Merge tag 'ide-pull-request' of https://gitlab.com/jsnow/qemu into staging
[qemu.git] / hw / arm / sbsa-ref.c
1 /*
2 * ARM SBSA Reference Platform emulation
3 *
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Hongbo Zhang <hongbo.zhang@linaro.org>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/datadir.h"
23 #include "qapi/error.h"
24 #include "qemu/error-report.h"
25 #include "qemu/units.h"
26 #include "sysemu/device_tree.h"
27 #include "sysemu/numa.h"
28 #include "sysemu/runstate.h"
29 #include "sysemu/sysemu.h"
30 #include "exec/hwaddr.h"
31 #include "kvm_arm.h"
32 #include "hw/arm/boot.h"
33 #include "hw/block/flash.h"
34 #include "hw/boards.h"
35 #include "hw/ide/internal.h"
36 #include "hw/ide/ahci_internal.h"
37 #include "hw/intc/arm_gicv3_common.h"
38 #include "hw/loader.h"
39 #include "hw/pci-host/gpex.h"
40 #include "hw/qdev-properties.h"
41 #include "hw/usb.h"
42 #include "hw/char/pl011.h"
43 #include "hw/watchdog/sbsa_gwdt.h"
44 #include "net/net.h"
45 #include "qom/object.h"
46
47 #define RAMLIMIT_GB 8192
48 #define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB)
49
50 #define NUM_IRQS 256
51 #define NUM_SMMU_IRQS 4
52 #define NUM_SATA_PORTS 6
53
54 #define VIRTUAL_PMU_IRQ 7
55 #define ARCH_GIC_MAINT_IRQ 9
56 #define ARCH_TIMER_VIRT_IRQ 11
57 #define ARCH_TIMER_S_EL1_IRQ 13
58 #define ARCH_TIMER_NS_EL1_IRQ 14
59 #define ARCH_TIMER_NS_EL2_IRQ 10
60
61 enum {
62 SBSA_FLASH,
63 SBSA_MEM,
64 SBSA_CPUPERIPHS,
65 SBSA_GIC_DIST,
66 SBSA_GIC_REDIST,
67 SBSA_SECURE_EC,
68 SBSA_GWDT_WS0,
69 SBSA_GWDT_REFRESH,
70 SBSA_GWDT_CONTROL,
71 SBSA_SMMU,
72 SBSA_UART,
73 SBSA_RTC,
74 SBSA_PCIE,
75 SBSA_PCIE_MMIO,
76 SBSA_PCIE_MMIO_HIGH,
77 SBSA_PCIE_PIO,
78 SBSA_PCIE_ECAM,
79 SBSA_GPIO,
80 SBSA_SECURE_UART,
81 SBSA_SECURE_UART_MM,
82 SBSA_SECURE_MEM,
83 SBSA_AHCI,
84 SBSA_EHCI,
85 };
86
87 struct SBSAMachineState {
88 MachineState parent;
89 struct arm_boot_info bootinfo;
90 int smp_cpus;
91 void *fdt;
92 int fdt_size;
93 int psci_conduit;
94 DeviceState *gic;
95 PFlashCFI01 *flash[2];
96 };
97
98 #define TYPE_SBSA_MACHINE MACHINE_TYPE_NAME("sbsa-ref")
99 OBJECT_DECLARE_SIMPLE_TYPE(SBSAMachineState, SBSA_MACHINE)
100
101 static const MemMapEntry sbsa_ref_memmap[] = {
102 /* 512M boot ROM */
103 [SBSA_FLASH] = { 0, 0x20000000 },
104 /* 512M secure memory */
105 [SBSA_SECURE_MEM] = { 0x20000000, 0x20000000 },
106 /* Space reserved for CPU peripheral devices */
107 [SBSA_CPUPERIPHS] = { 0x40000000, 0x00040000 },
108 [SBSA_GIC_DIST] = { 0x40060000, 0x00010000 },
109 [SBSA_GIC_REDIST] = { 0x40080000, 0x04000000 },
110 [SBSA_SECURE_EC] = { 0x50000000, 0x00001000 },
111 [SBSA_GWDT_REFRESH] = { 0x50010000, 0x00001000 },
112 [SBSA_GWDT_CONTROL] = { 0x50011000, 0x00001000 },
113 [SBSA_UART] = { 0x60000000, 0x00001000 },
114 [SBSA_RTC] = { 0x60010000, 0x00001000 },
115 [SBSA_GPIO] = { 0x60020000, 0x00001000 },
116 [SBSA_SECURE_UART] = { 0x60030000, 0x00001000 },
117 [SBSA_SECURE_UART_MM] = { 0x60040000, 0x00001000 },
118 [SBSA_SMMU] = { 0x60050000, 0x00020000 },
119 /* Space here reserved for more SMMUs */
