Merge tag 'seabios-20211203-pull-request' of git://git.kraxel.org/qemu into staging
[qemu.git] / hw / arm / omap1.c
1 /*
2 * TI OMAP processors emulation.
3 *
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/error-report.h"
22 #include "qemu/main-loop.h"
23 #include "qapi/error.h"
24 #include "qemu-common.h"
25 #include "cpu.h"
26 #include "exec/address-spaces.h"
27 #include "hw/hw.h"
28 #include "hw/irq.h"
29 #include "hw/qdev-properties.h"
30 #include "hw/arm/boot.h"
31 #include "hw/arm/omap.h"
32 #include "sysemu/blockdev.h"
33 #include "sysemu/sysemu.h"
34 #include "hw/arm/soc_dma.h"
35 #include "sysemu/qtest.h"
36 #include "sysemu/reset.h"
37 #include "sysemu/runstate.h"
38 #include "qemu/range.h"
39 #include "hw/sysbus.h"
40 #include "qemu/cutils.h"
41 #include "qemu/bcd.h"
42
43 static inline void omap_log_badwidth(const char *funcname, hwaddr addr, int sz)
44 {
45 qemu_log_mask(LOG_GUEST_ERROR, "%s: %d-bit register %#08" HWADDR_PRIx "\n",
46 funcname, 8 * sz, addr);
47 }
48
49 /* Should signal the TCMI/GPMC */
50 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
51 {
52 uint8_t ret;
53
54 omap_log_badwidth(__func__, addr, 1);
55 cpu_physical_memory_read(addr, &ret, 1);
56 return ret;
57 }
58
59 void omap_badwidth_write8(void *opaque, hwaddr addr,
60 uint32_t value)
61 {
62 uint8_t val8 = value;
63
64 omap_log_badwidth(__func__, addr, 1);
65 cpu_physical_memory_write(addr, &val8, 1);
66 }
67
68 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
69 {
70 uint16_t ret;
71
72 omap_log_badwidth(__func__, addr, 2);
73 cpu_physical_memory_read(addr, &ret, 2);
74 return ret;
75 }
76
77 void omap_badwidth_write16(void *opaque, hwaddr addr,
78 uint32_t value)
79 {
80 uint16_t val16 = value;
81
82 omap_log_badwidth(__func__, addr, 2);
83 cpu_physical_memory_write(addr, &val16, 2);
84 }
85
86 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
87 {
88 uint32_t ret;
89
90 omap_log_badwidth(__func__, addr, 4);
91 cpu_physical_memory_read(addr, &ret, 4);
92 return ret;
93 }
94
95 void omap_badwidth_write32(void *opaque, hwaddr addr,
96 uint32_t value)
97 {
98 omap_log_badwidth(__func__, addr, 4);
99 cpu_physical_memory_write(addr, &value, 4);
100 }
101
102 /* MPU OS timers */
103 struct omap_mpu_timer_s {
104 MemoryRegion iomem;
105 qemu_irq irq;
106 omap_clk clk;
107 uint32_t val;
108 int64_t time;
109 QEMUTimer *timer;
110 QEMUBH *tick;
111 int64_t rate;
112 int it_ena;
113
114 int enable;
115 int ptv;
116 int ar;
117 int st;
118 uint32_t reset_val;
119 };
120
121 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
122 {
123 uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
124
125 if (timer->st && timer->enable && timer->rate)
126 return timer->val - muldiv64(distance >> (timer->ptv + 1),
127 timer->rate, NANOSECONDS_PER_SECOND);
128 else
129 return timer->val;
130 }
131
132 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
133 {
134 timer->val = omap_timer_read(timer);
135 timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
136 }
137
138 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
139 {
140 int64_t expires;
141
142 if (timer->enable && timer->st && timer->rate) {
143 timer->val = timer->reset_val; /* Should skip this on clk enable */
144 expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
145 NANOSECONDS_PER_SECOND, timer->rate);
146
147 /* If timer expiry would be sooner than in about 1 ms and
148 * auto-reload isn't set, then fire immediately. This is a hack
149 * to make systems like PalmOS run in acceptable time. PalmOS
150 * sets the interval to a very low value and polls the status bit
151 * in a busy loop when it wants to sleep just a couple of CPU
152 * ticks. */
153 if (expires > (NANOSECONDS_PER_SECOND >> 10) || timer->ar) {
154 timer_mod(timer->timer, timer->time + expires);
155 } else {
156 qemu_bh_schedule(timer->tick);
157 }
158 } else
159 timer_del(timer->timer);
160 }
161
162 static void omap_timer_fire(void *opaque)
163 {
164 struct omap_mpu_timer_s *timer = opaque;
165
166 if (!timer->ar) {
167 timer->val = 0;
168 timer->st = 0;
169 }
170
171 if (timer->it_ena)
172 /* Edge-triggered irq */
173 qemu_irq_pulse(timer->irq);
174 }
175
176 static void omap_timer_tick(void *opaque)
177 {
178 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
179
180 omap_timer_sync(timer);
181 omap_timer_fire(timer);
182 omap_timer_update(timer);
183 }
184
185 static void omap_timer_clk_update(void *opaque, int line, int on)
186 {
187 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
188
189 omap_timer_sync(timer);
190 timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
191 omap_timer_update(timer);
192 }
193
194 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
195 {
196 omap_clk_adduser(timer->clk,
197 qemu_allocate_irq(omap_timer_clk_update, timer, 0));
198 timer->rate = omap_clk_getrate(timer->clk);
199 }
200
201 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
202 unsigned size)
203 {
204 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
205
206 if (size != 4) {
207 return omap_badwidth_read32(opaque, addr);
208 }
209
210 switch (addr) {
211 case 0x00: /* CNTL_TIMER */
212 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
213
214 case 0x04: /* LOAD_TIM */
215 break;
216
217 case 0x08: /* READ_TIM */
218 return omap_timer_read(s);
219 }
220
221 OMAP_BAD_REG(addr);
222 return 0;
223 }
224
225 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
226 uint64_t value, unsigned size)
227 {
228 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
229
230 if (size != 4) {
231 omap_badwidth_write32(opaque, addr, value);
232 return;
233 }
234
235 switch (addr) {
236 case 0x00: /* CNTL_TIMER */
237 omap_timer_sync(s);
238 s->enable = (value >> 5) & 1;
239 s->ptv = (value >> 2) & 7;
240 s->ar = (value >> 1) & 1;
241 s->st = value & 1;
242 omap_timer_update(s);
243 return;
244
245 case 0x04: /* LOAD_TIM */
246 s->reset_val = value;
247 return;
248
249 case 0x08: /* READ_TIM */
250 OMAP_RO_REG(addr);
251 break;
252
253 default:
254 OMAP_BAD_REG(addr);
255 }
256 }
257
258 static const MemoryRegionOps omap_mpu_timer_ops = {
259 .read = omap_mpu_timer_read,
260 .write = omap_mpu_timer_write,
261 .endianness = DEVICE_LITTLE_ENDIAN,
262 };
263
264 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
265 {
266 timer_del(s->timer);
267 s->enable = 0;
268 s->reset_val = 31337;
269 s->val = 0;
270 s->ptv = 0;
271 s->ar = 0;
272 s->st = 0;
273 s->it_ena = 1;
274 }
275
276 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
277 hwaddr base,
278 qemu_irq irq, omap_clk clk)
279 {
280 struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
281
282 s->irq = irq;
283 s->clk = clk;
284 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
285 s->tick = qemu_bh_new(omap_timer_fire, s);
286 omap_mpu_timer_reset(s);
287 omap_timer_clk_setup(s);
288
289 memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
290 "omap-mpu-timer", 0x100);
291
292 memory_region_add_subregion(system_memory, base, &s->iomem);
293
294 return s;
295 }
296
297 /* Watchdog timer */
298 struct omap_watchdog_timer_s {
299 struct omap_mpu_timer_s timer;
300 MemoryRegion iomem;
301 uint8_t last_wr;
302 int mode;
303 int free;
304 int reset;
305 };
306
307 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
308 unsigned size)
309 {
310 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
311
312 if (size != 2) {
313 return omap_badwidth_read16(opaque, addr);
314 }
315
316 switch (addr) {
317 case 0x00: /* CNTL_TIMER */
318 return (s->timer.ptv << 9) | (s->timer.ar << 8) |
319 (s->timer.st << 7) | (s->free << 1);
320
321 case 0x04: /* READ_TIMER */
322 return omap_timer_read(&s->timer);
323
324 case 0x08: /* TIMER_MODE */
325 return s->mode << 15;
326 }
327
328 OMAP_BAD_REG(addr);
329 return 0;
330 }
331
332 static void omap_wd_timer_write(void *opaque, hwaddr addr,
333 uint64_t value, unsigned size)
334 {
335 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
336
337 if (size != 2) {
338 omap_badwidth_write16(opaque, addr, value);
339 return;
340 }
341
342 switch (addr) {
343 case 0x00: /* CNTL_TIMER */
344 omap_timer_sync(&s->timer);
345 s->timer.ptv = (value >> 9) & 7;
346 s->timer.ar = (value >> 8) & 1;
347 s->timer.st = (value >> 7) & 1;
348 s->free = (value >> 1) & 1;
349 omap_timer_update(&s->timer);
350 break;
351
352 case 0x04: /* LOAD_TIMER */
353 s->timer.reset_val = value & 0xffff;
354 break;
355
356 case 0x08: /* TIMER_MODE */
357 if (!s->mode && ((value >> 15) & 1))
358 omap_clk_get(s->timer.clk);
359 s->mode |= (value >> 15) & 1;
360 if (s->last_wr == 0xf5) {
361 if ((value & 0xff) == 0xa0) {
362 if (s->mode) {
363 s->mode = 0;
364 omap_clk_put(s->timer.clk);
365 }
366 } else {
367 /* XXX: on T|E hardware somehow this has no effect,
368 * on Zire 71 it works as specified. */
369 s->reset = 1;
370 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
371 }
372 }
373 s->last_wr = value & 0xff;
374 break;
375
376 default:
377 OMAP_BAD_REG(addr);
378 }
379 }
380
381 static const MemoryRegionOps omap_wd_timer_ops = {
382 .read = omap_wd_timer_read,
383 .write = omap_wd_timer_write,
384 .endianness = DEVICE_NATIVE_ENDIAN,
385 };
386
387 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
388 {
389 timer_del(s->timer.timer);
390 if (!s->mode)
391 omap_clk_get(s->timer.clk);
392 s->mode = 1;
393 s->free = 1;
394 s->reset = 0;
395 s->timer.enable = 1;
396 s->timer.it_ena = 1;
397 s->timer.reset_val = 0xffff;
398 s->timer.val = 0;
399 s->timer.st = 0;
400 s->timer.ptv = 0;
401 s->timer.ar = 0;
402 omap_timer_update(&s->timer);
403 }
404
405 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
406 hwaddr base,
407 qemu_irq irq, omap_clk clk)
408 {
409 struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
410
411 s->timer.irq = irq;
412 s->timer.clk = clk;
413 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
414 omap_wd_timer_reset(s);
415 omap_timer_clk_setup(&s->timer);
416
417 memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
418 "omap-wd-timer", 0x100);
419 memory_region_add_subregion(memory, base, &s->iomem);
420
421 return s;
422 }
423
424 /* 32-kHz timer */
425 struct omap_32khz_timer_s {
426 struct omap_mpu_timer_s timer;
427 MemoryRegion iomem;
428 };
429
430 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
431 unsigned size)
432 {
433 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
434 int offset = addr & OMAP_MPUI_REG_MASK;
435
436 if (size != 4) {
437 return omap_badwidth_read32(opaque, addr);
438 }
439
440 switch (offset) {
441 case 0x00: /* TVR */
442 return s->timer.reset_val;
443
444 case 0x04: /* TCR */
445 return omap_timer_read(&s->timer);
446
447 case 0x08: /* CR */
448 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
449
450 default:
451 break;
452 }
453 OMAP_BAD_REG(addr);
454 return 0;
455 }
456
457 static void omap_os_timer_write(void *opaque, hwaddr addr,
458 uint64_t value, unsigned size)
459 {
460 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
461 int offset = addr & OMAP_MPUI_REG_MASK;
462
463 if (size != 4) {
464 omap_badwidth_write32(opaque, addr, value);
465 return;
466 }
467
468 switch (offset) {
469 case 0x00: /* TVR */
470 s->timer.reset_val = value & 0x00ffffff;
471 break;
472
473 case 0x04: /* TCR */
474 OMAP_RO_REG(addr);
475 break;
476
477 case 0x08: /* CR */
478 s->timer.ar = (value >> 3) & 1;
479 s->timer.it_ena = (value >> 2) & 1;
480 if (s->timer.st != (value & 1) || (value & 2)) {
481 omap_timer_sync(&s->timer);
482 s->timer.enable = value & 1;
483 s->timer.st = value & 1;
484 omap_timer_update(&s->timer);
485 }
486 break;
487
488 default:
489 OMAP_BAD_REG(addr);
490 }
491 }
492
493 static const MemoryRegionOps omap_os_timer_ops = {
494 .read = omap_os_timer_read,
495 .write = omap_os_timer_write,
496 .endianness = DEVICE_NATIVE_ENDIAN,
497 };
498
499 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
500 {
501 timer_del(s->timer.timer);
502 s->timer.enable = 0;
503 s->timer.it_ena = 0;
504 s->timer.reset_val = 0x00ffffff;
