;
467 }
468
469 /* Resume execution. */
470 static inline void gdb_continue(void)
471 {
472
473 #ifdef CONFIG_USER_ONLY
474 gdbserver_state.running_state = 1;
475 trace_gdbstub_op_continue();
476 #else
477 if (!runstate_needs_reset()) {
478 trace_gdbstub_op_continue();
479 vm_start();
480 }
481 #endif
482 }
483
484 /*
485 * Resume execution, per CPU actions. For user-mode emulation it's
486 * equivalent to gdb_continue.
487 */
488 static int gdb_continue_partial(char *newstates)
489 {
490 CPUState *cpu;
491 int res = 0;
492 #ifdef CONFIG_USER_ONLY
493 /*
494 * This is not exactly accurate, but it's an improvement compared to the
495 * previous situation, where only one CPU would be single-stepped.
496 */
497 CPU_FOREACH(cpu) {
498 if (newstates[cpu->cpu_index] == 's') {
499 trace_gdbstub_op_stepping(cpu->cpu_index);
500 cpu_single_step(cpu, sstep_flags);
501 }
502 }
503 gdbserver_state.running_state = 1;
504 #else
505 int flag = 0;
506
507 if (!runstate_needs_reset()) {
508 if (vm_prepare_start()) {
509 return 0;
510 }
511
512 CPU_FOREACH(cpu) {
513 switch (newstates[cpu->cpu_index]) {
514 case 0:
515 case 1:
516 break; /* nothing to do here */
517 case 's':
518 trace_gdbstub_op_stepping(cpu->cpu_index);
519 cpu_single_step(cpu, get_sstep_flags());
520 cpu_resume(cpu);
521 flag = 1;
522 break;
523 case 'c':
524 trace_gdbstub_op_continue_cpu(cpu->cpu_index);
525 cpu_resume(cpu);
526 flag = 1;
527 break;
528 default:
529 res = -1;
530 break;
531 }
532 }
533 }
534 if (flag) {
535 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
536 }
537 #endif
538 return res;
539 }
540
541 static void put_buffer(const uint8_t *buf, int len)
542 {
543 #ifdef CONFIG_USER_ONLY
544 int ret;
545
546 while (len > 0) {
547 ret = send(gdbserver_state.fd, buf, len, 0);
548 if (ret < 0) {
549 if (errno != EINTR)
550 return;
551 } else {
552 buf += ret;
553 len -= ret;
554 }
555 }
556 #else
557 /* XXX this blocks entire thread. Rewrite to use
558 * qemu_chr_fe_write and background I/O callbacks */
559 qemu_chr_fe_write_all(&gdbserver_state.chr, buf, len);
560 #endif
561 }
562
563 static inline int fromhex(int v)
564 {
565 if (v >= '0' && v <= '9')
566 return v - '0';
567 else if (v >= 'A' && v <= 'F')
568 return v - 'A' + 10;
569 else if (v >= 'a' && v <= 'f')
570 return v - 'a' + 10;
571 else
572 return 0;
573 }
574
575 static inline int tohex(int v)
576 {
577 if (v < 10)
578 return v + '0';
579 else
580 return v - 10 + 'a';
581 }
582
583 /* writes 2*len+1 bytes in buf */
584 static void memtohex(GString *buf, const uint8_t *mem, int len)
585 {
586 int i, c;
587 for(i = 0; i < len; i++) {
588 c = mem[i];
589 g_string_append_c(buf, tohex(c >> 4));
590 g_string_append_c(buf, tohex(c & 0xf));
591 }
592 g_string_append_c(buf, '\0');
593 }
594
595 static void hextomem(GByteArray *mem, const char *buf, int len)
596 {
597 int i;
598
599 for(i = 0; i < len; i++) {
600 guint8 byte = fromhex(buf[0]) << 4 | fromhex(buf[1]);
601 g_byte_array_append(mem, &byte, 1);
602 buf += 2;
603 }
604 }
605
606 static void hexdump(const char *buf, int len,
607 void (*trace_fn)(size_t ofs, char const *text))
608 {
609 char line_buffer[3 * 16 + 4 + 16 + 1];
610
611 size_t i;
612 for (i = 0; i < len || (i & 0xF); ++i) {
613 size_t byte_ofs = i & 15;
614
615 if (byte_ofs == 0) {
616 memset(line_buffer, ' ', 3 * 16 + 4 + 16);
617 line_buffer[3 * 16 + 4 + 16] = 0;
618 }
619
620 size_t col_group = (i >> 2) & 3;
621 size_t hex_col = byte_ofs * 3 + col_group;
622 size_t txt_col = 3 * 16 + 4 + byte_ofs;
623
624 if (i < len) {
625 char value = buf[i];
626
627 line_buffer[hex_col + 0] = tohex((value >> 4) & 0xF);
628 line_buffer[hex_col + 1] = tohex((value >> 0) & 0xF);
629 line_buffer[txt_col + 0] = (value >= ' ' && value < 127)
630 ? value
631 : '.';
632 }
633
634 if (byte_ofs == 0xF)
635 trace_fn(i & -16, line_buffer);
636 }
637 }
638
639 /* return -1 if error, 0 if OK */
640 static int put_packet_binary(const char *buf, int len, bool dump)
641 {
642 int csum, i;
643 uint8_t footer[3];
644
645 if (dump && trace_event_get_state_backends(TRACE_GDBSTUB_IO_BINARYREPLY)) {
646 hexdump(buf, len, trace_gdbstub_io_binaryreply);
647 }
648
649 for(;;) {
650 g_byte_array_set_size(gdbserver_state.last_packet, 0);
651 g_byte_array_append(gdbserver_state.last_packet,
652 (const uint8_t *) "$", 1);
653 g_byte_array_append(gdbserver_state.last_packet,
654 (const uint8_t *) buf, len);
655 csum = 0;
656 for(i = 0; i < len; i++) {
657 csum += buf[i];
658 }
659 footer[0] = '#';
660 footer[1] = tohex((csum >> 4) & 0xf);
661 footer[2] = tohex((csum) & 0xf);
662 g_byte_array_append(gdbserver_state.last_packet, footer, 3);
663
664 put_buffer(gdbserver_state.last_packet->data,
665 gdbserver_state.last_packet->len);
666
667 #ifdef CONFIG_USER_ONLY
668 i = get_char();
669 if (i < 0)
670 return -1;
671 if (i == '+')
672 break;
673 #else
674 break;
675 #endif
676 }
677 return 0;
678 }
679
680 /* return -1 if error, 0 if OK */
681 static int put_packet(const char *buf)
682 {
683 trace_gdbstub_io_reply(buf);
684
685 return put_packet_binary(buf, strlen(buf), false);
686 }
687
688 static void put_strbuf(void)
689 {
690 put_packet(gdbserver_state.str_buf->str);
691 }
692
693 /* Encode data using the encoding for 'x' packets. */
694 static void memtox(GString *buf, const char *mem, int len)
695 {
696 char c;
697
698 while (len--) {
699 c = *(mem++);
700 switch (c) {
701 case '#': case '$': case '*': case '}':
702 g_string_append_c(buf, '}');
703 g_string_append_c(buf, c ^ 0x20);
704 break;
705 default:
706 g_string_append_c(buf, c);
707 break;
708 }
709 }
710 }
711
712 static uint32_t gdb_get_cpu_pid(CPUState *cpu)
713 {
714 /* TODO: In user mode, we should use the task state PID */
715 if (cpu->cluster_index == UNASSIGNED_CLUSTER_INDEX) {
716 /* Return the default process' PID */
717 int index = gdbserver_state.process_num - 1;
718 return gdbserver_state.processes[index].pid;
719 }
720 return cpu->cluster_index + 1;
721 }
722
723 static GDBProcess *gdb_get_process(uint32_t pid)
724 {
725 int i;
726
727 if (!pid) {
728 /* 0 means any process, we take the first one */
729 return &gdbserver_state.processes[0];
730 }
731
732 for (i = 0; i < gdbserver_state.process_num; i++) {
733 if (gdbserver_state.processes[i].pid == pid) {
734 return &gdbserver_state.processes[i];
735 }
736 }
737
738 return NULL;
739 }
740
741 static GDBProcess *gdb_get_cpu_process(CPUState *cpu)
742 {
743 return gdb_get_process(gdb_get_cpu_pid(cpu));
744 }
745
746 static CPUState *find_cpu(uint32_t thread_id)
747 {
748 CPUState *cpu;
749
750 CPU_FOREACH(cpu) {
751 if (cpu_gdb_index(cpu) == thread_id) {
752 return cpu;
753 }
754 }
755
756 return NULL;
757 }
758
759 static CPUState *get_first_cpu_in_process(GDBProcess *process)
760 {
761 CPUState *cpu;
762
763 CPU_FOREACH(cpu) {
764 if (gdb_get_cpu_pid(cpu) == process->pid) {
765 return cpu;
766 }
767 }
768
769 return NULL;
770 }
771
772 static CPUState *gdb_next_cpu_in_process(CPUState *cpu)
773 {
774 uint32_t pid = gdb_get_cpu_pid(cpu);
775 cpu = CPU_NEXT(cpu);
776
777 while (cpu) {
778 if (gdb_get_cpu_pid(cpu) == pid) {
779 break;
780 }
781
782 cpu = CPU_NEXT(cpu);
783 }
784
785 return cpu;
786 }
787
788 /* Return the cpu following @cpu, while ignoring unattached processes. */
789 static CPUState *gdb_next_attached_cpu(CPUState *cpu)
790 {
791 cpu = CPU_NEXT(cpu);
792
793 while (cpu) {
794 if (gdb_get_cpu_process(cpu)->attached) {
795 break;
796 }
797
798 cpu = CPU_NEXT(cpu);
799 }
800
801 return cpu;
802 }
803
804 /* Return the first attached cpu */
805 static CPUState *gdb_first_attached_cpu(void)
806 {
807 CPUState *cpu = first_cpu;
808 GDBProcess *process = gdb_get_cpu_process(cpu);
809
810 if (!process->attached) {
811 return gdb_next_attached_cpu(cpu);
812 }
813
814 return cpu;
815 }
816
817 static CPUState *gdb_get_cpu(uint32_t pid, uint32_t tid)
818 {
819 GDBProcess *process;
820 CPUState *cpu;
821
822 if (!pid && !tid) {
823 /* 0 means any process/thread, we take the first attached one */
824 return gdb_first_attached_cpu();
825 } else if (pid && !tid) {
826 /* any thread in a specific process */
827 process = gdb_get_process(pid);
828
829 if (process == NULL) {
830 return NULL;
831 }
832
833 if (!process->attached) {
834 return NULL;
835 }
836
837 return get_first_cpu_in_process(process);
838 } else {
839 /* a specific thread */
840 cpu = find_cpu(tid);
841
842 if (cpu == NULL) {
843 return NULL;
844 }
845
846 process = gdb_get_cpu_process(cpu);
847
848 if (pid && process->pid != pid) {
849 return NULL;
850 }
851
852 if (!process->attached) {
853 return NULL;
854 }
855
856 return cpu;
857 }
858 }
859
860 static const char *get_feature_xml(const char *p, const char **newp,
861 GDBProcess *process)
862 {
863 size_t len;
864 int i;
865 const char *name;
866 CPUState *cpu = get_first_cpu_in_process(process);
867 CPUClass *cc = CPU_GET_CLASS(cpu);
868
869 len = 0;
870 while (p[len] && p[len] != ':')
871 len++;
872 *newp = p + len;
873
874 name = NULL;
875 if (strncmp(p, "target.xml", len) == 0) {
876 char *buf = process->target_xml;
877 const size_t buf_sz = sizeof(process->target_xml);
878
879 /* Generate the XML description for this CPU. */
880 if (!buf[0]) {
881 GDBRegisterState *r;
882
883 pstrcat(buf, buf_sz,
884 "<?xml version=\"1.0\"?>"
885 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
886 "<target>");
887 if (cc->gdb_arch_name) {
888 gchar *arch = cc->gdb_arch_name(cpu);
