Update VERSION for v7.2.0-rc4
[qemu.git] / hw / block / fdc.c
1 /*
2 * QEMU Floppy disk emulator (Intel 82078)
3 *
4 * Copyright (c) 2003, 2007 Jocelyn Mayer
5 * Copyright (c) 2008 Hervé Poussineau
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25 /*
26 * The controller is used in Sun4m systems in a slightly different
27 * way. There are changes in DOR register and DMA is not available.
28 */
29
30 #include "qemu/osdep.h"
31 #include "hw/block/fdc.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
34 #include "qemu/timer.h"
35 #include "qemu/memalign.h"
36 #include "hw/irq.h"
37 #include "hw/isa/isa.h"
38 #include "hw/qdev-properties.h"
39 #include "hw/qdev-properties-system.h"
40 #include "migration/vmstate.h"
41 #include "hw/block/block.h"
42 #include "sysemu/block-backend.h"
43 #include "sysemu/blockdev.h"
44 #include "sysemu/sysemu.h"
45 #include "qemu/log.h"
46 #include "qemu/main-loop.h"
47 #include "qemu/module.h"
48 #include "trace.h"
49 #include "qom/object.h"
50 #include "fdc-internal.h"
51
52 /********************************************************/
53 /* debug Floppy devices */
54
55 #define DEBUG_FLOPPY 0
56
57 #define FLOPPY_DPRINTF(fmt, ...) \
58 do { \
59 if (DEBUG_FLOPPY) { \
60 fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__); \
61 } \
62 } while (0)
63
64
65 /* Anonymous BlockBackend for empty drive */
66 static BlockBackend *blk_create_empty_drive(void)
67 {
68 return blk_new(qemu_get_aio_context(), 0, BLK_PERM_ALL);
69 }
70
71 /********************************************************/
72 /* qdev floppy bus */
73
74 #define TYPE_FLOPPY_BUS "floppy-bus"
75 OBJECT_DECLARE_SIMPLE_TYPE(FloppyBus, FLOPPY_BUS)
76
77 static FDrive *get_drv(FDCtrl *fdctrl, int unit);
78
79 static const TypeInfo floppy_bus_info = {
80 .name = TYPE_FLOPPY_BUS,
81 .parent = TYPE_BUS,
82 .instance_size = sizeof(FloppyBus),
83 };
84
85 static void floppy_bus_create(FDCtrl *fdc, FloppyBus *bus, DeviceState *dev)
86 {
87 qbus_init(bus, sizeof(FloppyBus), TYPE_FLOPPY_BUS, dev, NULL);
88 bus->fdc = fdc;
89 }
90
91
92 /********************************************************/
93 /* Floppy drive emulation */
94
95 /* In many cases, the total sector size of a format is enough to uniquely
96 * identify it. However, there are some total sector collisions between
97 * formats of different physical size, and these are noted below by
98 * highlighting the total sector size for entries with collisions. */
99 const FDFormat fd_formats[] = {
100 /* First entry is default format */
101 /* 1.44 MB 3"1/2 floppy disks */
102 { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */
103 { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */
104 { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, },
105 { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, },
106 { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, },
107 { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, },
108 { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, },
109 { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, },
110 /* 2.88 MB 3"1/2 floppy disks */
111 { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, },
112 { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, },
113 { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, },
114 { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, },
115 { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, },
116 /* 720 kB 3"1/2 floppy disks */
117 { FLOPPY_DRIVE_TYPE_144, 9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */
118 { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, },
119 { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, },
120 { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, },
121 { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, },
122 { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, },
123 /* 1.2 MB 5"1/4 floppy disks */
124 { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, },
125 { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */
126 { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, },
127 { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, },
128 { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */
129 /* 720 kB 5"1/4 floppy disks */
130 { FLOPPY_DRIVE_TYPE_120, 9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */
131 { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, },
132 /* 360 kB 5"1/4 floppy disks */
133 { FLOPPY_DRIVE_TYPE_120, 9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */
134 { FLOPPY_DRIVE_TYPE_120, 9, 40, 0, FDRIVE_RATE_300K, },