505 s->timer.val = 0;
506 s->timer.st = 0;
507 s->timer.ptv = 0;
508 s->timer.ar = 1;
509 }
510
511 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
512 hwaddr base,
513 qemu_irq irq, omap_clk clk)
514 {
515 struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
516
517 s->timer.irq = irq;
518 s->timer.clk = clk;
519 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
520 omap_os_timer_reset(s);
521 omap_timer_clk_setup(&s->timer);
522
523 memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
524 "omap-os-timer", 0x800);
525 memory_region_add_subregion(memory, base, &s->iomem);
526
527 return s;
528 }
529
530 /* Ultra Low-Power Device Module */
531 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
532 unsigned size)
533 {
534 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
535 uint16_t ret;
536
537 if (size != 2) {
538 return omap_badwidth_read16(opaque, addr);
539 }
540
541 switch (addr) {
542 case 0x14: /* IT_STATUS */
543 ret = s->ulpd_pm_regs[addr >> 2];
544 s->ulpd_pm_regs[addr >> 2] = 0;
545 qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
546 return ret;
547
548 case 0x18: /* Reserved */
549 case 0x1c: /* Reserved */
550 case 0x20: /* Reserved */
551 case 0x28: /* Reserved */
552 case 0x2c: /* Reserved */
553 OMAP_BAD_REG(addr);
554 /* fall through */
555 case 0x00: /* COUNTER_32_LSB */
556 case 0x04: /* COUNTER_32_MSB */
557 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
558 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
559 case 0x10: /* GAUGING_CTRL */
560 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
561 case 0x30: /* CLOCK_CTRL */
562 case 0x34: /* SOFT_REQ */
563 case 0x38: /* COUNTER_32_FIQ */
564 case 0x3c: /* DPLL_CTRL */
565 case 0x40: /* STATUS_REQ */
566 /* XXX: check clk::usecount state for every clock */
567 case 0x48: /* LOCL_TIME */
568 case 0x4c: /* APLL_CTRL */
569 case 0x50: /* POWER_CTRL */
570 return s->ulpd_pm_regs[addr >> 2];
571 }
572
573 OMAP_BAD_REG(addr);
574 return 0;
575 }
576
577 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
578 uint16_t diff, uint16_t value)
579 {
580 if (diff & (1 << 4)) /* USB_MCLK_EN */
581 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
582 if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
583 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
584 }
585
586 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
587 uint16_t diff, uint16_t value)
588 {
589 if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
590 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
591 if (diff & (1 << 1)) /* SOFT_COM_REQ */
592 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
593 if (diff & (1 << 2)) /* SOFT_SDW_REQ */
594 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
595 if (diff & (1 << 3)) /* SOFT_USB_REQ */
596 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
597 }
598
599 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
600 uint64_t value, unsigned size)
601 {
602 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
603 int64_t now, ticks;
604 int div, mult;
605 static const int bypass_div[4] = { 1, 2, 4, 4 };
606 uint16_t diff;
607
608 if (size != 2) {
609 omap_badwidth_write16(opaque, addr, value);
610 return;
611 }
612
613 switch (addr) {
614 case 0x00: /* COUNTER_32_LSB */
615 case 0x04: /* COUNTER_32_MSB */
616 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
617 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
618 case 0x14: /* IT_STATUS */
619 case 0x40: /* STATUS_REQ */
620 OMAP_RO_REG(addr);
621 break;
622
623 case 0x10: /* GAUGING_CTRL */
624 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
625 if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
626 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
627
628 if (value & 1)
629 s->ulpd_gauge_start = now;
630 else {
631 now -= s->ulpd_gauge_start;
632
633 /* 32-kHz ticks */
634 ticks = muldiv64(now, 32768, NANOSECONDS_PER_SECOND);
635 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
636 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
637 if (ticks >> 32) /* OVERFLOW_32K */
638 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
639
640 /* High frequency ticks */
641 ticks = muldiv64(now, 12000000, NANOSECONDS_PER_SECOND);
642 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
643 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
644 if (ticks >> 32) /* OVERFLOW_HI_FREQ */
645 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
646
647 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
648 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
649 }
650 }
651 s->ulpd_pm_regs[addr >> 2] = value;
652 break;
653
654 case 0x18: /* Reserved */
655 case 0x1c: /* Reserved */
656 case 0x20: /* Reserved */
657 case 0x28: /* Reserved */
658 case 0x2c: /* Reserved */
659 OMAP_BAD_REG(addr);
660 /* fall through */
661 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
662 case 0x38: /* COUNTER_32_FIQ */
663 case 0x48: /* LOCL_TIME */
664 case 0x50: /* POWER_CTRL */
665 s->ulpd_pm_regs[addr >> 2] = value;
666 break;
667
668 case 0x30: /* CLOCK_CTRL */
669 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
670 s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
671 omap_ulpd_clk_update(s, diff, value);
672 break;
673
674 case 0x34: /* SOFT_REQ */
675 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
676 s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
677 omap_ulpd_req_update(s, diff, value);
678 break;
679
680 case 0x3c: /* DPLL_CTRL */
681 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
682 * omitted altogether, probably a typo. */
683 /* This register has identical semantics with DPLL(1:3) control
684 * registers, see omap_dpll_write() */
685 diff = s->ulpd_pm_regs[addr >> 2] & value;
686 s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
687 if (diff & (0x3ff << 2)) {
688 if (value & (1 << 4)) { /* PLL_ENABLE */
689 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
690 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
691 } else {
692 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
693 mult = 1;
694 }
695 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
696 }
697
698 /* Enter the desired mode. */
699 s->ulpd_pm_regs[addr >> 2] =
700 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
701 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
702
703 /* Act as if the lock is restored. */
704 s->ulpd_pm_regs[addr >> 2] |= 2;
705 break;
706
707 case 0x4c: /* APLL_CTRL */
708 diff = s->ulpd_pm_regs[addr >> 2] & value;
709 s->ulpd_pm_regs[addr >> 2] = value & 0xf;
710 if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
711 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
712 (value & (1 << 0)) ? "apll" : "dpll4"));
713 break;
714
715 default:
716 OMAP_BAD_REG(addr);
717 }
718 }
719
720 static const MemoryRegionOps omap_ulpd_pm_ops = {
721 .read = omap_ulpd_pm_read,
722 .write = omap_ulpd_pm_write,
723 .endianness = DEVICE_NATIVE_ENDIAN,
724 };
725
726 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
727 {
728 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
729 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
730 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
731 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
732 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
733 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
734 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
735 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
736 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
737 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
738 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
739 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
740 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
741 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
742 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
743 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
744 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
745 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
746 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
747 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
748 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
749 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
750 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
751 }
752
753 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
754 hwaddr base,
755 struct omap_mpu_state_s *mpu)
756 {
757 memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
758 "omap-ulpd-pm", 0x800);
759 memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
760 omap_ulpd_pm_reset(mpu);
761 }
762
763 /* OMAP Pin Configuration */
764 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
765 unsigned size)
766 {
767 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
768
769 if (size != 4) {
770 return omap_badwidth_read32(opaque, addr);
771 }
772
773 switch (addr) {
774 case 0x00: /* FUNC_MUX_CTRL_0 */
775 case 0x04: /* FUNC_MUX_CTRL_1 */
776 case 0x08: /* FUNC_MUX_CTRL_2 */
777 return s->func_mux_ctrl[addr >> 2];
778
779 case 0x0c: /* COMP_MODE_CTRL_0 */
780 return s->comp_mode_ctrl[0];
781
782 case 0x10: /* FUNC_MUX_CTRL_3 */
783 case 0x14: /* FUNC_MUX_CTRL_4 */
784 case 0x18: /* FUNC_MUX_CTRL_5 */
785 case 0x1c: /* FUNC_MUX_CTRL_6 */
786 case 0x20: /* FUNC_MUX_CTRL_7 */
787 case 0x24: /* FUNC_MUX_CTRL_8 */
788 case 0x28: /* FUNC_MUX_CTRL_9 */
789 case 0x2c: /* FUNC_MUX_CTRL_A */
790 case 0x30: /* FUNC_MUX_CTRL_B */
791 case 0x34: /* FUNC_MUX_CTRL_C */
792 case 0x38: /* FUNC_MUX_CTRL_D */
793 return s->func_mux_ctrl[(addr >> 2) - 1];
794
795 case 0x40: /* PULL_DWN_CTRL_0 */
796 case 0x44: /* PULL_DWN_CTRL_1 */
797 case 0x48: /* PULL_DWN_CTRL_2 */
798 case 0x4c: /* PULL_DWN_CTRL_3 */
799 return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
800
801 case 0x50: /* GATE_INH_CTRL_0 */
802 return s->gate_inh_ctrl[0];
803
804 case 0x60: /* VOLTAGE_CTRL_0 */
805 return s->voltage_ctrl[0];
806
807 case 0x70: /* TEST_DBG_CTRL_0 */
808 return s->test_dbg_ctrl[0];
809
810 case 0x80: /* MOD_CONF_CTRL_0 */
811 return s->mod_conf_ctrl[0];
812 }
813
814 OMAP_BAD_REG(addr);
815 return 0;
816 }
817
818 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
819 uint32_t diff, uint32_t value)
820 {
821 if (s->compat1509) {
822 if (diff & (1 << 9)) /* BLUETOOTH */
823 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
824 (~value >> 9) & 1);
825 if (diff & (1 << 7)) /* USB.CLKO */
826 omap_clk_onoff(omap_findclk(s, "usb.clko"),
827 (value >> 7) & 1);
828 }
829 }
830
831 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
832 uint32_t diff, uint32_t value)
833 {
834 if (s->compat1509) {
835 if (diff & (1U << 31)) {
836 /* MCBSP3_CLK_HIZ_DI */
837 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
838 }
839 if (diff & (1 << 1)) {
840 /* CLK32K */
841 omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
842 }
843 }
844 }
845
846 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
847 uint32_t diff, uint32_t value)
848 {
849 if (diff & (1U << 31)) {
850 /* CONF_MOD_UART3_CLK_MODE_R */
851 omap_clk_reparent(omap_findclk(s, "uart3_ck"),
852 omap_findclk(s, ((value >> 31) & 1) ?
853 "ck_48m" : "armper_ck"));
854 }
855 if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
856 omap_clk_reparent(omap_findclk(s, "uart2_ck"),
857 omap_findclk(s, ((value >> 30) & 1) ?
858 "ck_48m" : "armper_ck"));
859 if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
860 omap_clk_reparent(omap_findclk(s, "uart1_ck"),
861 omap_findclk(s, ((value >> 29) & 1) ?
862 "ck_48m" : "armper_ck"));
863 if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
864 omap_clk_reparent(omap_findclk(s, "mmc_ck"),
865 omap_findclk(s, ((value >> 23) & 1) ?
866 "ck_48m" : "armper_ck"));
867 if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
868 omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
869 omap_findclk(s, ((value >> 12) & 1) ?