120 [SBSA_AHCI] = { 0x60100000, 0x00010000 },
121 [SBSA_EHCI] = { 0x60110000, 0x00010000 },
122 /* Space here reserved for other devices */
123 [SBSA_PCIE_PIO] = { 0x7fff0000, 0x00010000 },
124 /* 32-bit address PCIE MMIO space */
125 [SBSA_PCIE_MMIO] = { 0x80000000, 0x70000000 },
126 /* 256M PCIE ECAM space */
127 [SBSA_PCIE_ECAM] = { 0xf0000000, 0x10000000 },
128 /* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */
129 [SBSA_PCIE_MMIO_HIGH] = { 0x100000000ULL, 0xFF00000000ULL },
130 [SBSA_MEM] = { 0x10000000000ULL, RAMLIMIT_BYTES },
131 };
132
133 static const int sbsa_ref_irqmap[] = {
134 [SBSA_UART] = 1,
135 [SBSA_RTC] = 2,
136 [SBSA_PCIE] = 3, /* ... to 6 */
137 [SBSA_GPIO] = 7,
138 [SBSA_SECURE_UART] = 8,
139 [SBSA_SECURE_UART_MM] = 9,
140 [SBSA_AHCI] = 10,
141 [SBSA_EHCI] = 11,
142 [SBSA_SMMU] = 12, /* ... to 15 */
143 [SBSA_GWDT_WS0] = 16,
144 };
145
146 static const char * const valid_cpus[] = {
147 ARM_CPU_TYPE_NAME("cortex-a57"),
148 ARM_CPU_TYPE_NAME("cortex-a72"),
149 ARM_CPU_TYPE_NAME("max"),
150 };
151
152 static bool cpu_type_valid(const char *cpu)
153 {
154 int i;
155
156 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
157 if (strcmp(cpu, valid_cpus[i]) == 0) {
158 return true;
159 }
160 }
161 return false;
162 }
163
164 static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx)
165 {
166 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
167 return arm_cpu_mp_affinity(idx, clustersz);
168 }
169
170 /*
171 * Firmware on this machine only uses ACPI table to load OS, these limited
172 * device tree nodes are just to let firmware know the info which varies from
173 * command line parameters, so it is not necessary to be fully compatible
174 * with the kernel CPU and NUMA binding rules.
175 */
176 static void create_fdt(SBSAMachineState *sms)
177 {
178 void *fdt = create_device_tree(&sms->fdt_size);
179 const MachineState *ms = MACHINE(sms);
180 int nb_numa_nodes = ms->numa_state->num_nodes;
181 int cpu;
182
183 if (!fdt) {
184 error_report("create_device_tree() failed");
185 exit(1);
186 }
187
188 sms->fdt = fdt;
189
190 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,sbsa-ref");
191 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
192 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
193
194 if (ms->numa_state->have_numa_distance) {
195 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
196 uint32_t *matrix = g_malloc0(size);
197 int idx, i, j;
198
199 for (i = 0; i < nb_numa_nodes; i++) {
200 for (j = 0; j < nb_numa_nodes; j++) {
201 idx = (i * nb_numa_nodes + j) * 3;
202 matrix[idx + 0] = cpu_to_be32(i);
203 matrix[idx + 1] = cpu_to_be32(j);
204 matrix[idx + 2] =
205 cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
206 }
207 }
208
209 qemu_fdt_add_subnode(fdt, "/distance-map");
210 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
211 matrix, size);
212 g_free(matrix);
213 }
214
215 /*
216 * From Documentation/devicetree/bindings/arm/cpus.yaml
217 * On ARM v8 64-bit systems this property is required
218 * and matches the MPIDR_EL1 register affinity bits.
