Merge remote-tracking branch 'remotes/philmd-gitlab/tags/renesas-20201027' into staging
[qemu.git] / hw / arm / omap1.c
1 /*
2 * TI OMAP processors emulation.
3 *
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/error-report.h"
22 #include "qemu/main-loop.h"
23 #include "qapi/error.h"
24 #include "qemu-common.h"
25 #include "cpu.h"
26 #include "exec/address-spaces.h"
27 #include "hw/boards.h"
28 #include "hw/hw.h"
29 #include "hw/irq.h"
30 #include "hw/qdev-properties.h"
31 #include "hw/arm/boot.h"
32 #include "hw/arm/omap.h"
33 #include "sysemu/blockdev.h"
34 #include "sysemu/sysemu.h"
35 #include "hw/arm/soc_dma.h"
36 #include "sysemu/qtest.h"
37 #include "sysemu/reset.h"
38 #include "sysemu/runstate.h"
39 #include "qemu/range.h"
40 #include "hw/sysbus.h"
41 #include "qemu/cutils.h"
42 #include "qemu/bcd.h"
43
44 static inline void omap_log_badwidth(const char *funcname, hwaddr addr, int sz)
45 {
46 qemu_log_mask(LOG_GUEST_ERROR, "%s: %d-bit register %#08" HWADDR_PRIx "\n",
47 funcname, 8 * sz, addr);
48 }
49
50 /* Should signal the TCMI/GPMC */
51 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
52 {
53 uint8_t ret;
54
55 omap_log_badwidth(__func__, addr, 1);
56 cpu_physical_memory_read(addr, &ret, 1);
57 return ret;
58 }
59
60 void omap_badwidth_write8(void *opaque, hwaddr addr,
61 uint32_t value)
62 {
63 uint8_t val8 = value;
64
65 omap_log_badwidth(__func__, addr, 1);
66 cpu_physical_memory_write(addr, &val8, 1);
67 }
68
69 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
70 {
71 uint16_t ret;
72
73 omap_log_badwidth(__func__, addr, 2);
74 cpu_physical_memory_read(addr, &ret, 2);
75 return ret;
76 }
77
78 void omap_badwidth_write16(void *opaque, hwaddr addr,
79 uint32_t value)
80 {
81 uint16_t val16 = value;
82
83 omap_log_badwidth(__func__, addr, 2);
84 cpu_physical_memory_write(addr, &val16, 2);
85 }
86
87 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
88 {
89 uint32_t ret;
90
91 omap_log_badwidth(__func__, addr, 4);
92 cpu_physical_memory_read(addr, &ret, 4);
93 return ret;
94 }
95
96 void omap_badwidth_write32(void *opaque, hwaddr addr,
97 uint32_t value)
98 {
99 omap_log_badwidth(__func__, addr, 4);
100 cpu_physical_memory_write(addr, &value, 4);
101 }
102
103 /* MPU OS timers */
104 struct omap_mpu_timer_s {
105 MemoryRegion iomem;
106 qemu_irq irq;
107 omap_clk clk;
108 uint32_t val;
109 int64_t time;
110 QEMUTimer *timer;
111 QEMUBH *tick;
112 int64_t rate;
113 int it_ena;
114
115 int enable;
116 int ptv;
117 int ar;
118 int st;
119 uint32_t reset_val;
120 };
121
122 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
123 {
124 uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
125
126 if (timer->st && timer->enable && timer->rate)
127 return timer->val - muldiv64(distance >> (timer->ptv + 1),
128 timer->rate, NANOSECONDS_PER_SECOND);
129 else
130 return timer->val;
131 }
132
133 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
134 {
135 timer->val = omap_timer_read(timer);
136 timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
137 }
138
139 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
140 {
141 int64_t expires;
142
143 if (timer->enable && timer->st && timer->rate) {
144 timer->val = timer->reset_val; /* Should skip this on clk enable */
145 expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
146 NANOSECONDS_PER_SECOND, timer->rate);
147
148 /* If timer expiry would be sooner than in about 1 ms and
149 * auto-reload isn't set, then fire immediately. This is a hack
150 * to make systems like PalmOS run in acceptable time. PalmOS
151 * sets the interval to a very low value and polls the status bit
152 * in a busy loop when it wants to sleep just a couple of CPU
153 * ticks. */
154 if (expires > (NANOSECONDS_PER_SECOND >> 10) || timer->ar) {
155 timer_mod(timer->timer, timer->time + expires);
156 } else {
157 qemu_bh_schedule(timer->tick);
158 }
159 } else
160 timer_del(timer->timer);
161 }
162
163 static void omap_timer_fire(void *opaque)
164 {
165 struct omap_mpu_timer_s *timer = opaque;
166
167 if (!timer->ar) {
168 timer->val = 0;
169 timer->st = 0;
170 }
171
172 if (timer->it_ena)
173 /* Edge-triggered irq */
174 qemu_irq_pulse(timer->irq);
175 }
176
177 static void omap_timer_tick(void *opaque)
178 {
179 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
180
181 omap_timer_sync(timer);
182 omap_timer_fire(timer);
183 omap_timer_update(timer);
184 }
185
186 static void omap_timer_clk_update(void *opaque, int line, int on)
187 {
188 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
189
190 omap_timer_sync(timer);
191 timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
192 omap_timer_update(timer);
193 }
194
195 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
196 {
197 omap_clk_adduser(timer->clk,
198 qemu_allocate_irq(omap_timer_clk_update, timer, 0));
199 timer->rate = omap_clk_getrate(timer->clk);
200 }
201
202 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
203 unsigned size)
204 {
205 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
206
207 if (size != 4) {
208 return omap_badwidth_read32(opaque, addr);
209 }
210
211 switch (addr) {
212 case 0x00: /* CNTL_TIMER */
213 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
214
215 case 0x04: /* LOAD_TIM */
216 break;
217
218 case 0x08: /* READ_TIM */
219 return omap_timer_read(s);
220 }
221
222 OMAP_BAD_REG(addr);
223 return 0;
224 }
225
226 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
227 uint64_t value, unsigned size)
228 {
229 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
230
231 if (size != 4) {
232 omap_badwidth_write32(opaque, addr, value);
233 return;
234 }
235
236 switch (addr) {
237 case 0x00: /* CNTL_TIMER */
238 omap_timer_sync(s);
239 s->enable = (value >> 5) & 1;
240 s->ptv = (value >> 2) & 7;
241 s->ar = (value >> 1) & 1;
242 s->st = value & 1;
243 omap_timer_update(s);
244 return;
245
246 case 0x04: /* LOAD_TIM */
247 s->reset_val = value;
248 return;
249
250 case 0x08: /* READ_TIM */
251 OMAP_RO_REG(addr);
252 break;
253
254 default:
255 OMAP_BAD_REG(addr);
256 }
257 }
258
259 static const MemoryRegionOps omap_mpu_timer_ops = {
260 .read = omap_mpu_timer_read,
261 .write = omap_mpu_timer_write,
262 .endianness = DEVICE_LITTLE_ENDIAN,
263 };
264
265 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
266 {
267 timer_del(s->timer);
268 s->enable = 0;
269 s->reset_val = 31337;
270 s->val = 0;
271 s->ptv = 0;
272 s->ar = 0;
273 s->st = 0;
274 s->it_ena = 1;
275 }
276
277 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
278 hwaddr base,
279 qemu_irq irq, omap_clk clk)
280 {
281 struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
282
283 s->irq = irq;
284 s->clk = clk;
285 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
286 s->tick = qemu_bh_new(omap_timer_fire, s);
287 omap_mpu_timer_reset(s);
288 omap_timer_clk_setup(s);
289
290 memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
291 "omap-mpu-timer", 0x100);
292
293 memory_region_add_subregion(system_memory, base, &s->iomem);
294
295 return s;
296 }
297
298 /* Watchdog timer */
299 struct omap_watchdog_timer_s {
300 struct omap_mpu_timer_s timer;
301 MemoryRegion iomem;
302 uint8_t last_wr;
303 int mode;
304 int free;
305 int reset;
306 };
307
308 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
309 unsigned size)
310 {
311 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
312
313 if (size != 2) {
314 return omap_badwidth_read16(opaque, addr);
315 }
316
317 switch (addr) {
318 case 0x00: /* CNTL_TIMER */
319 return (s->timer.ptv << 9) | (s->timer.ar << 8) |
320 (s->timer.st << 7) | (s->free << 1);
321
322 case 0x04: /* READ_TIMER */
323 return omap_timer_read(&s->timer);
324
325 case 0x08: /* TIMER_MODE */
326 return s->mode << 15;
327 }
328
329 OMAP_BAD_REG(addr);
330 return 0;
331 }
332
333 static void omap_wd_timer_write(void *opaque, hwaddr addr,
334 uint64_t value, unsigned size)
335 {
336 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
337
338 if (size != 2) {
339 omap_badwidth_write16(opaque, addr, value);
340 return;
341 }
342
343 switch (addr) {
344 case 0x00: /* CNTL_TIMER */
345 omap_timer_sync(&s->timer);
346 s->timer.ptv = (value >> 9) & 7;
347 s->timer.ar = (value >> 8) & 1;
348 s->timer.st = (value >> 7) & 1;
349 s->free = (value >> 1) & 1;
350 omap_timer_update(&s->timer);
351 break;
352
353 case 0x04: /* LOAD_TIMER */
354 s->timer.reset_val = value & 0xffff;
355 break;
356
357 case 0x08: /* TIMER_MODE */
358 if (!s->mode && ((value >> 15) & 1))
359 omap_clk_get(s->timer.clk);
360 s->mode |= (value >> 15) & 1;
361 if (s->last_wr == 0xf5) {
362 if ((value & 0xff) == 0xa0) {
363 if (s->mode) {
364 s->mode = 0;
365 omap_clk_put(s->timer.clk);
366 }
367 } else {
368 /* XXX: on T|E hardware somehow this has no effect,
369 * on Zire 71 it works as specified. */
370 s->reset = 1;
371 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
372 }
373 }
374 s->last_wr = value & 0xff;
375 break;
376
377 default:
378 OMAP_BAD_REG(addr);
379 }
380 }
381
382 static const MemoryRegionOps omap_wd_timer_ops = {
383 .read = omap_wd_timer_read,
384 .write = omap_wd_timer_write,
385 .endianness = DEVICE_NATIVE_ENDIAN,
386 };
387
388 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
389 {
390 timer_del(s->timer.timer);
391 if (!s->mode)
392 omap_clk_get(s->timer.clk);
393 s->mode = 1;
394 s->free = 1;
395 s->reset = 0;
396 s->timer.enable = 1;
397 s->timer.it_ena = 1;
398 s->timer.reset_val = 0xffff;
399 s->timer.val = 0;
400 s->timer.st = 0;
401 s->timer.ptv = 0;
402 s->timer.ar = 0;
403 omap_timer_update(&s->timer);
404 }
405
406 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
407 hwaddr base,
408 qemu_irq irq, omap_clk clk)
409 {
410 struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
411
412 s->timer.irq = irq;
413 s->timer.clk = clk;
414 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
415 omap_wd_timer_reset(s);
416 omap_timer_clk_setup(&s->timer);
417
418 memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
419 "omap-wd-timer", 0x100);
420 memory_region_add_subregion(memory, base, &s->iomem);
421
422 return s;
423 }
424
425 /* 32-kHz timer */
426 struct omap_32khz_timer_s {
427 struct omap_mpu_timer_s timer;
428 MemoryRegion iomem;
429 };
430
431 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
432 unsigned size)
433 {
434 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
435 int offset = addr & OMAP_MPUI_REG_MASK;
436
437 if (size != 4) {
438 return omap_badwidth_read32(opaque, addr);
439 }
440
441 switch (offset) {
442 case 0x00: /* TVR */
443 return s->timer.reset_val;
444
445 case 0x04: /* TCR */
446 return omap_timer_read(&s->timer);
447
448 case 0x08: /* CR */
449 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
450
451 default:
452 break;
453 }
454 OMAP_BAD_REG(addr);
455 return 0;
456 }
457
458 static void omap_os_timer_write(void *opaque, hwaddr addr,
459 uint64_t value, unsigned size)
460 {
461 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
462 int offset = addr & OMAP_MPUI_REG_MASK;
463
464 if (size != 4) {
465 omap_badwidth_write32(opaque, addr, value);
466 return;
467 }
468
469 switch (offset) {
470 case 0x00: /* TVR */
471 s->timer.reset_val = value & 0x00ffffff;
472 break;
473
474 case 0x04: /* TCR */
475 OMAP_RO_REG(addr);
476 break;
477
478 case 0x08: /* CR */
479 s->timer.ar = (value >> 3) & 1;
480 s->timer.it_ena = (value >> 2) & 1;
481 if (s->timer.st != (value & 1) || (value & 2)) {
482 omap_timer_sync(&s->timer);
483 s->timer.enable = value & 1;
484 s->timer.st = value & 1;
485 omap_timer_update(&s->timer);
486 }
487 break;
488
489 default:
490 OMAP_BAD_REG(addr);
491 }
492 }
493
494 static const MemoryRegionOps omap_os_timer_ops = {
495 .read = omap_os_timer_read,
496 .write = omap_os_timer_write,
497 .endianness = DEVICE_NATIVE_ENDIAN,
498 };
499
500 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
501 {