889 pstrcat(buf, buf_sz, "<architecture>");
890 pstrcat(buf, buf_sz, arch);
891 pstrcat(buf, buf_sz, "</architecture>");
892 g_free(arch);
893 }
894 pstrcat(buf, buf_sz, "<xi:include href=\"");
895 pstrcat(buf, buf_sz, cc->gdb_core_xml_file);
896 pstrcat(buf, buf_sz, "\"/>");
897 for (r = cpu->gdb_regs; r; r = r->next) {
898 pstrcat(buf, buf_sz, "<xi:include href=\"");
899 pstrcat(buf, buf_sz, r->xml);
900 pstrcat(buf, buf_sz, "\"/>");
901 }
902 pstrcat(buf, buf_sz, "</target>");
903 }
904 return buf;
905 }
906 if (cc->gdb_get_dynamic_xml) {
907 char *xmlname = g_strndup(p, len);
908 const char *xml = cc->gdb_get_dynamic_xml(cpu, xmlname);
909
910 g_free(xmlname);
911 if (xml) {
912 return xml;
913 }
914 }
915 for (i = 0; ; i++) {
916 name = xml_builtin[i][0];
917 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
918 break;
919 }
920 return name ? xml_builtin[i][1] : NULL;
921 }
922
923 static int gdb_read_register(CPUState *cpu, GByteArray *buf, int reg)
924 {
925 CPUClass *cc = CPU_GET_CLASS(cpu);
926 CPUArchState *env = cpu->env_ptr;
927 GDBRegisterState *r;
928
929 if (reg < cc->gdb_num_core_regs) {
930 return cc->gdb_read_register(cpu, buf, reg);
931 }
932
933 for (r = cpu->gdb_regs; r; r = r->next) {
934 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
935 return r->get_reg(env, buf, reg - r->base_reg);
936 }
937 }
938 return 0;
939 }
940
941 static int gdb_write_register(CPUState *cpu, uint8_t *mem_buf, int reg)
942 {
943 CPUClass *cc = CPU_GET_CLASS(cpu);
944 CPUArchState *env = cpu->env_ptr;
945 GDBRegisterState *r;
946
947 if (reg < cc->gdb_num_core_regs) {
948 return cc->gdb_write_register(cpu, mem_buf, reg);
949 }
950
951 for (r = cpu->gdb_regs; r; r = r->next) {
952 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
953 return r->set_reg(env, mem_buf, reg - r->base_reg);
954 }
955 }
956 return 0;
957 }
958
959 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
960 specifies the first register number and these registers are included in
961 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
962 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
963 */
964
965 void gdb_register_coprocessor(CPUState *cpu,
966 gdb_get_reg_cb get_reg, gdb_set_reg_cb set_reg,
967 int num_regs, const char *xml, int g_pos)
968 {
969 GDBRegisterState *s;
970 GDBRegisterState **p;
971
972 p = &cpu->gdb_regs;
973 while (*p) {
974 /* Check for duplicates. */
975 if (strcmp((*p)->xml, xml) == 0)
976 return;
977 p = &(*p)->next;
978 }
979
980 s = g_new0(GDBRegisterState, 1);
981 s->base_reg = cpu->gdb_num_regs;
982 s->num_regs = num_regs;
983 s->get_reg = get_reg;
984 s->set_reg = set_reg;
985 s->xml = xml;
986
987 /* Add to end of list. */
988 cpu->gdb_num_regs += num_regs;
989 *p = s;
990 if (g_pos) {
991 if (g_pos != s->base_reg) {
992 error_report("Error: Bad gdb register numbering for '%s', "
993 "expected %d got %d", xml, g_pos, s->base_reg);
994 } else {
995 cpu->gdb_num_g_regs = cpu->gdb_num_regs;
996 }
997 }
998 }
999
1000 #ifndef CONFIG_USER_ONLY
1001 /* Translate GDB watchpoint type to a flags value for cpu_watchpoint_* */
1002 static inline int xlat_gdb_type(CPUState *cpu, int gdbtype)
1003 {
1004 static const int xlat[] = {
1005 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
1006 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
1007 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
1008 };
1009
1010 CPUClass *cc = CPU_GET_CLASS(cpu);
1011 int cputype = xlat[gdbtype];
1012
1013 if (cc->gdb_stop_before_watchpoint) {
1014 cputype |= BP_STOP_BEFORE_ACCESS;
1015 }
1016 return cputype;
1017 }
1018 #endif
1019
1020 static int gdb_breakpoint_insert(int type, target_ulong addr, target_ulong len)
1021 {
1022 CPUState *cpu;
1023 int err = 0;
1024
1025 if (kvm_enabled()) {
1026 return kvm_insert_breakpoint(gdbserver_state.c_cpu, addr, len, type);
1027 }
1028
1029 switch (type) {
1030 case GDB_BREAKPOINT_SW:
1031 case GDB_BREAKPOINT_HW:
1032 CPU_FOREACH(cpu) {
1033 err = cpu_breakpoint_insert(cpu, addr, BP_GDB, NULL);
1034 if (err) {
1035 break;
1036 }
1037 }
1038 return err;
1039 #ifndef CONFIG_USER_ONLY
1040 case GDB_WATCHPOINT_WRITE:
1041 case GDB_WATCHPOINT_READ:
1042 case GDB_WATCHPOINT_ACCESS:
1043 CPU_FOREACH(cpu) {
1044 err = cpu_watchpoint_insert(cpu, addr, len,
1045 xlat_gdb_type(cpu, type), NULL);
1046 if (err) {
1047 break;
1048 }
1049 }
1050 return err;
1051 #endif
1052 default:
1053 return -ENOSYS;
1054 }
1055 }
1056
1057 static int gdb_breakpoint_remove(int type, target_ulong addr, target_ulong len)
1058 {
1059 CPUState *cpu;
1060 int err = 0;
1061
1062 if (kvm_enabled()) {
1063 return kvm_remove_breakpoint(gdbserver_state.c_cpu, addr, len, type);
1064 }
1065
1066 switch (type) {
1067 case GDB_BREAKPOINT_SW:
1068 case GDB_BREAKPOINT_HW:
1069 CPU_FOREACH(cpu) {
1070 err = cpu_breakpoint_remove(cpu, addr, BP_GDB);
1071 if (err) {
1072 break;
1073 }
1074 }
1075 return err;
1076 #ifndef CONFIG_USER_ONLY
1077 case GDB_WATCHPOINT_WRITE:
1078 case GDB_WATCHPOINT_READ:
1079 case GDB_WATCHPOINT_ACCESS:
1080 CPU_FOREACH(cpu) {
1081 err = cpu_watchpoint_remove(cpu, addr, len,
1082 xlat_gdb_type(cpu, type));
1083 if (err)
1084 break;
1085 }
1086 return err;
1087 #endif
1088 default:
1089 return -ENOSYS;
1090 }
1091 }
1092
1093 static inline void gdb_cpu_breakpoint_remove_all(CPUState *cpu)
1094 {
1095 cpu_breakpoint_remove_all(cpu, BP_GDB);
1096 #ifndef CONFIG_USER_ONLY
1097 cpu_watchpoint_remove_all(cpu, BP_GDB);
1098 #endif
1099 }
1100
1101 static void gdb_process_breakpoint_remove_all(GDBProcess *p)
1102 {
1103 CPUState *cpu = get_first_cpu_in_process(p);
1104
1105 while (cpu) {
1106 gdb_cpu_breakpoint_remove_all(cpu);
1107 cpu = gdb_next_cpu_in_process(cpu);
1108 }
1109 }
1110
1111 static void gdb_breakpoint_remove_all(void)
1112 {
1113 CPUState *cpu;
1114
1115 if (kvm_enabled()) {
1116 kvm_remove_all_breakpoints(gdbserver_state.c_cpu);
1117 return;
1118 }
1119
1120 CPU_FOREACH(cpu) {
1121 gdb_cpu_breakpoint_remove_all(cpu);
1122 }
1123 }
1124
1125 static void gdb_set_cpu_pc(target_ulong pc)
1126 {
1127 CPUState *cpu = gdbserver_state.c_cpu;
1128
1129 cpu_synchronize_state(cpu);
1130 cpu_set_pc(cpu, pc);
1131 }
1132
1133 static void gdb_append_thread_id(CPUState *cpu, GString *buf)
1134 {
1135 if (gdbserver_state.multiprocess) {
1136 g_string_append_printf(buf, "p%02x.%02x",
1137 gdb_get_cpu_pid(cpu), cpu_gdb_index(cpu));
1138 } else {
1139 g_string_append_printf(buf, "%02x", cpu_gdb_index(cpu));
1140 }
1141 }
1142
1143 typedef enum GDBThreadIdKind {
1144 GDB_ONE_THREAD = 0,
1145 GDB_ALL_THREADS, /* One process, all threads */
1146 GDB_ALL_PROCESSES,
1147 GDB_READ_THREAD_ERR
1148 } GDBThreadIdKind;
1149
1150 static GDBThreadIdKind read_thread_id(const char *buf, const char **end_buf,
1151 uint32_t *pid, uint32_t *tid)
1152 {
1153 unsigned long p, t;
1154 int ret;
1155
1156 if (*buf == 'p') {
1157 buf++;
1158 ret = qemu_strtoul(buf, &buf, 16, &p);
1159
1160 if (ret) {
1161 return GDB_READ_THREAD_ERR;
1162 }
1163
1164 /* Skip '.' */
1165 buf++;
1166 } else {
1167 p = 1;
1168 }
1169
1170 ret = qemu_strtoul(buf, &buf, 16, &t);
1171
1172 if (ret) {
1173 return GDB_READ_THREAD_ERR;
1174 }
1175
1176 *end_buf = buf;
1177
1178 if (p == -1) {
1179 return GDB_ALL_PROCESSES;
1180 }
1181
1182 if (pid) {
1183 *pid = p;
1184 }
1185
1186 if (t == -1) {
1187 return GDB_ALL_THREADS;
1188 }
1189
1190 if (tid) {
1191 *tid = t;
1192 }
1193
1194 return GDB_ONE_THREAD;
1195 }
1196
1197 /**
1198 * gdb_handle_vcont - Parses and handles a vCont packet.
1199 * returns -ENOTSUP if a command is unsupported, -EINVAL or -ERANGE if there is
1200 * a format error, 0 on success.
1201 */
1202 static int gdb_handle_vcont(const char *p)
1203 {
1204 int res, signal = 0;
1205 char cur_action;
1206 char *newstates;
1207 unsigned long tmp;
1208 uint32_t pid, tid;
1209 GDBProcess *process;
1210 CPUState *cpu;
1211 GDBThreadIdKind kind;
1212 #ifdef CONFIG_USER_ONLY
1213 int max_cpus = 1; /* global variable max_cpus exists only in system mode */
1214
1215 CPU_FOREACH(cpu) {
1216 max_cpus = max_cpus <= cpu->cpu_index ? cpu->cpu_index + 1 : max_cpus;
1217 }
1218 #else
1219 MachineState *ms = MACHINE(qdev_get_machine());
1220 unsigned int max_cpus = ms->smp.max_cpus;
1221 #endif
1222 /* uninitialised CPUs stay 0 */
1223 newstates = g_new0(char, max_cpus);
1224
1225 /* mark valid CPUs with 1 */
1226 CPU_FOREACH(cpu) {
1227 newstates[cpu->cpu_index] = 1;
1228 }
1229
1230 /*
1231 * res keeps track of what error we are returning, with -ENOTSUP meaning
1232 * that the command is unknown or unsupported, thus returning an empty
1233 * packet, while -EINVAL and -ERANGE cause an E22 packet, due to invalid,
1234 * or incorrect parameters passed.
1235 */
1236 res = 0;
1237 while (*p) {
1238 if (*p++ != ';') {
1239 res = -ENOTSUP;
1240 goto out;
1241 }
1242
1243 cur_action = *p++;
1244 if (cur_action == 'C' || cur_action == 'S') {
1245 cur_action = qemu_tolower(cur_action);
1246 res = qemu_strtoul(p + 1, &p, 16, &tmp);
1247 if (res) {
1248 goto out;
1249 }
1250 signal = gdb_signal_to_target(tmp);
1251 } else if (cur_action != 'c' && cur_action != 's') {
1252 /* unknown/invalid/unsupported command */
1253 res = -ENOTSUP;
1254 goto out;
1255 }
1256
1257 if (*p == '\0' || *p == ';') {
1258 /*
1259 * No thread specifier, action is on "all threads". The
1260 * specification is unclear regarding the process to act on. We
1261 * choose all processes.