870 "ck_48m" : "armper_ck"));
871 if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
872 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
873 }
874
875 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
876 uint64_t value, unsigned size)
877 {
878 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
879 uint32_t diff;
880
881 if (size != 4) {
882 omap_badwidth_write32(opaque, addr, value);
883 return;
884 }
885
886 switch (addr) {
887 case 0x00: /* FUNC_MUX_CTRL_0 */
888 diff = s->func_mux_ctrl[addr >> 2] ^ value;
889 s->func_mux_ctrl[addr >> 2] = value;
890 omap_pin_funcmux0_update(s, diff, value);
891 return;
892
893 case 0x04: /* FUNC_MUX_CTRL_1 */
894 diff = s->func_mux_ctrl[addr >> 2] ^ value;
895 s->func_mux_ctrl[addr >> 2] = value;
896 omap_pin_funcmux1_update(s, diff, value);
897 return;
898
899 case 0x08: /* FUNC_MUX_CTRL_2 */
900 s->func_mux_ctrl[addr >> 2] = value;
901 return;
902
903 case 0x0c: /* COMP_MODE_CTRL_0 */
904 s->comp_mode_ctrl[0] = value;
905 s->compat1509 = (value != 0x0000eaef);
906 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
907 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
908 return;
909
910 case 0x10: /* FUNC_MUX_CTRL_3 */
911 case 0x14: /* FUNC_MUX_CTRL_4 */
912 case 0x18: /* FUNC_MUX_CTRL_5 */
913 case 0x1c: /* FUNC_MUX_CTRL_6 */
914 case 0x20: /* FUNC_MUX_CTRL_7 */
915 case 0x24: /* FUNC_MUX_CTRL_8 */
916 case 0x28: /* FUNC_MUX_CTRL_9 */
917 case 0x2c: /* FUNC_MUX_CTRL_A */
918 case 0x30: /* FUNC_MUX_CTRL_B */
919 case 0x34: /* FUNC_MUX_CTRL_C */
920 case 0x38: /* FUNC_MUX_CTRL_D */
921 s->func_mux_ctrl[(addr >> 2) - 1] = value;
922 return;
923
924 case 0x40: /* PULL_DWN_CTRL_0 */
925 case 0x44: /* PULL_DWN_CTRL_1 */
926 case 0x48: /* PULL_DWN_CTRL_2 */
927 case 0x4c: /* PULL_DWN_CTRL_3 */
928 s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
929 return;
930
931 case 0x50: /* GATE_INH_CTRL_0 */
932 s->gate_inh_ctrl[0] = value;
933 return;
934
935 case 0x60: /* VOLTAGE_CTRL_0 */
936 s->voltage_ctrl[0] = value;
937 return;
938
939 case 0x70: /* TEST_DBG_CTRL_0 */
940 s->test_dbg_ctrl[0] = value;
941 return;
942
943 case 0x80: /* MOD_CONF_CTRL_0 */
944 diff = s->mod_conf_ctrl[0] ^ value;
945 s->mod_conf_ctrl[0] = value;
946 omap_pin_modconf1_update(s, diff, value);
947 return;
948
949 default:
950 OMAP_BAD_REG(addr);
951 }
952 }
953
954 static const MemoryRegionOps omap_pin_cfg_ops = {
955 .read = omap_pin_cfg_read,
956 .write = omap_pin_cfg_write,
957 .endianness = DEVICE_NATIVE_ENDIAN,
958 };
959
960 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
961 {
962 /* Start in Compatibility Mode. */
963 mpu->compat1509 = 1;
964 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
965 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
966 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
967 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
968 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
969 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
970 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
971 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
972 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
973 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
974 }
975
976 static void omap_pin_cfg_init(MemoryRegion *system_memory,
977 hwaddr base,
978 struct omap_mpu_state_s *mpu)
979 {
980 memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
981 "omap-pin-cfg", 0x800);
982 memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
983 omap_pin_cfg_reset(mpu);
984 }
985
986 /* Device Identification, Die Identification */
987 static uint64_t omap_id_read(void *opaque, hwaddr addr,
988 unsigned size)
989 {
990 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
991
992 if (size != 4) {
993 return omap_badwidth_read32(opaque, addr);
994 }
995
996 switch (addr) {
997 case 0xfffe1800: /* DIE_ID_LSB */
998 return 0xc9581f0e;
999 case 0xfffe1804: /* DIE_ID_MSB */
1000 return 0xa8858bfa;
1001
1002 case 0xfffe2000: /* PRODUCT_ID_LSB */
1003 return 0x00aaaafc;
1004 case 0xfffe2004: /* PRODUCT_ID_MSB */
1005 return 0xcafeb574;
1006
1007 case 0xfffed400: /* JTAG_ID_LSB */
1008 switch (s->mpu_model) {
1009 case omap310:
1010 return 0x03310315;
1011 case omap1510:
1012 return 0x03310115;
1013 default:
1014 hw_error("%s: bad mpu model\n", __func__);
1015 }
1016 break;
1017
1018 case 0xfffed404: /* JTAG_ID_MSB */
1019 switch (s->mpu_model) {
1020 case omap310:
1021 return 0xfb57402f;
1022 case omap1510:
1023 return 0xfb47002f;
1024 default:
1025 hw_error("%s: bad mpu model\n", __func__);
1026 }
1027 break;
1028 }
1029
1030 OMAP_BAD_REG(addr);
1031 return 0;
1032 }
1033
1034 static void omap_id_write(void *opaque, hwaddr addr,
1035 uint64_t value, unsigned size)
1036 {
1037 if (size != 4) {
1038 omap_badwidth_write32(opaque, addr, value);
1039 return;
1040 }
1041
1042 OMAP_BAD_REG(addr);
1043 }
1044
1045 static const MemoryRegionOps omap_id_ops = {
1046 .read = omap_id_read,
1047 .write = omap_id_write,
1048 .endianness = DEVICE_NATIVE_ENDIAN,
1049 };
1050
1051 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1052 {
1053 memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1054 "omap-id", 0x100000000ULL);
1055 memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1056 0xfffe1800, 0x800);
1057 memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1058 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1059 0xfffed400, 0x100);
1060 memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1061 if (!cpu_is_omap15xx(mpu)) {
1062 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1063 &mpu->id_iomem, 0xfffe2000, 0x800);
1064 memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1065 }
1066 }
1067
1068 /* MPUI Control (Dummy) */
1069 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1070 unsigned size)
1071 {
1072 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1073
1074 if (size != 4) {
1075 return omap_badwidth_read32(opaque, addr);
1076 }
1077
1078 switch (addr) {
1079 case 0x00: /* CTRL */
1080 return s->mpui_ctrl;
1081 case 0x04: /* DEBUG_ADDR */
1082 return 0x01ffffff;
1083 case 0x08: /* DEBUG_DATA */
1084 return 0xffffffff;
1085 case 0x0c: /* DEBUG_FLAG */
1086 return 0x00000800;
1087 case 0x10: /* STATUS */
1088 return 0x00000000;
1089
1090 /* Not in OMAP310 */
1091 case 0x14: /* DSP_STATUS */
1092 case 0x18: /* DSP_BOOT_CONFIG */
1093 return 0x00000000;
1094 case 0x1c: /* DSP_MPUI_CONFIG */
1095 return 0x0000ffff;
1096 }
1097
1098 OMAP_BAD_REG(addr);
1099 return 0;
1100 }
1101
1102 static void omap_mpui_write(void *opaque, hwaddr addr,
1103 uint64_t value, unsigned size)
1104 {
1105 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1106
1107 if (size != 4) {
1108 omap_badwidth_write32(opaque, addr, value);
1109 return;
1110 }
1111
1112 switch (addr) {
1113 case 0x00: /* CTRL */
1114 s->mpui_ctrl = value & 0x007fffff;
1115 break;
1116
1117 case 0x04: /* DEBUG_ADDR */
1118 case 0x08: /* DEBUG_DATA */
1119 case 0x0c: /* DEBUG_FLAG */
1120 case 0x10: /* STATUS */
1121 /* Not in OMAP310 */
1122 case 0x14: /* DSP_STATUS */
1123 OMAP_RO_REG(addr);
1124 break;
1125 case 0x18: /* DSP_BOOT_CONFIG */
1126 case 0x1c: /* DSP_MPUI_CONFIG */
1127 break;
1128
1129 default:
1130 OMAP_BAD_REG(addr);
1131 }
1132 }
1133
1134 static const MemoryRegionOps omap_mpui_ops = {
1135 .read = omap_mpui_read,
1136 .write = omap_mpui_write,
1137 .endianness = DEVICE_NATIVE_ENDIAN,
1138 };
1139
1140 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1141 {
1142 s->mpui_ctrl = 0x0003ff1b;
1143 }
1144
1145 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1146 struct omap_mpu_state_s *mpu)
1147 {
1148 memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1149 "omap-mpui", 0x100);
1150 memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1151
1152 omap_mpui_reset(mpu);
1153 }
1154
1155 /* TIPB Bridges */
1156 struct omap_tipb_bridge_s {
1157 qemu_irq abort;
1158 MemoryRegion iomem;
1159
1160 int width_intr;
1161 uint16_t control;
1162 uint16_t alloc;
1163 uint16_t buffer;
1164 uint16_t enh_control;
1165 };
1166
1167 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1168 unsigned size)
1169 {
1170 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1171
1172 if (size < 2) {
1173 return omap_badwidth_read16(opaque, addr);
1174 }
1175
1176 switch (addr) {
1177 case 0x00: /* TIPB_CNTL */
1178 return s->control;
1179 case 0x04: /* TIPB_BUS_ALLOC */
1180 return s->alloc;
1181 case 0x08: /* MPU_TIPB_CNTL */
1182 return s->buffer;
1183 case 0x0c: /* ENHANCED_TIPB_CNTL */
1184 return s->enh_control;
1185 case 0x10: /* ADDRESS_DBG */
1186 case 0x14: /* DATA_DEBUG_LOW */
1187 case 0x18: /* DATA_DEBUG_HIGH */
1188 return 0xffff;
1189 case 0x1c: /* DEBUG_CNTR_SIG */
1190 return 0x00f8;
1191 }
1192
1193 OMAP_BAD_REG(addr);
1194 return 0;
1195 }
1196
1197 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1198 uint64_t value, unsigned size)
1199 {
1200 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1201
1202 if (size < 2) {
1203 omap_badwidth_write16(opaque, addr, value);
1204 return;
1205 }
1206
1207 switch (addr) {
1208 case 0x00: /* TIPB_CNTL */
1209 s->control = value & 0xffff;
1210 break;
1211
1212 case 0x04: /* TIPB_BUS_ALLOC */
1213 s->alloc = value & 0x003f;
1214 break;
1215
1216 case 0x08: /* MPU_TIPB_CNTL */
1217 s->buffer = value & 0x0003;
1218 break;
1219
1220 case 0x0c: /* ENHANCED_TIPB_CNTL */
1221 s->width_intr = !(value & 2);
1222 s->enh_control = value & 0x000f;
1223 break;
1224
1225 case 0x10: /* ADDRESS_DBG */
1226 case 0x14: /* DATA_DEBUG_LOW */
1227 case 0x18: /* DATA_DEBUG_HIGH */
1228 case 0x1c: /* DEBUG_CNTR_SIG */
1229 OMAP_RO_REG(addr);
1230 break;
1231
1232 default:
1233 OMAP_BAD_REG(addr);
1234 }
1235 }
1236
1237 static const MemoryRegionOps omap_tipb_bridge_ops = {
1238 .read = omap_tipb_bridge_read,
1239 .write = omap_tipb_bridge_write,
1240 .endianness = DEVICE_NATIVE_ENDIAN,
1241 };
1242
1243 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1244 {
1245 s->control = 0xffff;
1246 s->alloc = 0x0009;
1247 s->buffer = 0x0000;
1248 s->enh_control = 0x000f;
1249 }
1250
1251 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1252 MemoryRegion *memory, hwaddr base,
1253 qemu_irq abort_irq, omap_clk clk)
1254 {
1255 struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
1256
1257 s->abort = abort_irq;
1258 omap_tipb_bridge_reset(s);
1259
1260 memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1261 "omap-tipb-bridge", 0x100);
1262 memory_region_add_subregion(memory, base, &s->iomem);
1263
1264 return s;
1265 }
1266
1267 /* Dummy Traffic Controller's Memory Interface */
1268 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1269 unsigned size)
1270 {
1271 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1272 uint32_t ret;
1273
1274 if (size != 4) {
1275 return omap_badwidth_read32(opaque, addr);
1276 }
1277
1278 switch (addr) {
1279 case 0x00: /* IMIF_PRIO */
1280 case 0x04: /* EMIFS_PRIO */
1281 case 0x08: /* EMIFF_PRIO */
1282 case 0x0c: /* EMIFS_CONFIG */
1283 case 0x10: /* EMIFS_CS0_CONFIG */
1284 case 0x14: /* EMIFS_CS1_CONFIG */
1285 case 0x18: /* EMIFS_CS2_CONFIG */
1286 case 0x1c: /* EMIFS_CS3_CONFIG */
1287 case 0x24: /* EMIFF_MRS */
1288 case 0x28: /* TIMEOUT1 */
1289 case 0x2c: /* TIMEOUT2 */
1290 case 0x30: /* TIMEOUT3 */
1291 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1292 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1293 return s->tcmi_regs[addr >> 2];
1294
1295 case 0x20: /* EMIFF_SDRAM_CONFIG */
1296 ret = s->tcmi_regs[addr >> 2];
1297 s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1298 /* XXX: We can try using the VGA_DIRTY flag for this */
1299 return ret;
1300 }
1301
1302 OMAP_BAD_REG(addr);
1303 return 0;
1304 }
1305
1306 static void omap_tcmi_write(void *opaque, hwaddr addr,
1307 uint64_t value, unsigned size)
1308 {
1309 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1310
1311 if (size != 4) {
1312 omap_badwidth_write32(opaque, addr, value);
1313 return;
1314 }
1315
1316 switch (addr) {
1317 case 0x00: /* IMIF_PRIO */