502 timer_del(s->timer.timer);
503 s->timer.enable = 0;
504 s->timer.it_ena = 0;
505 s->timer.reset_val = 0x00ffffff;
506 s->timer.val = 0;
507 s->timer.st = 0;
508 s->timer.ptv = 0;
509 s->timer.ar = 1;
510 }
511
512 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
513 hwaddr base,
514 qemu_irq irq, omap_clk clk)
515 {
516 struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
517
518 s->timer.irq = irq;
519 s->timer.clk = clk;
520 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
521 omap_os_timer_reset(s);
522 omap_timer_clk_setup(&s->timer);
523
524 memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
525 "omap-os-timer", 0x800);
526 memory_region_add_subregion(memory, base, &s->iomem);
527
528 return s;
529 }
530
531 /* Ultra Low-Power Device Module */
532 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
533 unsigned size)
534 {
535 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
536 uint16_t ret;
537
538 if (size != 2) {
539 return omap_badwidth_read16(opaque, addr);
540 }
541
542 switch (addr) {
543 case 0x14: /* IT_STATUS */
544 ret = s->ulpd_pm_regs[addr >> 2];
545 s->ulpd_pm_regs[addr >> 2] = 0;
546 qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
547 return ret;
548
549 case 0x18: /* Reserved */
550 case 0x1c: /* Reserved */
551 case 0x20: /* Reserved */
552 case 0x28: /* Reserved */
553 case 0x2c: /* Reserved */
554 OMAP_BAD_REG(addr);
555 /* fall through */
556 case 0x00: /* COUNTER_32_LSB */
557 case 0x04: /* COUNTER_32_MSB */
558 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
559 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
560 case 0x10: /* GAUGING_CTRL */
561 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
562 case 0x30: /* CLOCK_CTRL */
563 case 0x34: /* SOFT_REQ */
564 case 0x38: /* COUNTER_32_FIQ */
565 case 0x3c: /* DPLL_CTRL */
566 case 0x40: /* STATUS_REQ */
567 /* XXX: check clk::usecount state for every clock */
568 case 0x48: /* LOCL_TIME */
569 case 0x4c: /* APLL_CTRL */
570 case 0x50: /* POWER_CTRL */
571 return s->ulpd_pm_regs[addr >> 2];
572 }
573
574 OMAP_BAD_REG(addr);
575 return 0;
576 }
577
578 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
579 uint16_t diff, uint16_t value)
580 {
581 if (diff & (1 << 4)) /* USB_MCLK_EN */
582 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
583 if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
584 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
585 }
586
587 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
588 uint16_t diff, uint16_t value)
589 {
590 if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
591 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
592 if (diff & (1 << 1)) /* SOFT_COM_REQ */
593 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
594 if (diff & (1 << 2)) /* SOFT_SDW_REQ */
595 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
596 if (diff & (1 << 3)) /* SOFT_USB_REQ */
597 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
598 }
599
600 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
601 uint64_t value, unsigned size)
602 {
603 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
604 int64_t now, ticks;
605 int div, mult;
606 static const int bypass_div[4] = { 1, 2, 4, 4 };
607 uint16_t diff;
608
609 if (size != 2) {
610 omap_badwidth_write16(opaque, addr, value);
611 return;
612 }
613
614 switch (addr) {
615 case 0x00: /* COUNTER_32_LSB */
616 case 0x04: /* COUNTER_32_MSB */
617 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
618 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
619 case 0x14: /* IT_STATUS */
620 case 0x40: /* STATUS_REQ */
621 OMAP_RO_REG(addr);
622 break;
623
624 case 0x10: /* GAUGING_CTRL */
625 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
626 if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
627 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
628
629 if (value & 1)
630 s->ulpd_gauge_start = now;
631 else {
632 now -= s->ulpd_gauge_start;
633
634 /* 32-kHz ticks */
635 ticks = muldiv64(now, 32768, NANOSECONDS_PER_SECOND);
636 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
637 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
638 if (ticks >> 32) /* OVERFLOW_32K */
639 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
640
641 /* High frequency ticks */
642 ticks = muldiv64(now, 12000000, NANOSECONDS_PER_SECOND);
643 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
644 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
645 if (ticks >> 32) /* OVERFLOW_HI_FREQ */
646 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
647
648 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
649 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
650 }
651 }
652 s->ulpd_pm_regs[addr >> 2] = value;
653 break;
654
655 case 0x18: /* Reserved */
656 case 0x1c: /* Reserved */
657 case 0x20: /* Reserved */
658 case 0x28: /* Reserved */
659 case 0x2c: /* Reserved */
660 OMAP_BAD_REG(addr);
661 /* fall through */
662 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
663 case 0x38: /* COUNTER_32_FIQ */
664 case 0x48: /* LOCL_TIME */
665 case 0x50: /* POWER_CTRL */
666 s->ulpd_pm_regs[addr >> 2] = value;
667 break;
668
669 case 0x30: /* CLOCK_CTRL */
670 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
671 s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
672 omap_ulpd_clk_update(s, diff, value);
673 break;
674
675 case 0x34: /* SOFT_REQ */
676 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
677 s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
678 omap_ulpd_req_update(s, diff, value);
679 break;
680
681 case 0x3c: /* DPLL_CTRL */
682 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
683 * omitted altogether, probably a typo. */
684 /* This register has identical semantics with DPLL(1:3) control
685 * registers, see omap_dpll_write() */
686 diff = s->ulpd_pm_regs[addr >> 2] & value;
687 s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
688 if (diff & (0x3ff << 2)) {
689 if (value & (1 << 4)) { /* PLL_ENABLE */
690 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
691 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
692 } else {
693 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
694 mult = 1;
695 }
696 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
697 }
698
699 /* Enter the desired mode. */
700 s->ulpd_pm_regs[addr >> 2] =
701 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
702 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
703
704 /* Act as if the lock is restored. */
705 s->ulpd_pm_regs[addr >> 2] |= 2;
706 break;
707
708 case 0x4c: /* APLL_CTRL */
709 diff = s->ulpd_pm_regs[addr >> 2] & value;
710 s->ulpd_pm_regs[addr >> 2] = value & 0xf;
711 if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
712 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
713 (value & (1 << 0)) ? "apll" : "dpll4"));
714 break;
715
716 default:
717 OMAP_BAD_REG(addr);
718 }
719 }
720
721 static const MemoryRegionOps omap_ulpd_pm_ops = {
722 .read = omap_ulpd_pm_read,
723 .write = omap_ulpd_pm_write,
724 .endianness = DEVICE_NATIVE_ENDIAN,
725 };
726
727 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
728 {
729 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
730 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
731 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
732 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
733 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
734 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
735 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
736 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
737 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
738 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
739 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
740 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
741 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
742 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
743 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
744 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
745 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
746 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
747 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
748 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
749 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
750 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
751 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
752 }
753
754 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
755 hwaddr base,
756 struct omap_mpu_state_s *mpu)
757 {
758 memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
759 "omap-ulpd-pm", 0x800);
760 memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
761 omap_ulpd_pm_reset(mpu);
762 }
763
764 /* OMAP Pin Configuration */
765 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
766 unsigned size)
767 {
768 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
769
770 if (size != 4) {
771 return omap_badwidth_read32(opaque, addr);
772 }
773
774 switch (addr) {
775 case 0x00: /* FUNC_MUX_CTRL_0 */
776 case 0x04: /* FUNC_MUX_CTRL_1 */
777 case 0x08: /* FUNC_MUX_CTRL_2 */
778 return s->func_mux_ctrl[addr >> 2];
779
780 case 0x0c: /* COMP_MODE_CTRL_0 */
781 return s->comp_mode_ctrl[0];
782
783 case 0x10: /* FUNC_MUX_CTRL_3 */
784 case 0x14: /* FUNC_MUX_CTRL_4 */
785 case 0x18: /* FUNC_MUX_CTRL_5 */
786 case 0x1c: /* FUNC_MUX_CTRL_6 */
787 case 0x20: /* FUNC_MUX_CTRL_7 */
788 case 0x24: /* FUNC_MUX_CTRL_8 */
789 case 0x28: /* FUNC_MUX_CTRL_9 */
790 case 0x2c: /* FUNC_MUX_CTRL_A */
791 case 0x30: /* FUNC_MUX_CTRL_B */
792 case 0x34: /* FUNC_MUX_CTRL_C */
793 case 0x38: /* FUNC_MUX_CTRL_D */
794 return s->func_mux_ctrl[(addr >> 2) - 1];
795
796 case 0x40: /* PULL_DWN_CTRL_0 */
797 case 0x44: /* PULL_DWN_CTRL_1 */
798 case 0x48: /* PULL_DWN_CTRL_2 */
799 case 0x4c: /* PULL_DWN_CTRL_3 */
800 return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
801
802 case 0x50: /* GATE_INH_CTRL_0 */
803 return s->gate_inh_ctrl[0];
804
805 case 0x60: /* VOLTAGE_CTRL_0 */
806 return s->voltage_ctrl[0];
807
808 case 0x70: /* TEST_DBG_CTRL_0 */
809 return s->test_dbg_ctrl[0];
810
811 case 0x80: /* MOD_CONF_CTRL_0 */
812 return s->mod_conf_ctrl[0];
813 }
814
815 OMAP_BAD_REG(addr);
816 return 0;
817 }
818
819 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
820 uint32_t diff, uint32_t value)
821 {
822 if (s->compat1509) {
823 if (diff & (1 << 9)) /* BLUETOOTH */
824 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
825 (~value >> 9) & 1);
826 if (diff & (1 << 7)) /* USB.CLKO */
827 omap_clk_onoff(omap_findclk(s, "usb.clko"),
828 (value >> 7) & 1);
829 }
830 }
831
832 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
833 uint32_t diff, uint32_t value)
834 {
835 if (s->compat1509) {
836 if (diff & (1U << 31)) {
837 /* MCBSP3_CLK_HIZ_DI */
838 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
839 }
840 if (diff & (1 << 1)) {
841 /* CLK32K */
842 omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
843 }
844 }
845 }
846
847 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
848 uint32_t diff, uint32_t value)
849 {
850 if (diff & (1U << 31)) {
851 /* CONF_MOD_UART3_CLK_MODE_R */
852 omap_clk_reparent(omap_findclk(s, "uart3_ck"),
853 omap_findclk(s, ((value >> 31) & 1) ?
854 "ck_48m" : "armper_ck"));
855 }
856 if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
857 omap_clk_reparent(omap_findclk(s, "uart2_ck"),
858 omap_findclk(s, ((value >> 30) & 1) ?
859 "ck_48m" : "armper_ck"));
860 if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
861 omap_clk_reparent(omap_findclk(s, "uart1_ck"),
862 omap_findclk(s, ((value >> 29) & 1) ?
863 "ck_48m" : "armper_ck"));
864 if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
865 omap_clk_reparent(omap_findclk(s, "mmc_ck"),
866 omap_findclk(s, ((value >> 23) & 1) ?