1262 */
1263 kind = GDB_ALL_PROCESSES;
1264 } else if (*p++ == ':') {
1265 kind = read_thread_id(p, &p, &pid, &tid);
1266 } else {
1267 res = -ENOTSUP;
1268 goto out;
1269 }
1270
1271 switch (kind) {
1272 case GDB_READ_THREAD_ERR:
1273 res = -EINVAL;
1274 goto out;
1275
1276 case GDB_ALL_PROCESSES:
1277 cpu = gdb_first_attached_cpu();
1278 while (cpu) {
1279 if (newstates[cpu->cpu_index] == 1) {
1280 newstates[cpu->cpu_index] = cur_action;
1281 }
1282
1283 cpu = gdb_next_attached_cpu(cpu);
1284 }
1285 break;
1286
1287 case GDB_ALL_THREADS:
1288 process = gdb_get_process(pid);
1289
1290 if (!process->attached) {
1291 res = -EINVAL;
1292 goto out;
1293 }
1294
1295 cpu = get_first_cpu_in_process(process);
1296 while (cpu) {
1297 if (newstates[cpu->cpu_index] == 1) {
1298 newstates[cpu->cpu_index] = cur_action;
1299 }
1300
1301 cpu = gdb_next_cpu_in_process(cpu);
1302 }
1303 break;
1304
1305 case GDB_ONE_THREAD:
1306 cpu = gdb_get_cpu(pid, tid);
1307
1308 /* invalid CPU/thread specified */
1309 if (!cpu) {
1310 res = -EINVAL;
1311 goto out;
1312 }
1313
1314 /* only use if no previous match occourred */
1315 if (newstates[cpu->cpu_index] == 1) {
1316 newstates[cpu->cpu_index] = cur_action;
1317 }
1318 break;
1319 }
1320 }
1321 gdbserver_state.signal = signal;
1322 gdb_continue_partial(newstates);
1323
1324 out:
1325 g_free(newstates);
1326
1327 return res;
1328 }
1329
1330 typedef union GdbCmdVariant {
1331 const char *data;
1332 uint8_t opcode;
1333 unsigned long val_ul;
1334 unsigned long long val_ull;
1335 struct {
1336 GDBThreadIdKind kind;
1337 uint32_t pid;
1338 uint32_t tid;
1339 } thread_id;
1340 } GdbCmdVariant;
1341
1342 static const char *cmd_next_param(const char *param, const char delimiter)
1343 {
1344 static const char all_delimiters[] = ",;:=";
1345 char curr_delimiters[2] = {0};
1346 const char *delimiters;
1347
1348 if (delimiter == '?') {
1349 delimiters = all_delimiters;
1350 } else if (delimiter == '0') {
1351 return strchr(param, '\0');
1352 } else if (delimiter == '.' && *param) {
1353 return param + 1;
1354 } else {
1355 curr_delimiters[0] = delimiter;
1356 delimiters = curr_delimiters;
1357 }
1358
1359 param += strcspn(param, delimiters);
1360 if (*param) {
1361 param++;
1362 }
1363 return param;
1364 }
1365
1366 static int cmd_parse_params(const char *data, const char *schema,
1367 GdbCmdVariant *params, int *num_params)
1368 {
1369 int curr_param;
1370 const char *curr_schema, *curr_data;
1371
1372 *num_params = 0;
1373
1374 if (!schema) {
1375 return 0;
1376 }
1377
1378 curr_schema = schema;
1379 curr_param = 0;
1380 curr_data = data;
1381 while (curr_schema[0] && curr_schema[1] && *curr_data) {
1382 switch (curr_schema[0]) {
1383 case 'l':
1384 if (qemu_strtoul(curr_data, &curr_data, 16,
1385 &params[curr_param].val_ul)) {
1386 return -EINVAL;
1387 }
1388 curr_param++;
1389 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1390 break;
1391 case 'L':
1392 if (qemu_strtou64(curr_data, &curr_data, 16,
1393 (uint64_t *)&params[curr_param].val_ull)) {
1394 return -EINVAL;
1395 }
1396 curr_param++;
1397 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1398 break;
1399 case 's':
1400 params[curr_param].data = curr_data;
1401 curr_param++;
1402 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1403 break;
1404 case 'o':
1405 params[curr_param].opcode = *(uint8_t *)curr_data;
1406 curr_param++;
1407 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1408 break;
1409 case 't':
1410 params[curr_param].thread_id.kind =
1411 read_thread_id(curr_data, &curr_data,
1412 &params[curr_param].thread_id.pid,
1413 &params[curr_param].thread_id.tid);
1414 curr_param++;
1415 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1416 break;
1417 case '?':
1418 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1419 break;
1420 default:
1421 return -EINVAL;
1422 }
1423 curr_schema += 2;
1424 }
1425
1426 *num_params = curr_param;
1427 return 0;
1428 }
1429
1430 typedef struct GdbCmdContext {
1431 GdbCmdVariant *params;
1432 int num_params;
1433 } GdbCmdContext;
1434
1435 typedef void (*GdbCmdHandler)(GdbCmdContext *gdb_ctx, void *user_ctx);
1436
1437 /*
1438 * cmd_startswith -> cmd is compared using startswith
1439 *
1440 *
1441 * schema definitions:
1442 * Each schema parameter entry consists of 2 chars,
1443 * the first char represents the parameter type handling
1444 * the second char represents the delimiter for the next parameter
1445 *
1446 * Currently supported schema types:
1447 * 'l' -> unsigned long (stored in .val_ul)
1448 * 'L' -> unsigned long long (stored in .val_ull)
1449 * 's' -> string (stored in .data)
1450 * 'o' -> single char (stored in .opcode)
1451 * 't' -> thread id (stored in .thread_id)
1452 * '?' -> skip according to delimiter
1453 *
1454 * Currently supported delimiters:
1455 * '?' -> Stop at any delimiter (",;:=\0")
1456 * '0' -> Stop at "\0"
1457 * '.' -> Skip 1 char unless reached "\0"
1458 * Any other value is treated as the delimiter value itself
1459 */
1460 typedef struct GdbCmdParseEntry {
1461 GdbCmdHandler handler;
1462 const char *cmd;
1463 bool cmd_startswith;
1464 const char *schema;
1465 } GdbCmdParseEntry;
1466
1467 static inline int startswith(const char *string, const char *pattern)
1468 {
1469 return !strncmp(string, pattern, strlen(pattern));
1470 }
1471
1472 static int process_string_cmd(void *user_ctx, const char *data,
1473 const GdbCmdParseEntry *cmds, int num_cmds)
1474 {
1475 int i, schema_len, max_num_params = 0;
1476 GdbCmdContext gdb_ctx;
1477
1478 if (!cmds) {
1479 return -1;
1480 }
1481
1482 for (i = 0; i < num_cmds; i++) {
1483 const GdbCmdParseEntry *cmd = &cmds[i];
1484 g_assert(cmd->handler && cmd->cmd);
1485
1486 if ((cmd->cmd_startswith && !startswith(data, cmd->cmd)) ||
1487 (!cmd->cmd_startswith && strcmp(cmd->cmd, data))) {
1488 continue;
1489 }
1490
1491 if (cmd->schema) {
1492 schema_len = strlen(cmd->schema);
1493 if (schema_len % 2) {
1494 return -2;
1495 }
1496
1497 max_num_params = schema_len / 2;
1498 }
1499
1500 gdb_ctx.params =
1501 (GdbCmdVariant *)alloca(sizeof(*gdb_ctx.params) * max_num_params);
1502 memset(gdb_ctx.params, 0, sizeof(*gdb_ctx.params) * max_num_params);
1503
1504 if (cmd_parse_params(&data[strlen(cmd->cmd)], cmd->schema,
1505 gdb_ctx.params, &gdb_ctx.num_params)) {
1506 return -1;
1507 }
1508
1509 cmd->handler(&gdb_ctx, user_ctx);
1510 return 0;
1511 }
1512
1513 return -1;
1514 }
1515
1516 static void run_cmd_parser(const char *data, const GdbCmdParseEntry *cmd)
1517 {
1518 if (!data) {
1519 return;
1520 }
1521
1522 g_string_set_size(gdbserver_state.str_buf, 0);
1523 g_byte_array_set_size(gdbserver_state.mem_buf, 0);
1524
1525 /* In case there was an error during the command parsing we must
1526 * send a NULL packet to indicate the command is not supported */
1527 if (process_string_cmd(NULL, data, cmd, 1)) {
1528 put_packet("");
1529 }
1530 }
1531
1532 static void handle_detach(GdbCmdContext *gdb_ctx, void *user_ctx)
1533 {
1534 GDBProcess *process;
1535 uint32_t pid = 1;
1536
1537 if (gdbserver_state.multiprocess) {
1538 if (!gdb_ctx->num_params) {
1539 put_packet("E22");
1540 return;
1541 }
1542
1543 pid = gdb_ctx->params[0].val_ul;
1544 }
1545
1546 process = gdb_get_process(pid);
1547 gdb_process_breakpoint_remove_all(process);
1548 process->attached = false;
1549
1550 if (pid == gdb_get_cpu_pid(gdbserver_state.c_cpu)) {
1551 gdbserver_state.c_cpu = gdb_first_attached_cpu();
1552 }
1553
1554 if (pid == gdb_get_cpu_pid(gdbserver_state.g_cpu)) {
1555 gdbserver_state.g_cpu = gdb_first_attached_cpu();
1556 }
1557
1558 if (!gdbserver_state.c_cpu) {
1559 /* No more process attached */
1560 gdb_syscall_mode = GDB_SYS_DISABLED;
1561 gdb_continue();
1562 }
1563 put_packet("OK");
1564 }
1565
1566 static void handle_thread_alive(GdbCmdContext *gdb_ctx, void *user_ctx)
1567 {
1568 CPUState *cpu;
1569
1570 if (!gdb_ctx->num_params) {
1571 put_packet("E22");
1572 return;
1573 }
1574
1575 if (gdb_ctx->params[0].thread_id.kind == GDB_READ_THREAD_ERR) {
1576 put_packet("E22");
1577 return;
1578 }
1579
1580 cpu = gdb_get_cpu(gdb_ctx->params[0].thread_id.pid,
1581 gdb_ctx->params[0].thread_id.tid);
1582 if (!cpu) {
1583 put_packet("E22");
1584 return;
1585 }
1586
1587 put_packet("OK");
1588 }
1589
1590 static void handle_continue(GdbCmdContext *gdb_ctx, void *user_ctx)
1591 {
1592 if (gdb_ctx->num_params) {
1593 gdb_set_cpu_pc(gdb_ctx->params[0].val_ull);
1594 }
1595
1596 gdbserver_state.signal = 0;
1597 gdb_continue();
1598 }
1599
1600 static void handle_cont_with_sig(GdbCmdContext *gdb_ctx, void *user_ctx)
1601 {
1602 unsigned long signal = 0;
1603
1604 /*
1605 * Note: C sig;[addr] is currently unsupported and we simply
1606 * omit the addr parameter
1607 */
1608 if (gdb_ctx->num_params) {
1609 signal = gdb_ctx->params[0].val_ul;
1610 }
1611
1612 gdbserver_state.signal = gdb_signal_to_target(signal);
1613 if (gdbserver_state.signal == -1) {
1614 gdbserver_state.signal = 0;
1615 }
1616 gdb_continue();
1617 }
1618
1619 static void handle_set_thread(GdbCmdContext *gdb_ctx, void *user_ctx)
1620 {
1621 CPUState *cpu;
1622
1623 if (gdb_ctx->num_params != 2) {
1624 put_packet("E22");
1625 return;
1626 }
1627
1628 if (gdb_ctx->params[1].thread_id.kind == GDB_READ_THREAD_ERR) {
1629 put_packet("E22");
1630 return;
1631 }
1632
1633 if (gdb_ctx->params[1].thread_id.kind != GDB_ONE_THREAD) {
1634 put_packet("OK");
1635 return;
1636 }
1637
1638 cpu = gdb_get_cpu(gdb_ctx->params[1].thread_id.pid,
1639 gdb_ctx->params[1].thread_id.tid);
1640 if (!cpu) {
1641 put_packet("E22");
1642 return;
1643 }
1644
1645 /*
1646 * Note: This command is deprecated and modern gdb's will be using the
1647 * vCont command instead.
1648 */
1649 switch (gdb_ctx->params[0].opcode) {
1650 case 'c':
1651 gdbserver_state.c_cpu = cpu;
1652 put_packet("OK");
1653 break;
1654 case 'g':
1655 gdbserver_state.g_cpu = cpu;
1656 put_packet("OK");
1657 break;
1658 default:
1659 put_packet("E22");
1660 break;
1661 }
1662 }
1663
1664 static void handle_insert_bp(GdbCmdContext *gdb_ctx, void *user_ctx)
1665 {
1666 int res;
1667
1668 if (gdb_ctx->num_params != 3) {
1669 put_packet("E22");
1670 return;
1671 }
1672
1673 res = gdb_breakpoint_insert(gdb_ctx->params[0].val_ul,
1674 gdb_ctx->params[1].val_ull,
1675 gdb_ctx->params[2].val_ull);
1676 if (res >= 0) {
1677 put_packet("OK");
1678 return;
1679 } else if (res == -ENOSYS) {
1680 put_packet("");
1681 return;
1682 }
1683
1684 put_packet("E22");
1685 }
1686
1687 static void handle_remove_bp(GdbCmdContext *gdb_ctx, void *user_ctx)
1688 {
1689 int res;
1690
1691 if (gdb_ctx->num_params != 3) {
1692 put_packet("E22");
1693 return;
1694 }
1695
1696 res = gdb_breakpoint_remove(gdb_ctx->params[0].val_ul,
1697 gdb_ctx->params[1].val_ull,
1698 gdb_ctx->params[2].val_ull);
1699 if (res >= 0) {
1700 put_packet("OK");
1701 return;
1702 } else if (res == -ENOSYS) {
1703 put_packet("");
1704 return;
1705 }
1706
1707 put_packet("E22");
1708 }
1709
1710 /*
1711 * handle_set/get_reg
1712 *
1713 * Older gdb are really dumb, and don't use 'G/g' if 'P/p' is available.