1318 case 0x04: /* EMIFS_PRIO */
1319 case 0x08: /* EMIFF_PRIO */
1320 case 0x10: /* EMIFS_CS0_CONFIG */
1321 case 0x14: /* EMIFS_CS1_CONFIG */
1322 case 0x18: /* EMIFS_CS2_CONFIG */
1323 case 0x1c: /* EMIFS_CS3_CONFIG */
1324 case 0x20: /* EMIFF_SDRAM_CONFIG */
1325 case 0x24: /* EMIFF_MRS */
1326 case 0x28: /* TIMEOUT1 */
1327 case 0x2c: /* TIMEOUT2 */
1328 case 0x30: /* TIMEOUT3 */
1329 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1330 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1331 s->tcmi_regs[addr >> 2] = value;
1332 break;
1333 case 0x0c: /* EMIFS_CONFIG */
1334 s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1335 break;
1336
1337 default:
1338 OMAP_BAD_REG(addr);
1339 }
1340 }
1341
1342 static const MemoryRegionOps omap_tcmi_ops = {
1343 .read = omap_tcmi_read,
1344 .write = omap_tcmi_write,
1345 .endianness = DEVICE_NATIVE_ENDIAN,
1346 };
1347
1348 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1349 {
1350 mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1351 mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1352 mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1353 mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1354 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1355 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1356 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1357 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1358 mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1359 mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1360 mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1361 mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1362 mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1363 mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1364 mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1365 }
1366
1367 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1368 struct omap_mpu_state_s *mpu)
1369 {
1370 memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1371 "omap-tcmi", 0x100);
1372 memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1373 omap_tcmi_reset(mpu);
1374 }
1375
1376 /* Digital phase-locked loops control */
1377 struct dpll_ctl_s {
1378 MemoryRegion iomem;
1379 uint16_t mode;
1380 omap_clk dpll;
1381 };
1382
1383 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1384 unsigned size)
1385 {
1386 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1387
1388 if (size != 2) {
1389 return omap_badwidth_read16(opaque, addr);
1390 }
1391
1392 if (addr == 0x00) /* CTL_REG */
1393 return s->mode;
1394
1395 OMAP_BAD_REG(addr);
1396 return 0;
1397 }
1398
1399 static void omap_dpll_write(void *opaque, hwaddr addr,
1400 uint64_t value, unsigned size)
1401 {
1402 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1403 uint16_t diff;
1404 static const int bypass_div[4] = { 1, 2, 4, 4 };
1405 int div, mult;
1406
1407 if (size != 2) {
1408 omap_badwidth_write16(opaque, addr, value);
1409 return;
1410 }
1411
1412 if (addr == 0x00) { /* CTL_REG */
1413 /* See omap_ulpd_pm_write() too */
1414 diff = s->mode & value;
1415 s->mode = value & 0x2fff;
1416 if (diff & (0x3ff << 2)) {
1417 if (value & (1 << 4)) { /* PLL_ENABLE */
1418 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1419 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1420 } else {
1421 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1422 mult = 1;
1423 }
1424 omap_clk_setrate(s->dpll, div, mult);
1425 }
1426
1427 /* Enter the desired mode. */
1428 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1429
1430 /* Act as if the lock is restored. */
1431 s->mode |= 2;
1432 } else {
1433 OMAP_BAD_REG(addr);
1434 }
1435 }
1436
1437 static const MemoryRegionOps omap_dpll_ops = {
1438 .read = omap_dpll_read,
1439 .write = omap_dpll_write,
1440 .endianness = DEVICE_NATIVE_ENDIAN,
1441 };
1442
1443 static void omap_dpll_reset(struct dpll_ctl_s *s)
1444 {
1445 s->mode = 0x2002;
1446 omap_clk_setrate(s->dpll, 1, 1);
1447 }
1448
1449 static struct dpll_ctl_s *omap_dpll_init(MemoryRegion *memory,
1450 hwaddr base, omap_clk clk)
1451 {
1452 struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1453 memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1454
1455 s->dpll = clk;
1456 omap_dpll_reset(s);
1457
1458 memory_region_add_subregion(memory, base, &s->iomem);
1459 return s;
1460 }
1461
1462 /* MPU Clock/Reset/Power Mode Control */
1463 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1464 unsigned size)
1465 {
1466 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1467
1468 if (size != 2) {
1469 return omap_badwidth_read16(opaque, addr);
1470 }
1471
1472 switch (addr) {
1473 case 0x00: /* ARM_CKCTL */
1474 return s->clkm.arm_ckctl;
1475
1476 case 0x04: /* ARM_IDLECT1 */
1477 return s->clkm.arm_idlect1;
1478
1479 case 0x08: /* ARM_IDLECT2 */
1480 return s->clkm.arm_idlect2;
1481
1482 case 0x0c: /* ARM_EWUPCT */
1483 return s->clkm.arm_ewupct;
1484
1485 case 0x10: /* ARM_RSTCT1 */
1486 return s->clkm.arm_rstct1;
1487
1488 case 0x14: /* ARM_RSTCT2 */
1489 return s->clkm.arm_rstct2;
1490
1491 case 0x18: /* ARM_SYSST */
1492 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1493
1494 case 0x1c: /* ARM_CKOUT1 */
1495 return s->clkm.arm_ckout1;
1496
1497 case 0x20: /* ARM_CKOUT2 */
1498 break;
1499 }
1500
1501 OMAP_BAD_REG(addr);
1502 return 0;
1503 }
1504
1505 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1506 uint16_t diff, uint16_t value)
1507 {
1508 omap_clk clk;
1509
1510 if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
1511 if (value & (1 << 14))
1512 /* Reserved */;
1513 else {
1514 clk = omap_findclk(s, "arminth_ck");
1515 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1516 }
1517 }
1518 if (diff & (1 << 12)) { /* ARM_TIMXO */
1519 clk = omap_findclk(s, "armtim_ck");
1520 if (value & (1 << 12))
1521 omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1522 else
1523 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1524 }
1525 /* XXX: en_dspck */
1526 if (diff & (3 << 10)) { /* DSPMMUDIV */
1527 clk = omap_findclk(s, "dspmmu_ck");
1528 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1529 }
1530 if (diff & (3 << 8)) { /* TCDIV */
1531 clk = omap_findclk(s, "tc_ck");
1532 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1533 }
1534 if (diff & (3 << 6)) { /* DSPDIV */
1535 clk = omap_findclk(s, "dsp_ck");
1536 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1537 }
1538 if (diff & (3 << 4)) { /* ARMDIV */
1539 clk = omap_findclk(s, "arm_ck");
1540 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1541 }
1542 if (diff & (3 << 2)) { /* LCDDIV */
1543 clk = omap_findclk(s, "lcd_ck");
1544 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1545 }
1546 if (diff & (3 << 0)) { /* PERDIV */
1547 clk = omap_findclk(s, "armper_ck");
1548 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1549 }
1550 }
1551
1552 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1553 uint16_t diff, uint16_t value)
1554 {
1555 omap_clk clk;
1556
1557 if (value & (1 << 11)) { /* SETARM_IDLE */
1558 cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1559 }
1560 if (!(value & (1 << 10))) { /* WKUP_MODE */
1561 /* XXX: disable wakeup from IRQ */
1562 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1563 }
1564
1565 #define SET_CANIDLE(clock, bit) \
1566 if (diff & (1 << bit)) { \
1567 clk = omap_findclk(s, clock); \
1568 omap_clk_canidle(clk, (value >> bit) & 1); \
1569 }
1570 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
1571 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
1572 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
1573 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
1574 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
1575 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
1576 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
1577 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
1578 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
1579 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
1580 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
1581 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
1582 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
1583 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
1584 }
1585
1586 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1587 uint16_t diff, uint16_t value)
1588 {
1589 omap_clk clk;
1590
1591 #define SET_ONOFF(clock, bit) \
1592 if (diff & (1 << bit)) { \
1593 clk = omap_findclk(s, clock); \
1594 omap_clk_onoff(clk, (value >> bit) & 1); \
1595 }
1596 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
1597 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
1598 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
1599 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
1600 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
1601 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
1602 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
1603 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
1604 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
1605 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
1606 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
1607 }
1608
1609 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1610 uint16_t diff, uint16_t value)
1611 {
1612 omap_clk clk;
1613
1614 if (diff & (3 << 4)) { /* TCLKOUT */
1615 clk = omap_findclk(s, "tclk_out");
1616 switch ((value >> 4) & 3) {
1617 case 1:
1618 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1619 omap_clk_onoff(clk, 1);
1620 break;
1621 case 2:
1622 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1623 omap_clk_onoff(clk, 1);
1624 break;
1625 default:
1626 omap_clk_onoff(clk, 0);
1627 }
1628 }
1629 if (diff & (3 << 2)) { /* DCLKOUT */
1630 clk = omap_findclk(s, "dclk_out");
1631 switch ((value >> 2) & 3) {
1632 case 0:
1633 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1634 break;
1635 case 1:
1636 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1637 break;
1638 case 2:
1639 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1640 break;
1641 case 3:
1642 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1643 break;
1644 }
1645 }
1646 if (diff & (3 << 0)) { /* ACLKOUT */
1647 clk = omap_findclk(s, "aclk_out");
1648 switch ((value >> 0) & 3) {
1649 case 1:
1650 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1651 omap_clk_onoff(clk, 1);
1652 break;
1653 case 2:
1654 omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1655 omap_clk_onoff(clk, 1);
1656 break;
1657 case 3:
1658 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1659 omap_clk_onoff(clk, 1);
1660 break;
1661 default:
1662 omap_clk_onoff(clk, 0);
1663 }
1664 }
1665 }
1666
1667 static void omap_clkm_write(void *opaque, hwaddr addr,
1668 uint64_t value, unsigned size)
1669 {
1670 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1671 uint16_t diff;
1672 omap_clk clk;
1673 static const char *clkschemename[8] = {
1674 "fully synchronous", "fully asynchronous", "synchronous scalable",
1675 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1676 };
1677
1678 if (size != 2) {
1679 omap_badwidth_write16(opaque, addr, value);
1680 return;
1681 }
1682
1683 switch (addr) {
1684 case 0x00: /* ARM_CKCTL */
1685 diff = s->clkm.arm_ckctl ^ value;
1686 s->clkm.arm_ckctl = value & 0x7fff;
1687 omap_clkm_ckctl_update(s, diff, value);
1688 return;
1689
1690 case 0x04: /* ARM_IDLECT1 */
1691 diff = s->clkm.arm_idlect1 ^ value;
1692 s->clkm.arm_idlect1 = value & 0x0fff;
1693 omap_clkm_idlect1_update(s, diff, value);
1694 return;
1695
1696 case 0x08: /* ARM_IDLECT2 */
1697 diff = s->clkm.arm_idlect2 ^ value;
1698 s->clkm.arm_idlect2 = value & 0x07ff;
1699 omap_clkm_idlect2_update(s, diff, value);
1700 return;
1701
1702 case 0x0c: /* ARM_EWUPCT */
1703 s->clkm.arm_ewupct = value & 0x003f;
1704 return;
1705
1706 case 0x10: /* ARM_RSTCT1 */
1707 diff = s->clkm.arm_rstct1 ^ value;
1708 s->clkm.arm_rstct1 = value & 0x0007;
1709 if (value & 9) {
1710 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1711 s->clkm.cold_start = 0xa;