867 "ck_48m" : "armper_ck"));
868 if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
869 omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
870 omap_findclk(s, ((value >> 12) & 1) ?
871 "ck_48m" : "armper_ck"));
872 if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
873 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
874 }
875
876 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
877 uint64_t value, unsigned size)
878 {
879 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
880 uint32_t diff;
881
882 if (size != 4) {
883 omap_badwidth_write32(opaque, addr, value);
884 return;
885 }
886
887 switch (addr) {
888 case 0x00: /* FUNC_MUX_CTRL_0 */
889 diff = s->func_mux_ctrl[addr >> 2] ^ value;
890 s->func_mux_ctrl[addr >> 2] = value;
891 omap_pin_funcmux0_update(s, diff, value);
892 return;
893
894 case 0x04: /* FUNC_MUX_CTRL_1 */
895 diff = s->func_mux_ctrl[addr >> 2] ^ value;
896 s->func_mux_ctrl[addr >> 2] = value;
897 omap_pin_funcmux1_update(s, diff, value);
898 return;
899
900 case 0x08: /* FUNC_MUX_CTRL_2 */
901 s->func_mux_ctrl[addr >> 2] = value;
902 return;
903
904 case 0x0c: /* COMP_MODE_CTRL_0 */
905 s->comp_mode_ctrl[0] = value;
906 s->compat1509 = (value != 0x0000eaef);
907 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
908 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
909 return;
910
911 case 0x10: /* FUNC_MUX_CTRL_3 */
912 case 0x14: /* FUNC_MUX_CTRL_4 */
913 case 0x18: /* FUNC_MUX_CTRL_5 */
914 case 0x1c: /* FUNC_MUX_CTRL_6 */
915 case 0x20: /* FUNC_MUX_CTRL_7 */
916 case 0x24: /* FUNC_MUX_CTRL_8 */
917 case 0x28: /* FUNC_MUX_CTRL_9 */
918 case 0x2c: /* FUNC_MUX_CTRL_A */
919 case 0x30: /* FUNC_MUX_CTRL_B */
920 case 0x34: /* FUNC_MUX_CTRL_C */
921 case 0x38: /* FUNC_MUX_CTRL_D */
922 s->func_mux_ctrl[(addr >> 2) - 1] = value;
923 return;
924
925 case 0x40: /* PULL_DWN_CTRL_0 */
926 case 0x44: /* PULL_DWN_CTRL_1 */
927 case 0x48: /* PULL_DWN_CTRL_2 */
928 case 0x4c: /* PULL_DWN_CTRL_3 */
929 s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
930 return;
931
932 case 0x50: /* GATE_INH_CTRL_0 */
933 s->gate_inh_ctrl[0] = value;
934 return;
935
936 case 0x60: /* VOLTAGE_CTRL_0 */
937 s->voltage_ctrl[0] = value;
938 return;
939
940 case 0x70: /* TEST_DBG_CTRL_0 */
941 s->test_dbg_ctrl[0] = value;
942 return;
943
944 case 0x80: /* MOD_CONF_CTRL_0 */
945 diff = s->mod_conf_ctrl[0] ^ value;
946 s->mod_conf_ctrl[0] = value;
947 omap_pin_modconf1_update(s, diff, value);
948 return;
949
950 default:
951 OMAP_BAD_REG(addr);
952 }
953 }
954
955 static const MemoryRegionOps omap_pin_cfg_ops = {
956 .read = omap_pin_cfg_read,
957 .write = omap_pin_cfg_write,
958 .endianness = DEVICE_NATIVE_ENDIAN,
959 };
960
961 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
962 {
963 /* Start in Compatibility Mode. */
964 mpu->compat1509 = 1;
965 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
966 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
967 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
968 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
969 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
970 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
971 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
972 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
973 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
974 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
975 }
976
977 static void omap_pin_cfg_init(MemoryRegion *system_memory,
978 hwaddr base,
979 struct omap_mpu_state_s *mpu)
980 {
981 memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
982 "omap-pin-cfg", 0x800);
983 memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
984 omap_pin_cfg_reset(mpu);
985 }
986
987 /* Device Identification, Die Identification */
988 static uint64_t omap_id_read(void *opaque, hwaddr addr,
989 unsigned size)
990 {
991 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
992
993 if (size != 4) {
994 return omap_badwidth_read32(opaque, addr);
995 }
996
997 switch (addr) {
998 case 0xfffe1800: /* DIE_ID_LSB */
999 return 0xc9581f0e;
1000 case 0xfffe1804: /* DIE_ID_MSB */
1001 return 0xa8858bfa;
1002
1003 case 0xfffe2000: /* PRODUCT_ID_LSB */
1004 return 0x00aaaafc;
1005 case 0xfffe2004: /* PRODUCT_ID_MSB */
1006 return 0xcafeb574;
1007
1008 case 0xfffed400: /* JTAG_ID_LSB */
1009 switch (s->mpu_model) {
1010 case omap310:
1011 return 0x03310315;
1012 case omap1510:
1013 return 0x03310115;
1014 default:
1015 hw_error("%s: bad mpu model\n", __func__);
1016 }
1017 break;
1018
1019 case 0xfffed404: /* JTAG_ID_MSB */
1020 switch (s->mpu_model) {
1021 case omap310:
1022 return 0xfb57402f;
1023 case omap1510:
1024 return 0xfb47002f;
1025 default:
1026 hw_error("%s: bad mpu model\n", __func__);
1027 }
1028 break;
1029 }
1030
1031 OMAP_BAD_REG(addr);
1032 return 0;
1033 }
1034
1035 static void omap_id_write(void *opaque, hwaddr addr,
1036 uint64_t value, unsigned size)
1037 {
1038 if (size != 4) {
1039 omap_badwidth_write32(opaque, addr, value);
1040 return;
1041 }
1042
1043 OMAP_BAD_REG(addr);
1044 }
1045
1046 static const MemoryRegionOps omap_id_ops = {
1047 .read = omap_id_read,
1048 .write = omap_id_write,
1049 .endianness = DEVICE_NATIVE_ENDIAN,
1050 };
1051
1052 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1053 {
1054 memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1055 "omap-id", 0x100000000ULL);
1056 memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1057 0xfffe1800, 0x800);
1058 memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1059 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1060 0xfffed400, 0x100);
1061 memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1062 if (!cpu_is_omap15xx(mpu)) {
1063 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1064 &mpu->id_iomem, 0xfffe2000, 0x800);
1065 memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1066 }
1067 }
1068
1069 /* MPUI Control (Dummy) */
1070 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1071 unsigned size)
1072 {
1073 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1074
1075 if (size != 4) {
1076 return omap_badwidth_read32(opaque, addr);
1077 }
1078
1079 switch (addr) {
1080 case 0x00: /* CTRL */
1081 return s->mpui_ctrl;
1082 case 0x04: /* DEBUG_ADDR */
1083 return 0x01ffffff;
1084 case 0x08: /* DEBUG_DATA */
1085 return 0xffffffff;
1086 case 0x0c: /* DEBUG_FLAG */
1087 return 0x00000800;
1088 case 0x10: /* STATUS */
1089 return 0x00000000;
1090
1091 /* Not in OMAP310 */
1092 case 0x14: /* DSP_STATUS */
1093 case 0x18: /* DSP_BOOT_CONFIG */
1094 return 0x00000000;
1095 case 0x1c: /* DSP_MPUI_CONFIG */
1096 return 0x0000ffff;
1097 }
1098
1099 OMAP_BAD_REG(addr);
1100 return 0;
1101 }
1102
1103 static void omap_mpui_write(void *opaque, hwaddr addr,
1104 uint64_t value, unsigned size)
1105 {
1106 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1107
1108 if (size != 4) {
1109 omap_badwidth_write32(opaque, addr, value);
1110 return;
1111 }
1112
1113 switch (addr) {
1114 case 0x00: /* CTRL */
1115 s->mpui_ctrl = value & 0x007fffff;
1116 break;
1117
1118 case 0x04: /* DEBUG_ADDR */
1119 case 0x08: /* DEBUG_DATA */
1120 case 0x0c: /* DEBUG_FLAG */
1121 case 0x10: /* STATUS */
1122 /* Not in OMAP310 */
1123 case 0x14: /* DSP_STATUS */
1124 OMAP_RO_REG(addr);
1125 break;
1126 case 0x18: /* DSP_BOOT_CONFIG */
1127 case 0x1c: /* DSP_MPUI_CONFIG */
1128 break;
1129
1130 default:
1131 OMAP_BAD_REG(addr);
1132 }
1133 }
1134
1135 static const MemoryRegionOps omap_mpui_ops = {
1136 .read = omap_mpui_read,
1137 .write = omap_mpui_write,
1138 .endianness = DEVICE_NATIVE_ENDIAN,
1139 };
1140
1141 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1142 {
1143 s->mpui_ctrl = 0x0003ff1b;
1144 }
1145
1146 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1147 struct omap_mpu_state_s *mpu)
1148 {
1149 memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1150 "omap-mpui", 0x100);
1151 memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1152
1153 omap_mpui_reset(mpu);
1154 }
1155
1156 /* TIPB Bridges */
1157 struct omap_tipb_bridge_s {
1158 qemu_irq abort;
1159 MemoryRegion iomem;
1160
1161 int width_intr;
1162 uint16_t control;
1163 uint16_t alloc;
1164 uint16_t buffer;
1165 uint16_t enh_control;
1166 };
1167
1168 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1169 unsigned size)
1170 {
1171 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1172
1173 if (size < 2) {
1174 return omap_badwidth_read16(opaque, addr);
1175 }
1176
1177 switch (addr) {
1178 case 0x00: /* TIPB_CNTL */
1179 return s->control;
1180 case 0x04: /* TIPB_BUS_ALLOC */
1181 return s->alloc;
1182 case 0x08: /* MPU_TIPB_CNTL */
1183 return s->buffer;
1184 case 0x0c: /* ENHANCED_TIPB_CNTL */
1185 return s->enh_control;
1186 case 0x10: /* ADDRESS_DBG */
1187 case 0x14: /* DATA_DEBUG_LOW */
1188 case 0x18: /* DATA_DEBUG_HIGH */
1189 return 0xffff;
1190 case 0x1c: /* DEBUG_CNTR_SIG */
1191 return 0x00f8;
1192 }
1193
1194 OMAP_BAD_REG(addr);
1195 return 0;
1196 }
1197
1198 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1199 uint64_t value, unsigned size)
1200 {
1201 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1202
1203 if (size < 2) {
1204 omap_badwidth_write16(opaque, addr, value);
1205 return;
1206 }
1207
1208 switch (addr) {
1209 case 0x00: /* TIPB_CNTL */
1210 s->control = value & 0xffff;
1211 break;
1212
1213 case 0x04: /* TIPB_BUS_ALLOC */
1214 s->alloc = value & 0x003f;
1215 break;
1216
1217 case 0x08: /* MPU_TIPB_CNTL */
1218 s->buffer = value & 0x0003;
1219 break;
1220
1221 case 0x0c: /* ENHANCED_TIPB_CNTL */
1222 s->width_intr = !(value & 2);
1223 s->enh_control = value & 0x000f;
1224 break;
1225
1226 case 0x10: /* ADDRESS_DBG */
1227 case 0x14: /* DATA_DEBUG_LOW */
1228 case 0x18: /* DATA_DEBUG_HIGH */
1229 case 0x1c: /* DEBUG_CNTR_SIG */
1230 OMAP_RO_REG(addr);
1231 break;
1232
1233 default:
1234 OMAP_BAD_REG(addr);
1235 }
1236 }
1237
1238 static const MemoryRegionOps omap_tipb_bridge_ops = {
1239 .read = omap_tipb_bridge_read,
1240 .write = omap_tipb_bridge_write,
1241 .endianness = DEVICE_NATIVE_ENDIAN,
1242 };
1243
1244 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1245 {
1246 s->control = 0xffff;
1247 s->alloc = 0x0009;
1248 s->buffer = 0x0000;
1249 s->enh_control = 0x000f;
1250 }
1251
1252 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1253 MemoryRegion *memory, hwaddr base,
1254 qemu_irq abort_irq, omap_clk clk)
1255 {
1256 struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
1257
1258 s->abort = abort_irq;
1259 omap_tipb_bridge_reset(s);
1260
1261 memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1262 "omap-tipb-bridge", 0x100);
1263 memory_region_add_subregion(memory, base, &s->iomem);
1264
1265 return s;
1266 }
1267
1268 /* Dummy Traffic Controller's Memory Interface */
1269 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1270 unsigned size)
1271 {