219 *
220 * * If cpus node's #address-cells property is set to 2
221 *
222 * The first reg cell bits [7:0] must be set to
223 * bits [39:32] of MPIDR_EL1.
224 *
225 * The second reg cell bits [23:0] must be set to
226 * bits [23:0] of MPIDR_EL1.
227 */
228 qemu_fdt_add_subnode(sms->fdt, "/cpus");
229 qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#address-cells", 2);
230 qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#size-cells", 0x0);
231
232 for (cpu = sms->smp_cpus - 1; cpu >= 0; cpu--) {
233 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
234 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
235 CPUState *cs = CPU(armcpu);
236 uint64_t mpidr = sbsa_ref_cpu_mp_affinity(sms, cpu);
237
238 qemu_fdt_add_subnode(sms->fdt, nodename);
239 qemu_fdt_setprop_u64(sms->fdt, nodename, "reg", mpidr);
240
241 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
242 qemu_fdt_setprop_cell(sms->fdt, nodename, "numa-node-id",
243 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
244 }
245
246 g_free(nodename);
247 }
248 }
249
250 #define SBSA_FLASH_SECTOR_SIZE (256 * KiB)
251
252 static PFlashCFI01 *sbsa_flash_create1(SBSAMachineState *sms,
253 const char *name,
254 const char *alias_prop_name)
255 {
256 /*
257 * Create a single flash device. We use the same parameters as
258 * the flash devices on the Versatile Express board.
259 */
260 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
261
262 qdev_prop_set_uint64(dev, "sector-length", SBSA_FLASH_SECTOR_SIZE);
263 qdev_prop_set_uint8(dev, "width", 4);
264 qdev_prop_set_uint8(dev, "device-width", 2);
265 qdev_prop_set_bit(dev, "big-endian", false);
266 qdev_prop_set_uint16(dev, "id0", 0x89);
267 qdev_prop_set_uint16(dev, "id1", 0x18);
268 qdev_prop_set_uint16(dev, "id2", 0x00);
269 qdev_prop_set_uint16(dev, "id3", 0x00);
270 qdev_prop_set_string(dev, "name", name);
271 object_property_add_child(OBJECT(sms), name, OBJECT(dev));
272 object_property_add_alias(OBJECT(sms), alias_prop_name,
273 OBJECT(dev), "drive");
274 return PFLASH_CFI01(dev);
275 }
276
277 static void sbsa_flash_create(SBSAMachineState *sms)
278 {
279 sms->flash[0] = sbsa_flash_create1(sms, "sbsa.flash0", "pflash0");
280 sms->flash[1] = sbsa_flash_create1(sms, "sbsa.flash1", "pflash1");
281 }
282
283 static void sbsa_flash_map1(PFlashCFI01 *flash,
284 hwaddr base, hwaddr size,
285 MemoryRegion *sysmem)
286 {
287 DeviceState *dev = DEVICE(flash);
288
289 assert(QEMU_IS_ALIGNED(size, SBSA_FLASH_SECTOR_SIZE));
290 assert(size / SBSA_FLASH_SECTOR_SIZE <= UINT32_MAX);
291 qdev_prop_set_uint32(dev, "num-blocks", size / SBSA_FLASH_SECTOR_SIZE);
292 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
293
294 memory_region_add_subregion(sysmem, base,
295 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
296 0));
297 }
298
299 static void sbsa_flash_map(SBSAMachineState *sms,
300 MemoryRegion *sysmem,
301 MemoryRegion *secure_sysmem)
302 {
303 /*
304 * Map two flash devices to fill the SBSA_FLASH space in the memmap.