1712 }
1713 if (diff & ~value & 4) { /* DSP_RST */
1714 omap_mpui_reset(s);
1715 omap_tipb_bridge_reset(s->private_tipb);
1716 omap_tipb_bridge_reset(s->public_tipb);
1717 }
1718 if (diff & 2) { /* DSP_EN */
1719 clk = omap_findclk(s, "dsp_ck");
1720 omap_clk_canidle(clk, (~value >> 1) & 1);
1721 }
1722 return;
1723
1724 case 0x14: /* ARM_RSTCT2 */
1725 s->clkm.arm_rstct2 = value & 0x0001;
1726 return;
1727
1728 case 0x18: /* ARM_SYSST */
1729 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1730 s->clkm.clocking_scheme = (value >> 11) & 7;
1731 printf("%s: clocking scheme set to %s\n", __func__,
1732 clkschemename[s->clkm.clocking_scheme]);
1733 }
1734 s->clkm.cold_start &= value & 0x3f;
1735 return;
1736
1737 case 0x1c: /* ARM_CKOUT1 */
1738 diff = s->clkm.arm_ckout1 ^ value;
1739 s->clkm.arm_ckout1 = value & 0x003f;
1740 omap_clkm_ckout1_update(s, diff, value);
1741 return;
1742
1743 case 0x20: /* ARM_CKOUT2 */
1744 default:
1745 OMAP_BAD_REG(addr);
1746 }
1747 }
1748
1749 static const MemoryRegionOps omap_clkm_ops = {
1750 .read = omap_clkm_read,
1751 .write = omap_clkm_write,
1752 .endianness = DEVICE_NATIVE_ENDIAN,
1753 };
1754
1755 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1756 unsigned size)
1757 {
1758 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1759 CPUState *cpu = CPU(s->cpu);
1760
1761 if (size != 2) {
1762 return omap_badwidth_read16(opaque, addr);
1763 }
1764
1765 switch (addr) {
1766 case 0x04: /* DSP_IDLECT1 */
1767 return s->clkm.dsp_idlect1;
1768
1769 case 0x08: /* DSP_IDLECT2 */
1770 return s->clkm.dsp_idlect2;
1771
1772 case 0x14: /* DSP_RSTCT2 */
1773 return s->clkm.dsp_rstct2;
1774
1775 case 0x18: /* DSP_SYSST */
1776 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1777 (cpu->halted << 6); /* Quite useless... */
1778 }
1779
1780 OMAP_BAD_REG(addr);
1781 return 0;
1782 }
1783
1784 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1785 uint16_t diff, uint16_t value)
1786 {
1787 omap_clk clk;
1788
1789 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
1790 }
1791
1792 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1793 uint16_t diff, uint16_t value)
1794 {
1795 omap_clk clk;
1796
1797 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
1798 }
1799
1800 static void omap_clkdsp_write(void *opaque, hwaddr addr,
1801 uint64_t value, unsigned size)
1802 {
1803 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1804 uint16_t diff;
1805
1806 if (size != 2) {
1807 omap_badwidth_write16(opaque, addr, value);
1808 return;
1809 }
1810
1811 switch (addr) {
1812 case 0x04: /* DSP_IDLECT1 */
1813 diff = s->clkm.dsp_idlect1 ^ value;
1814 s->clkm.dsp_idlect1 = value & 0x01f7;
1815 omap_clkdsp_idlect1_update(s, diff, value);
1816 break;
1817
1818 case 0x08: /* DSP_IDLECT2 */
1819 s->clkm.dsp_idlect2 = value & 0x0037;
1820 diff = s->clkm.dsp_idlect1 ^ value;
1821 omap_clkdsp_idlect2_update(s, diff, value);
1822 break;
1823
1824 case 0x14: /* DSP_RSTCT2 */
1825 s->clkm.dsp_rstct2 = value & 0x0001;
1826 break;
1827
1828 case 0x18: /* DSP_SYSST */
1829 s->clkm.cold_start &= value & 0x3f;
1830 break;
1831
1832 default:
1833 OMAP_BAD_REG(addr);
1834 }
1835 }
1836
1837 static const MemoryRegionOps omap_clkdsp_ops = {
1838 .read = omap_clkdsp_read,
1839 .write = omap_clkdsp_write,
1840 .endianness = DEVICE_NATIVE_ENDIAN,
1841 };
1842
1843 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1844 {
1845 if (s->wdt && s->wdt->reset)
1846 s->clkm.cold_start = 0x6;
1847 s->clkm.clocking_scheme = 0;
1848 omap_clkm_ckctl_update(s, ~0, 0x3000);
1849 s->clkm.arm_ckctl = 0x3000;
1850 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1851 s->clkm.arm_idlect1 = 0x0400;
1852 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1853 s->clkm.arm_idlect2 = 0x0100;
1854 s->clkm.arm_ewupct = 0x003f;
1855 s->clkm.arm_rstct1 = 0x0000;
1856 s->clkm.arm_rstct2 = 0x0000;
1857 s->clkm.arm_ckout1 = 0x0015;
1858 s->clkm.dpll1_mode = 0x2002;
1859 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1860 s->clkm.dsp_idlect1 = 0x0040;
1861 omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1862 s->clkm.dsp_idlect2 = 0x0000;
1863 s->clkm.dsp_rstct2 = 0x0000;
1864 }
1865
1866 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1867 hwaddr dsp_base, struct omap_mpu_state_s *s)
1868 {
1869 memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1870 "omap-clkm", 0x100);
1871 memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1872 "omap-clkdsp", 0x1000);
1873
1874 s->clkm.arm_idlect1 = 0x03ff;
1875 s->clkm.arm_idlect2 = 0x0100;
1876 s->clkm.dsp_idlect1 = 0x0002;
1877 omap_clkm_reset(s);
1878 s->clkm.cold_start = 0x3a;
1879
1880 memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1881 memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1882 }
1883
1884 /* MPU I/O */
1885 struct omap_mpuio_s {
1886 qemu_irq irq;
1887 qemu_irq kbd_irq;
1888 qemu_irq *in;
1889 qemu_irq handler[16];
1890 qemu_irq wakeup;
1891 MemoryRegion iomem;
1892
1893 uint16_t inputs;
1894 uint16_t outputs;
1895 uint16_t dir;
1896 uint16_t edge;
1897 uint16_t mask;
1898 uint16_t ints;
1899
1900 uint16_t debounce;
1901 uint16_t latch;
1902 uint8_t event;
1903
1904 uint8_t buttons[5];
1905 uint8_t row_latch;
1906 uint8_t cols;
1907 int kbd_mask;
1908 int clk;
1909 };
1910
1911 static void omap_mpuio_set(void *opaque, int line, int level)
1912 {
1913 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1914 uint16_t prev = s->inputs;
1915
1916 if (level)
1917 s->inputs |= 1 << line;
1918 else
1919 s->inputs &= ~(1 << line);
1920
1921 if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1922 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1923 s->ints |= 1 << line;
1924 qemu_irq_raise(s->irq);
1925 /* TODO: wakeup */
1926 }
1927 if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
1928 (s->event >> 1) == line) /* PIN_SELECT */
1929 s->latch = s->inputs;
1930 }
1931 }
1932
1933 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1934 {
1935 int i;
1936 uint8_t *row, rows = 0, cols = ~s->cols;
1937
1938 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1939 if (*row & cols)
1940 rows |= i;
1941
1942 qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1943 s->row_latch = ~rows;
1944 }
1945
1946 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1947 unsigned size)
1948 {
1949 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1950 int offset = addr & OMAP_MPUI_REG_MASK;
1951 uint16_t ret;
1952
1953 if (size != 2) {
1954 return omap_badwidth_read16(opaque, addr);
1955 }
1956
1957 switch (offset) {
1958 case 0x00: /* INPUT_LATCH */
1959 return s->inputs;
1960
1961 case 0x04: /* OUTPUT_REG */
1962 return s->outputs;
1963
1964 case 0x08: /* IO_CNTL */
1965 return s->dir;
1966
1967 case 0x10: /* KBR_LATCH */
1968 return s->row_latch;
1969
1970 case 0x14: /* KBC_REG */
1971 return s->cols;
1972
1973 case 0x18: /* GPIO_EVENT_MODE_REG */
1974 return s->event;
1975
1976 case 0x1c: /* GPIO_INT_EDGE_REG */
1977 return s->edge;
1978
1979 case 0x20: /* KBD_INT */
1980 return (~s->row_latch & 0x1f) && !s->kbd_mask;
1981
1982 case 0x24: /* GPIO_INT */
1983 ret = s->ints;
1984 s->ints &= s->mask;
1985 if (ret)
1986 qemu_irq_lower(s->irq);
1987 return ret;
1988
1989 case 0x28: /* KBD_MASKIT */
1990 return s->kbd_mask;
1991
1992 case 0x2c: /* GPIO_MASKIT */
1993 return s->mask;
1994
1995 case 0x30: /* GPIO_DEBOUNCING_REG */
1996 return s->debounce;
1997
1998 case 0x34: /* GPIO_LATCH_REG */
1999 return s->latch;
2000 }
2001
2002 OMAP_BAD_REG(addr);
2003 return 0;
2004 }
2005
2006 static void omap_mpuio_write(void *opaque, hwaddr addr,
2007 uint64_t value, unsigned size)
2008 {
2009 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2010 int offset = addr & OMAP_MPUI_REG_MASK;
2011 uint16_t diff;
2012 int ln;
2013
2014 if (size != 2) {
2015 omap_badwidth_write16(opaque, addr, value);
2016 return;
2017 }
2018
2019 switch (offset) {
2020 case 0x04: /* OUTPUT_REG */
2021 diff = (s->outputs ^ value) & ~s->dir;
2022 s->outputs = value;
2023 while ((ln = ctz32(diff)) != 32) {
2024 if (s->handler[ln])
2025 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2026 diff &= ~(1 << ln);
2027 }
2028 break;
2029
2030 case 0x08: /* IO_CNTL */
2031 diff = s->outputs & (s->dir ^ value);
2032 s->dir = value;
2033
2034 value = s->outputs & ~s->dir;
2035 while ((ln = ctz32(diff)) != 32) {
2036 if (s->handler[ln])
2037 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2038 diff &= ~(1 << ln);
2039 }
2040 break;
2041
2042 case 0x14: /* KBC_REG */
2043 s->cols = value;
2044 omap_mpuio_kbd_update(s);
2045 break;
2046
2047 case 0x18: /* GPIO_EVENT_MODE_REG */
2048 s->event = value & 0x1f;
2049 break;
2050
2051 case 0x1c: /* GPIO_INT_EDGE_REG */
2052 s->edge = value;
2053 break;
2054
2055 case 0x28: /* KBD_MASKIT */
2056 s->kbd_mask = value & 1;
2057 omap_mpuio_kbd_update(s);
2058 break;
2059
2060 case 0x2c: /* GPIO_MASKIT */
2061 s->mask = value;
2062 break;
2063
2064 case 0x30: /* GPIO_DEBOUNCING_REG */
2065 s->debounce = value & 0x1ff;
2066 break;
2067
2068 case 0x00: /* INPUT_LATCH */
2069 case 0x10: /* KBR_LATCH */
2070 case 0x20: /* KBD_INT */
2071 case 0x24: /* GPIO_INT */
2072 case 0x34: /* GPIO_LATCH_REG */
2073 OMAP_RO_REG(addr);
2074 return;
2075
2076 default:
2077 OMAP_BAD_REG(addr);
2078 return;
2079 }
2080 }
2081
2082 static const MemoryRegionOps omap_mpuio_ops = {
2083 .read = omap_mpuio_read,
2084 .write = omap_mpuio_write,
2085 .endianness = DEVICE_NATIVE_ENDIAN,
2086 };
2087
2088 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2089 {
2090 s->inputs = 0;
2091 s->outputs = 0;
2092 s->dir = ~0;
2093 s->event = 0;
2094 s->edge = 0;
2095 s->kbd_mask = 0;
2096 s->mask = 0;
2097 s->debounce = 0;
2098 s->latch = 0;
2099 s->ints = 0;
2100 s->row_latch = 0x1f;
2101 s->clk = 1;
2102 }
2103
2104 static void omap_mpuio_onoff(void *opaque, int line, int on)
2105 {
2106 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2107
2108 s->clk = on;
2109 if (on)
2110 omap_mpuio_kbd_update(s);
2111 }
2112
2113 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2114 hwaddr base,
2115 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2116 omap_clk clk)
2117 {
2118 struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
2119
2120 s->irq = gpio_int;
2121 s->kbd_irq = kbd_int;
2122 s->wakeup = wakeup;
2123 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2124 omap_mpuio_reset(s);
2125
2126 memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2127 "omap-mpuio", 0x800);
2128 memory_region_add_subregion(memory, base, &s->iomem);
2129
2130 omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2131
2132 return s;
2133 }
2134
2135 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2136 {
2137 return s->in;
2138 }
2139
2140 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2141 {
2142 if (line >= 16 || line < 0)
2143 hw_error("%s: No GPIO line %i\n", __func__, line);
2144 s->handler[line] = handler;
2145 }
2146
2147 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2148 {
2149 if (row >= 5 || row < 0)
2150 hw_error("%s: No key %i-%i\n", __func__, col, row);
2151
2152 if (down)
2153 s->buttons[row] |= 1 << col;
2154 else
2155 s->buttons[row] &= ~(1 << col);
2156
2157 omap_mpuio_kbd_update(s);
2158 }
2159
2160 /* MicroWire Interface */
2161 struct omap_uwire_s {
2162 MemoryRegion iomem;
2163 qemu_irq txirq;
2164 qemu_irq rxirq;
2165 qemu_irq txdrq;
2166
2167 uint16_t txbuf;
2168 uint16_t rxbuf;
2169 uint16_t control;
2170 uint16_t setup[5];
2171
2172 uWireSlave *chip[4];
2173 };
2174
2175 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2176 {
2177 int chipselect = (s->control >> 10) & 3; /* INDEX */
2178 uWireSlave *slave = s->chip[chipselect];
2179
2180 if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
2181 if (s->control & (1 << 12)) /* CS_CMD */
2182 if (slave && slave->send)
2183 slave->send(slave->opaque,
2184 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2185 s->control &= ~(1 << 14); /* CSRB */
2186 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2187 * a DRQ. When is the level IRQ supposed to be reset? */