1272 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1273 uint32_t ret;
1274
1275 if (size != 4) {
1276 return omap_badwidth_read32(opaque, addr);
1277 }
1278
1279 switch (addr) {
1280 case 0x00: /* IMIF_PRIO */
1281 case 0x04: /* EMIFS_PRIO */
1282 case 0x08: /* EMIFF_PRIO */
1283 case 0x0c: /* EMIFS_CONFIG */
1284 case 0x10: /* EMIFS_CS0_CONFIG */
1285 case 0x14: /* EMIFS_CS1_CONFIG */
1286 case 0x18: /* EMIFS_CS2_CONFIG */
1287 case 0x1c: /* EMIFS_CS3_CONFIG */
1288 case 0x24: /* EMIFF_MRS */
1289 case 0x28: /* TIMEOUT1 */
1290 case 0x2c: /* TIMEOUT2 */
1291 case 0x30: /* TIMEOUT3 */
1292 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1293 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1294 return s->tcmi_regs[addr >> 2];
1295
1296 case 0x20: /* EMIFF_SDRAM_CONFIG */
1297 ret = s->tcmi_regs[addr >> 2];
1298 s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1299 /* XXX: We can try using the VGA_DIRTY flag for this */
1300 return ret;
1301 }
1302
1303 OMAP_BAD_REG(addr);
1304 return 0;
1305 }
1306
1307 static void omap_tcmi_write(void *opaque, hwaddr addr,
1308 uint64_t value, unsigned size)
1309 {
1310 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1311
1312 if (size != 4) {
1313 omap_badwidth_write32(opaque, addr, value);
1314 return;
1315 }
1316
1317 switch (addr) {
1318 case 0x00: /* IMIF_PRIO */
1319 case 0x04: /* EMIFS_PRIO */
1320 case 0x08: /* EMIFF_PRIO */
1321 case 0x10: /* EMIFS_CS0_CONFIG */
1322 case 0x14: /* EMIFS_CS1_CONFIG */
1323 case 0x18: /* EMIFS_CS2_CONFIG */
1324 case 0x1c: /* EMIFS_CS3_CONFIG */
1325 case 0x20: /* EMIFF_SDRAM_CONFIG */
1326 case 0x24: /* EMIFF_MRS */
1327 case 0x28: /* TIMEOUT1 */
1328 case 0x2c: /* TIMEOUT2 */
1329 case 0x30: /* TIMEOUT3 */
1330 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1331 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1332 s->tcmi_regs[addr >> 2] = value;
1333 break;
1334 case 0x0c: /* EMIFS_CONFIG */
1335 s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1336 break;
1337
1338 default:
1339 OMAP_BAD_REG(addr);
1340 }
1341 }
1342
1343 static const MemoryRegionOps omap_tcmi_ops = {
1344 .read = omap_tcmi_read,
1345 .write = omap_tcmi_write,
1346 .endianness = DEVICE_NATIVE_ENDIAN,
1347 };
1348
1349 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1350 {
1351 mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1352 mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1353 mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1354 mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1355 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1356 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1357 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1358 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1359 mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1360 mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1361 mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1362 mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1363 mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1364 mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1365 mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1366 }
1367
1368 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1369 struct omap_mpu_state_s *mpu)
1370 {
1371 memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1372 "omap-tcmi", 0x100);
1373 memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1374 omap_tcmi_reset(mpu);
1375 }
1376
1377 /* Digital phase-locked loops control */
1378 struct dpll_ctl_s {
1379 MemoryRegion iomem;
1380 uint16_t mode;
1381 omap_clk dpll;
1382 };
1383
1384 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1385 unsigned size)
1386 {
1387 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1388
1389 if (size != 2) {
1390 return omap_badwidth_read16(opaque, addr);
1391 }
1392
1393 if (addr == 0x00) /* CTL_REG */
1394 return s->mode;
1395
1396 OMAP_BAD_REG(addr);
1397 return 0;
1398 }
1399
1400 static void omap_dpll_write(void *opaque, hwaddr addr,
1401 uint64_t value, unsigned size)
1402 {
1403 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1404 uint16_t diff;
1405 static const int bypass_div[4] = { 1, 2, 4, 4 };
1406 int div, mult;
1407
1408 if (size != 2) {
1409 omap_badwidth_write16(opaque, addr, value);
1410 return;
1411 }
1412
1413 if (addr == 0x00) { /* CTL_REG */
1414 /* See omap_ulpd_pm_write() too */
1415 diff = s->mode & value;
1416 s->mode = value & 0x2fff;
1417 if (diff & (0x3ff << 2)) {
1418 if (value & (1 << 4)) { /* PLL_ENABLE */
1419 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1420 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1421 } else {
1422 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1423 mult = 1;
1424 }
1425 omap_clk_setrate(s->dpll, div, mult);
1426 }
1427
1428 /* Enter the desired mode. */
1429 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1430
1431 /* Act as if the lock is restored. */
1432 s->mode |= 2;
1433 } else {
1434 OMAP_BAD_REG(addr);
1435 }
1436 }
1437
1438 static const MemoryRegionOps omap_dpll_ops = {
1439 .read = omap_dpll_read,
1440 .write = omap_dpll_write,
1441 .endianness = DEVICE_NATIVE_ENDIAN,
1442 };
1443
1444 static void omap_dpll_reset(struct dpll_ctl_s *s)
1445 {
1446 s->mode = 0x2002;
1447 omap_clk_setrate(s->dpll, 1, 1);
1448 }
1449
1450 static struct dpll_ctl_s *omap_dpll_init(MemoryRegion *memory,
1451 hwaddr base, omap_clk clk)
1452 {
1453 struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1454 memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1455
1456 s->dpll = clk;
1457 omap_dpll_reset(s);
1458
1459 memory_region_add_subregion(memory, base, &s->iomem);
1460 return s;
1461 }
1462
1463 /* MPU Clock/Reset/Power Mode Control */
1464 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1465 unsigned size)
1466 {
1467 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1468
1469 if (size != 2) {
1470 return omap_badwidth_read16(opaque, addr);
1471 }
1472
1473 switch (addr) {
1474 case 0x00: /* ARM_CKCTL */
1475 return s->clkm.arm_ckctl;
1476
1477 case 0x04: /* ARM_IDLECT1 */
1478 return s->clkm.arm_idlect1;
1479
1480 case 0x08: /* ARM_IDLECT2 */
1481 return s->clkm.arm_idlect2;
1482
1483 case 0x0c: /* ARM_EWUPCT */
1484 return s->clkm.arm_ewupct;
1485
1486 case 0x10: /* ARM_RSTCT1 */
1487 return s->clkm.arm_rstct1;
1488
1489 case 0x14: /* ARM_RSTCT2 */
1490 return s->clkm.arm_rstct2;
1491
1492 case 0x18: /* ARM_SYSST */
1493 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1494
1495 case 0x1c: /* ARM_CKOUT1 */
1496 return s->clkm.arm_ckout1;
1497
1498 case 0x20: /* ARM_CKOUT2 */
1499 break;
1500 }
1501
1502 OMAP_BAD_REG(addr);
1503 return 0;
1504 }
1505
1506 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1507 uint16_t diff, uint16_t value)
1508 {
1509 omap_clk clk;
1510
1511 if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
1512 if (value & (1 << 14))
1513 /* Reserved */;
1514 else {
1515 clk = omap_findclk(s, "arminth_ck");
1516 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1517 }
1518 }
1519 if (diff & (1 << 12)) { /* ARM_TIMXO */
1520 clk = omap_findclk(s, "armtim_ck");
1521 if (value & (1 << 12))
1522 omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1523 else
1524 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1525 }
1526 /* XXX: en_dspck */
1527 if (diff & (3 << 10)) { /* DSPMMUDIV */
1528 clk = omap_findclk(s, "dspmmu_ck");
1529 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1530 }
1531 if (diff & (3 << 8)) { /* TCDIV */
1532 clk = omap_findclk(s, "tc_ck");
1533 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1534 }
1535 if (diff & (3 << 6)) { /* DSPDIV */
1536 clk = omap_findclk(s, "dsp_ck");
1537 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1538 }
1539 if (diff & (3 << 4)) { /* ARMDIV */
1540 clk = omap_findclk(s, "arm_ck");
1541 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1542 }
1543 if (diff & (3 << 2)) { /* LCDDIV */
1544 clk = omap_findclk(s, "lcd_ck");
1545 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1546 }
1547 if (diff & (3 << 0)) { /* PERDIV */
1548 clk = omap_findclk(s, "armper_ck");
1549 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1550 }
1551 }
1552
1553 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1554 uint16_t diff, uint16_t value)
1555 {
1556 omap_clk clk;
1557
1558 if (value & (1 << 11)) { /* SETARM_IDLE */
1559 cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1560 }
1561 if (!(value & (1 << 10))) { /* WKUP_MODE */
1562 /* XXX: disable wakeup from IRQ */
1563 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1564 }
1565
1566 #define SET_CANIDLE(clock, bit) \
1567 if (diff & (1 << bit)) { \
1568 clk = omap_findclk(s, clock); \
1569 omap_clk_canidle(clk, (value >> bit) & 1); \
1570 }
1571 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
1572 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
1573 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
1574 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
1575 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
1576 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
1577 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
1578 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
1579 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
1580 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
1581 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
1582 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
1583 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
1584 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
1585 }
1586
1587 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1588 uint16_t diff, uint16_t value)
1589 {
1590 omap_clk clk;
1591
1592 #define SET_ONOFF(clock, bit) \
1593 if (diff & (1 << bit)) { \
1594 clk = omap_findclk(s, clock); \
1595 omap_clk_onoff(clk, (value >> bit) & 1); \
1596 }
1597 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
1598 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
1599 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
1600 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
1601 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
1602 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
1603 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
1604 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
1605 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
1606 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
1607 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
1608 }
1609
1610 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1611 uint16_t diff, uint16_t value)
1612 {
1613 omap_clk clk;
1614
1615 if (diff & (3 << 4)) { /* TCLKOUT */
1616 clk = omap_findclk(s, "tclk_out");
1617 switch ((value >> 4) & 3) {
1618 case 1:
1619 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1620 omap_clk_onoff(clk, 1);
1621 break;
1622 case 2:
1623 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1624 omap_clk_onoff(clk, 1);
1625 break;
1626 default:
1627 omap_clk_onoff(clk, 0);
1628 }
1629 }
1630 if (diff & (3 << 2)) { /* DCLKOUT */
1631 clk = omap_findclk(s, "dclk_out");
1632 switch ((value >> 2) & 3) {
1633 case 0:
1634 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1635 break;
1636 case 1:
1637 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1638 break;
1639 case 2:
1640 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1641 break;
1642 case 3:
1643 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1644 break;
1645 }
1646 }
1647 if (diff & (3 << 0)) { /* ACLKOUT */
1648 clk = omap_findclk(s, "aclk_out");
1649 switch ((value >> 0) & 3) {
1650 case 1:
1651 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1652 omap_clk_onoff(clk, 1);
1653 break;
1654 case 2:
1655 omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1656 omap_clk_onoff(clk, 1);
1657 break;
1658 case 3:
1659 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1660 omap_clk_onoff(clk, 1);
1661 break;
1662 default:
1663 omap_clk_onoff(clk, 0);
1664 }
1665 }
1666 }
1667
1668 static void omap_clkm_write(void *opaque, hwaddr addr,
1669 uint64_t value, unsigned size)
1670 {
1671 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1672 uint16_t diff;
1673 omap_clk clk;
1674 static const char *clkschemename[8] = {
1675 "fully synchronous", "fully asynchronous", "synchronous scalable",
1676 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1677 };
1678
1679 if (size != 2) {
1680 omap_badwidth_write16(opaque, addr, value);
1681 return;
1682 }
1683
1684 switch (addr) {
1685 case 0x00: /* ARM_CKCTL */
1686 diff = s->clkm.arm_ckctl ^ value;
1687 s->clkm.arm_ckctl = value & 0x7fff;
1688 omap_clkm_ckctl_update(s, diff, value);
1689 return;
1690
1691 case 0x04: /* ARM_IDLECT1 */
1692 diff = s->clkm.arm_idlect1 ^ value;
1693 s->clkm.arm_idlect1 = value & 0x0fff;
1694 omap_clkm_idlect1_update(s, diff, value);
1695 return;
1696
1697 case 0x08: /* ARM_IDLECT2 */
1698 diff = s->clkm.arm_idlect2 ^ value;
1699 s->clkm.arm_idlect2 = value & 0x07ff;
1700 omap_clkm_idlect2_update(s, diff, value);
1701 return;
1702
1703 case 0x0c: /* ARM_EWUPCT */
1704 s->clkm.arm_ewupct = value & 0x003f;
1705 return;
1706
1707 case 0x10: /* ARM_RSTCT1 */
1708 diff = s->clkm.arm_rstct1 ^ value;
1709 s->clkm.arm_rstct1 = value & 0x0007;
1710 if (value & 9) {
1711 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1712 s->clkm.cold_start = 0xa;
1713 }
1714 if (diff & ~value & 4) { /* DSP_RST */
1715 omap_mpui_reset(s);
1716 omap_tipb_bridge_reset(s->private_tipb);
1717 omap_tipb_bridge_reset(s->public_tipb);
1718 }
1719 if (diff & 2) { /* DSP_EN */
1720 clk = omap_findclk(s, "dsp_ck");
1721 omap_clk_canidle(clk, (~value >> 1) & 1);
1722 }
1723 return;
1724
1725 case 0x14: /* ARM_RSTCT2 */
1726 s->clkm.arm_rstct2 = value & 0x0001;
1727 return;
1728
1729 case 0x18: /* ARM_SYSST */
1730 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1731 s->clkm.clocking_scheme = (value >> 11) & 7;
1732 printf("%s: clocking scheme set to %s\n", __func__,
1733 clkschemename[s->clkm.clocking_scheme]);
1734 }
1735 s->clkm.cold_start &= value & 0x3f;
1736 return;
1737
1738 case 0x1c: /* ARM_CKOUT1 */
1739 diff = s->clkm.arm_ckout1 ^ value;
1740 s->clkm.arm_ckout1 = value & 0x003f;
1741 omap_clkm_ckout1_update(s, diff, value);
1742 return;
1743
1744 case 0x20: /* ARM_CKOUT2 */
1745 default:
1746 OMAP_BAD_REG(addr);
1747 }
1748 }
1749
1750 static const MemoryRegionOps omap_clkm_ops = {
1751 .read = omap_clkm_read,
1752 .write = omap_clkm_write,
1753 .endianness = DEVICE_NATIVE_ENDIAN,
1754 };
1755
1756 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1757 unsigned size)
1758 {
1759 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1760 CPUState *cpu = CPU(s->cpu);
1761
1762 if (size != 2) {
1763 return omap_badwidth_read16(opaque, addr);
1764 }
1765
1766 switch (addr) {
1767 case 0x04: /* DSP_IDLECT1 */
1768 return s->clkm.dsp_idlect1;
1769
1770 case 0x08: /* DSP_IDLECT2 */
1771 return s->clkm.dsp_idlect2;
1772
1773 case 0x14: /* DSP_RSTCT2 */
1774 return s->clkm.dsp_rstct2;
1775
1776 case 0x18: /* DSP_SYSST */
1777 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1778 (cpu->halted << 6); /* Quite useless... */
1779 }
1780
1781 OMAP_BAD_REG(addr);
1782 return 0;
1783 }
1784
1785 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1786 uint16_t diff, uint16_t value)
1787 {
1788 omap_clk clk;
1789
1790 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
1791 }
1792
1793 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1794 uint16_t diff, uint16_t value)
1795 {
1796 omap_clk clk;
1797
1798 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
1799 }
1800
1801 static void omap_clkdsp_write(void *opaque, hwaddr addr,
1802 uint64_t value, unsigned size)
1803 {
1804 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1805 uint16_t diff;
1806
1807 if (size != 2) {
1808 omap_badwidth_write16(opaque, addr, value);
1809 return;
1810 }
1811
1812 switch (addr) {
1813 case 0x04: /* DSP_IDLECT1 */
1814 diff = s->clkm.dsp_idlect1 ^ value;
1815 s->clkm.dsp_idlect1 = value & 0x01f7;
1816 omap_clkdsp_idlect1_update(s, diff, value);
1817 break;
1818
1819 case 0x08: /* DSP_IDLECT2 */
1820 s->clkm.dsp_idlect2 = value & 0x0037;
1821 diff = s->clkm.dsp_idlect1 ^ value;
1822 omap_clkdsp_idlect2_update(s, diff, value);
1823 break;
1824
1825 case 0x14: /* DSP_RSTCT2 */
1826 s->clkm.dsp_rstct2 = value & 0x0001;
1827 break;
1828
1829 case 0x18: /* DSP_SYSST */
1830 s->clkm.cold_start &= value & 0x3f;
1831 break;
1832
1833 default:
1834 OMAP_BAD_REG(addr);
1835 }
1836 }
1837
1838 static const MemoryRegionOps omap_clkdsp_ops = {
1839 .read = omap_clkdsp_read,
1840 .write = omap_clkdsp_write,
1841 .endianness = DEVICE_NATIVE_ENDIAN,
1842 };
1843
1844 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1845 {
1846 if (s->wdt && s->wdt->reset)
1847 s->clkm.cold_start = 0x6;
1848 s->clkm.clocking_scheme = 0;
1849 omap_clkm_ckctl_update(s, ~0, 0x3000);
1850 s->clkm.arm_ckctl = 0x3000;
1851 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1852 s->clkm.arm_idlect1 = 0x0400;
1853 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1854 s->clkm.arm_idlect2 = 0x0100;
1855 s->clkm.arm_ewupct = 0x003f;
1856 s->clkm.arm_rstct1 = 0x0000;
1857 s->clkm.arm_rstct2 = 0x0000;
1858 s->clkm.arm_ckout1 = 0x0015;
1859 s->clkm.dpll1_mode = 0x2002;
1860 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1861 s->clkm.dsp_idlect1 = 0x0040;
1862 omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1863 s->clkm.dsp_idlect2 = 0x0000;
1864 s->clkm.dsp_rstct2 = 0x0000;
1865 }
1866
1867 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1868 hwaddr dsp_base, struct omap_mpu_state_s *s)
1869 {
1870 memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1871 "omap-clkm", 0x100);
1872 memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1873 "omap-clkdsp", 0x1000);
1874
1875 s->clkm.arm_idlect1 = 0x03ff;
1876 s->clkm.arm_idlect2 = 0x0100;
1877 s->clkm.dsp_idlect1 = 0x0002;
1878 omap_clkm_reset(s);
1879 s->clkm.cold_start = 0x3a;
1880
1881 memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1882 memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1883 }
1884
1885 /* MPU I/O */
1886 struct omap_mpuio_s {
1887 qemu_irq irq;
1888 qemu_irq kbd_irq;
1889 qemu_irq *in;
1890 qemu_irq handler[16];
1891 qemu_irq wakeup;
1892 MemoryRegion iomem;
1893
1894 uint16_t inputs;
1895 uint16_t outputs;
1896 uint16_t dir;
1897 uint16_t edge;
1898 uint16_t mask;
1899 uint16_t ints;
1900
1901 uint16_t debounce;
1902 uint16_t latch;
1903 uint8_t event;
1904
1905 uint8_t buttons[5];
1906 uint8_t row_latch;
1907 uint8_t cols;
1908 int kbd_mask;
1909 int clk;
1910 };
1911
1912 static void omap_mpuio_set(void *opaque, int line, int level)
1913 {
1914 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1915 uint16_t prev = s->inputs;
1916
1917 if (level)
1918 s->inputs |= 1 << line;
1919 else
1920 s->inputs &= ~(1 << line);
1921
1922 if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1923 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1924 s->ints |= 1 << line;
1925 qemu_irq_raise(s->irq);
1926 /* TODO: wakeup */
1927 }
1928 if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
1929 (s->event >> 1) == line) /* PIN_SELECT */
1930 s->latch = s->inputs;
1931 }
1932 }
1933
1934 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1935 {
1936 int i;
1937 uint8_t *row, rows = 0, cols = ~s->cols;
1938
1939 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1940 if (*row & cols)
1941 rows |= i;
1942
1943 qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1944 s->row_latch = ~rows;
1945 }
1946
1947 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1948 unsigned size)
1949 {
1950 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1951 int offset = addr & OMAP_MPUI_REG_MASK;
1952 uint16_t ret;
1953
1954 if (size != 2) {
1955 return omap_badwidth_read16(opaque, addr);
1956 }
1957
1958 switch (offset) {
1959 case 0x00: /* INPUT_LATCH */
1960 return s->inputs;
1961
1962 case 0x04: /* OUTPUT_REG */
1963 return s->outputs;
1964
1965 case 0x08: /* IO_CNTL */
1966 return s->dir;
1967
1968 case 0x10: /* KBR_LATCH */
1969 return s->row_latch;
1970
1971 case 0x14: /* KBC_REG */
1972 return s->cols;
1973
1974 case 0x18: /* GPIO_EVENT_MODE_REG */
1975 return s->event;
1976
1977 case 0x1c: /* GPIO_INT_EDGE_REG */
1978 return s->edge;
1979
1980 case 0x20: /* KBD_INT */
1981 return (~s->row_latch & 0x1f) && !s->kbd_mask;
1982
1983 case 0x24: /* GPIO_INT */
1984 ret = s->ints;
1985 s->ints &= s->mask;
1986 if (ret)
1987 qemu_irq_lower(s->irq);
1988 return ret;
1989
1990 case 0x28: /* KBD_MASKIT */
1991 return s->kbd_mask;
1992
1993 case 0x2c: /* GPIO_MASKIT */
1994 return s->mask;
1995
1996 case 0x30: /* GPIO_DEBOUNCING_REG */
1997 return s->debounce;
1998
1999 case 0x34: /* GPIO_LATCH_REG */
2000 return s->latch;
2001 }
2002
2003 OMAP_BAD_REG(addr);
2004 return 0;
2005 }
2006
2007 static void omap_mpuio_write(void *opaque, hwaddr addr,
2008 uint64_t value, unsigned size)
2009 {
2010 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2011 int offset = addr & OMAP_MPUI_REG_MASK;
2012 uint16_t diff;
2013 int ln;
2014
2015 if (size != 2) {
2016 omap_badwidth_write16(opaque, addr, value);
2017 return;
2018 }
2019
2020 switch (offset) {
2021 case 0x04: /* OUTPUT_REG */
2022 diff = (s->outputs ^ value) & ~s->dir;
2023 s->outputs = value;
2024 while ((ln = ctz32(diff)) != 32) {
2025 if (s->handler[ln])
2026 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2027 diff &= ~(1 << ln);
2028 }
2029 break;
2030
2031 case 0x08: /* IO_CNTL */
2032 diff = s->outputs & (s->dir ^ value);
2033 s->dir = value;
2034
2035 value = s->outputs & ~s->dir;
2036 while ((ln = ctz32(diff)) != 32) {
2037 if (s->handler[ln])
2038 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2039 diff &= ~(1 << ln);