305 * sysmem is the system memory space. secure_sysmem is the secure view
306 * of the system, and the first flash device should be made visible only
307 * there. The second flash device is visible to both secure and nonsecure.
308 */
309 hwaddr flashsize = sbsa_ref_memmap[SBSA_FLASH].size / 2;
310 hwaddr flashbase = sbsa_ref_memmap[SBSA_FLASH].base;
311
312 sbsa_flash_map1(sms->flash[0], flashbase, flashsize,
313 secure_sysmem);
314 sbsa_flash_map1(sms->flash[1], flashbase + flashsize, flashsize,
315 sysmem);
316 }
317
318 static bool sbsa_firmware_init(SBSAMachineState *sms,
319 MemoryRegion *sysmem,
320 MemoryRegion *secure_sysmem)
321 {
322 const char *bios_name;
323 int i;
324 BlockBackend *pflash_blk0;
325
326 /* Map legacy -drive if=pflash to machine properties */
327 for (i = 0; i < ARRAY_SIZE(sms->flash); i++) {
328 pflash_cfi01_legacy_drive(sms->flash[i],
329 drive_get(IF_PFLASH, 0, i));
330 }
331
332 sbsa_flash_map(sms, sysmem, secure_sysmem);
333
334 pflash_blk0 = pflash_cfi01_get_blk(sms->flash[0]);
335
336 bios_name = MACHINE(sms)->firmware;
337 if (bios_name) {
338 char *fname;
339 MemoryRegion *mr;
340 int image_size;
341
342 if (pflash_blk0) {
343 error_report("The contents of the first flash device may be "
344 "specified with -bios or with -drive if=pflash... "
345 "but you cannot use both options at once");
346 exit(1);
347 }
348
349 /* Fall back to -bios */
350
351 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
352 if (!fname) {
353 error_report("Could not find ROM image '%s'", bios_name);
354 exit(1);
355 }
356 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(sms->flash[0]), 0);
357 image_size = load_image_mr(fname, mr);
358 g_free(fname);
359 if (image_size < 0) {
360 error_report("Could not load ROM image '%s'", bios_name);
361 exit(1);
362 }
363 }
364
365 return pflash_blk0 || bios_name;
366 }
367
368 static void create_secure_ram(SBSAMachineState *sms,
369 MemoryRegion *secure_sysmem)
370 {
371 MemoryRegion *secram = g_new(MemoryRegion, 1);
372 hwaddr base = sbsa_ref_memmap[SBSA_SECURE_MEM].base;
373 hwaddr size = sbsa_ref_memmap[SBSA_SECURE_MEM].size;
374
375 memory_region_init_ram(secram, NULL, "sbsa-ref.secure-ram", size,
376 &error_fatal);
377 memory_region_add_subregion(secure_sysmem, base, secram);
378 }
379
380 static void create_gic(SBSAMachineState *sms)
381 {
382 unsigned int smp_cpus = MACHINE(sms)->smp.cpus;
383 SysBusDevice *gicbusdev;
384 const char *gictype;
385 uint32_t redist0_capacity, redist0_count;
386 int i;
387
388 gictype = gicv3_class_name();
389
390 sms->gic = qdev_new(gictype);
391 qdev_prop_set_uint32(sms->gic, "revision", 3);
392 qdev_prop_set_uint32(sms->gic, "num-cpu", smp_cpus);
393 /*
394 * Note that the num-irq property counts both internal and external
395 * interrupts; there are always 32 of the former (mandated by GIC spec).