1714 * This works, but can be very slow. Anything new enough to understand
1715 * XML also knows how to use this properly. However to use this we
1716 * need to define a local XML file as well as be talking to a
1717 * reasonably modern gdb. Responding with an empty packet will cause
1718 * the remote gdb to fallback to older methods.
1719 */
1720
1721 static void handle_set_reg(GdbCmdContext *gdb_ctx, void *user_ctx)
1722 {
1723 int reg_size;
1724
1725 if (!gdb_has_xml) {
1726 put_packet("");
1727 return;
1728 }
1729
1730 if (gdb_ctx->num_params != 2) {
1731 put_packet("E22");
1732 return;
1733 }
1734
1735 reg_size = strlen(gdb_ctx->params[1].data) / 2;
1736 hextomem(gdbserver_state.mem_buf, gdb_ctx->params[1].data, reg_size);
1737 gdb_write_register(gdbserver_state.g_cpu, gdbserver_state.mem_buf->data,
1738 gdb_ctx->params[0].val_ull);
1739 put_packet("OK");
1740 }
1741
1742 static void handle_get_reg(GdbCmdContext *gdb_ctx, void *user_ctx)
1743 {
1744 int reg_size;
1745
1746 if (!gdb_has_xml) {
1747 put_packet("");
1748 return;
1749 }
1750
1751 if (!gdb_ctx->num_params) {
1752 put_packet("E14");
1753 return;
1754 }
1755
1756 reg_size = gdb_read_register(gdbserver_state.g_cpu,
1757 gdbserver_state.mem_buf,
1758 gdb_ctx->params[0].val_ull);
1759 if (!reg_size) {
1760 put_packet("E14");
1761 return;
1762 } else {
1763 g_byte_array_set_size(gdbserver_state.mem_buf, reg_size);
1764 }
1765
1766 memtohex(gdbserver_state.str_buf, gdbserver_state.mem_buf->data, reg_size);
1767 put_strbuf();
1768 }
1769
1770 static void handle_write_mem(GdbCmdContext *gdb_ctx, void *user_ctx)
1771 {
1772 if (gdb_ctx->num_params != 3) {
1773 put_packet("E22");
1774 return;
1775 }
1776
1777 /* hextomem() reads 2*len bytes */
1778 if (gdb_ctx->params[1].val_ull > strlen(gdb_ctx->params[2].data) / 2) {
1779 put_packet("E22");
1780 return;
1781 }
1782
1783 hextomem(gdbserver_state.mem_buf, gdb_ctx->params[2].data,
1784 gdb_ctx->params[1].val_ull);
1785 if (target_memory_rw_debug(gdbserver_state.g_cpu, gdb_ctx->params[0].val_ull,
1786 gdbserver_state.mem_buf->data,
1787 gdbserver_state.mem_buf->len, true)) {
1788 put_packet("E14");
1789 return;
1790 }
1791
1792 put_packet("OK");
1793 }
1794
1795 static void handle_read_mem(GdbCmdContext *gdb_ctx, void *user_ctx)
1796 {
1797 if (gdb_ctx->num_params != 2) {
1798 put_packet("E22");
1799 return;
1800 }
1801
1802 /* memtohex() doubles the required space */
1803 if (gdb_ctx->params[1].val_ull > MAX_PACKET_LENGTH / 2) {
1804 put_packet("E22");
1805 return;
1806 }
1807
1808 g_byte_array_set_size(gdbserver_state.mem_buf, gdb_ctx->params[1].val_ull);
1809
1810 if (target_memory_rw_debug(gdbserver_state.g_cpu, gdb_ctx->params[0].val_ull,
1811 gdbserver_state.mem_buf->data,
1812 gdbserver_state.mem_buf->len, false)) {
1813 put_packet("E14");
1814 return;
1815 }
1816
1817 memtohex(gdbserver_state.str_buf, gdbserver_state.mem_buf->data,
1818 gdbserver_state.mem_buf->len);
1819 put_strbuf();
1820 }
1821
1822 static void handle_write_all_regs(GdbCmdContext *gdb_ctx, void *user_ctx)
1823 {
1824 target_ulong addr, len;
1825 uint8_t *registers;
1826 int reg_size;
1827
1828 if (!gdb_ctx->num_params) {
1829 return;
1830 }
1831
1832 cpu_synchronize_state(gdbserver_state.g_cpu);
1833 len = strlen(gdb_ctx->params[0].data) / 2;
1834 hextomem(gdbserver_state.mem_buf, gdb_ctx->params[0].data, len);
1835 registers = gdbserver_state.mem_buf->data;
1836 for (addr = 0; addr < gdbserver_state.g_cpu->gdb_num_g_regs && len > 0;
1837 addr++) {
1838 reg_size = gdb_write_register(gdbserver_state.g_cpu, registers, addr);
1839 len -= reg_size;
1840 registers += reg_size;
1841 }
1842 put_packet("OK");
1843 }
1844
1845 static void handle_read_all_regs(GdbCmdContext *gdb_ctx, void *user_ctx)
1846 {
1847 target_ulong addr, len;
1848
1849 cpu_synchronize_state(gdbserver_state.g_cpu);
1850 g_byte_array_set_size(gdbserver_state.mem_buf, 0);
1851 len = 0;
1852 for (addr = 0; addr < gdbserver_state.g_cpu->gdb_num_g_regs; addr++) {
1853 len += gdb_read_register(gdbserver_state.g_cpu,
1854 gdbserver_state.mem_buf,
1855 addr);
1856 }
1857 g_assert(len == gdbserver_state.mem_buf->len);
1858
1859 memtohex(gdbserver_state.str_buf, gdbserver_state.mem_buf->data, len);
1860 put_strbuf();
1861 }
1862
1863 static void handle_file_io(GdbCmdContext *gdb_ctx, void *user_ctx)
1864 {
1865 if (gdb_ctx->num_params >= 1 && gdbserver_state.current_syscall_cb) {
1866 target_ulong ret, err;
1867
1868 ret = (target_ulong)gdb_ctx->params[0].val_ull;
1869 if (gdb_ctx->num_params >= 2) {
1870 err = (target_ulong)gdb_ctx->params[1].val_ull;
1871 } else {
1872 err = 0;
1873 }
1874 gdbserver_state.current_syscall_cb(gdbserver_state.c_cpu, ret, err);
1875 gdbserver_state.current_syscall_cb = NULL;
1876 }
1877
1878 if (gdb_ctx->num_params >= 3 && gdb_ctx->params[2].opcode == (uint8_t)'C') {
1879 put_packet("T02");
1880 return;
1881 }
1882
1883 gdb_continue();
1884 }
1885
1886 static void handle_step(GdbCmdContext *gdb_ctx, void *user_ctx)
1887 {
1888 if (gdb_ctx->num_params) {
1889 gdb_set_cpu_pc((target_ulong)gdb_ctx->params[0].val_ull);
1890 }
1891
1892 cpu_single_step(gdbserver_state.c_cpu, get_sstep_flags());
1893 gdb_continue();
1894 }
1895
1896 static void handle_backward(GdbCmdContext *gdb_ctx, void *user_ctx)
1897 {
1898 if (replay_mode != REPLAY_MODE_PLAY) {
1899 put_packet("E22");
1900 }
1901 if (gdb_ctx->num_params == 1) {
1902 switch (gdb_ctx->params[0].opcode) {
1903 case 's':
1904 if (replay_reverse_step()) {
1905 gdb_continue();
1906 } else {
1907 put_packet("E14");
1908 }
1909 return;
1910 case 'c':
1911 if (replay_reverse_continue()) {
1912 gdb_continue();
1913 } else {
1914 put_packet("E14");
1915 }
1916 return;
1917 }
1918 }
1919
1920 /* Default invalid command */
1921 put_packet("");
1922 }
1923
1924 static void handle_v_cont_query(GdbCmdContext *gdb_ctx, void *user_ctx)
1925 {
1926 put_packet("vCont;c;C;s;S");
1927 }
1928
1929 static void handle_v_cont(GdbCmdContext *gdb_ctx, void *user_ctx)
1930 {
1931 int res;
1932
1933 if (!gdb_ctx->num_params) {
1934 return;
1935 }
1936
1937 res = gdb_handle_vcont(gdb_ctx->params[0].data);
1938 if ((res == -EINVAL) || (res == -ERANGE)) {
1939 put_packet("E22");
1940 } else if (res) {
1941 put_packet("");
1942 }
1943 }
1944
1945 static void handle_v_attach(GdbCmdContext *gdb_ctx, void *user_ctx)
1946 {
1947 GDBProcess *process;
1948 CPUState *cpu;
1949
1950 g_string_assign(gdbserver_state.str_buf, "E22");
1951 if (!gdb_ctx->num_params) {
1952 goto cleanup;
1953 }
1954
1955 process = gdb_get_process(gdb_ctx->params[0].val_ul);
1956 if (!process) {
1957 goto cleanup;
1958 }
1959
1960 cpu = get_first_cpu_in_process(process);
1961 if (!cpu) {
1962 goto cleanup;
1963 }
1964
1965 process->attached = true;
1966 gdbserver_state.g_cpu = cpu;
1967 gdbserver_state.c_cpu = cpu;
1968
1969 g_string_printf(gdbserver_state.str_buf, "T%02xthread:", GDB_SIGNAL_TRAP);
1970 gdb_append_thread_id(cpu, gdbserver_state.str_buf);
1971 g_string_append_c(gdbserver_state.str_buf, ';');
1972 cleanup:
1973 put_strbuf();
1974 }
1975
1976 static void handle_v_kill(GdbCmdContext *gdb_ctx, void *user_ctx)
1977 {
1978 /* Kill the target */
1979 put_packet("OK");
1980 error_report("QEMU: Terminated via GDBstub");
1981 exit(0);
1982 }
1983
1984 static GdbCmdParseEntry gdb_v_commands_table[] = {
1985 /* Order is important if has same prefix */
1986 {
1987 .handler = handle_v_cont_query,
1988 .cmd = "Cont?",
1989 .cmd_startswith = 1
1990 },
1991 {
1992 .handler = handle_v_cont,
1993 .cmd = "Cont",
1994 .cmd_startswith = 1,
1995 .schema = "s0"
1996 },
1997 {
1998 .handler = handle_v_attach,
1999 .cmd = "Attach;",
2000 .cmd_startswith = 1,
2001 .schema = "l0"
2002 },
2003 {
2004 .handler = handle_v_kill,
2005 .cmd = "Kill;",
2006 .cmd_startswith = 1
2007 },
2008 };
2009
2010 static void handle_v_commands(GdbCmdContext *gdb_ctx, void *user_ctx)
2011 {
2012 if (!gdb_ctx->num_params) {
2013 return;
2014 }
2015
2016 if (process_string_cmd(NULL, gdb_ctx->params[0].data,
2017 gdb_v_commands_table,
2018 ARRAY_SIZE(gdb_v_commands_table))) {
2019 put_packet("");
2020 }
2021 }
2022
2023 static void handle_query_qemu_sstepbits(GdbCmdContext *gdb_ctx, void *user_ctx)
2024 {
2025 g_string_printf(gdbserver_state.str_buf, "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
2026 SSTEP_ENABLE, SSTEP_NOIRQ, SSTEP_NOTIMER);
2027 put_strbuf();
2028 }
2029
2030 static void handle_set_qemu_sstep(GdbCmdContext *gdb_ctx, void *user_ctx)
2031 {
2032 if (!gdb_ctx->num_params) {
2033 return;
2034 }
2035
2036 sstep_flags = gdb_ctx->params[0].val_ul;
2037 put_packet("OK");
2038 }
2039
2040 static void handle_query_qemu_sstep(GdbCmdContext *gdb_ctx, void *user_ctx)
2041 {
2042 g_string_printf(gdbserver_state.str_buf, "0x%x", sstep_flags);
2043 put_strbuf();
2044 }
2045
2046 static void handle_query_curr_tid(GdbCmdContext *gdb_ctx, void *user_ctx)
2047 {
2048 CPUState *cpu;
2049 GDBProcess *process;
2050
2051 /*
2052 * "Current thread" remains vague in the spec, so always return
2053 * the first thread of the current process (gdb returns the
2054 * first thread).