135 { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, },
136 { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, },
137 /* 320 kB 5"1/4 floppy disks */
138 { FLOPPY_DRIVE_TYPE_120, 8, 40, 1, FDRIVE_RATE_250K, },
139 { FLOPPY_DRIVE_TYPE_120, 8, 40, 0, FDRIVE_RATE_250K, },
140 /* 360 kB must match 5"1/4 better than 3"1/2... */
141 { FLOPPY_DRIVE_TYPE_144, 9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */
142 /* end */
143 { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, },
144 };
145
146 static FDriveSize drive_size(FloppyDriveType drive)
147 {
148 switch (drive) {
149 case FLOPPY_DRIVE_TYPE_120:
150 return FDRIVE_SIZE_525;
151 case FLOPPY_DRIVE_TYPE_144:
152 case FLOPPY_DRIVE_TYPE_288:
153 return FDRIVE_SIZE_350;
154 default:
155 return FDRIVE_SIZE_UNKNOWN;
156 }
157 }
158
159 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
160 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
161
162 /* Will always be a fixed parameter for us */
163 #define FD_SECTOR_LEN 512
164 #define FD_SECTOR_SC 2 /* Sector size code */
165 #define FD_RESET_SENSEI_COUNT 4 /* Number of sense interrupts on RESET */
166
167
168 static FloppyDriveType get_fallback_drive_type(FDrive *drv);
169
170 /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
171 * currently goes through some pains to keep seeks within the bounds
172 * established by last_sect and max_track. Correcting this is difficult,
173 * as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
174 *
175 * For now: allow empty drives to have large bounds so we can seek around,
176 * with the understanding that when a diskette is inserted, the bounds will
177 * properly tighten to match the geometry of that inserted medium.
178 */
179 static void fd_empty_seek_hack(FDrive *drv)
180 {
181 drv->last_sect = 0xFF;
182 drv->max_track = 0xFF;
183 }
184
185 static void fd_init(FDrive *drv)
186 {
187 /* Drive */
188 drv->perpendicular = 0;
189 /* Disk */
190 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
191 drv->last_sect = 0;
192 drv->max_track = 0;
193 drv->ro = true;
194 drv->media_changed = 1;
195 }
196
197 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
198
199 static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect,
200 uint8_t last_sect, uint8_t num_sides)
201 {
202 return (((track * num_sides) + head) * last_sect) + sect - 1;
203 }
204
205 /* Returns current position, in sectors, for given drive */
206 static int fd_sector(FDrive *drv)
207 {
208 return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect,
209 NUM_SIDES(drv));
210 }
211
212 /* Returns current position, in bytes, for given drive */
213 static int fd_offset(FDrive *drv)
214 {
215 g_assert(fd_sector(drv) < INT_MAX >> BDRV_SECTOR_BITS);
216 return fd_sector(drv) << BDRV_SECTOR_BITS;
217 }
218
219 /* Seek to a new position:
220 * returns 0 if already on right track
221 * returns 1 if track changed
222 * returns 2 if track is invalid
223 * returns 3 if sector is invalid
224 * returns 4 if seek is disabled
225 */
226 static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect,
227 int enable_seek)
228 {
229 uint32_t sector;
230 int ret;
231
232 if (track > drv->max_track ||
233 (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
234 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
235 head, track, sect, 1,
236 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
237 drv->max_track, drv->last_sect);
238 return 2;
239 }
240 if (sect > drv->last_sect) {
241 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
242 head, track, sect, 1,
243 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
244 drv->max_track, drv->last_sect);
245 return 3;
246 }
247 sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv));
248 ret = 0;
249 if (sector != fd_sector(drv)) {
250 #if 0
251 if (!enable_seek) {
252 FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
253 " (max=%d %02x %02x)\n",
254 head, track, sect, 1, drv->max_track,
255 drv->last_sect);
256 return 4;
257 }
258 #endif
259 drv->head = head;
260 if (drv->track != track) {
261 if (drv->blk != NULL && blk_is_inserted(drv->blk)) {
262 drv->media_changed = 0;
263 }
264 ret = 1;
265 }
266 drv->track = track;
267 drv->sect = sect;
268 }
269
270 if (drv->blk == NULL || !blk_is_inserted(drv->blk)) {
271 ret = 2;
272 }
273
274 return ret;
275 }
276
277 /* Set drive back to track 0 */
278 static void fd_recalibrate(FDrive *drv)
279 {
280 FLOPPY_DPRINTF("recalibrate\n");
281 fd_seek(drv, 0, 0, 1, 1);
282 }
283
284 /**
285 * Determine geometry based on inserted diskette.