396 */
397 qdev_prop_set_uint32(sms->gic, "num-irq", NUM_IRQS + 32);
398 qdev_prop_set_bit(sms->gic, "has-security-extensions", true);
399
400 redist0_capacity =
401 sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
402 redist0_count = MIN(smp_cpus, redist0_capacity);
403
404 qdev_prop_set_uint32(sms->gic, "len-redist-region-count", 1);
405 qdev_prop_set_uint32(sms->gic, "redist-region-count[0]", redist0_count);
406
407 gicbusdev = SYS_BUS_DEVICE(sms->gic);
408 sysbus_realize_and_unref(gicbusdev, &error_fatal);
409 sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base);
410 sysbus_mmio_map(gicbusdev, 1, sbsa_ref_memmap[SBSA_GIC_REDIST].base);
411
412 /*
413 * Wire the outputs from each CPU's generic timer and the GICv3
414 * maintenance interrupt signal to the appropriate GIC PPI inputs,
415 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
416 */
417 for (i = 0; i < smp_cpus; i++) {
418 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
419 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
420 int irq;
421 /*
422 * Mapping from the output timer irq lines from the CPU to the
423 * GIC PPI inputs used for this board.
424 */
425 const int timer_irq[] = {
426 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
427 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
428 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
429 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
430 };
431
432 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
433 qdev_connect_gpio_out(cpudev, irq,
434 qdev_get_gpio_in(sms->gic,
435 ppibase + timer_irq[irq]));
436 }
437
438 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
439 qdev_get_gpio_in(sms->gic, ppibase
440 + ARCH_GIC_MAINT_IRQ));
441 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
442 qdev_get_gpio_in(sms->gic, ppibase
443 + VIRTUAL_PMU_IRQ));
444
445 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
446 sysbus_connect_irq(gicbusdev, i + smp_cpus,
447 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
448 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
449 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
450 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
451 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
452 }
453 }
454
455 static void create_uart(const SBSAMachineState *sms, int uart,
456 MemoryRegion *mem, Chardev *chr)
457 {
458 hwaddr base = sbsa_ref_memmap[uart].base;
459 int irq = sbsa_ref_irqmap[uart];
460 DeviceState *dev = qdev_new(TYPE_PL011);
461 SysBusDevice *s = SYS_BUS_DEVICE(dev);
462
463 qdev_prop_set_chr(dev, "chardev", chr);
464 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
465 memory_region_add_subregion(mem, base,
466 sysbus_mmio_get_region(s, 0));
467 sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
468 }
469
470 static void create_rtc(const SBSAMachineState *sms)
471 {
472 hwaddr base = sbsa_ref_memmap[SBSA_RTC].base;
473 int irq = sbsa_ref_irqmap[SBSA_RTC];
474
475 sysbus_create_simple("pl031", base, qdev_get_gpio_in(sms->gic, irq));
476 }
477
478 static void create_wdt(const SBSAMachineState *sms)
479 {
480 hwaddr rbase = sbsa_ref_memmap[SBSA_GWDT_REFRESH].base;
481 hwaddr cbase = sbsa_ref_memmap[SBSA_GWDT_CONTROL].base;
482 DeviceState *dev = qdev_new(TYPE_WDT_SBSA);
483 SysBusDevice *s = SYS_BUS_DEVICE(dev);
484 int irq = sbsa_ref_irqmap[SBSA_GWDT_WS0];
485
486 sysbus_realize_and_unref(s, &error_fatal);
487 sysbus_mmio_map(s, 0, rbase);
488 sysbus_mmio_map(s, 1, cbase);
489 sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
490 }
491
492 static DeviceState *gpio_key_dev;
493 static void sbsa_ref_powerdown_req(Notifier *n, void *opaque)
494 {
495 /* use gpio Pin 3 for power button event */
496 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
497 }
498
499 static Notifier sbsa_ref_powerdown_notifier = {