2055 */
2056 process = gdb_get_cpu_process(gdbserver_state.g_cpu);
2057 cpu = get_first_cpu_in_process(process);
2058 g_string_assign(gdbserver_state.str_buf, "QC");
2059 gdb_append_thread_id(cpu, gdbserver_state.str_buf);
2060 put_strbuf();
2061 }
2062
2063 static void handle_query_threads(GdbCmdContext *gdb_ctx, void *user_ctx)
2064 {
2065 if (!gdbserver_state.query_cpu) {
2066 put_packet("l");
2067 return;
2068 }
2069
2070 g_string_assign(gdbserver_state.str_buf, "m");
2071 gdb_append_thread_id(gdbserver_state.query_cpu, gdbserver_state.str_buf);
2072 put_strbuf();
2073 gdbserver_state.query_cpu = gdb_next_attached_cpu(gdbserver_state.query_cpu);
2074 }
2075
2076 static void handle_query_first_threads(GdbCmdContext *gdb_ctx, void *user_ctx)
2077 {
2078 gdbserver_state.query_cpu = gdb_first_attached_cpu();
2079 handle_query_threads(gdb_ctx, user_ctx);
2080 }
2081
2082 static void handle_query_thread_extra(GdbCmdContext *gdb_ctx, void *user_ctx)
2083 {
2084 g_autoptr(GString) rs = g_string_new(NULL);
2085 CPUState *cpu;
2086
2087 if (!gdb_ctx->num_params ||
2088 gdb_ctx->params[0].thread_id.kind == GDB_READ_THREAD_ERR) {
2089 put_packet("E22");
2090 return;
2091 }
2092
2093 cpu = gdb_get_cpu(gdb_ctx->params[0].thread_id.pid,
2094 gdb_ctx->params[0].thread_id.tid);
2095 if (!cpu) {
2096 return;
2097 }
2098
2099 cpu_synchronize_state(cpu);
2100
2101 if (gdbserver_state.multiprocess && (gdbserver_state.process_num > 1)) {
2102 /* Print the CPU model and name in multiprocess mode */
2103 ObjectClass *oc = object_get_class(OBJECT(cpu));
2104 const char *cpu_model = object_class_get_name(oc);
2105 const char *cpu_name =
2106 object_get_canonical_path_component(OBJECT(cpu));
2107 g_string_printf(rs, "%s %s [%s]", cpu_model, cpu_name,
2108 cpu->halted ? "halted " : "running");
2109 } else {
2110 g_string_printf(rs, "CPU#%d [%s]", cpu->cpu_index,
2111 cpu->halted ? "halted " : "running");
2112 }
2113 trace_gdbstub_op_extra_info(rs->str);
2114 memtohex(gdbserver_state.str_buf, (uint8_t *)rs->str, rs->len);
2115 put_strbuf();
2116 }
2117
2118 #ifdef CONFIG_USER_ONLY
2119 static void handle_query_offsets(GdbCmdContext *gdb_ctx, void *user_ctx)
2120 {
2121 TaskState *ts;
2122
2123 ts = gdbserver_state.c_cpu->opaque;
2124 g_string_printf(gdbserver_state.str_buf,
2125 "Text=" TARGET_ABI_FMT_lx
2126 ";Data=" TARGET_ABI_FMT_lx
2127 ";Bss=" TARGET_ABI_FMT_lx,
2128 ts->info->code_offset,
2129 ts->info->data_offset,
2130 ts->info->data_offset);
2131 put_strbuf();
2132 }
2133 #else
2134 static void handle_query_rcmd(GdbCmdContext *gdb_ctx, void *user_ctx)
2135 {
2136 const guint8 zero = 0;
2137 int len;
2138
2139 if (!gdb_ctx->num_params) {
2140 put_packet("E22");
2141 return;
2142 }
2143
2144 len = strlen(gdb_ctx->params[0].data);
2145 if (len % 2) {
2146 put_packet("E01");
2147 return;
2148 }
2149
2150 g_assert(gdbserver_state.mem_buf->len == 0);
2151 len = len / 2;
2152 hextomem(gdbserver_state.mem_buf, gdb_ctx->params[0].data, len);
2153 g_byte_array_append(gdbserver_state.mem_buf, &zero, 1);
2154 qemu_chr_be_write(gdbserver_state.mon_chr, gdbserver_state.mem_buf->data,
2155 gdbserver_state.mem_buf->len);
2156 put_packet("OK");
2157 }
2158 #endif
2159
2160 static void handle_query_supported(GdbCmdContext *gdb_ctx, void *user_ctx)
2161 {
2162 CPUClass *cc;
2163
2164 g_string_printf(gdbserver_state.str_buf, "PacketSize=%x", MAX_PACKET_LENGTH);
2165 cc = CPU_GET_CLASS(first_cpu);
2166 if (cc->gdb_core_xml_file) {
2167 g_string_append(gdbserver_state.str_buf, ";qXfer:features:read+");
2168 }
2169
2170 if (replay_mode == REPLAY_MODE_PLAY) {
2171 g_string_append(gdbserver_state.str_buf,
2172 ";ReverseStep+;ReverseContinue+");
2173 }
2174
2175 if (gdb_ctx->num_params &&
2176 strstr(gdb_ctx->params[0].data, "multiprocess+")) {
2177 gdbserver_state.multiprocess = true;
2178 }
2179
2180 g_string_append(gdbserver_state.str_buf, ";vContSupported+;multiprocess+");
2181 put_strbuf();
2182 }
2183
2184 static void handle_query_xfer_features(GdbCmdContext *gdb_ctx, void *user_ctx)
2185 {
2186 GDBProcess *process;
2187 CPUClass *cc;
2188 unsigned long len, total_len, addr;
2189 const char *xml;
2190 const char *p;
2191
2192 if (gdb_ctx->num_params < 3) {
2193 put_packet("E22");
2194 return;
2195 }
2196
2197 process = gdb_get_cpu_process(gdbserver_state.g_cpu);
2198 cc = CPU_GET_CLASS(gdbserver_state.g_cpu);
2199 if (!cc->gdb_core_xml_file) {
2200 put_packet("");
2201 return;
2202 }
2203
2204 gdb_has_xml = true;
2205 p = gdb_ctx->params[0].data;
2206 xml = get_feature_xml(p, &p, process);
2207 if (!xml) {
2208 put_packet("E00");
2209 return;
2210 }
2211
2212 addr = gdb_ctx->params[1].val_ul;
2213 len = gdb_ctx->params[2].val_ul;
2214 total_len = strlen(xml);
2215 if (addr > total_len) {
2216 put_packet("E00");
2217 return;
2218 }
2219
2220 if (len > (MAX_PACKET_LENGTH - 5) / 2) {
2221 len = (MAX_PACKET_LENGTH - 5) / 2;
2222 }
2223
2224 if (len < total_len - addr) {
2225 g_string_assign(gdbserver_state.str_buf, "m");
2226 memtox(gdbserver_state.str_buf, xml + addr, len);
2227 } else {
2228 g_string_assign(gdbserver_state.str_buf, "l");
2229 memtox(gdbserver_state.str_buf, xml + addr, total_len - addr);
2230 }
2231
2232 put_packet_binary(gdbserver_state.str_buf->str,
2233 gdbserver_state.str_buf->len, true);
2234 }
2235
2236 static void handle_query_attached(GdbCmdContext *gdb_ctx, void *user_ctx)
2237 {
2238 put_packet(GDB_ATTACHED);
2239 }
2240
2241 static void handle_query_qemu_supported(GdbCmdContext *gdb_ctx, void *user_ctx)
2242 {
2243 g_string_printf(gdbserver_state.str_buf, "sstepbits;sstep");
2244 #ifndef CONFIG_USER_ONLY
2245 g_string_append(gdbserver_state.str_buf, ";PhyMemMode");
2246 #endif
2247 put_strbuf();
2248 }
2249
2250 #ifndef CONFIG_USER_ONLY
2251 static void handle_query_qemu_phy_mem_mode(GdbCmdContext *gdb_ctx,
2252 void *user_ctx)
2253 {
2254 g_string_printf(gdbserver_state.str_buf, "%d", phy_memory_mode);
2255 put_strbuf();
2256 }
2257
2258 static void handle_set_qemu_phy_mem_mode(GdbCmdContext *gdb_ctx, void *user_ctx)
2259 {
2260 if (!gdb_ctx->num_params) {
2261 put_packet("E22");
2262 return;
2263 }
2264
2265 if (!gdb_ctx->params[0].val_ul) {
2266 phy_memory_mode = 0;
2267 } else {
2268 phy_memory_mode = 1;
2269 }
2270 put_packet("OK");
2271 }
2272 #endif
2273
2274 static GdbCmdParseEntry gdb_gen_query_set_common_table[] = {
2275 /* Order is important if has same prefix */
2276 {
2277 .handler = handle_query_qemu_sstepbits,
2278 .cmd = "qemu.sstepbits",
2279 },
2280 {
2281 .handler = handle_query_qemu_sstep,
2282 .cmd = "qemu.sstep",
2283 },
2284 {
2285 .handler = handle_set_qemu_sstep,
2286 .cmd = "qemu.sstep=",
2287 .cmd_startswith = 1,
2288 .schema = "l0"
2289 },
2290 };
2291
2292 static GdbCmdParseEntry gdb_gen_query_table[] = {
2293 {
2294 .handler = handle_query_curr_tid,
2295 .cmd = "C",
2296 },
2297 {
2298 .handler = handle_query_threads,
2299 .cmd = "sThreadInfo",
2300 },
2301 {
2302 .handler = handle_query_first_threads,
2303 .cmd = "fThreadInfo",
2304 },
2305 {
2306 .handler = handle_query_thread_extra,
2307 .cmd = "ThreadExtraInfo,",
2308 .cmd_startswith = 1,
2309 .schema = "t0"
2310 },
2311 #ifdef CONFIG_USER_ONLY
2312 {
2313 .handler = handle_query_offsets,
2314 .cmd = "Offsets",
2315 },
2316 #else
2317 {
2318 .handler = handle_query_rcmd,
2319 .cmd = "Rcmd,",
2320 .cmd_startswith = 1,
2321 .schema = "s0"
2322 },
2323 #endif
2324 {
2325 .handler = handle_query_supported,
2326 .cmd = "Supported:",
2327 .cmd_startswith = 1,
2328 .schema = "s0"
2329 },
2330 {
2331 .handler = handle_query_supported,
2332 .cmd = "Supported",
2333 .schema = "s0"
2334 },
2335 {
2336 .handler = handle_query_xfer_features,
2337 .cmd = "Xfer:features:read:",
2338 .cmd_startswith = 1,
2339 .schema = "s:l,l0"
2340 },
2341 {
2342 .handler = handle_query_attached,
2343 .cmd = "Attached:",
2344 .cmd_startswith = 1
2345 },
2346 {
2347 .handler = handle_query_attached,
2348 .cmd = "Attached",
2349 },
2350 {
2351 .handler = handle_query_qemu_supported,
2352 .cmd = "qemu.Supported",
2353 },
2354 #ifndef CONFIG_USER_ONLY
2355 {
2356 .handler = handle_query_qemu_phy_mem_mode,
2357 .cmd = "qemu.PhyMemMode",
2358 },
2359 #endif
2360 };
2361
2362 static GdbCmdParseEntry gdb_gen_set_table[] = {
2363 /* Order is important if has same prefix */
2364 {
2365 .handler = handle_set_qemu_sstep,
2366 .cmd = "qemu.sstep:",
2367 .cmd_startswith = 1,
2368 .schema = "l0"
2369 },
2370 #ifndef CONFIG_USER_ONLY
2371 {
2372 .handler = handle_set_qemu_phy_mem_mode,
2373 .cmd = "qemu.PhyMemMode:",
2374 .cmd_startswith = 1,
2375 .schema = "l0"
2376 },
2377 #endif
2378 };
2379
2380 static void handle_gen_query(GdbCmdContext *gdb_ctx, void *user_ctx)
2381 {
2382 if (!gdb_ctx->num_params) {
2383 return;
2384 }
2385
2386 if (!process_string_cmd(NULL, gdb_ctx->params[0].data,
2387 gdb_gen_query_set_common_table,
2388 ARRAY_SIZE(gdb_gen_query_set_common_table))) {
2389 return;
2390 }
2391
2392 if (process_string_cmd(NULL, gdb_ctx->params[0].data,
2393 gdb_gen_query_table,
2394 ARRAY_SIZE(gdb_gen_query_table))) {
2395 put_packet("");
2396 }
2397 }
2398
2399 static void handle_gen_set(GdbCmdContext *gdb_ctx, void *user_ctx)
2400 {
2401 if (!gdb_ctx->num_params) {
2402 return;
2403 }
2404
2405 if (!process_string_cmd(NULL, gdb_ctx->params[0].data,
2406 gdb_gen_query_set_common_table,
2407 ARRAY_SIZE(gdb_gen_query_set_common_table))) {
2408 return;
2409 }
2410
2411 if (process_string_cmd(NULL, gdb_ctx->params[0].data,
2412 gdb_gen_set_table,
2413 ARRAY_SIZE(gdb_gen_set_table))) {
2414 put_packet("");
2415 }
2416 }
2417
2418 static void handle_target_halt(GdbCmdContext *gdb_ctx, void *user_ctx)
2419 {
2420 g_string_printf(gdbserver_state.str_buf, "T%02xthread:", GDB_SIGNAL_TRAP);
2421 gdb_append_thread_id(gdbserver_state.c_cpu, gdbserver_state.str_buf);
2422 g_string_append_c(gdbserver_state.str_buf, ';');
2423 put_strbuf();
2424 /*
2425 * Remove all the breakpoints when this query is issued,
2426 * because gdb is doing an initial connect and the state
2427 * should be cleaned up.