2040 }
2041 break;
2042
2043 case 0x14: /* KBC_REG */
2044 s->cols = value;
2045 omap_mpuio_kbd_update(s);
2046 break;
2047
2048 case 0x18: /* GPIO_EVENT_MODE_REG */
2049 s->event = value & 0x1f;
2050 break;
2051
2052 case 0x1c: /* GPIO_INT_EDGE_REG */
2053 s->edge = value;
2054 break;
2055
2056 case 0x28: /* KBD_MASKIT */
2057 s->kbd_mask = value & 1;
2058 omap_mpuio_kbd_update(s);
2059 break;
2060
2061 case 0x2c: /* GPIO_MASKIT */
2062 s->mask = value;
2063 break;
2064
2065 case 0x30: /* GPIO_DEBOUNCING_REG */
2066 s->debounce = value & 0x1ff;
2067 break;
2068
2069 case 0x00: /* INPUT_LATCH */
2070 case 0x10: /* KBR_LATCH */
2071 case 0x20: /* KBD_INT */
2072 case 0x24: /* GPIO_INT */
2073 case 0x34: /* GPIO_LATCH_REG */
2074 OMAP_RO_REG(addr);
2075 return;
2076
2077 default:
2078 OMAP_BAD_REG(addr);
2079 return;
2080 }
2081 }
2082
2083 static const MemoryRegionOps omap_mpuio_ops = {
2084 .read = omap_mpuio_read,
2085 .write = omap_mpuio_write,
2086 .endianness = DEVICE_NATIVE_ENDIAN,
2087 };
2088
2089 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2090 {
2091 s->inputs = 0;
2092 s->outputs = 0;
2093 s->dir = ~0;
2094 s->event = 0;
2095 s->edge = 0;
2096 s->kbd_mask = 0;
2097 s->mask = 0;
2098 s->debounce = 0;
2099 s->latch = 0;
2100 s->ints = 0;
2101 s->row_latch = 0x1f;
2102 s->clk = 1;
2103 }
2104
2105 static void omap_mpuio_onoff(void *opaque, int line, int on)
2106 {
2107 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2108
2109 s->clk = on;
2110 if (on)
2111 omap_mpuio_kbd_update(s);
2112 }
2113
2114 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2115 hwaddr base,
2116 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2117 omap_clk clk)
2118 {
2119 struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
2120
2121 s->irq = gpio_int;
2122 s->kbd_irq = kbd_int;
2123 s->wakeup = wakeup;
2124 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2125 omap_mpuio_reset(s);
2126
2127 memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2128 "omap-mpuio", 0x800);
2129 memory_region_add_subregion(memory, base, &s->iomem);
2130
2131 omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2132
2133 return s;
2134 }
2135
2136 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2137 {
2138 return s->in;
2139 }
2140
2141 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2142 {
2143 if (line >= 16 || line < 0)
2144 hw_error("%s: No GPIO line %i\n", __func__, line);
2145 s->handler[line] = handler;
2146 }
2147
2148 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2149 {
2150 if (row >= 5 || row < 0)
2151 hw_error("%s: No key %i-%i\n", __func__, col, row);
2152
2153 if (down)
2154 s->buttons[row] |= 1 << col;
2155 else
2156 s->buttons[row] &= ~(1 << col);
2157
2158 omap_mpuio_kbd_update(s);
2159 }
2160
2161 /* MicroWire Interface */
2162 struct omap_uwire_s {
2163 MemoryRegion iomem;
2164 qemu_irq txirq;
2165 qemu_irq rxirq;
2166 qemu_irq txdrq;
2167
2168 uint16_t txbuf;
2169 uint16_t rxbuf;
2170 uint16_t control;
2171 uint16_t setup[5];
2172
2173 uWireSlave *chip[4];
2174 };
2175
2176 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2177 {
2178 int chipselect = (s->control >> 10) & 3; /* INDEX */
2179 uWireSlave *slave = s->chip[chipselect];
2180
2181 if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
2182 if (s->control & (1 << 12)) /* CS_CMD */
2183 if (slave && slave->send)
2184 slave->send(slave->opaque,
2185 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2186 s->control &= ~(1 << 14); /* CSRB */
2187 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2188 * a DRQ. When is the level IRQ supposed to be reset? */
2189 }
2190
2191 if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
2192 if (s->control & (1 << 12)) /* CS_CMD */
2193 if (slave && slave->receive)
2194 s->rxbuf = slave->receive(slave->opaque);
2195 s->control |= 1 << 15; /* RDRB */
2196 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2197 * a DRQ. When is the level IRQ supposed to be reset? */
2198 }
2199 }
2200
2201 static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2202 unsigned size)
2203 {
2204 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2205 int offset = addr & OMAP_MPUI_REG_MASK;
2206
2207 if (size != 2) {
2208 return omap_badwidth_read16(opaque, addr);
2209 }
2210
2211 switch (offset) {
2212 case 0x00: /* RDR */
2213 s->control &= ~(1 << 15); /* RDRB */
2214 return s->rxbuf;
2215
2216 case 0x04: /* CSR */
2217 return s->control;
2218
2219 case 0x08: /* SR1 */
2220 return s->setup[0];
2221 case 0x0c: /* SR2 */
2222 return s->setup[1];
2223 case 0x10: /* SR3 */
2224 return s->setup[2];
2225 case 0x14: /* SR4 */
2226 return s->setup[3];
2227 case 0x18: /* SR5 */
2228 return s->setup[4];
2229 }
2230
2231 OMAP_BAD_REG(addr);
2232 return 0;
2233 }
2234
2235 static void omap_uwire_write(void *opaque, hwaddr addr,
2236 uint64_t value, unsigned size)
2237 {
2238 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2239 int offset = addr & OMAP_MPUI_REG_MASK;
2240
2241 if (size != 2) {
2242 omap_badwidth_write16(opaque, addr, value);
2243 return;
2244 }
2245
2246 switch (offset) {
2247 case 0x00: /* TDR */
2248 s->txbuf = value; /* TD */
2249 if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
2250 ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
2251 (s->control & (1 << 12)))) { /* CS_CMD */
2252 s->control |= 1 << 14; /* CSRB */
2253 omap_uwire_transfer_start(s);
2254 }
2255 break;
2256
2257 case 0x04: /* CSR */
2258 s->control = value & 0x1fff;
2259 if (value & (1 << 13)) /* START */
2260 omap_uwire_transfer_start(s);
2261 break;
2262
2263 case 0x08: /* SR1 */
2264 s->setup[0] = value & 0x003f;
2265 break;
2266
2267 case 0x0c: /* SR2 */
2268 s->setup[1] = value & 0x0fc0;
2269 break;
2270
2271 case 0x10: /* SR3 */
2272 s->setup[2] = value & 0x0003;
2273 break;
2274
2275 case 0x14: /* SR4 */
2276 s->setup[3] = value & 0x0001;
2277 break;
2278
2279 case 0x18: /* SR5 */
2280 s->setup[4] = value & 0x000f;
2281 break;
2282
2283 default:
2284 OMAP_BAD_REG(addr);
2285 return;
2286 }
2287 }
2288
2289 static const MemoryRegionOps omap_uwire_ops = {
2290 .read = omap_uwire_read,
2291 .write = omap_uwire_write,
2292 .endianness = DEVICE_NATIVE_ENDIAN,
2293 };
2294
2295 static void omap_uwire_reset(struct omap_uwire_s *s)
2296 {
2297 s->control = 0;
2298 s->setup[0] = 0;
2299 s->setup[1] = 0;
2300 s->setup[2] = 0;
2301 s->setup[3] = 0;
2302 s->setup[4] = 0;
2303 }
2304
2305 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2306 hwaddr base,
2307 qemu_irq txirq, qemu_irq rxirq,
2308 qemu_irq dma,
2309 omap_clk clk)
2310 {
2311 struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
2312
2313 s->txirq = txirq;
2314 s->rxirq = rxirq;
2315 s->txdrq = dma;
2316 omap_uwire_reset(s);
2317
2318 memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2319 memory_region_add_subregion(system_memory, base, &s->iomem);
2320
2321 return s;
2322 }
2323
2324 void omap_uwire_attach(struct omap_uwire_s *s,
2325 uWireSlave *slave, int chipselect)
2326 {
2327 if (chipselect < 0 || chipselect > 3) {
2328 error_report("%s: Bad chipselect %i", __func__, chipselect);
2329 exit(-1);
2330 }
2331
2332 s->chip[chipselect] = slave;
2333 }
2334
2335 /* Pseudonoise Pulse-Width Light Modulator */
2336 struct omap_pwl_s {
2337 MemoryRegion iomem;
2338 uint8_t output;
2339 uint8_t level;
2340 uint8_t enable;
2341 int clk;
2342 };
2343
2344 static void omap_pwl_update(struct omap_pwl_s *s)
2345 {
2346 int output = (s->clk && s->enable) ? s->level : 0;
2347
2348 if (output != s->output) {
2349 s->output = output;
2350 printf("%s: Backlight now at %i/256\n", __func__, output);
2351 }
2352 }
2353
2354 static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2355 unsigned size)
2356 {
2357 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2358 int offset = addr & OMAP_MPUI_REG_MASK;
2359
2360 if (size != 1) {
2361 return omap_badwidth_read8(opaque, addr);
2362 }
2363
2364 switch (offset) {
2365 case 0x00: /* PWL_LEVEL */
2366 return s->level;
2367 case 0x04: /* PWL_CTRL */
2368 return s->enable;
2369 }
2370 OMAP_BAD_REG(addr);
2371 return 0;
2372 }
2373
2374 static void omap_pwl_write(void *opaque, hwaddr addr,
2375 uint64_t value, unsigned size)
2376 {
2377 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2378 int offset = addr & OMAP_MPUI_REG_MASK;
2379
2380 if (size != 1) {
2381 omap_badwidth_write8(opaque, addr, value);
2382 return;
2383 }
2384
2385 switch (offset) {
2386 case 0x00: /* PWL_LEVEL */
2387 s->level = value;
2388 omap_pwl_update(s);
2389 break;
2390 case 0x04: /* PWL_CTRL */
2391 s->enable = value & 1;
2392 omap_pwl_update(s);
2393 break;
2394 default:
2395 OMAP_BAD_REG(addr);
2396 return;
2397 }
2398 }
2399
2400 static const MemoryRegionOps omap_pwl_ops = {
2401 .read = omap_pwl_read,
2402 .write = omap_pwl_write,
2403 .endianness = DEVICE_NATIVE_ENDIAN,
2404 };
2405
2406 static void omap_pwl_reset(struct omap_pwl_s *s)
2407 {
2408 s->output = 0;
2409 s->level = 0;
2410 s->enable = 0;
2411 s->clk = 1;
2412 omap_pwl_update(s);
2413 }
2414
2415 static void omap_pwl_clk_update(void *opaque, int line, int on)
2416 {
2417 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2418
2419 s->clk = on;
2420 omap_pwl_update(s);
2421 }
2422
2423 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2424 hwaddr base,
2425 omap_clk clk)
2426 {
2427 struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2428
2429 omap_pwl_reset(s);
2430
2431 memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2432 "omap-pwl", 0x800);
2433 memory_region_add_subregion(system_memory, base, &s->iomem);
2434
2435 omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2436 return s;
2437 }
2438
2439 /* Pulse-Width Tone module */
2440 struct omap_pwt_s {
2441 MemoryRegion iomem;
2442 uint8_t frc;
2443 uint8_t vrc;
2444 uint8_t gcr;
2445 omap_clk clk;
2446 };
2447
2448 static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2449 unsigned size)
2450 {
2451 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2452 int offset = addr & OMAP_MPUI_REG_MASK;
2453
2454 if (size != 1) {
2455 return omap_badwidth_read8(opaque, addr);
2456 }
2457
2458 switch (offset) {
2459 case 0x00: /* FRC */
2460 return s->frc;
2461 case 0x04: /* VCR */
2462 return s->vrc;
2463 case 0x08: /* GCR */
2464 return s->gcr;
2465 }
2466 OMAP_BAD_REG(addr);
2467 return 0;
2468 }
2469
2470 static void omap_pwt_write(void *opaque, hwaddr addr,
2471 uint64_t value, unsigned size)
2472 {
2473 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2474 int offset = addr & OMAP_MPUI_REG_MASK;
2475
2476 if (size != 1) {
2477 omap_badwidth_write8(opaque, addr, value);
2478 return;
2479 }
2480
2481 switch (offset) {
2482 case 0x00: /* FRC */
2483 s->frc = value & 0x3f;
2484 break;
2485 case 0x04: /* VRC */
2486 if ((value ^ s->vrc) & 1) {
2487 if (value & 1)
2488 printf("%s: %iHz buzz on\n", __func__, (int)
2489 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2490 ((omap_clk_getrate(s->clk) >> 3) /