500 .notify = sbsa_ref_powerdown_req
501 };
502
503 static void create_gpio(const SBSAMachineState *sms)
504 {
505 DeviceState *pl061_dev;
506 hwaddr base = sbsa_ref_memmap[SBSA_GPIO].base;
507 int irq = sbsa_ref_irqmap[SBSA_GPIO];
508
509 pl061_dev = sysbus_create_simple("pl061", base,
510 qdev_get_gpio_in(sms->gic, irq));
511
512 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
513 qdev_get_gpio_in(pl061_dev, 3));
514
515 /* connect powerdown request */
516 qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier);
517 }
518
519 static void create_ahci(const SBSAMachineState *sms)
520 {
521 hwaddr base = sbsa_ref_memmap[SBSA_AHCI].base;
522 int irq = sbsa_ref_irqmap[SBSA_AHCI];
523 DeviceState *dev;
524 DriveInfo *hd[NUM_SATA_PORTS];
525 SysbusAHCIState *sysahci;
526 AHCIState *ahci;
527 int i;
528
529 dev = qdev_new("sysbus-ahci");
530 qdev_prop_set_uint32(dev, "num-ports", NUM_SATA_PORTS);
531 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
532 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
533 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq));
534
535 sysahci = SYSBUS_AHCI(dev);
536 ahci = &sysahci->ahci;
537 ide_drive_get(hd, ARRAY_SIZE(hd));
538 for (i = 0; i < ahci->ports; i++) {
539 if (hd[i] == NULL) {
540 continue;
541 }
542 ide_create_drive(&ahci->dev[i].port, 0, hd[i]);
543 }
544 }
545
546 static void create_ehci(const SBSAMachineState *sms)
547 {
548 hwaddr base = sbsa_ref_memmap[SBSA_EHCI].base;
549 int irq = sbsa_ref_irqmap[SBSA_EHCI];
550
551 sysbus_create_simple("platform-ehci-usb", base,
552 qdev_get_gpio_in(sms->gic, irq));
553 }
554
555 static void create_smmu(const SBSAMachineState *sms, PCIBus *bus)
556 {
557 hwaddr base = sbsa_ref_memmap[SBSA_SMMU].base;
558 int irq = sbsa_ref_irqmap[SBSA_SMMU];
559 DeviceState *dev;
560 int i;
561
562 dev = qdev_new("arm-smmuv3");
563
564 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
565 &error_abort);
566 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
567 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
568 for (i = 0; i < NUM_SMMU_IRQS; i++) {
569 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
570 qdev_get_gpio_in(sms->gic, irq + i));
571 }
572 }
573
574 static void create_pcie(SBSAMachineState *sms)
575 {
576 hwaddr base_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].base;
577 hwaddr size_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].size;
578 hwaddr base_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].base;
579 hwaddr size_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].size;
580 hwaddr base_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].base;
581 hwaddr size_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].size;
582 hwaddr base_pio = sbsa_ref_memmap[SBSA_PCIE_PIO].base;
583 int irq = sbsa_ref_irqmap[SBSA_PCIE];
584 MemoryRegion *mmio_alias, *mmio_alias_high, *mmio_reg;
585 MemoryRegion *ecam_alias, *ecam_reg;
586 DeviceState *dev;
587 PCIHostState *pci;
588 int i;
589
590 dev = qdev_new(TYPE_GPEX_HOST);
591 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
592
593 /* Map ECAM space */
594 ecam_alias = g_new0(MemoryRegion, 1);
595 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
596 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
597 ecam_reg, 0, size_ecam);
598 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
599
600 /* Map the MMIO space */
601 mmio_alias = g_new0(MemoryRegion, 1);
602 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
603 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
604 mmio_reg, base_mmio, size_mmio);
605 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
606
607 /* Map the MMIO_HIGH space */
608 mmio_alias_high = g_new0(MemoryRegion, 1);
609 memory_region_init_alias(mmio_alias_high, OBJECT(dev), "pcie-mmio-high",