2428 */
2429 gdb_breakpoint_remove_all();
2430 }
2431
2432 static int gdb_handle_packet(const char *line_buf)
2433 {
2434 const GdbCmdParseEntry *cmd_parser = NULL;
2435
2436 trace_gdbstub_io_command(line_buf);
2437
2438 switch (line_buf[0]) {
2439 case '!':
2440 put_packet("OK");
2441 break;
2442 case '?':
2443 {
2444 static const GdbCmdParseEntry target_halted_cmd_desc = {
2445 .handler = handle_target_halt,
2446 .cmd = "?",
2447 .cmd_startswith = 1
2448 };
2449 cmd_parser = &target_halted_cmd_desc;
2450 }
2451 break;
2452 case 'c':
2453 {
2454 static const GdbCmdParseEntry continue_cmd_desc = {
2455 .handler = handle_continue,
2456 .cmd = "c",
2457 .cmd_startswith = 1,
2458 .schema = "L0"
2459 };
2460 cmd_parser = &continue_cmd_desc;
2461 }
2462 break;
2463 case 'C':
2464 {
2465 static const GdbCmdParseEntry cont_with_sig_cmd_desc = {
2466 .handler = handle_cont_with_sig,
2467 .cmd = "C",
2468 .cmd_startswith = 1,
2469 .schema = "l0"
2470 };
2471 cmd_parser = &cont_with_sig_cmd_desc;
2472 }
2473 break;
2474 case 'v':
2475 {
2476 static const GdbCmdParseEntry v_cmd_desc = {
2477 .handler = handle_v_commands,
2478 .cmd = "v",
2479 .cmd_startswith = 1,
2480 .schema = "s0"
2481 };
2482 cmd_parser = &v_cmd_desc;
2483 }
2484 break;
2485 case 'k':
2486 /* Kill the target */
2487 error_report("QEMU: Terminated via GDBstub");
2488 exit(0);
2489 case 'D':
2490 {
2491 static const GdbCmdParseEntry detach_cmd_desc = {
2492 .handler = handle_detach,
2493 .cmd = "D",
2494 .cmd_startswith = 1,
2495 .schema = "?.l0"
2496 };
2497 cmd_parser = &detach_cmd_desc;
2498 }
2499 break;
2500 case 's':
2501 {
2502 static const GdbCmdParseEntry step_cmd_desc = {
2503 .handler = handle_step,
2504 .cmd = "s",
2505 .cmd_startswith = 1,
2506 .schema = "L0"
2507 };
2508 cmd_parser = &step_cmd_desc;
2509 }
2510 break;
2511 case 'b':
2512 {
2513 static const GdbCmdParseEntry backward_cmd_desc = {
2514 .handler = handle_backward,
2515 .cmd = "b",
2516 .cmd_startswith = 1,
2517 .schema = "o0"
2518 };
2519 cmd_parser = &backward_cmd_desc;
2520 }
2521 break;
2522 case 'F':
2523 {
2524 static const GdbCmdParseEntry file_io_cmd_desc = {
2525 .handler = handle_file_io,
2526 .cmd = "F",
2527 .cmd_startswith = 1,
2528 .schema = "L,L,o0"
2529 };
2530 cmd_parser = &file_io_cmd_desc;
2531 }
2532 break;
2533 case 'g':
2534 {
2535 static const GdbCmdParseEntry read_all_regs_cmd_desc = {
2536 .handler = handle_read_all_regs,
2537 .cmd = "g",
2538 .cmd_startswith = 1
2539 };
2540 cmd_parser = &read_all_regs_cmd_desc;
2541 }
2542 break;
2543 case 'G':
2544 {
2545 static const GdbCmdParseEntry write_all_regs_cmd_desc = {
2546 .handler = handle_write_all_regs,
2547 .cmd = "G",
2548 .cmd_startswith = 1,
2549 .schema = "s0"
2550 };
2551 cmd_parser = &write_all_regs_cmd_desc;
2552 }
2553 break;
2554 case 'm':
2555 {
2556 static const GdbCmdParseEntry read_mem_cmd_desc = {
2557 .handler = handle_read_mem,
2558 .cmd = "m",
2559 .cmd_startswith = 1,
2560 .schema = "L,L0"
2561 };
2562 cmd_parser = &read_mem_cmd_desc;
2563 }
2564 break;
2565 case 'M':
2566 {
2567 static const GdbCmdParseEntry write_mem_cmd_desc = {
2568 .handler = handle_write_mem,
2569 .cmd = "M",
2570 .cmd_startswith = 1,
2571 .schema = "L,L:s0"
2572 };
2573 cmd_parser = &write_mem_cmd_desc;
2574 }
2575 break;
2576 case 'p':
2577 {
2578 static const GdbCmdParseEntry get_reg_cmd_desc = {
2579 .handler = handle_get_reg,
2580 .cmd = "p",
2581 .cmd_startswith = 1,
2582 .schema = "L0"
2583 };
2584 cmd_parser = &get_reg_cmd_desc;
2585 }
2586 break;
2587 case 'P':
2588 {
2589 static const GdbCmdParseEntry set_reg_cmd_desc = {
2590 .handler = handle_set_reg,
2591 .cmd = "P",
2592 .cmd_startswith = 1,
2593 .schema = "L?s0"
2594 };
2595 cmd_parser = &set_reg_cmd_desc;
2596 }
2597 break;
2598 case 'Z':
2599 {
2600 static const GdbCmdParseEntry insert_bp_cmd_desc = {
2601 .handler = handle_insert_bp,
2602 .cmd = "Z",
2603 .cmd_startswith = 1,
2604 .schema = "l?L?L0"
2605 };
2606 cmd_parser = &insert_bp_cmd_desc;
2607 }
2608 break;
2609 case 'z':
2610 {
2611 static const GdbCmdParseEntry remove_bp_cmd_desc = {
2612 .handler = handle_remove_bp,
2613 .cmd = "z",
2614 .cmd_startswith = 1,
2615 .schema = "l?L?L0"
2616 };
2617 cmd_parser = &remove_bp_cmd_desc;
2618 }
2619 break;
2620 case 'H':
2621 {
2622 static const GdbCmdParseEntry set_thread_cmd_desc = {
2623 .handler = handle_set_thread,
2624 .cmd = "H",
2625 .cmd_startswith = 1,
2626 .schema = "o.t0"
2627 };
2628 cmd_parser = &set_thread_cmd_desc;
2629 }
2630 break;
2631 case 'T':
2632 {
2633 static const GdbCmdParseEntry thread_alive_cmd_desc = {
2634 .handler = handle_thread_alive,
2635 .cmd = "T",
2636 .cmd_startswith = 1,
2637 .schema = "t0"
2638 };
2639 cmd_parser = &thread_alive_cmd_desc;
2640 }
2641 break;
2642 case 'q':
2643 {
2644 static const GdbCmdParseEntry gen_query_cmd_desc = {
2645 .handler = handle_gen_query,
2646 .cmd = "q",
2647 .cmd_startswith = 1,
2648 .schema = "s0"
2649 };
2650 cmd_parser = &gen_query_cmd_desc;
2651 }
2652 break;
2653 case 'Q':
2654 {
2655 static const GdbCmdParseEntry gen_set_cmd_desc = {
2656 .handler = handle_gen_set,
2657 .cmd = "Q",
2658 .cmd_startswith = 1,
2659 .schema = "s0"
2660 };
2661 cmd_parser = &gen_set_cmd_desc;
2662 }
2663 break;
2664 default:
2665 /* put empty packet */
2666 put_packet("");
2667 break;
2668 }
2669
2670 if (cmd_parser) {
2671 run_cmd_parser(line_buf, cmd_parser);
2672 }
2673
2674 return RS_IDLE;
2675 }
2676
2677 void gdb_set_stop_cpu(CPUState *cpu)
2678 {
2679 GDBProcess *p = gdb_get_cpu_process(cpu);
2680
2681 if (!p->attached) {
2682 /*
2683 * Having a stop CPU corresponding to a process that is not attached
2684 * confuses GDB. So we ignore the request.
2685 */
2686 return;
2687 }
2688
2689 gdbserver_state.c_cpu = cpu;
2690 gdbserver_state.g_cpu = cpu;
2691 }
2692
2693 #ifndef CONFIG_USER_ONLY
2694 static void gdb_vm_state_change(void *opaque, int running, RunState state)
2695 {
2696 CPUState *cpu = gdbserver_state.c_cpu;
2697 g_autoptr(GString) buf = g_string_new(NULL);
2698 g_autoptr(GString) tid = g_string_new(NULL);
2699 const char *type;
2700 int ret;
2701
2702 if (running || gdbserver_state.state == RS_INACTIVE) {
2703 return;
2704 }
2705 /* Is there a GDB syscall waiting to be sent? */
2706 if (gdbserver_state.current_syscall_cb) {
2707 put_packet(gdbserver_state.syscall_buf);
2708 return;
2709 }
2710
2711 if (cpu == NULL) {
2712 /* No process attached */
2713 return;
2714 }
2715
2716 gdb_append_thread_id(cpu, tid);
2717
2718 switch (state) {
2719 case RUN_STATE_DEBUG:
2720 if (cpu->watchpoint_hit) {
2721 switch (cpu->watchpoint_hit->flags & BP_MEM_ACCESS) {
2722 case BP_MEM_READ:
2723 type = "r";
2724 break;
2725 case BP_MEM_ACCESS:
2726 type = "a";
2727 break;
2728 default:
2729 type = "";
2730 break;
2731 }
2732 trace_gdbstub_hit_watchpoint(type, cpu_gdb_index(cpu),
2733 (target_ulong)cpu->watchpoint_hit->vaddr);
2734 g_string_printf(buf, "T%02xthread:%s;%swatch:" TARGET_FMT_lx ";",
2735 GDB_SIGNAL_TRAP, tid->str, type,
2736 (target_ulong)cpu->watchpoint_hit->vaddr);
2737 cpu->watchpoint_hit = NULL;
2738 goto send_packet;
2739 } else {
2740 trace_gdbstub_hit_break();
2741 }
2742 tb_flush(cpu);
2743 ret = GDB_SIGNAL_TRAP;
2744 break;
2745 case RUN_STATE_PAUSED:
2746 trace_gdbstub_hit_paused();
2747 ret = GDB_SIGNAL_INT;
2748 break;
2749 case RUN_STATE_SHUTDOWN:
2750 trace_gdbstub_hit_shutdown();
2751 ret = GDB_SIGNAL_QUIT;
2752 break;
2753 case RUN_STATE_IO_ERROR:
2754 trace_gdbstub_hit_io_error();
2755 ret = GDB_SIGNAL_IO;
2756 break;
2757 case RUN_STATE_WATCHDOG:
2758 trace_gdbstub_hit_watchdog();
2759 ret = GDB_SIGNAL_ALRM;
2760 break;
2761 case RUN_STATE_INTERNAL_ERROR:
2762 trace_gdbstub_hit_internal_error();
2763 ret = GDB_SIGNAL_ABRT;
2764 break;
2765 case RUN_STATE_SAVE_VM:
2766 case RUN_STATE_RESTORE_VM:
2767 return;
2768 case RUN_STATE_FINISH_MIGRATE:
2769 ret = GDB_SIGNAL_XCPU;
2770 break;
2771 default:
2772 trace_gdbstub_hit_unknown(state);
2773 ret = GDB_SIGNAL_UNKNOWN;
2774 break;
2775 }
2776 gdb_set_stop_cpu(cpu);
2777 g_string_printf(buf, "T%02xthread:%s;", ret, tid->str);
2778
2779 send_packet:
2780 put_packet(buf->str);
2781
2782 /* disable single step if it was enabled */
2783 cpu_single_step(cpu, 0);
2784 }
2785 #endif
2786
2787 /* Send a gdb syscall request.