2491 /* Pre-multiplexer divider */
2492 ((s->gcr & 2) ? 1 : 154) /
2493 /* Octave multiplexer */
2494 (2 << (value & 3)) *
2495 /* 101/107 divider */
2496 ((value & (1 << 2)) ? 101 : 107) *
2497 /* 49/55 divider */
2498 ((value & (1 << 3)) ? 49 : 55) *
2499 /* 50/63 divider */
2500 ((value & (1 << 4)) ? 50 : 63) *
2501 /* 80/127 divider */
2502 ((value & (1 << 5)) ? 80 : 127) /
2503 (107 * 55 * 63 * 127)));
2504 else
2505 printf("%s: silence!\n", __func__);
2506 }
2507 s->vrc = value & 0x7f;
2508 break;
2509 case 0x08: /* GCR */
2510 s->gcr = value & 3;
2511 break;
2512 default:
2513 OMAP_BAD_REG(addr);
2514 return;
2515 }
2516 }
2517
2518 static const MemoryRegionOps omap_pwt_ops = {
2519 .read =omap_pwt_read,
2520 .write = omap_pwt_write,
2521 .endianness = DEVICE_NATIVE_ENDIAN,
2522 };
2523
2524 static void omap_pwt_reset(struct omap_pwt_s *s)
2525 {
2526 s->frc = 0;
2527 s->vrc = 0;
2528 s->gcr = 0;
2529 }
2530
2531 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2532 hwaddr base,
2533 omap_clk clk)
2534 {
2535 struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2536 s->clk = clk;
2537 omap_pwt_reset(s);
2538
2539 memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2540 "omap-pwt", 0x800);
2541 memory_region_add_subregion(system_memory, base, &s->iomem);
2542 return s;
2543 }
2544
2545 /* Real-time Clock module */
2546 struct omap_rtc_s {
2547 MemoryRegion iomem;
2548 qemu_irq irq;
2549 qemu_irq alarm;
2550 QEMUTimer *clk;
2551
2552 uint8_t interrupts;
2553 uint8_t status;
2554 int16_t comp_reg;
2555 int running;
2556 int pm_am;
2557 int auto_comp;
2558 int round;
2559 struct tm alarm_tm;
2560 time_t alarm_ti;
2561
2562 struct tm current_tm;
2563 time_t ti;
2564 uint64_t tick;
2565 };
2566
2567 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2568 {
2569 /* s->alarm is level-triggered */
2570 qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2571 }
2572
2573 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2574 {
2575 s->alarm_ti = mktimegm(&s->alarm_tm);
2576 if (s->alarm_ti == -1)
2577 printf("%s: conversion failed\n", __func__);
2578 }
2579
2580 static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2581 unsigned size)
2582 {
2583 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2584 int offset = addr & OMAP_MPUI_REG_MASK;
2585 uint8_t i;
2586
2587 if (size != 1) {
2588 return omap_badwidth_read8(opaque, addr);
2589 }
2590
2591 switch (offset) {
2592 case 0x00: /* SECONDS_REG */
2593 return to_bcd(s->current_tm.tm_sec);
2594
2595 case 0x04: /* MINUTES_REG */
2596 return to_bcd(s->current_tm.tm_min);
2597
2598 case 0x08: /* HOURS_REG */
2599 if (s->pm_am)
2600 return ((s->current_tm.tm_hour > 11) << 7) |
2601 to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2602 else
2603 return to_bcd(s->current_tm.tm_hour);
2604
2605 case 0x0c: /* DAYS_REG */
2606 return to_bcd(s->current_tm.tm_mday);
2607
2608 case 0x10: /* MONTHS_REG */
2609 return to_bcd(s->current_tm.tm_mon + 1);
2610
2611 case 0x14: /* YEARS_REG */
2612 return to_bcd(s->current_tm.tm_year % 100);
2613
2614 case 0x18: /* WEEK_REG */
2615 return s->current_tm.tm_wday;
2616
2617 case 0x20: /* ALARM_SECONDS_REG */
2618 return to_bcd(s->alarm_tm.tm_sec);
2619
2620 case 0x24: /* ALARM_MINUTES_REG */
2621 return to_bcd(s->alarm_tm.tm_min);
2622
2623 case 0x28: /* ALARM_HOURS_REG */
2624 if (s->pm_am)
2625 return ((s->alarm_tm.tm_hour > 11) << 7) |
2626 to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2627 else
2628 return to_bcd(s->alarm_tm.tm_hour);
2629
2630 case 0x2c: /* ALARM_DAYS_REG */
2631 return to_bcd(s->alarm_tm.tm_mday);
2632
2633 case 0x30: /* ALARM_MONTHS_REG */
2634 return to_bcd(s->alarm_tm.tm_mon + 1);
2635
2636 case 0x34: /* ALARM_YEARS_REG */
2637 return to_bcd(s->alarm_tm.tm_year % 100);
2638
2639 case 0x40: /* RTC_CTRL_REG */
2640 return (s->pm_am << 3) | (s->auto_comp << 2) |
2641 (s->round << 1) | s->running;
2642
2643 case 0x44: /* RTC_STATUS_REG */
2644 i = s->status;
2645 s->status &= ~0x3d;
2646 return i;
2647
2648 case 0x48: /* RTC_INTERRUPTS_REG */
2649 return s->interrupts;
2650
2651 case 0x4c: /* RTC_COMP_LSB_REG */
2652 return ((uint16_t) s->comp_reg) & 0xff;
2653
2654 case 0x50: /* RTC_COMP_MSB_REG */
2655 return ((uint16_t) s->comp_reg) >> 8;
2656 }
2657
2658 OMAP_BAD_REG(addr);
2659 return 0;
2660 }
2661
2662 static void omap_rtc_write(void *opaque, hwaddr addr,
2663 uint64_t value, unsigned size)
2664 {
2665 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2666 int offset = addr & OMAP_MPUI_REG_MASK;
2667 struct tm new_tm;
2668 time_t ti[2];
2669
2670 if (size != 1) {
2671 omap_badwidth_write8(opaque, addr, value);
2672 return;
2673 }
2674
2675 switch (offset) {
2676 case 0x00: /* SECONDS_REG */
2677 #ifdef ALMDEBUG
2678 printf("RTC SEC_REG <-- %02x\n", value);
2679 #endif
2680 s->ti -= s->current_tm.tm_sec;
2681 s->ti += from_bcd(value);
2682 return;
2683
2684 case 0x04: /* MINUTES_REG */
2685 #ifdef ALMDEBUG
2686 printf("RTC MIN_REG <-- %02x\n", value);
2687 #endif
2688 s->ti -= s->current_tm.tm_min * 60;
2689 s->ti += from_bcd(value) * 60;
2690 return;
2691
2692 case 0x08: /* HOURS_REG */
2693 #ifdef ALMDEBUG
2694 printf("RTC HRS_REG <-- %02x\n", value);
2695 #endif
2696 s->ti -= s->current_tm.tm_hour * 3600;
2697 if (s->pm_am) {
2698 s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2699 s->ti += ((value >> 7) & 1) * 43200;
2700 } else
2701 s->ti += from_bcd(value & 0x3f) * 3600;
2702 return;
2703
2704 case 0x0c: /* DAYS_REG */
2705 #ifdef ALMDEBUG
2706 printf("RTC DAY_REG <-- %02x\n", value);
2707 #endif
2708 s->ti -= s->current_tm.tm_mday * 86400;
2709 s->ti += from_bcd(value) * 86400;
2710 return;
2711
2712 case 0x10: /* MONTHS_REG */
2713 #ifdef ALMDEBUG
2714 printf("RTC MTH_REG <-- %02x\n", value);
2715 #endif
2716 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2717 new_tm.tm_mon = from_bcd(value);
2718 ti[0] = mktimegm(&s->current_tm);
2719 ti[1] = mktimegm(&new_tm);
2720
2721 if (ti[0] != -1 && ti[1] != -1) {
2722 s->ti -= ti[0];
2723 s->ti += ti[1];
2724 } else {
2725 /* A less accurate version */
2726 s->ti -= s->current_tm.tm_mon * 2592000;
2727 s->ti += from_bcd(value) * 2592000;
2728 }
2729 return;
2730
2731 case 0x14: /* YEARS_REG */
2732 #ifdef ALMDEBUG
2733 printf("RTC YRS_REG <-- %02x\n", value);
2734 #endif
2735 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2736 new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2737 ti[0] = mktimegm(&s->current_tm);
2738 ti[1] = mktimegm(&new_tm);
2739
2740 if (ti[0] != -1 && ti[1] != -1) {
2741 s->ti -= ti[0];
2742 s->ti += ti[1];
2743 } else {
2744 /* A less accurate version */
2745 s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2746 s->ti += (time_t)from_bcd(value) * 31536000;
2747 }
2748 return;
2749
2750 case 0x18: /* WEEK_REG */
2751 return; /* Ignored */
2752
2753 case 0x20: /* ALARM_SECONDS_REG */
2754 #ifdef ALMDEBUG
2755 printf("ALM SEC_REG <-- %02x\n", value);
2756 #endif
2757 s->alarm_tm.tm_sec = from_bcd(value);
2758 omap_rtc_alarm_update(s);
2759 return;
2760
2761 case 0x24: /* ALARM_MINUTES_REG */
2762 #ifdef ALMDEBUG
2763 printf("ALM MIN_REG <-- %02x\n", value);
2764 #endif
2765 s->alarm_tm.tm_min = from_bcd(value);
2766 omap_rtc_alarm_update(s);
2767 return;
2768
2769 case 0x28: /* ALARM_HOURS_REG */
2770 #ifdef ALMDEBUG
2771 printf("ALM HRS_REG <-- %02x\n", value);
2772 #endif
2773 if (s->pm_am)
2774 s->alarm_tm.tm_hour =
2775 ((from_bcd(value & 0x3f)) % 12) +
2776 ((value >> 7) & 1) * 12;
2777 else
2778 s->alarm_tm.tm_hour = from_bcd(value);
2779 omap_rtc_alarm_update(s);
2780 return;
2781
2782 case 0x2c: /* ALARM_DAYS_REG */
2783 #ifdef ALMDEBUG
2784 printf("ALM DAY_REG <-- %02x\n", value);
2785 #endif
2786 s->alarm_tm.tm_mday = from_bcd(value);
2787 omap_rtc_alarm_update(s);
2788 return;
2789
2790 case 0x30: /* ALARM_MONTHS_REG */
2791 #ifdef ALMDEBUG
2792 printf("ALM MON_REG <-- %02x\n", value);
2793 #endif
2794 s->alarm_tm.tm_mon = from_bcd(value);
2795 omap_rtc_alarm_update(s);
2796 return;
2797
2798 case 0x34: /* ALARM_YEARS_REG */
2799 #ifdef ALMDEBUG
2800 printf("ALM YRS_REG <-- %02x\n", value);
2801 #endif
2802 s->alarm_tm.tm_year = from_bcd(value);
2803 omap_rtc_alarm_update(s);
2804 return;
2805
2806 case 0x40: /* RTC_CTRL_REG */
2807 #ifdef ALMDEBUG
2808 printf("RTC CONTROL <-- %02x\n", value);
2809 #endif
2810 s->pm_am = (value >> 3) & 1;
2811 s->auto_comp = (value >> 2) & 1;
2812 s->round = (value >> 1) & 1;
2813 s->running = value & 1;
2814 s->status &= 0xfd;
2815 s->status |= s->running << 1;
2816 return;
2817
2818 case 0x44: /* RTC_STATUS_REG */
2819 #ifdef ALMDEBUG
2820 printf("RTC STATUSL <-- %02x\n", value);
2821 #endif
2822 s->status &= ~((value & 0xc0) ^ 0x80);
2823 omap_rtc_interrupts_update(s);
2824 return;
2825
2826 case 0x48: /* RTC_INTERRUPTS_REG */
2827 #ifdef ALMDEBUG
2828 printf("RTC INTRS <-- %02x\n", value);
2829 #endif
2830 s->interrupts = value;
2831 return;
2832
2833 case 0x4c: /* RTC_COMP_LSB_REG */
2834 #ifdef ALMDEBUG
2835 printf("RTC COMPLSB <-- %02x\n", value);
2836 #endif
2837 s->comp_reg &= 0xff00;
2838 s->comp_reg |= 0x00ff & value;
2839 return;
2840
2841 case 0x50: /* RTC_COMP_MSB_REG */
2842 #ifdef ALMDEBUG
2843 printf("RTC COMPMSB <-- %02x\n", value);
2844 #endif
2845 s->comp_reg &= 0x00ff;
2846 s->comp_reg |= 0xff00 & (value << 8);
2847 return;
2848
2849 default:
2850 OMAP_BAD_REG(addr);
2851 return;
2852 }
2853 }
2854
2855 static const MemoryRegionOps omap_rtc_ops = {
2856 .read = omap_rtc_read,
2857 .write = omap_rtc_write,
2858 .endianness = DEVICE_NATIVE_ENDIAN,
2859 };
2860
2861 static void omap_rtc_tick(void *opaque)
2862 {
2863 struct omap_rtc_s *s = opaque;
2864
2865 if (s->round) {
2866 /* Round to nearest full minute. */
2867 if (s->current_tm.tm_sec < 30)
2868 s->ti -= s->current_tm.tm_sec;
2869 else
2870 s->ti += 60 - s->current_tm.tm_sec;
2871
2872 s->round = 0;
2873 }
2874
2875 localtime_r(&s->ti, &s->current_tm);
2876
2877 if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2878 s->status |= 0x40;
2879 omap_rtc_interrupts_update(s);
2880 }
2881
2882 if (s->interrupts & 0x04)
2883 switch (s->interrupts & 3) {
2884 case 0:
2885 s->status |= 0x04;
2886 qemu_irq_pulse(s->irq);
2887 break;
2888 case 1:
2889 if (s->current_tm.tm_sec)
2890 break;
2891 s->status |= 0x08;
2892 qemu_irq_pulse(s->irq);
2893 break;
2894 case 2:
2895 if (s->current_tm.tm_sec || s->current_tm.tm_min)
2896 break;
2897 s->status |= 0x10;
2898 qemu_irq_pulse(s->irq);
2899 break;
2900 case 3:
2901 if (s->current_tm.tm_sec ||
2902 s->current_tm.tm_min || s->current_tm.tm_hour)
2903 break;
2904 s->status |= 0x20;
2905 qemu_irq_pulse(s->irq);
2906 break;
2907 }
2908
2909 /* Move on */
2910 if (s->running)
2911 s->ti ++;
2912 s->tick += 1000;
2913
2914 /*
2915 * Every full hour add a rough approximation of the compensation
2916 * register to the 32kHz Timer (which drives the RTC) value.