286 * Will not operate on an empty drive.
287 *
288 * @return: 0 on success, -1 if the drive is empty.
289 */
290 static int pick_geometry(FDrive *drv)
291 {
292 BlockBackend *blk = drv->blk;
293 const FDFormat *parse;
294 uint64_t nb_sectors, size;
295 int i;
296 int match, size_match, type_match;
297 bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO;
298
299 /* We can only pick a geometry if we have a diskette. */
300 if (!drv->blk || !blk_is_inserted(drv->blk) ||
301 drv->drive == FLOPPY_DRIVE_TYPE_NONE)
302 {
303 return -1;
304 }
305
306 /* We need to determine the likely geometry of the inserted medium.
307 * In order of preference, we look for:
308 * (1) The same drive type and number of sectors,
309 * (2) The same diskette size and number of sectors,
310 * (3) The same drive type.
311 *
312 * In all cases, matches that occur higher in the drive table will take
313 * precedence over matches that occur later in the table.
314 */
315 blk_get_geometry(blk, &nb_sectors);
316 match = size_match = type_match = -1;
317 for (i = 0; ; i++) {
318 parse = &fd_formats[i];
319 if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) {
320 break;
321 }
322 size = (parse->max_head + 1) * parse->max_track * parse->last_sect;
323 if (nb_sectors == size) {
324 if (magic || parse->drive == drv->drive) {
325 /* (1) perfect match -- nb_sectors and drive type */
326 goto out;
327 } else if (drive_size(parse->drive) == drive_size(drv->drive)) {
328 /* (2) size match -- nb_sectors and physical medium size */
329 match = (match == -1) ? i : match;
330 } else {
331 /* This is suspicious -- Did the user misconfigure? */
332 size_match = (size_match == -1) ? i : size_match;
333 }
334 } else if (type_match == -1) {
335 if ((parse->drive == drv->drive) ||
336 (magic && (parse->drive == get_fallback_drive_type(drv)))) {
337 /* (3) type match -- nb_sectors mismatch, but matches the type
338 * specified explicitly by the user, or matches the fallback
339 * default type when using the drive autodetect mechanism */
340 type_match = i;
341 }
342 }
343 }
344
345 /* No exact match found */
346 if (match == -1) {
347 if (size_match != -1) {
348 parse = &fd_formats[size_match];
349 FLOPPY_DPRINTF("User requested floppy drive type '%s', "
350 "but inserted medium appears to be a "
351 "%"PRId64" sector '%s' type\n",
352 FloppyDriveType_str(drv->drive),
353 nb_sectors,
354 FloppyDriveType_str(parse->drive));
355 }
356 assert(type_match != -1 && "misconfigured fd_format");
357 match = type_match;
358 }
359 parse = &(fd_formats[match]);
360
361 out:
362 if (parse->max_head == 0) {
363 drv->flags &= ~FDISK_DBL_SIDES;
364 } else {
365 drv->flags |= FDISK_DBL_SIDES;
366 }
367 drv->max_track = parse->max_track;
368 drv->last_sect = parse->last_sect;
369 drv->disk = parse->drive;
370 drv->media_rate = parse->rate;
371 return 0;
372 }
373
374 static void pick_drive_type(FDrive *drv)
375 {
376 if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) {
377 return;
378 }
379
380 if (pick_geometry(drv) == 0) {
381 drv->drive = drv->disk;
382 } else {
383 drv->drive = get_fallback_drive_type(drv);
384 }
385
386 g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO);
387 }
388
389 /* Revalidate a disk drive after a disk change */
390 static void fd_revalidate(FDrive *drv)
391 {
392 int rc;
393
394 FLOPPY_DPRINTF("revalidate\n");
395 if (drv->blk != NULL) {