2788 This accepts limited printf-style format specifiers, specifically:
2789 %x - target_ulong argument printed in hex.
2790 %lx - 64-bit argument printed in hex.
2791 %s - string pointer (target_ulong) and length (int) pair. */
2792 void gdb_do_syscallv(gdb_syscall_complete_cb cb, const char *fmt, va_list va)
2793 {
2794 char *p;
2795 char *p_end;
2796 target_ulong addr;
2797 uint64_t i64;
2798
2799 if (!gdbserver_state.init) {
2800 return;
2801 }
2802
2803 gdbserver_state.current_syscall_cb = cb;
2804 #ifndef CONFIG_USER_ONLY
2805 vm_stop(RUN_STATE_DEBUG);
2806 #endif
2807 p = &gdbserver_state.syscall_buf[0];
2808 p_end = &gdbserver_state.syscall_buf[sizeof(gdbserver_state.syscall_buf)];
2809 *(p++) = 'F';
2810 while (*fmt) {
2811 if (*fmt == '%') {
2812 fmt++;
2813 switch (*fmt++) {
2814 case 'x':
2815 addr = va_arg(va, target_ulong);
2816 p += snprintf(p, p_end - p, TARGET_FMT_lx, addr);
2817 break;
2818 case 'l':
2819 if (*(fmt++) != 'x')
2820 goto bad_format;
2821 i64 = va_arg(va, uint64_t);
2822 p += snprintf(p, p_end - p, "%" PRIx64, i64);
2823 break;
2824 case 's':
2825 addr = va_arg(va, target_ulong);
2826 p += snprintf(p, p_end - p, TARGET_FMT_lx "/%x",
2827 addr, va_arg(va, int));
2828 break;
2829 default:
2830 bad_format:
2831 error_report("gdbstub: Bad syscall format string '%s'",
2832 fmt - 1);
2833 break;
2834 }
2835 } else {
2836 *(p++) = *(fmt++);
2837 }
2838 }
2839 *p = 0;
2840 #ifdef CONFIG_USER_ONLY
2841 put_packet(gdbserver_state.syscall_buf);
2842 /* Return control to gdb for it to process the syscall request.
2843 * Since the protocol requires that gdb hands control back to us
2844 * using a "here are the results" F packet, we don't need to check
2845 * gdb_handlesig's return value (which is the signal to deliver if
2846 * execution was resumed via a continue packet).
2847 */
2848 gdb_handlesig(gdbserver_state.c_cpu, 0);
2849 #else
2850 /* In this case wait to send the syscall packet until notification that
2851 the CPU has stopped. This must be done because if the packet is sent
2852 now the reply from the syscall request could be received while the CPU
2853 is still in the running state, which can cause packets to be dropped
2854 and state transition 'T' packets to be sent while the syscall is still
2855 being processed. */
2856 qemu_cpu_kick(gdbserver_state.c_cpu);
2857 #endif
2858 }
2859
2860 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
2861 {
2862 va_list va;
2863
2864 va_start(va, fmt);
2865 gdb_do_syscallv(cb, fmt, va);
2866 va_end(va);
2867 }
2868
2869 static void gdb_read_byte(uint8_t ch)
2870 {
2871 uint8_t reply;
2872
2873 #ifndef CONFIG_USER_ONLY
2874 if (gdbserver_state.last_packet->len) {
2875 /* Waiting for a response to the last packet. If we see the start
2876 of a new command then abandon the previous response. */
2877 if (ch == '-') {
2878 trace_gdbstub_err_got_nack();
2879 put_buffer(gdbserver_state.last_packet->data,
2880 gdbserver_state.last_packet->len);
2881 } else if (ch == '+') {
2882 trace_gdbstub_io_got_ack();
2883 } else {
2884 trace_gdbstub_io_got_unexpected(ch);
2885 }
2886
2887 if (ch == '+' || ch == '$') {
2888 g_byte_array_set_size(gdbserver_state.last_packet, 0);
2889 }
2890 if (ch != '$')
2891 return;
2892 }
2893 if (runstate_is_running()) {
2894 /* when the CPU is running, we cannot do anything except stop
2895 it when receiving a char */
2896 vm_stop(RUN_STATE_PAUSED);
2897 } else
2898 #endif
2899 {
2900 switch(gdbserver_state.state) {
2901 case RS_IDLE:
2902 if (ch == '$') {
2903 /* start of command packet */
2904 gdbserver_state.line_buf_index = 0;
2905 gdbserver_state.line_sum = 0;
2906 gdbserver_state.state = RS_GETLINE;
2907 } else {
2908 trace_gdbstub_err_garbage(ch);
2909 }
2910 break;
2911 case RS_GETLINE:
2912 if (ch == '}') {
2913 /* start escape sequence */
2914 gdbserver_state.state = RS_GETLINE_ESC;
2915 gdbserver_state.line_sum += ch;
2916 } else if (ch == '*') {
2917 /* start run length encoding sequence */
2918 gdbserver_state.state = RS_GETLINE_RLE;
2919 gdbserver_state.line_sum += ch;
2920 } else if (ch == '#') {
2921 /* end of command, start of checksum*/
2922 gdbserver_state.state = RS_CHKSUM1;
2923 } else if (gdbserver_state.line_buf_index >= sizeof(gdbserver_state.line_buf) - 1) {
2924 trace_gdbstub_err_overrun();
2925 gdbserver_state.state = RS_IDLE;
2926 } else {
2927 /* unescaped command character */
2928 gdbserver_state.line_buf[gdbserver_state.line_buf_index++] = ch;
2929 gdbserver_state.line_sum += ch;
2930 }
2931 break;
2932 case RS_GETLINE_ESC:
2933 if (ch == '#') {
2934 /* unexpected end of command in escape sequence */
2935 gdbserver_state.state = RS_CHKSUM1;
2936 } else if (gdbserver_state.line_buf_index >= sizeof(gdbserver_state.line_buf) - 1) {
2937 /* command buffer overrun */
2938 trace_gdbstub_err_overrun();
2939 gdbserver_state.state = RS_IDLE;
2940 } else {
2941 /* parse escaped character and leave escape state */
2942 gdbserver_state.line_buf[gdbserver_state.line_buf_index++] = ch ^ 0x20;
2943 gdbserver_state.line_sum += ch;
2944 gdbserver_state.state = RS_GETLINE;
2945 }
2946 break;
2947 case RS_GETLINE_RLE:
2948 /*
2949 * Run-length encoding is explained in "Debugging with GDB /
2950 * Appendix E GDB Remote Serial Protocol / Overview".
2951 */
2952 if (ch < ' ' || ch == '#' || ch == '$' || ch > 126) {
2953 /* invalid RLE count encoding */
2954 trace_gdbstub_err_invalid_repeat(ch);
2955 gdbserver_state.state = RS_GETLINE;
2956 } else {
2957 /* decode repeat length */
2958 int repeat = ch - ' ' + 3;
2959 if (gdbserver_state.line_buf_index + repeat >= sizeof(gdbserver_state.line_buf) - 1) {
2960 /* that many repeats would overrun the command buffer */
2961 trace_gdbstub_err_overrun();
2962 gdbserver_state.state = RS_IDLE;
2963 } else if (gdbserver_state.line_buf_index < 1) {
2964 /* got a repeat but we have nothing to repeat */
2965 trace_gdbstub_err_invalid_rle();
2966 gdbserver_state.state = RS_GETLINE;
2967 } else {
2968 /* repeat the last character */
2969 memset(gdbserver_state.line_buf + gdbserver_state.line_buf_index,
2970 gdbserver_state.line_buf[gdbserver_state.line_buf_index - 1], repeat);
2971 gdbserver_state.line_buf_index += repeat;
2972 gdbserver_state.line_sum += ch;
2973 gdbserver_state.state = RS_GETLINE;
2974 }
2975 }
2976 break;
2977 case RS_CHKSUM1:
2978 /* get high hex digit of checksum */
2979 if (!isxdigit(ch)) {
2980 trace_gdbstub_err_checksum_invalid(ch);
2981 gdbserver_state.state = RS_GETLINE;
2982 break;
2983 }
2984 gdbserver_state.line_buf[gdbserver_state.line_buf_index] = '\0';
2985 gdbserver_state.line_csum = fromhex(ch) << 4;
2986 gdbserver_state.state = RS_CHKSUM2;
2987 break;
2988 case RS_CHKSUM2:
2989 /* get low hex digit of checksum */
2990 if (!isxdigit(ch)) {
2991 trace_gdbstub_err_checksum_invalid(ch);
2992 gdbserver_state.state = RS_GETLINE;
2993 break;
2994 }
2995 gdbserver_state.line_csum |= fromhex(ch);
2996
2997 if (gdbserver_state.line_csum != (gdbserver_state.line_sum & 0xff)) {
2998 trace_gdbstub_err_checksum_incorrect(gdbserver_state.line_sum, gdbserver_state.line_csum);
2999 /* send NAK reply */
3000 reply = '-';
3001 put_buffer(&reply, 1);
3002 gdbserver_state.state = RS_IDLE;
3003 } else {
3004 /* send ACK reply */
3005 reply = '+';
3006 put_buffer(&reply, 1);
3007 gdbserver_state.state = gdb_handle_packet(gdbserver_state.line_buf);
3008 }
3009 break;
3010 default:
3011 abort();
3012 }
3013 }
3014 }
3015
3016 /* Tell the remote gdb that the process has exited. */
3017 void gdb_exit(CPUArchState *env, int code)
3018 {
3019 char buf[4];
3020
3021 if (!gdbserver_state.init) {
3022 return;
3023 }
3024 #ifdef CONFIG_USER_ONLY
3025 if (gdbserver_state.socket_path) {
3026 unlink(gdbserver_state.socket_path);
3027 }
3028 if (gdbserver_state.fd < 0) {
3029 return;
3030 }
3031 #endif
3032
3033 trace_gdbstub_op_exiting((uint8_t)code);
3034
3035 snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
3036 put_packet(buf);
3037
3038 #ifndef CONFIG_USER_ONLY
3039 qemu_chr_fe_deinit(&gdbserver_state.chr, true);
3040 #endif
3041 }
3042
3043 /*
3044 * Create the process that will contain all the "orphan" CPUs (that are not
3045 * part of a CPU cluster). Note that if this process contains no CPUs, it won't
3046 * be attachable and thus will be invisible to the user.