2188 }
2189
2190 if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
2191 if (s->control & (1 << 12)) /* CS_CMD */
2192 if (slave && slave->receive)
2193 s->rxbuf = slave->receive(slave->opaque);
2194 s->control |= 1 << 15; /* RDRB */
2195 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2196 * a DRQ. When is the level IRQ supposed to be reset? */
2197 }
2198 }
2199
2200 static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2201 unsigned size)
2202 {
2203 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2204 int offset = addr & OMAP_MPUI_REG_MASK;
2205
2206 if (size != 2) {
2207 return omap_badwidth_read16(opaque, addr);
2208 }
2209
2210 switch (offset) {
2211 case 0x00: /* RDR */
2212 s->control &= ~(1 << 15); /* RDRB */
2213 return s->rxbuf;
2214
2215 case 0x04: /* CSR */
2216 return s->control;
2217
2218 case 0x08: /* SR1 */
2219 return s->setup[0];
2220 case 0x0c: /* SR2 */
2221 return s->setup[1];
2222 case 0x10: /* SR3 */
2223 return s->setup[2];
2224 case 0x14: /* SR4 */
2225 return s->setup[3];
2226 case 0x18: /* SR5 */
2227 return s->setup[4];
2228 }
2229
2230 OMAP_BAD_REG(addr);
2231 return 0;
2232 }
2233
2234 static void omap_uwire_write(void *opaque, hwaddr addr,
2235 uint64_t value, unsigned size)
2236 {
2237 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2238 int offset = addr & OMAP_MPUI_REG_MASK;
2239
2240 if (size != 2) {
2241 omap_badwidth_write16(opaque, addr, value);
2242 return;
2243 }
2244
2245 switch (offset) {
2246 case 0x00: /* TDR */
2247 s->txbuf = value; /* TD */
2248 if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
2249 ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
2250 (s->control & (1 << 12)))) { /* CS_CMD */
2251 s->control |= 1 << 14; /* CSRB */
2252 omap_uwire_transfer_start(s);
2253 }
2254 break;
2255
2256 case 0x04: /* CSR */
2257 s->control = value & 0x1fff;
2258 if (value & (1 << 13)) /* START */
2259 omap_uwire_transfer_start(s);
2260 break;
2261
2262 case 0x08: /* SR1 */
2263 s->setup[0] = value & 0x003f;
2264 break;
2265
2266 case 0x0c: /* SR2 */
2267 s->setup[1] = value & 0x0fc0;
2268 break;
2269
2270 case 0x10: /* SR3 */
2271 s->setup[2] = value & 0x0003;
2272 break;
2273
2274 case 0x14: /* SR4 */
2275 s->setup[3] = value & 0x0001;
2276 break;
2277
2278 case 0x18: /* SR5 */
2279 s->setup[4] = value & 0x000f;
2280 break;
2281
2282 default:
2283 OMAP_BAD_REG(addr);
2284 return;
2285 }
2286 }
2287
2288 static const MemoryRegionOps omap_uwire_ops = {
2289 .read = omap_uwire_read,
2290 .write = omap_uwire_write,
2291 .endianness = DEVICE_NATIVE_ENDIAN,
2292 };
2293
2294 static void omap_uwire_reset(struct omap_uwire_s *s)
2295 {
2296 s->control = 0;
2297 s->setup[0] = 0;
2298 s->setup[1] = 0;
2299 s->setup[2] = 0;
2300 s->setup[3] = 0;
2301 s->setup[4] = 0;
2302 }
2303
2304 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2305 hwaddr base,
2306 qemu_irq txirq, qemu_irq rxirq,
2307 qemu_irq dma,
2308 omap_clk clk)
2309 {
2310 struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
2311
2312 s->txirq = txirq;
2313 s->rxirq = rxirq;
2314 s->txdrq = dma;
2315 omap_uwire_reset(s);
2316
2317 memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2318 memory_region_add_subregion(system_memory, base, &s->iomem);
2319
2320 return s;
2321 }
2322
2323 void omap_uwire_attach(struct omap_uwire_s *s,
2324 uWireSlave *slave, int chipselect)
2325 {
2326 if (chipselect < 0 || chipselect > 3) {
2327 error_report("%s: Bad chipselect %i", __func__, chipselect);
2328 exit(-1);
2329 }
2330
2331 s->chip[chipselect] = slave;
2332 }
2333
2334 /* Pseudonoise Pulse-Width Light Modulator */
2335 struct omap_pwl_s {
2336 MemoryRegion iomem;
2337 uint8_t output;
2338 uint8_t level;
2339 uint8_t enable;
2340 int clk;
2341 };
2342
2343 static void omap_pwl_update(struct omap_pwl_s *s)
2344 {
2345 int output = (s->clk && s->enable) ? s->level : 0;
2346
2347 if (output != s->output) {
2348 s->output = output;
2349 printf("%s: Backlight now at %i/256\n", __func__, output);
2350 }
2351 }
2352
2353 static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2354 unsigned size)
2355 {
2356 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2357 int offset = addr & OMAP_MPUI_REG_MASK;
2358
2359 if (size != 1) {
2360 return omap_badwidth_read8(opaque, addr);
2361 }
2362
2363 switch (offset) {
2364 case 0x00: /* PWL_LEVEL */
2365 return s->level;
2366 case 0x04: /* PWL_CTRL */
2367 return s->enable;
2368 }
2369 OMAP_BAD_REG(addr);
2370 return 0;
2371 }
2372
2373 static void omap_pwl_write(void *opaque, hwaddr addr,
2374 uint64_t value, unsigned size)
2375 {
2376 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2377 int offset = addr & OMAP_MPUI_REG_MASK;
2378
2379 if (size != 1) {
2380 omap_badwidth_write8(opaque, addr, value);
2381 return;
2382 }
2383
2384 switch (offset) {
2385 case 0x00: /* PWL_LEVEL */
2386 s->level = value;
2387 omap_pwl_update(s);
2388 break;
2389 case 0x04: /* PWL_CTRL */
2390 s->enable = value & 1;
2391 omap_pwl_update(s);
2392 break;
2393 default:
2394 OMAP_BAD_REG(addr);
2395 return;
2396 }
2397 }
2398
2399 static const MemoryRegionOps omap_pwl_ops = {
2400 .read = omap_pwl_read,
2401 .write = omap_pwl_write,
2402 .endianness = DEVICE_NATIVE_ENDIAN,
2403 };
2404
2405 static void omap_pwl_reset(struct omap_pwl_s *s)
2406 {
2407 s->output = 0;
2408 s->level = 0;
2409 s->enable = 0;
2410 s->clk = 1;
2411 omap_pwl_update(s);
2412 }
2413
2414 static void omap_pwl_clk_update(void *opaque, int line, int on)
2415 {
2416 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2417
2418 s->clk = on;
2419 omap_pwl_update(s);
2420 }
2421
2422 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2423 hwaddr base,
2424 omap_clk clk)
2425 {
2426 struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2427
2428 omap_pwl_reset(s);
2429
2430 memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2431 "omap-pwl", 0x800);
2432 memory_region_add_subregion(system_memory, base, &s->iomem);
2433
2434 omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2435 return s;
2436 }
2437
2438 /* Pulse-Width Tone module */
2439 struct omap_pwt_s {
2440 MemoryRegion iomem;
2441 uint8_t frc;
2442 uint8_t vrc;
2443 uint8_t gcr;
2444 omap_clk clk;
2445 };
2446
2447 static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2448 unsigned size)
2449 {
2450 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2451 int offset = addr & OMAP_MPUI_REG_MASK;
2452
2453 if (size != 1) {
2454 return omap_badwidth_read8(opaque, addr);
2455 }
2456
2457 switch (offset) {
2458 case 0x00: /* FRC */
2459 return s->frc;
2460 case 0x04: /* VCR */
2461 return s->vrc;
2462 case 0x08: /* GCR */
2463 return s->gcr;
2464 }
2465 OMAP_BAD_REG(addr);
2466 return 0;
2467 }
2468
2469 static void omap_pwt_write(void *opaque, hwaddr addr,
2470 uint64_t value, unsigned size)
2471 {
2472 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2473 int offset = addr & OMAP_MPUI_REG_MASK;
2474
2475 if (size != 1) {
2476 omap_badwidth_write8(opaque, addr, value);
2477 return;
2478 }
2479
2480 switch (offset) {
2481 case 0x00: /* FRC */
2482 s->frc = value & 0x3f;
2483 break;
2484 case 0x04: /* VRC */
2485 if ((value ^ s->vrc) & 1) {
2486 if (value & 1)
2487 printf("%s: %iHz buzz on\n", __func__, (int)
2488 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2489 ((omap_clk_getrate(s->clk) >> 3) /
2490 /* Pre-multiplexer divider */
2491 ((s->gcr & 2) ? 1 : 154) /
2492 /* Octave multiplexer */
2493 (2 << (value & 3)) *
2494 /* 101/107 divider */
2495 ((value & (1 << 2)) ? 101 : 107) *
2496 /* 49/55 divider */
2497 ((value & (1 << 3)) ? 49 : 55) *
2498 /* 50/63 divider */
2499 ((value & (1 << 4)) ? 50 : 63) *
2500 /* 80/127 divider */
2501 ((value & (1 << 5)) ? 80 : 127) /
2502 (107 * 55 * 63 * 127)));
2503 else
2504 printf("%s: silence!\n", __func__);
2505 }
2506 s->vrc = value & 0x7f;
2507 break;
2508 case 0x08: /* GCR */
2509 s->gcr = value & 3;
2510 break;
2511 default:
2512 OMAP_BAD_REG(addr);
2513 return;
2514 }
2515 }
2516
2517 static const MemoryRegionOps omap_pwt_ops = {
2518 .read =omap_pwt_read,
2519 .write = omap_pwt_write,
2520 .endianness = DEVICE_NATIVE_ENDIAN,
2521 };
2522
2523 static void omap_pwt_reset(struct omap_pwt_s *s)
2524 {
2525 s->frc = 0;
2526 s->vrc = 0;
2527 s->gcr = 0;
2528 }
2529
2530 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2531 hwaddr base,
2532 omap_clk clk)
2533 {
2534 struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2535 s->clk = clk;
2536 omap_pwt_reset(s);
2537
2538 memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2539 "omap-pwt", 0x800);
2540 memory_region_add_subregion(system_memory, base, &s->iomem);
2541 return s;
2542 }
2543
2544 /* Real-time Clock module */
2545 struct omap_rtc_s {
2546 MemoryRegion iomem;
2547 qemu_irq irq;
2548 qemu_irq alarm;
2549 QEMUTimer *clk;
2550
2551 uint8_t interrupts;
2552 uint8_t status;
2553 int16_t comp_reg;
2554 int running;
2555 int pm_am;
2556 int auto_comp;
2557 int round;
2558 struct tm alarm_tm;
2559 time_t alarm_ti;
2560
2561 struct tm current_tm;
2562 time_t ti;
2563 uint64_t tick;
2564 };
2565
2566 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2567 {
2568 /* s->alarm is level-triggered */
2569 qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2570 }
2571
2572 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2573 {
2574 s->alarm_ti = mktimegm(&s->alarm_tm);
2575 if (s->alarm_ti == -1)
2576 printf("%s: conversion failed\n", __func__);
2577 }
2578
2579 static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2580 unsigned size)
2581 {
2582 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2583 int offset = addr & OMAP_MPUI_REG_MASK;
2584 uint8_t i;
2585
2586 if (size != 1) {
2587 return omap_badwidth_read8(opaque, addr);
2588 }
2589
2590 switch (offset) {
2591 case 0x00: /* SECONDS_REG */
2592 return to_bcd(s->current_tm.tm_sec);
2593
2594 case 0x04: /* MINUTES_REG */
2595 return to_bcd(s->current_tm.tm_min);
2596
2597 case 0x08: /* HOURS_REG */
2598 if (s->pm_am)
2599 return ((s->current_tm.tm_hour > 11) << 7) |
2600 to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2601 else
2602 return to_bcd(s->current_tm.tm_hour);
2603
2604 case 0x0c: /* DAYS_REG */
2605 return to_bcd(s->current_tm.tm_mday);
2606
2607 case 0x10: /* MONTHS_REG */
2608 return to_bcd(s->current_tm.tm_mon + 1);
2609
2610 case 0x14: /* YEARS_REG */
2611 return to_bcd(s->current_tm.tm_year % 100);
2612
2613 case 0x18: /* WEEK_REG */
2614 return s->current_tm.tm_wday;
2615
2616 case 0x20: /* ALARM_SECONDS_REG */
2617 return to_bcd(s->alarm_tm.tm_sec);
2618
2619 case 0x24: /* ALARM_MINUTES_REG */
2620 return to_bcd(s->alarm_tm.tm_min);
2621
2622 case 0x28: /* ALARM_HOURS_REG */
2623 if (s->pm_am)
2624 return ((s->alarm_tm.tm_hour > 11) << 7) |
2625 to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2626 else
2627 return to_bcd(s->alarm_tm.tm_hour);
2628
2629 case 0x2c: /* ALARM_DAYS_REG */
2630 return to_bcd(s->alarm_tm.tm_mday);
2631
2632 case 0x30: /* ALARM_MONTHS_REG */
2633 return to_bcd(s->alarm_tm.tm_mon + 1);
2634
2635 case 0x34: /* ALARM_YEARS_REG */
2636 return to_bcd(s->alarm_tm.tm_year % 100);
2637
2638 case 0x40: /* RTC_CTRL_REG */
2639 return (s->pm_am << 3) | (s->auto_comp << 2) |
2640 (s->round << 1) | s->running;
2641
2642 case 0x44: /* RTC_STATUS_REG */
2643 i = s->status;
2644 s->status &= ~0x3d;
2645 return i;
2646
2647 case 0x48: /* RTC_INTERRUPTS_REG */
2648 return s->interrupts;
2649
2650 case 0x4c: /* RTC_COMP_LSB_REG */
2651 return ((uint16_t) s->comp_reg) & 0xff;
2652
2653 case 0x50: /* RTC_COMP_MSB_REG */
2654 return ((uint16_t) s->comp_reg) >> 8;
2655 }
2656
2657 OMAP_BAD_REG(addr);
2658 return 0;
2659 }
2660
2661 static void omap_rtc_write(void *opaque, hwaddr addr,
2662 uint64_t value, unsigned size)
2663 {
2664 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2665 int offset = addr & OMAP_MPUI_REG_MASK;
2666 struct tm new_tm;
2667 time_t ti[2];
2668
2669 if (size != 1) {
2670 omap_badwidth_write8(opaque, addr, value);
2671 return;
2672 }