396 drv->ro = !blk_is_writable(drv->blk);
397 if (!blk_is_inserted(drv->blk)) {
398 FLOPPY_DPRINTF("No disk in drive\n");
399 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
400 fd_empty_seek_hack(drv);
401 } else if (!drv->media_validated) {
402 rc = pick_geometry(drv);
403 if (rc) {
404 FLOPPY_DPRINTF("Could not validate floppy drive media");
405 } else {
406 drv->media_validated = true;
407 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
408 (drv->flags & FDISK_DBL_SIDES) ? 2 : 1,
409 drv->max_track, drv->last_sect,
410 drv->ro ? "ro" : "rw");
411 }
412 }
413 } else {
414 FLOPPY_DPRINTF("No drive connected\n");
415 drv->last_sect = 0;
416 drv->max_track = 0;
417 drv->flags &= ~FDISK_DBL_SIDES;
418 drv->drive = FLOPPY_DRIVE_TYPE_NONE;
419 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
420 }
421 }
422
423 static void fd_change_cb(void *opaque, bool load, Error **errp)
424 {
425 FDrive *drive = opaque;
426
427 if (!load) {
428 blk_set_perm(drive->blk, 0, BLK_PERM_ALL, &error_abort);
429 } else {
430 if (!blkconf_apply_backend_options(drive->conf,
431 !blk_supports_write_perm(drive->blk),
432 false, errp)) {
433 return;
434 }
435 }
436
437 drive->media_changed = 1;
438 drive->media_validated = false;
439 fd_revalidate(drive);
440 }
441
442 static const BlockDevOps fd_block_ops = {
443 .change_media_cb = fd_change_cb,
444 };
445
446
447 #define TYPE_FLOPPY_DRIVE "floppy"
448 OBJECT_DECLARE_SIMPLE_TYPE(FloppyDrive, FLOPPY_DRIVE)
449
450 struct FloppyDrive {
451 DeviceState qdev;
452 uint32_t unit;
453 BlockConf conf;
454 FloppyDriveType type;
455 };
456
457 static Property floppy_drive_properties[] = {
458 DEFINE_PROP_UINT32("unit", FloppyDrive, unit, -1),
459 DEFINE_BLOCK_PROPERTIES(FloppyDrive, conf),
460 DEFINE_PROP_SIGNED("drive-type", FloppyDrive, type,
461 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
462 FloppyDriveType),
463 DEFINE_PROP_END_OF_LIST(),
464 };
465
466 static void floppy_drive_realize(DeviceState *qdev, Error **errp)
467 {
468 FloppyDrive *dev = FLOPPY_DRIVE(qdev);
469 FloppyBus *bus = FLOPPY_BUS(qdev->parent_bus);
470 FDrive *drive;
471 bool read_only;
472 int ret;
473
474 if (dev->unit == -1) {
475 for (dev->unit = 0; dev->unit < MAX_FD; dev->unit++) {
476 drive = get_drv(bus->fdc, dev->unit);
477 if (!drive->blk) {
478 break;
479 }
480 }
481 }
482
483 if (dev->unit >= MAX_FD) {
484 error_setg(errp, "Can't create floppy unit %d, bus supports "
485 "only %d units", dev->unit, MAX_FD);
486 return;
487 }
488
489 drive = get_drv(bus->fdc, dev->unit);
490 if (drive->blk) {
491 error_setg(errp, "Floppy unit %d is in use", dev->unit);
492 return;
493 }
494
495 if (!dev->conf.blk) {
496 dev->conf.blk = blk_create_empty_drive();
497 ret = blk_attach_dev(dev->conf.blk, qdev);
498 assert(ret == 0);
499
500 /* Don't take write permissions on an empty drive to allow attaching a
501 * read-only node later */
502 read_only = true;
503 } else {
504 read_only = !blk_bs(dev->conf.blk) ||
505 !blk_supports_write_perm(dev->conf.blk);
506 }
507
508 if (!blkconf_blocksizes(&dev->conf, errp)) {
509 return;
510 }
511
512 if (dev->conf.logical_block_size != 512 ||
513 dev->conf.physical_block_size != 512)
514 {
515 error_setg(errp, "Physical and logical block size must "
516 "be 512 for floppy");
517 return;
518 }
519
520 /* rerror/werror aren't supported by fdc and therefore not even registered