610 mmio_reg, base_mmio_high, size_mmio_high);
611 memory_region_add_subregion(get_system_memory(), base_mmio_high,
612 mmio_alias_high);
613
614 /* Map IO port space */
615 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
616
617 for (i = 0; i < GPEX_NUM_IRQS; i++) {
618 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
619 qdev_get_gpio_in(sms->gic, irq + i));
620 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
621 }
622
623 pci = PCI_HOST_BRIDGE(dev);
624 if (pci->bus) {
625 for (i = 0; i < nb_nics; i++) {
626 NICInfo *nd = &nd_table[i];
627
628 if (!nd->model) {
629 nd->model = g_strdup("e1000e");
630 }
631
632 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
633 }
634 }
635
636 pci_create_simple(pci->bus, -1, "VGA");
637
638 create_smmu(sms, pci->bus);
639 }
640
641 static void *sbsa_ref_dtb(const struct arm_boot_info *binfo, int *fdt_size)
642 {
643 const SBSAMachineState *board = container_of(binfo, SBSAMachineState,
644 bootinfo);
645
646 *fdt_size = board->fdt_size;
647 return board->fdt;
648 }
649
650 static void create_secure_ec(MemoryRegion *mem)
651 {
652 hwaddr base = sbsa_ref_memmap[SBSA_SECURE_EC].base;
653 DeviceState *dev = qdev_new("sbsa-ec");
654 SysBusDevice *s = SYS_BUS_DEVICE(dev);
655
656 memory_region_add_subregion(mem, base,
657 sysbus_mmio_get_region(s, 0));
658 }
659
660 static void sbsa_ref_init(MachineState *machine)
661 {
662 unsigned int smp_cpus = machine->smp.cpus;
663 unsigned int max_cpus = machine->smp.max_cpus;
664 SBSAMachineState *sms = SBSA_MACHINE(machine);
665 MachineClass *mc = MACHINE_GET_CLASS(machine);
666 MemoryRegion *sysmem = get_system_memory();
667 MemoryRegion *secure_sysmem = g_new(MemoryRegion, 1);
668 bool firmware_loaded;
669 const CPUArchIdList *possible_cpus;
670 int n, sbsa_max_cpus;
671
672 if (!cpu_type_valid(machine->cpu_type)) {
673 error_report("sbsa-ref: CPU type %s not supported", machine->cpu_type);
674 exit(1);
675 }
676
677 if (kvm_enabled()) {
678 error_report("sbsa-ref: KVM is not supported for this machine");
679 exit(1);
680 }
681
682 /*
683 * The Secure view of the world is the same as the NonSecure,
684 * but with a few extra devices. Create it as a container region
685 * containing the system memory at low priority; any secure-only
686 * devices go in at higher priority and take precedence.
687 */
688 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
689 UINT64_MAX);
690 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
691
692 firmware_loaded = sbsa_firmware_init(sms, sysmem, secure_sysmem);
693
694 /*
695 * This machine has EL3 enabled, external firmware should supply PSCI
696 * implementation, so the QEMU's internal PSCI is disabled.
697 */
698 sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
699
700 sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
701
702 if (max_cpus > sbsa_max_cpus) {
703 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
704 "supported by machine 'sbsa-ref' (%d)",
705 max_cpus, sbsa_max_cpus);
706 exit(1);
707 }
708
709 sms->smp_cpus = smp_cpus;
710
711 if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) {
712 error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB);
713 exit(1);
714 }
715
716 possible_cpus = mc->possible_cpu_arch_ids(machine);
717 for (n = 0; n < possible_cpus->len; n++) {
718 Object *cpuobj;
719 CPUState *cs;
720
721 if (n >= smp_cpus) {
722 break;
723 }
724
725 cpuobj = object_new(possible_cpus->cpus[n].type);
726 object_property_set_int(cpuobj, "mp-affinity",
727 possible_cpus->cpus[n].arch_id, NULL);
728
729 cs = CPU(cpuobj);
730 cs->cpu_index = n;
731
732 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
733 &error_fatal);
734
735 if (object_property_find(cpuobj, "reset-cbar")) {
736 object_property_set_int(cpuobj, "reset-cbar",