2673
2674 switch (offset) {
2675 case 0x00: /* SECONDS_REG */
2676 #ifdef ALMDEBUG
2677 printf("RTC SEC_REG <-- %02x\n", value);
2678 #endif
2679 s->ti -= s->current_tm.tm_sec;
2680 s->ti += from_bcd(value);
2681 return;
2682
2683 case 0x04: /* MINUTES_REG */
2684 #ifdef ALMDEBUG
2685 printf("RTC MIN_REG <-- %02x\n", value);
2686 #endif
2687 s->ti -= s->current_tm.tm_min * 60;
2688 s->ti += from_bcd(value) * 60;
2689 return;
2690
2691 case 0x08: /* HOURS_REG */
2692 #ifdef ALMDEBUG
2693 printf("RTC HRS_REG <-- %02x\n", value);
2694 #endif
2695 s->ti -= s->current_tm.tm_hour * 3600;
2696 if (s->pm_am) {
2697 s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2698 s->ti += ((value >> 7) & 1) * 43200;
2699 } else
2700 s->ti += from_bcd(value & 0x3f) * 3600;
2701 return;
2702
2703 case 0x0c: /* DAYS_REG */
2704 #ifdef ALMDEBUG
2705 printf("RTC DAY_REG <-- %02x\n", value);
2706 #endif
2707 s->ti -= s->current_tm.tm_mday * 86400;
2708 s->ti += from_bcd(value) * 86400;
2709 return;
2710
2711 case 0x10: /* MONTHS_REG */
2712 #ifdef ALMDEBUG
2713 printf("RTC MTH_REG <-- %02x\n", value);
2714 #endif
2715 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2716 new_tm.tm_mon = from_bcd(value);
2717 ti[0] = mktimegm(&s->current_tm);
2718 ti[1] = mktimegm(&new_tm);
2719
2720 if (ti[0] != -1 && ti[1] != -1) {
2721 s->ti -= ti[0];
2722 s->ti += ti[1];
2723 } else {
2724 /* A less accurate version */
2725 s->ti -= s->current_tm.tm_mon * 2592000;
2726 s->ti += from_bcd(value) * 2592000;
2727 }
2728 return;
2729
2730 case 0x14: /* YEARS_REG */
2731 #ifdef ALMDEBUG
2732 printf("RTC YRS_REG <-- %02x\n", value);
2733 #endif
2734 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2735 new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2736 ti[0] = mktimegm(&s->current_tm);
2737 ti[1] = mktimegm(&new_tm);
2738
2739 if (ti[0] != -1 && ti[1] != -1) {
2740 s->ti -= ti[0];
2741 s->ti += ti[1];
2742 } else {
2743 /* A less accurate version */
2744 s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2745 s->ti += (time_t)from_bcd(value) * 31536000;
2746 }
2747 return;
2748
2749 case 0x18: /* WEEK_REG */
2750 return; /* Ignored */
2751
2752 case 0x20: /* ALARM_SECONDS_REG */
2753 #ifdef ALMDEBUG
2754 printf("ALM SEC_REG <-- %02x\n", value);
2755 #endif
2756 s->alarm_tm.tm_sec = from_bcd(value);
2757 omap_rtc_alarm_update(s);
2758 return;
2759
2760 case 0x24: /* ALARM_MINUTES_REG */
2761 #ifdef ALMDEBUG
2762 printf("ALM MIN_REG <-- %02x\n", value);
2763 #endif
2764 s->alarm_tm.tm_min = from_bcd(value);
2765 omap_rtc_alarm_update(s);
2766 return;
2767
2768 case 0x28: /* ALARM_HOURS_REG */
2769 #ifdef ALMDEBUG
2770 printf("ALM HRS_REG <-- %02x\n", value);
2771 #endif
2772 if (s->pm_am)
2773 s->alarm_tm.tm_hour =
2774 ((from_bcd(value & 0x3f)) % 12) +
2775 ((value >> 7) & 1) * 12;
2776 else
2777 s->alarm_tm.tm_hour = from_bcd(value);
2778 omap_rtc_alarm_update(s);
2779 return;
2780
2781 case 0x2c: /* ALARM_DAYS_REG */
2782 #ifdef ALMDEBUG
2783 printf("ALM DAY_REG <-- %02x\n", value);
2784 #endif
2785 s->alarm_tm.tm_mday = from_bcd(value);
2786 omap_rtc_alarm_update(s);
2787 return;
2788
2789 case 0x30: /* ALARM_MONTHS_REG */
2790 #ifdef ALMDEBUG
2791 printf("ALM MON_REG <-- %02x\n", value);
2792 #endif
2793 s->alarm_tm.tm_mon = from_bcd(value);
2794 omap_rtc_alarm_update(s);
2795 return;
2796
2797 case 0x34: /* ALARM_YEARS_REG */
2798 #ifdef ALMDEBUG
2799 printf("ALM YRS_REG <-- %02x\n", value);
2800 #endif
2801 s->alarm_tm.tm_year = from_bcd(value);
2802 omap_rtc_alarm_update(s);
2803 return;
2804
2805 case 0x40: /* RTC_CTRL_REG */
2806 #ifdef ALMDEBUG
2807 printf("RTC CONTROL <-- %02x\n", value);
2808 #endif
2809 s->pm_am = (value >> 3) & 1;
2810 s->auto_comp = (value >> 2) & 1;
2811 s->round = (value >> 1) & 1;
2812 s->running = value & 1;
2813 s->status &= 0xfd;
2814 s->status |= s->running << 1;
2815 return;
2816
2817 case 0x44: /* RTC_STATUS_REG */
2818 #ifdef ALMDEBUG
2819 printf("RTC STATUSL <-- %02x\n", value);
2820 #endif
2821 s->status &= ~((value & 0xc0) ^ 0x80);
2822 omap_rtc_interrupts_update(s);
2823 return;
2824
2825 case 0x48: /* RTC_INTERRUPTS_REG */
2826 #ifdef ALMDEBUG
2827 printf("RTC INTRS <-- %02x\n", value);
2828 #endif
2829 s->interrupts = value;
2830 return;
2831
2832 case 0x4c: /* RTC_COMP_LSB_REG */
2833 #ifdef ALMDEBUG
2834 printf("RTC COMPLSB <-- %02x\n", value);
2835 #endif
2836 s->comp_reg &= 0xff00;
2837 s->comp_reg |= 0x00ff & value;
2838 return;
2839
2840 case 0x50: /* RTC_COMP_MSB_REG */
2841 #ifdef ALMDEBUG
2842 printf("RTC COMPMSB <-- %02x\n", value);
2843 #endif
2844 s->comp_reg &= 0x00ff;
2845 s->comp_reg |= 0xff00 & (value << 8);
2846 return;
2847
2848 default:
2849 OMAP_BAD_REG(addr);
2850 return;
2851 }
2852 }
2853
2854 static const MemoryRegionOps omap_rtc_ops = {
2855 .read = omap_rtc_read,
2856 .write = omap_rtc_write,
2857 .endianness = DEVICE_NATIVE_ENDIAN,
2858 };
2859
2860 static void omap_rtc_tick(void *opaque)
2861 {
2862 struct omap_rtc_s *s = opaque;
2863
2864 if (s->round) {
2865 /* Round to nearest full minute. */
2866 if (s->current_tm.tm_sec < 30)
2867 s->ti -= s->current_tm.tm_sec;
2868 else
2869 s->ti += 60 - s->current_tm.tm_sec;
2870
2871 s->round = 0;
2872 }
2873
2874 localtime_r(&s->ti, &s->current_tm);
2875
2876 if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2877 s->status |= 0x40;
2878 omap_rtc_interrupts_update(s);
2879 }
2880
2881 if (s->interrupts & 0x04)
2882 switch (s->interrupts & 3) {
2883 case 0:
2884 s->status |= 0x04;
2885 qemu_irq_pulse(s->irq);
2886 break;
2887 case 1:
2888 if (s->current_tm.tm_sec)
2889 break;
2890 s->status |= 0x08;
2891 qemu_irq_pulse(s->irq);
2892 break;
2893 case 2:
2894 if (s->current_tm.tm_sec || s->current_tm.tm_min)
2895 break;
2896 s->status |= 0x10;
2897 qemu_irq_pulse(s->irq);
2898 break;
2899 case 3:
2900 if (s->current_tm.tm_sec ||
2901 s->current_tm.tm_min || s->current_tm.tm_hour)
2902 break;
2903 s->status |= 0x20;
2904 qemu_irq_pulse(s->irq);
2905 break;
2906 }
2907
2908 /* Move on */
2909 if (s->running)
2910 s->ti ++;
2911 s->tick += 1000;
2912
2913 /*
2914 * Every full hour add a rough approximation of the compensation
2915 * register to the 32kHz Timer (which drives the RTC) value.
2916 */
2917 if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2918 s->tick += s->comp_reg * 1000 / 32768;
2919
2920 timer_mod(s->clk, s->tick);
2921 }
2922
2923 static void omap_rtc_reset(struct omap_rtc_s *s)
2924 {
2925 struct tm tm;
2926
2927 s->interrupts = 0;
2928 s->comp_reg = 0;
2929 s->running = 0;
2930 s->pm_am = 0;
2931 s->auto_comp = 0;
2932 s->round = 0;
2933 s->tick = qemu_clock_get_ms(rtc_clock);
2934 memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2935 s->alarm_tm.tm_mday = 0x01;
2936 s->status = 1 << 7;
2937 qemu_get_timedate(&tm, 0);
2938 s->ti = mktimegm(&tm);
2939
2940 omap_rtc_alarm_update(s);
2941 omap_rtc_tick(s);
2942 }
2943
2944 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2945 hwaddr base,
2946 qemu_irq timerirq, qemu_irq alarmirq,
2947 omap_clk clk)
2948 {
2949 struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
2950
2951 s->irq = timerirq;
2952 s->alarm = alarmirq;
2953 s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2954
2955 omap_rtc_reset(s);
2956
2957 memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2958 "omap-rtc", 0x800);
2959 memory_region_add_subregion(system_memory, base, &s->iomem);
2960
2961 return s;
2962 }
2963
2964 /* Multi-channel Buffered Serial Port interfaces */
2965 struct omap_mcbsp_s {
2966 MemoryRegion iomem;
2967 qemu_irq txirq;
2968 qemu_irq rxirq;
2969 qemu_irq txdrq;
2970 qemu_irq rxdrq;
2971
2972 uint16_t spcr[2];
2973 uint16_t rcr[2];
2974 uint16_t xcr[2];
2975 uint16_t srgr[2];
2976 uint16_t mcr[2];
2977 uint16_t pcr;
2978 uint16_t rcer[8];
2979 uint16_t xcer[8];
2980 int tx_rate;
2981 int rx_rate;
2982 int tx_req;
2983 int rx_req;
2984
2985 I2SCodec *codec;
2986 QEMUTimer *source_timer;
2987 QEMUTimer *sink_timer;
2988 };
2989
2990 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2991 {
2992 int irq;
2993
2994 switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
2995 case 0:
2996 irq = (s->spcr[0] >> 1) & 1; /* RRDY */
2997 break;
2998 case 3:
2999 irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
3000 break;
3001 default:
3002 irq = 0;
3003 break;
3004 }
3005
3006 if (irq)
3007 qemu_irq_pulse(s->rxirq);
3008
3009 switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
3010 case 0:
3011 irq = (s->spcr[1] >> 1) & 1; /* XRDY */
3012 break;
3013 case 3:
3014 irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
3015 break;
3016 default:
3017 irq = 0;
3018 break;
3019 }
3020
3021 if (irq)
3022 qemu_irq_pulse(s->txirq);
3023 }
3024
3025 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3026 {
3027 if ((s->spcr[0] >> 1) & 1) /* RRDY */
3028 s->spcr[0] |= 1 << 2; /* RFULL */
3029 s->spcr[0] |= 1 << 1; /* RRDY */
3030 qemu_irq_raise(s->rxdrq);
3031 omap_mcbsp_intr_update(s);
3032 }
3033
3034 static void omap_mcbsp_source_tick(void *opaque)
3035 {
3036 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3037 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3038
3039 if (!s->rx_rate)
3040 return;
3041 if (s->rx_req)
3042 printf("%s: Rx FIFO overrun\n", __func__);
3043
3044 s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3045
3046 omap_mcbsp_rx_newdata(s);
3047 timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3048 NANOSECONDS_PER_SECOND);
3049 }
3050
3051 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3052 {
3053 if (!s->codec || !s->codec->rts)
3054 omap_mcbsp_source_tick(s);
3055 else if (s->codec->in.len) {
3056 s->rx_req = s->codec->in.len;
3057 omap_mcbsp_rx_newdata(s);
3058 }
3059 }
3060
3061 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3062 {
3063 timer_del(s->source_timer);
3064 }
3065
3066 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3067 {
3068 s->spcr[0] &= ~(1 << 1); /* RRDY */
3069 qemu_irq_lower(s->rxdrq);
3070 omap_mcbsp_intr_update(s);
3071 }
3072
3073 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3074 {
3075 s->spcr[1] |= 1 << 1; /* XRDY */
3076 qemu_irq_raise(s->txdrq);
3077 omap_mcbsp_intr_update(s);
3078 }
3079
3080 static void omap_mcbsp_sink_tick(void *opaque)
3081 {
3082 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3083 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3084
3085 if (!s->tx_rate)
3086 return;
3087 if (s->tx_req)
3088 printf("%s: Tx FIFO underrun\n", __func__);
3089
3090 s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3091
3092 omap_mcbsp_tx_newdata(s);
3093 timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3094 NANOSECONDS_PER_SECOND);
3095 }
3096
3097 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3098 {
3099 if (!s->codec || !s->codec->cts)
3100 omap_mcbsp_sink_tick(s);
3101 else if (s->codec->out.size) {
3102 s->tx_req = s->codec->out.size;
3103 omap_mcbsp_tx_newdata(s);
3104 }
3105 }
3106
3107 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3108 {
3109 s->spcr[1] &= ~(1 << 1); /* XRDY */
3110 qemu_irq_lower(s->txdrq);
3111 omap_mcbsp_intr_update(s);
3112 if (s->codec && s->codec->cts)
3113 s->codec->tx_swallow(s->codec->opaque);
3114 }
3115
3116 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3117 {
3118 s->tx_req = 0;
3119 omap_mcbsp_tx_done(s);
3120 timer_del(s->sink_timer);
3121 }
3122
3123 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3124 {
3125 int prev_rx_rate, prev_tx_rate;
3126 int rx_rate = 0, tx_rate = 0;
3127 int cpu_rate = 1500000; /* XXX */
3128
3129 /* TODO: check CLKSTP bit */
3130 if (s->spcr[1] & (1 << 6)) { /* GRST */
3131 if (s->spcr[0] & (1 << 0)) { /* RRST */
3132 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3133 (s->pcr & (1 << 8))) { /* CLKRM */
3134 if (~s->pcr & (1 << 7)) /* SCLKME */
3135 rx_rate = cpu_rate /
3136 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3137 } else
3138 if (s->codec)
3139 rx_rate = s->codec->rx_rate;
3140 }
3141
3142 if (s->spcr[1] & (1 << 0)) { /* XRST */
3143 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3144 (s->pcr & (1 << 9))) { /* CLKXM */