3047 */
3048 static void create_default_process(GDBState *s)
3049 {
3050 GDBProcess *process;
3051 int max_pid = 0;
3052
3053 if (gdbserver_state.process_num) {
3054 max_pid = s->processes[s->process_num - 1].pid;
3055 }
3056
3057 s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
3058 process = &s->processes[s->process_num - 1];
3059
3060 /* We need an available PID slot for this process */
3061 assert(max_pid < UINT32_MAX);
3062
3063 process->pid = max_pid + 1;
3064 process->attached = false;
3065 process->target_xml[0] = '\0';
3066 }
3067
3068 #ifdef CONFIG_USER_ONLY
3069 int
3070 gdb_handlesig(CPUState *cpu, int sig)
3071 {
3072 char buf[256];
3073 int n;
3074
3075 if (!gdbserver_state.init || gdbserver_state.fd < 0) {
3076 return sig;
3077 }
3078
3079 /* disable single step if it was enabled */
3080 cpu_single_step(cpu, 0);
3081 tb_flush(cpu);
3082
3083 if (sig != 0) {
3084 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb(sig));
3085 put_packet(buf);
3086 }
3087 /* put_packet() might have detected that the peer terminated the
3088 connection. */
3089 if (gdbserver_state.fd < 0) {
3090 return sig;
3091 }
3092
3093 sig = 0;
3094 gdbserver_state.state = RS_IDLE;
3095 gdbserver_state.running_state = 0;
3096 while (gdbserver_state.running_state == 0) {
3097 n = read(gdbserver_state.fd, buf, 256);
3098 if (n > 0) {
3099 int i;
3100
3101 for (i = 0; i < n; i++) {
3102 gdb_read_byte(buf[i]);
3103 }
3104 } else {
3105 /* XXX: Connection closed. Should probably wait for another
3106 connection before continuing. */
3107 if (n == 0) {
3108 close(gdbserver_state.fd);
3109 }
3110 gdbserver_state.fd = -1;
3111 return sig;
3112 }
3113 }
3114 sig = gdbserver_state.signal;
3115 gdbserver_state.signal = 0;
3116 return sig;
3117 }
3118
3119 /* Tell the remote gdb that the process has exited due to SIG. */
3120 void gdb_signalled(CPUArchState *env, int sig)
3121 {
3122 char buf[4];
3123
3124 if (!gdbserver_state.init || gdbserver_state.fd < 0) {
3125 return;
3126 }
3127
3128 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb(sig));
3129 put_packet(buf);
3130 }
3131
3132 static void gdb_accept_init(int fd)
3133 {
3134 init_gdbserver_state();
3135 create_default_process(&gdbserver_state);
3136 gdbserver_state.processes[0].attached = true;
3137 gdbserver_state.c_cpu = gdb_first_attached_cpu();
3138 gdbserver_state.g_cpu = gdbserver_state.c_cpu;
3139 gdbserver_state.fd = fd;
3140 gdb_has_xml = false;
3141 }
3142
3143 static bool gdb_accept_socket(int gdb_fd)
3144 {
3145 int fd;
3146
3147 for(;;) {
3148 fd = accept(gdb_fd, NULL, NULL);
3149 if (fd < 0 && errno != EINTR) {
3150 perror("accept socket");
3151 return false;
3152 } else if (fd >= 0) {
3153 qemu_set_cloexec(fd);
3154 break;
3155 }
3156 }
3157
3158 gdb_accept_init(fd);
3159 return true;
3160 }
3161
3162 static int gdbserver_open_socket(const char *path)
3163 {
3164 struct sockaddr_un sockaddr;
3165 int fd, ret;
3166
3167 fd = socket(AF_UNIX, SOCK_STREAM, 0);
3168 if (fd < 0) {
3169 perror("create socket");
3170 return -1;
3171 }
3172
3173 sockaddr.sun_family = AF_UNIX;
3174 pstrcpy(sockaddr.sun_path, sizeof(sockaddr.sun_path) - 1, path);
3175 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
3176 if (ret < 0) {
3177 perror("bind socket");
3178 close(fd);
3179 return -1;
3180 }
3181 ret = listen(fd, 1);
3182 if (ret < 0) {
3183 perror("listen socket");
3184 close(fd);
3185 return -1;
3186 }
3187
3188 return fd;
3189 }
3190
3191 static bool gdb_accept_tcp(int gdb_fd)
3192 {
3193 struct sockaddr_in sockaddr;
3194 socklen_t len;
3195 int fd;
3196
3197 for(;;) {
3198 len = sizeof(sockaddr);
3199 fd = accept(gdb_fd, (struct sockaddr *)&sockaddr, &len);
3200 if (fd < 0 && errno != EINTR) {
3201 perror("accept");
3202 return false;
3203 } else if (fd >= 0) {
3204 qemu_set_cloexec(fd);
3205 break;
3206 }
3207 }
3208
3209 /* set short latency */
3210 if (socket_set_nodelay(fd)) {
3211 perror("setsockopt");
3212 close(fd);
3213 return false;
3214 }
3215
3216 gdb_accept_init(fd);
3217 return true;
3218 }
3219
3220 static int gdbserver_open_port(int port)
3221 {
3222 struct sockaddr_in sockaddr;
3223 int fd, ret;
3224
3225 fd = socket(PF_INET, SOCK_STREAM, 0);
3226 if (fd < 0) {
3227 perror("socket");
3228 return -1;
3229 }
3230 qemu_set_cloexec(fd);
3231
3232 socket_set_fast_reuse(fd);
3233
3234 sockaddr.sin_family = AF_INET;
3235 sockaddr.sin_port = htons(port);
3236 sockaddr.sin_addr.s_addr = 0;
3237 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
3238 if (ret < 0) {
3239 perror("bind");
3240 close(fd);
3241 return -1;
3242 }
3243 ret = listen(fd, 1);
3244 if (ret < 0) {
3245 perror("listen");
3246 close(fd);
3247 return -1;
3248 }
3249
3250 return fd;
3251 }
3252
3253 int gdbserver_start(const char *port_or_path)
3254 {
3255 int port = g_ascii_strtoull(port_or_path, NULL, 10);
3256 int gdb_fd;
3257
3258 if (port > 0) {
3259 gdb_fd = gdbserver_open_port(port);
3260 } else {
3261 gdb_fd = gdbserver_open_socket(port_or_path);
3262 }
3263
3264 if (gdb_fd < 0) {
3265 return -1;
3266 }
3267
3268 if (port > 0 && gdb_accept_tcp(gdb_fd)) {
3269 return 0;
3270 } else if (gdb_accept_socket(gdb_fd)) {
3271 gdbserver_state.socket_path = g_strdup(port_or_path);
3272 return 0;
3273 }
3274
3275 /* gone wrong */
3276 close(gdb_fd);
3277 return -1;
3278 }
3279
3280 /* Disable gdb stub for child processes. */
3281 void gdbserver_fork(CPUState *cpu)
3282 {
3283 if (!gdbserver_state.init || gdbserver_state.fd < 0) {
3284 return;
3285 }
3286 close(gdbserver_state.fd);
3287 gdbserver_state.fd = -1;
3288 cpu_breakpoint_remove_all(cpu, BP_GDB);
3289 cpu_watchpoint_remove_all(cpu, BP_GDB);
3290 }
3291 #else
3292 static int gdb_chr_can_receive(void *opaque)
3293 {
3294 /* We can handle an arbitrarily large amount of data.
3295 Pick the maximum packet size, which is as good as anything. */
3296 return MAX_PACKET_LENGTH;
3297 }
3298
3299 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
3300 {
3301 int i;
3302
3303 for (i = 0; i < size; i++) {
3304 gdb_read_byte(buf[i]);
3305 }
3306 }
3307
3308 static void gdb_chr_event(void *opaque, QEMUChrEvent event)
3309 {
3310 int i;
3311 GDBState *s = (GDBState *) opaque;
3312
3313 switch (event) {
3314 case CHR_EVENT_OPENED:
3315 /* Start with first process attached, others detached */
3316 for (i = 0; i < s->process_num; i++) {
3317 s->processes[i].attached = !i;
3318 }
3319
3320 s->c_cpu = gdb_first_attached_cpu();
3321 s->g_cpu = s->c_cpu;
3322
3323 vm_stop(RUN_STATE_PAUSED);
3324 replay_gdb_attached();
3325 gdb_has_xml = false;
3326 break;
3327 default:
3328 break;
3329 }
3330 }
3331
3332 static int gdb_monitor_write(Chardev *chr, const uint8_t *buf, int len)
3333 {
3334 g_autoptr(GString) hex_buf = g_string_new("O");
3335 memtohex(hex_buf, buf, len);
3336 put_packet(hex_buf->str);
3337 return len;
3338 }
3339
3340 #ifndef _WIN32
3341 static void gdb_sigterm_handler(int signal)
3342 {
3343 if (runstate_is_running()) {
3344 vm_stop(RUN_STATE_PAUSED);
3345 }
3346 }
3347 #endif
3348
3349 static void gdb_monitor_open(Chardev *chr, ChardevBackend *backend,
3350 bool *be_opened, Error **errp)
3351 {
3352 *be_opened = false;
3353 }
3354
3355 static void char_gdb_class_init(ObjectClass *oc, void *data)
3356 {
3357 ChardevClass *cc = CHARDEV_CLASS(oc);
3358
3359 cc->internal = true;
3360 cc->open = gdb_monitor_open;
3361 cc->chr_write = gdb_monitor_write;
3362 }
3363
3364 #define TYPE_CHARDEV_GDB "chardev-gdb"
3365
3366 static const TypeInfo char_gdb_type_info = {
3367 .name = TYPE_CHARDEV_GDB,
3368 .parent = TYPE_CHARDEV,
3369 .class_init = char_gdb_class_init,
3370 };
3371
3372 static int find_cpu_clusters(Object *child, void *opaque)
3373 {
3374 if (object_dynamic_cast(child, TYPE_CPU_CLUSTER)) {
3375 GDBState *s = (GDBState *) opaque;
3376 CPUClusterState *cluster = CPU_CLUSTER(child);
3377 GDBProcess *process;
3378
3379 s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
3380
3381 process = &s->processes[s->process_num - 1];
3382
3383 /*
3384 * GDB process IDs -1 and 0 are reserved. To avoid subtle errors at
3385 * runtime, we enforce here that the machine does not use a cluster ID
3386 * that would lead to PID 0.
3387 */
3388 assert(cluster->cluster_id != UINT32_MAX);
3389 process->pid = cluster->cluster_id + 1;
3390 process->attached = false;
3391 process->target_xml[0] = '\0';
3392
3393 return 0;
3394 }
3395
3396 return object_child_foreach(child, find_cpu_clusters, opaque);
3397 }
3398
3399 static int pid_order(const void *a, const void *b)
3400 {
3401 GDBProcess *pa = (GDBProcess *) a;
3402 GDBProcess *pb = (GDBProcess *) b;
3403
3404 if (pa->pid < pb->pid) {
3405 return -1;
3406 } else if (pa->pid > pb->pid) {
3407 return 1;
3408 } else {
3409 return 0;
3410 }
3411 }
3412
3413 static void create_processes(GDBState *s)
3414 {
3415 object_child_foreach(object_get_root(), find_cpu_clusters, s);
3416
3417 if (gdbserver_state.processes) {
3418 /* Sort by PID */
3419 qsort(gdbserver_state.processes, gdbserver_state.process_num, sizeof(gdbserver_state.processes[0]), pid_order);
3420 }
3421
3422 create_default_process(s);
3423 }
3424
3425 int gdbserver_start(const char *device)
3426 {
3427 trace_gdbstub_op_start(device);
3428
3429 char gdbstub_device_name[128];
3430 Chardev *chr = NULL;
3431 Chardev *mon_chr;
3432
3433 if (!first_cpu) {
3434 error_report("gdbstub: meaningless to attach gdb to a "
3435 "machine without any CPU.");
3436 return -1;
3437 }
3438
3439 if (!device)
3440 return -1;
3441 if (strcmp(device, "none") != 0) {
3442 if (strstart(device, "tcp:", NULL)) {
3443 /* enforce required TCP attributes */
3444 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
3445 "%s,nowait,nodelay,server", device);
3446 device = gdbstub_device_name;
3447 }
3448 #ifndef _WIN32
3449 else if (strcmp(device, "stdio") == 0) {
3450 struct sigaction act;
3451
3452 memset(&act, 0, sizeof(act));
3453 act.sa_handler = gdb_sigterm_handler;
3454 sigaction(SIGINT, &act, NULL);
3455 }
3456 #endif
3457 /*
3458 * FIXME: it's a bit weird to allow using a mux chardev here
3459 * and implicitly setup a monitor. We may want to break this.
3460 */
3461 chr = qemu_chr_new_noreplay("gdb", device, true, NULL);
3462 if (!chr)
3463 return -1;
3464 }
3465
3466 if (!gdbserver_state.init) {
3467 init_gdbserver_state();
3468
3469 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
3470
3471 /* Initialize a monitor terminal for gdb */
3472 mon_chr = qemu_chardev_new(NULL, TYPE_CHARDEV_GDB,
3473 NULL, NULL, &error_abort);
3474 monitor_init_hmp(mon_chr, false, &error_abort);
3475 } else {
3476 qemu_chr_fe_deinit(&gdbserver_state.chr, true);
3477 mon_chr = gdbserver_state.mon_chr;
3478 reset_gdbserver_state();
3479 }
3480
3481 create_processes(&gdbserver_state);
3482
3483 if (chr) {
3484 qemu_chr_fe_init(&gdbserver_state.chr, chr, &error_abort);
3485 qemu_chr_fe_set_handlers(&gdbserver_state.chr, gdb_chr_can_receive,
3486 gdb_chr_receive, gdb_chr_event,
3487 NULL, &gdbserver_state, NULL, true);
3488 }
3489 gdbserver_state.state = chr ? RS_IDLE : RS_INACTIVE;
3490 gdbserver_state.mon_chr = mon_chr;
3491 gdbserver_state.current_syscall_cb = NULL;
3492
3493 return 0;
3494 }
3495
3496 void gdbserver_cleanup(void)
3497 {
3498 if (gdbserver_state.init) {
3499 put_packet("W00");
3500 }
3501 }
3502
3503 static void register_types(void)
3504 {
3505 type_register_static(&char_gdb_type_info);
3506 }
3507
3508 type_init(register_types);
3509 #endif