737 sbsa_ref_memmap[SBSA_CPUPERIPHS].base,
738 &error_abort);
739 }
740
741 object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
742 &error_abort);
743
744 object_property_set_link(cpuobj, "secure-memory",
745 OBJECT(secure_sysmem), &error_abort);
746
747 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
748 object_unref(cpuobj);
749 }
750
751 memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base,
752 machine->ram);
753
754 create_fdt(sms);
755
756 create_secure_ram(sms, secure_sysmem);
757
758 create_gic(sms);
759
760 create_uart(sms, SBSA_UART, sysmem, serial_hd(0));
761 create_uart(sms, SBSA_SECURE_UART, secure_sysmem, serial_hd(1));
762 /* Second secure UART for RAS and MM from EL0 */
763 create_uart(sms, SBSA_SECURE_UART_MM, secure_sysmem, serial_hd(2));
764
765 create_rtc(sms);
766
767 create_wdt(sms);
768
769 create_gpio(sms);
770
771 create_ahci(sms);
772
773 create_ehci(sms);
774
775 create_pcie(sms);
776
777 create_secure_ec(secure_sysmem);
778
779 sms->bootinfo.ram_size = machine->ram_size;
780 sms->bootinfo.nb_cpus = smp_cpus;
781 sms->bootinfo.board_id = -1;
782 sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base;
783 sms->bootinfo.get_dtb = sbsa_ref_dtb;
784 sms->bootinfo.firmware_loaded = firmware_loaded;
785 arm_load_kernel(ARM_CPU(first_cpu), machine, &sms->bootinfo);
786 }
787
788 static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms)
789 {
790 unsigned int max_cpus = ms->smp.max_cpus;
791 SBSAMachineState *sms = SBSA_MACHINE(ms);
792 int n;
793
794 if (ms->possible_cpus) {
795 assert(ms->possible_cpus->len == max_cpus);
796 return ms->possible_cpus;
797 }
798
799 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
800 sizeof(CPUArchId) * max_cpus);
801 ms->possible_cpus->len = max_cpus;
802 for (n = 0; n < ms->possible_cpus->len; n++) {
803 ms->possible_cpus->cpus[n].type = ms->cpu_type;
804 ms->possible_cpus->cpus[n].arch_id =
805 sbsa_ref_cpu_mp_affinity(sms, n);
806 ms->possible_cpus->cpus[n].props.has_thread_id = true;
807 ms->possible_cpus->cpus[n].props.thread_id = n;
808 }
809 return ms->possible_cpus;
810 }
811
812 static CpuInstanceProperties
813 sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
814 {
815 MachineClass *mc = MACHINE_GET_CLASS(ms);
816 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
817
818 assert(cpu_index < possible_cpus->len);
819 return possible_cpus->cpus[cpu_index].props;
820 }
821
822 static int64_t
823 sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx)
824 {
825 return idx % ms->numa_state->num_nodes;
826 }
827
828 static void sbsa_ref_instance_init(Object *obj)
829 {
830 SBSAMachineState *sms = SBSA_MACHINE(obj);
831
832 sbsa_flash_create(sms);
833 }
834
835 static void sbsa_ref_class_init(ObjectClass *oc, void *data)
836 {
837 MachineClass *mc = MACHINE_CLASS(oc);
838
839 mc->init = sbsa_ref_init;
840 mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine";
841 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a57");
842 mc->max_cpus = 512;
843 mc->pci_allow_0_address = true;
844 mc->minimum_page_bits = 12;
845 mc->block_default_type = IF_IDE;
846 mc->no_cdrom = 1;
847 mc->default_ram_size = 1 * GiB;
848 mc->default_ram_id = "sbsa-ref.ram";
849 mc->default_cpus = 4;
850 mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids;
851 mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props;
852 mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id;
853 }
854
855 static const TypeInfo sbsa_ref_info = {
856 .name = TYPE_SBSA_MACHINE,
857 .parent = TYPE_MACHINE,
858 .instance_init = sbsa_ref_instance_init,
859 .class_init = sbsa_ref_class_init,
860 .instance_size = sizeof(SBSAMachineState),
861 };
862
863 static void sbsa_ref_machine_init(void)
864 {
865 type_register_static(&sbsa_ref_info);
866 }
867
868 type_init(sbsa_ref_machine_init);