3145 if (~s->pcr & (1 << 7)) /* SCLKME */
3146 tx_rate = cpu_rate /
3147 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3148 } else
3149 if (s->codec)
3150 tx_rate = s->codec->tx_rate;
3151 }
3152 }
3153 prev_tx_rate = s->tx_rate;
3154 prev_rx_rate = s->rx_rate;
3155 s->tx_rate = tx_rate;
3156 s->rx_rate = rx_rate;
3157
3158 if (s->codec)
3159 s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3160
3161 if (!prev_tx_rate && tx_rate)
3162 omap_mcbsp_tx_start(s);
3163 else if (s->tx_rate && !tx_rate)
3164 omap_mcbsp_tx_stop(s);
3165
3166 if (!prev_rx_rate && rx_rate)
3167 omap_mcbsp_rx_start(s);
3168 else if (prev_tx_rate && !tx_rate)
3169 omap_mcbsp_rx_stop(s);
3170 }
3171
3172 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3173 unsigned size)
3174 {
3175 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3176 int offset = addr & OMAP_MPUI_REG_MASK;
3177 uint16_t ret;
3178
3179 if (size != 2) {
3180 return omap_badwidth_read16(opaque, addr);
3181 }
3182
3183 switch (offset) {
3184 case 0x00: /* DRR2 */
3185 if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
3186 return 0x0000;
3187 /* Fall through. */
3188 case 0x02: /* DRR1 */
3189 if (s->rx_req < 2) {
3190 printf("%s: Rx FIFO underrun\n", __func__);
3191 omap_mcbsp_rx_done(s);
3192 } else {
3193 s->tx_req -= 2;
3194 if (s->codec && s->codec->in.len >= 2) {
3195 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3196 ret |= s->codec->in.fifo[s->codec->in.start ++];
3197 s->codec->in.len -= 2;
3198 } else
3199 ret = 0x0000;
3200 if (!s->tx_req)
3201 omap_mcbsp_rx_done(s);
3202 return ret;
3203 }
3204 return 0x0000;
3205
3206 case 0x04: /* DXR2 */
3207 case 0x06: /* DXR1 */
3208 return 0x0000;
3209
3210 case 0x08: /* SPCR2 */
3211 return s->spcr[1];
3212 case 0x0a: /* SPCR1 */
3213 return s->spcr[0];
3214 case 0x0c: /* RCR2 */
3215 return s->rcr[1];
3216 case 0x0e: /* RCR1 */
3217 return s->rcr[0];
3218 case 0x10: /* XCR2 */
3219 return s->xcr[1];
3220 case 0x12: /* XCR1 */
3221 return s->xcr[0];
3222 case 0x14: /* SRGR2 */
3223 return s->srgr[1];
3224 case 0x16: /* SRGR1 */
3225 return s->srgr[0];
3226 case 0x18: /* MCR2 */
3227 return s->mcr[1];
3228 case 0x1a: /* MCR1 */
3229 return s->mcr[0];
3230 case 0x1c: /* RCERA */
3231 return s->rcer[0];
3232 case 0x1e: /* RCERB */
3233 return s->rcer[1];
3234 case 0x20: /* XCERA */
3235 return s->xcer[0];
3236 case 0x22: /* XCERB */
3237 return s->xcer[1];
3238 case 0x24: /* PCR0 */
3239 return s->pcr;
3240 case 0x26: /* RCERC */
3241 return s->rcer[2];
3242 case 0x28: /* RCERD */
3243 return s->rcer[3];
3244 case 0x2a: /* XCERC */
3245 return s->xcer[2];
3246 case 0x2c: /* XCERD */
3247 return s->xcer[3];
3248 case 0x2e: /* RCERE */
3249 return s->rcer[4];
3250 case 0x30: /* RCERF */
3251 return s->rcer[5];
3252 case 0x32: /* XCERE */
3253 return s->xcer[4];
3254 case 0x34: /* XCERF */
3255 return s->xcer[5];
3256 case 0x36: /* RCERG */
3257 return s->rcer[6];
3258 case 0x38: /* RCERH */
3259 return s->rcer[7];
3260 case 0x3a: /* XCERG */
3261 return s->xcer[6];
3262 case 0x3c: /* XCERH */
3263 return s->xcer[7];
3264 }
3265
3266 OMAP_BAD_REG(addr);
3267 return 0;
3268 }
3269
3270 static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3271 uint32_t value)
3272 {
3273 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3274 int offset = addr & OMAP_MPUI_REG_MASK;
3275
3276 switch (offset) {
3277 case 0x00: /* DRR2 */
3278 case 0x02: /* DRR1 */
3279 OMAP_RO_REG(addr);
3280 return;
3281
3282 case 0x04: /* DXR2 */
3283 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3284 return;
3285 /* Fall through. */
3286 case 0x06: /* DXR1 */
3287 if (s->tx_req > 1) {
3288 s->tx_req -= 2;
3289 if (s->codec && s->codec->cts) {
3290 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3291 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3292 }
3293 if (s->tx_req < 2)
3294 omap_mcbsp_tx_done(s);
3295 } else
3296 printf("%s: Tx FIFO overrun\n", __func__);
3297 return;
3298
3299 case 0x08: /* SPCR2 */
3300 s->spcr[1] &= 0x0002;
3301 s->spcr[1] |= 0x03f9 & value;
3302 s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
3303 if (~value & 1) /* XRST */
3304 s->spcr[1] &= ~6;
3305 omap_mcbsp_req_update(s);
3306 return;
3307 case 0x0a: /* SPCR1 */
3308 s->spcr[0] &= 0x0006;
3309 s->spcr[0] |= 0xf8f9 & value;
3310 if (value & (1 << 15)) /* DLB */
3311 printf("%s: Digital Loopback mode enable attempt\n", __func__);
3312 if (~value & 1) { /* RRST */
3313 s->spcr[0] &= ~6;
3314 s->rx_req = 0;
3315 omap_mcbsp_rx_done(s);
3316 }
3317 omap_mcbsp_req_update(s);
3318 return;
3319
3320 case 0x0c: /* RCR2 */
3321 s->rcr[1] = value & 0xffff;
3322 return;
3323 case 0x0e: /* RCR1 */
3324 s->rcr[0] = value & 0x7fe0;
3325 return;
3326 case 0x10: /* XCR2 */
3327 s->xcr[1] = value & 0xffff;
3328 return;
3329 case 0x12: /* XCR1 */
3330 s->xcr[0] = value & 0x7fe0;
3331 return;
3332 case 0x14: /* SRGR2 */
3333 s->srgr[1] = value & 0xffff;
3334 omap_mcbsp_req_update(s);
3335 return;
3336 case 0x16: /* SRGR1 */
3337 s->srgr[0] = value & 0xffff;
3338 omap_mcbsp_req_update(s);
3339 return;
3340 case 0x18: /* MCR2 */
3341 s->mcr[1] = value & 0x03e3;
3342 if (value & 3) /* XMCM */
3343 printf("%s: Tx channel selection mode enable attempt\n", __func__);
3344 return;
3345 case 0x1a: /* MCR1 */
3346 s->mcr[0] = value & 0x03e1;
3347 if (value & 1) /* RMCM */
3348 printf("%s: Rx channel selection mode enable attempt\n", __func__);
3349 return;
3350 case 0x1c: /* RCERA */
3351 s->rcer[0] = value & 0xffff;
3352 return;
3353 case 0x1e: /* RCERB */
3354 s->rcer[1] = value & 0xffff;
3355 return;
3356 case 0x20: /* XCERA */
3357 s->xcer[0] = value & 0xffff;
3358 return;
3359 case 0x22: /* XCERB */
3360 s->xcer[1] = value & 0xffff;
3361 return;
3362 case 0x24: /* PCR0 */
3363 s->pcr = value & 0x7faf;
3364 return;
3365 case 0x26: /* RCERC */
3366 s->rcer[2] = value & 0xffff;
3367 return;
3368 case 0x28: /* RCERD */
3369 s->rcer[3] = value & 0xffff;
3370 return;
3371 case 0x2a: /* XCERC */
3372 s->xcer[2] = value & 0xffff;
3373 return;
3374 case 0x2c: /* XCERD */
3375 s->xcer[3] = value & 0xffff;
3376 return;
3377 case 0x2e: /* RCERE */
3378 s->rcer[4] = value & 0xffff;
3379 return;
3380 case 0x30: /* RCERF */
3381 s->rcer[5] = value & 0xffff;
3382 return;
3383 case 0x32: /* XCERE */
3384 s->xcer[4] = value & 0xffff;
3385 return;
3386 case 0x34: /* XCERF */
3387 s->xcer[5] = value & 0xffff;
3388 return;
3389 case 0x36: /* RCERG */
3390 s->rcer[6] = value & 0xffff;
3391 return;
3392 case 0x38: /* RCERH */
3393 s->rcer[7] = value & 0xffff;
3394 return;
3395 case 0x3a: /* XCERG */
3396 s->xcer[6] = value & 0xffff;
3397 return;
3398 case 0x3c: /* XCERH */
3399 s->xcer[7] = value & 0xffff;
3400 return;
3401 }
3402
3403 OMAP_BAD_REG(addr);
3404 }
3405
3406 static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3407 uint32_t value)
3408 {
3409 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3410 int offset = addr & OMAP_MPUI_REG_MASK;
3411
3412 if (offset == 0x04) { /* DXR */
3413 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3414 return;
3415 if (s->tx_req > 3) {
3416 s->tx_req -= 4;
3417 if (s->codec && s->codec->cts) {
3418 s->codec->out.fifo[s->codec->out.len ++] =
3419 (value >> 24) & 0xff;
3420 s->codec->out.fifo[s->codec->out.len ++] =
3421 (value >> 16) & 0xff;
3422 s->codec->out.fifo[s->codec->out.len ++] =
3423 (value >> 8) & 0xff;
3424 s->codec->out.fifo[s->codec->out.len ++] =
3425 (value >> 0) & 0xff;
3426 }
3427 if (s->tx_req < 4)
3428 omap_mcbsp_tx_done(s);
3429 } else
3430 printf("%s: Tx FIFO overrun\n", __func__);
3431 return;
3432 }
3433
3434 omap_badwidth_write16(opaque, addr, value);
3435 }
3436
3437 static void omap_mcbsp_write(void *opaque, hwaddr addr,
3438 uint64_t value, unsigned size)
3439 {
3440 switch (size) {
3441 case 2:
3442 omap_mcbsp_writeh(opaque, addr, value);
3443 break;
3444 case 4:
3445 omap_mcbsp_writew(opaque, addr, value);
3446 break;
3447 default:
3448 omap_badwidth_write16(opaque, addr, value);
3449 }
3450 }
3451
3452 static const MemoryRegionOps omap_mcbsp_ops = {
3453 .read = omap_mcbsp_read,
3454 .write = omap_mcbsp_write,
3455 .endianness = DEVICE_NATIVE_ENDIAN,
3456 };
3457
3458 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3459 {
3460 memset(&s->spcr, 0, sizeof(s->spcr));
3461 memset(&s->rcr, 0, sizeof(s->rcr));
3462 memset(&s->xcr, 0, sizeof(s->xcr));
3463 s->srgr[0] = 0x0001;
3464 s->srgr[1] = 0x2000;
3465 memset(&s->mcr, 0, sizeof(s->mcr));
3466 memset(&s->pcr, 0, sizeof(s->pcr));
3467 memset(&s->rcer, 0, sizeof(s->rcer));
3468 memset(&s->xcer, 0, sizeof(s->xcer));
3469 s->tx_req = 0;
3470 s->rx_req = 0;
3471 s->tx_rate = 0;
3472 s->rx_rate = 0;
3473 timer_del(s->source_timer);
3474 timer_del(s->sink_timer);
3475 }
3476
3477 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3478 hwaddr base,
3479 qemu_irq txirq, qemu_irq rxirq,
3480 qemu_irq *dma, omap_clk clk)
3481 {
3482 struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1);
3483
3484 s->txirq = txirq;
3485 s->rxirq = rxirq;
3486 s->txdrq = dma[0];
3487 s->rxdrq = dma[1];
3488 s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3489 s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3490 omap_mcbsp_reset(s);
3491
3492 memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3493 memory_region_add_subregion(system_memory, base, &s->iomem);
3494
3495 return s;
3496 }
3497
3498 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3499 {
3500 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3501
3502 if (s->rx_rate) {
3503 s->rx_req = s->codec->in.len;
3504 omap_mcbsp_rx_newdata(s);
3505 }
3506 }
3507
3508 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3509 {
3510 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3511
3512 if (s->tx_rate) {
3513 s->tx_req = s->codec->out.size;
3514 omap_mcbsp_tx_newdata(s);
3515 }
3516 }
3517
3518 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3519 {
3520 s->codec = slave;
3521 slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
3522 slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
3523 }
3524
3525 /* LED Pulse Generators */
3526 struct omap_lpg_s {
3527 MemoryRegion iomem;
3528 QEMUTimer *tm;
3529
3530 uint8_t control;
3531 uint8_t power;
3532 int64_t on;
3533 int64_t period;
3534 int clk;
3535 int cycle;
3536 };
3537
3538 static void omap_lpg_tick(void *opaque)
3539 {
3540 struct omap_lpg_s *s = opaque;
3541
3542 if (s->cycle)
3543 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3544 else
3545 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3546
3547 s->cycle = !s->cycle;
3548 printf("%s: LED is %s\n", __func__, s->cycle ? "on" : "off");
3549 }
3550
3551 static void omap_lpg_update(struct omap_lpg_s *s)
3552 {
3553 int64_t on, period = 1, ticks = 1000;
3554 static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3555
3556 if (~s->control & (1 << 6)) /* LPGRES */
3557 on = 0;
3558 else if (s->control & (1 << 7)) /* PERM_ON */
3559 on = period;
3560 else {
3561 period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
3562 256 / 32);
3563 on = (s->clk && s->power) ? muldiv64(ticks,
3564 per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
3565 }
3566
3567 timer_del(s->tm);
3568 if (on == period && s->on < s->period)
3569 printf("%s: LED is on\n", __func__);
3570 else if (on == 0 && s->on)
3571 printf("%s: LED is off\n", __func__);
3572 else if (on && (on != s->on || period != s->period)) {
3573 s->cycle = 0;
3574 s->on = on;
3575 s->period = period;
3576 omap_lpg_tick(s);
3577 return;
3578 }
3579
3580 s->on = on;
3581 s->period = period;
3582 }
3583
3584 static void omap_lpg_reset(struct omap_lpg_s *s)
3585 {
3586 s->control = 0x00;
3587 s->power = 0x00;
3588 s->clk = 1;
3589 omap_lpg_update(s);
3590 }
3591
3592 static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3593 unsigned size)
3594 {
3595 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3596 int offset = addr & OMAP_MPUI_REG_MASK;
3597
3598 if (size != 1) {
3599 return omap_badwidth_read8(opaque, addr);
3600 }
3601
3602 switch (offset) {