2917 */
2918 if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2919 s->tick += s->comp_reg * 1000 / 32768;
2920
2921 timer_mod(s->clk, s->tick);
2922 }
2923
2924 static void omap_rtc_reset(struct omap_rtc_s *s)
2925 {
2926 struct tm tm;
2927
2928 s->interrupts = 0;
2929 s->comp_reg = 0;
2930 s->running = 0;
2931 s->pm_am = 0;
2932 s->auto_comp = 0;
2933 s->round = 0;
2934 s->tick = qemu_clock_get_ms(rtc_clock);
2935 memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2936 s->alarm_tm.tm_mday = 0x01;
2937 s->status = 1 << 7;
2938 qemu_get_timedate(&tm, 0);
2939 s->ti = mktimegm(&tm);
2940
2941 omap_rtc_alarm_update(s);
2942 omap_rtc_tick(s);
2943 }
2944
2945 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2946 hwaddr base,
2947 qemu_irq timerirq, qemu_irq alarmirq,
2948 omap_clk clk)
2949 {
2950 struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
2951
2952 s->irq = timerirq;
2953 s->alarm = alarmirq;
2954 s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2955
2956 omap_rtc_reset(s);
2957
2958 memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2959 "omap-rtc", 0x800);
2960 memory_region_add_subregion(system_memory, base, &s->iomem);
2961
2962 return s;
2963 }
2964
2965 /* Multi-channel Buffered Serial Port interfaces */
2966 struct omap_mcbsp_s {
2967 MemoryRegion iomem;
2968 qemu_irq txirq;
2969 qemu_irq rxirq;
2970 qemu_irq txdrq;
2971 qemu_irq rxdrq;
2972
2973 uint16_t spcr[2];
2974 uint16_t rcr[2];
2975 uint16_t xcr[2];
2976 uint16_t srgr[2];
2977 uint16_t mcr[2];
2978 uint16_t pcr;
2979 uint16_t rcer[8];
2980 uint16_t xcer[8];
2981 int tx_rate;
2982 int rx_rate;
2983 int tx_req;
2984 int rx_req;
2985
2986 I2SCodec *codec;
2987 QEMUTimer *source_timer;
2988 QEMUTimer *sink_timer;
2989 };
2990
2991 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2992 {
2993 int irq;
2994
2995 switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
2996 case 0:
2997 irq = (s->spcr[0] >> 1) & 1; /* RRDY */
2998 break;
2999 case 3:
3000 irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
3001 break;
3002 default:
3003 irq = 0;
3004 break;
3005 }
3006
3007 if (irq)
3008 qemu_irq_pulse(s->rxirq);
3009
3010 switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
3011 case 0:
3012 irq = (s->spcr[1] >> 1) & 1; /* XRDY */
3013 break;
3014 case 3:
3015 irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
3016 break;
3017 default:
3018 irq = 0;
3019 break;
3020 }
3021
3022 if (irq)
3023 qemu_irq_pulse(s->txirq);
3024 }
3025
3026 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3027 {
3028 if ((s->spcr[0] >> 1) & 1) /* RRDY */
3029 s->spcr[0] |= 1 << 2; /* RFULL */
3030 s->spcr[0] |= 1 << 1; /* RRDY */
3031 qemu_irq_raise(s->rxdrq);
3032 omap_mcbsp_intr_update(s);
3033 }
3034
3035 static void omap_mcbsp_source_tick(void *opaque)
3036 {
3037 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3038 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3039
3040 if (!s->rx_rate)
3041 return;
3042 if (s->rx_req)
3043 printf("%s: Rx FIFO overrun\n", __func__);
3044
3045 s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3046
3047 omap_mcbsp_rx_newdata(s);
3048 timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3049 NANOSECONDS_PER_SECOND);
3050 }
3051
3052 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3053 {
3054 if (!s->codec || !s->codec->rts)
3055 omap_mcbsp_source_tick(s);
3056 else if (s->codec->in.len) {
3057 s->rx_req = s->codec->in.len;
3058 omap_mcbsp_rx_newdata(s);
3059 }
3060 }
3061
3062 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3063 {
3064 timer_del(s->source_timer);
3065 }
3066
3067 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3068 {
3069 s->spcr[0] &= ~(1 << 1); /* RRDY */
3070 qemu_irq_lower(s->rxdrq);
3071 omap_mcbsp_intr_update(s);
3072 }
3073
3074 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3075 {
3076 s->spcr[1] |= 1 << 1; /* XRDY */
3077 qemu_irq_raise(s->txdrq);
3078 omap_mcbsp_intr_update(s);
3079 }
3080
3081 static void omap_mcbsp_sink_tick(void *opaque)
3082 {
3083 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3084 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3085
3086 if (!s->tx_rate)
3087 return;
3088 if (s->tx_req)
3089 printf("%s: Tx FIFO underrun\n", __func__);
3090
3091 s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3092
3093 omap_mcbsp_tx_newdata(s);
3094 timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3095 NANOSECONDS_PER_SECOND);
3096 }
3097
3098 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3099 {
3100 if (!s->codec || !s->codec->cts)
3101 omap_mcbsp_sink_tick(s);
3102 else if (s->codec->out.size) {
3103 s->tx_req = s->codec->out.size;
3104 omap_mcbsp_tx_newdata(s);
3105 }
3106 }
3107
3108 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3109 {
3110 s->spcr[1] &= ~(1 << 1); /* XRDY */
3111 qemu_irq_lower(s->txdrq);
3112 omap_mcbsp_intr_update(s);
3113 if (s->codec && s->codec->cts)
3114 s->codec->tx_swallow(s->codec->opaque);
3115 }
3116
3117 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3118 {
3119 s->tx_req = 0;
3120 omap_mcbsp_tx_done(s);
3121 timer_del(s->sink_timer);
3122 }
3123
3124 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3125 {
3126 int prev_rx_rate, prev_tx_rate;
3127 int rx_rate = 0, tx_rate = 0;
3128 int cpu_rate = 1500000; /* XXX */
3129
3130 /* TODO: check CLKSTP bit */
3131 if (s->spcr[1] & (1 << 6)) { /* GRST */
3132 if (s->spcr[0] & (1 << 0)) { /* RRST */
3133 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3134 (s->pcr & (1 << 8))) { /* CLKRM */
3135 if (~s->pcr & (1 << 7)) /* SCLKME */
3136 rx_rate = cpu_rate /
3137 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3138 } else
3139 if (s->codec)
3140 rx_rate = s->codec->rx_rate;
3141 }
3142
3143 if (s->spcr[1] & (1 << 0)) { /* XRST */
3144 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3145 (s->pcr & (1 << 9))) { /* CLKXM */
3146 if (~s->pcr & (1 << 7)) /* SCLKME */
3147 tx_rate = cpu_rate /
3148 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3149 } else
3150 if (s->codec)
3151 tx_rate = s->codec->tx_rate;
3152 }
3153 }
3154 prev_tx_rate = s->tx_rate;
3155 prev_rx_rate = s->rx_rate;
3156 s->tx_rate = tx_rate;
3157 s->rx_rate = rx_rate;
3158
3159 if (s->codec)
3160 s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3161
3162 if (!prev_tx_rate && tx_rate)
3163 omap_mcbsp_tx_start(s);
3164 else if (s->tx_rate && !tx_rate)
3165 omap_mcbsp_tx_stop(s);
3166
3167 if (!prev_rx_rate && rx_rate)
3168 omap_mcbsp_rx_start(s);
3169 else if (prev_tx_rate && !tx_rate)
3170 omap_mcbsp_rx_stop(s);
3171 }
3172
3173 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3174 unsigned size)
3175 {
3176 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3177 int offset = addr & OMAP_MPUI_REG_MASK;
3178 uint16_t ret;
3179
3180 if (size != 2) {
3181 return omap_badwidth_read16(opaque, addr);
3182 }
3183
3184 switch (offset) {
3185 case 0x00: /* DRR2 */
3186 if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
3187 return 0x0000;
3188 /* Fall through. */
3189 case 0x02: /* DRR1 */
3190 if (s->rx_req < 2) {
3191 printf("%s: Rx FIFO underrun\n", __func__);
3192 omap_mcbsp_rx_done(s);
3193 } else {
3194 s->tx_req -= 2;
3195 if (s->codec && s->codec->in.len >= 2) {
3196 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3197 ret |= s->codec->in.fifo[s->codec->in.start ++];
3198 s->codec->in.len -= 2;
3199 } else
3200 ret = 0x0000;
3201 if (!s->tx_req)
3202 omap_mcbsp_rx_done(s);
3203 return ret;
3204 }
3205 return 0x0000;
3206
3207 case 0x04: /* DXR2 */
3208 case 0x06: /* DXR1 */
3209 return 0x0000;
3210
3211 case 0x08: /* SPCR2 */
3212 return s->spcr[1];
3213 case 0x0a: /* SPCR1 */
3214 return s->spcr[0];
3215 case 0x0c: /* RCR2 */
3216 return s->rcr[1];
3217 case 0x0e: /* RCR1 */
3218 return s->rcr[0];
3219 case 0x10: /* XCR2 */
3220 return s->xcr[1];
3221 case 0x12: /* XCR1 */
3222 return s->xcr[0];
3223 case 0x14: /* SRGR2 */