521 * with qdev. So set the defaults manually before they are used in
522 * blkconf_apply_backend_options(). */
523 dev->conf.rerror = BLOCKDEV_ON_ERROR_AUTO;
524 dev->conf.werror = BLOCKDEV_ON_ERROR_AUTO;
525
526 if (!blkconf_apply_backend_options(&dev->conf, read_only, false, errp)) {
527 return;
528 }
529
530 /* 'enospc' is the default for -drive, 'report' is what blk_new() gives us
531 * for empty drives. */
532 if (blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC &&
533 blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_REPORT) {
534 error_setg(errp, "fdc doesn't support drive option werror");
535 return;
536 }
537 if (blk_get_on_error(dev->conf.blk, 1) != BLOCKDEV_ON_ERROR_REPORT) {
538 error_setg(errp, "fdc doesn't support drive option rerror");
539 return;
540 }
541
542 drive->conf = &dev->conf;
543 drive->blk = dev->conf.blk;
544 drive->fdctrl = bus->fdc;
545
546 fd_init(drive);
547 blk_set_dev_ops(drive->blk, &fd_block_ops, drive);
548
549 /* Keep 'type' qdev property and FDrive->drive in sync */
550 drive->drive = dev->type;
551 pick_drive_type(drive);
552 dev->type = drive->drive;
553
554 fd_revalidate(drive);
555 }
556
557 static void floppy_drive_class_init(ObjectClass *klass, void *data)
558 {
559 DeviceClass *k = DEVICE_CLASS(klass);
560 k->realize = floppy_drive_realize;
561 set_bit(DEVICE_CATEGORY_STORAGE, k->categories);
562 k->bus_type = TYPE_FLOPPY_BUS;
563 device_class_set_props(k, floppy_drive_properties);
564 k->desc = "virtual floppy drive";
565 }
566
567 static const TypeInfo floppy_drive_info = {
568 .name = TYPE_FLOPPY_DRIVE,
569 .parent = TYPE_DEVICE,
570 .instance_size = sizeof(FloppyDrive),
571 .class_init = floppy_drive_class_init,
572 };
573
574 /********************************************************/
575 /* Intel 82078 floppy disk controller emulation */
576
577 static void fdctrl_to_command_phase(FDCtrl *fdctrl);
578 static void fdctrl_raise_irq(FDCtrl *fdctrl);
579 static FDrive *get_cur_drv(FDCtrl *fdctrl);
580
581 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl);
582 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl);
583 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl);
584 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value);
585 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl);
586 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value);
587 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl);
588 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value);
589 static uint32_t fdctrl_read_data(FDCtrl *fdctrl);
590 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value);
591 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl);
592 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value);
593
594 enum {
595 FD_DIR_WRITE = 0,
596 FD_DIR_READ = 1,
597 FD_DIR_SCANE = 2,
598 FD_DIR_SCANL = 3,
599 FD_DIR_SCANH = 4,
600 FD_DIR_VERIFY = 5,
601 };
602
603 enum {
604 FD_STATE_MULTI = 0x01, /* multi track flag */
605 FD_STATE_FORMAT = 0x02, /* format flag */
606 };
607
608 enum {
609 FD_REG_SRA = 0x00,
610 FD_REG_SRB = 0x01,
611 FD_REG_DOR = 0x02,
612 FD_REG_TDR = 0x03,
613 FD_REG_MSR = 0x04,
614 FD_REG_DSR = 0x04,
615 FD_REG_FIFO = 0x05,
616 FD_REG_DIR = 0x07,
617 FD_REG_CCR = 0x07,
618 };
619
620 enum {
621 FD_CMD_READ_TRACK = 0x02,
622 FD_CMD_SPECIFY = 0x03,
623 FD_CMD_SENSE_DRIVE_STATUS = 0x04,
624 FD_CMD_WRITE = 0x05,
625 FD_CMD_READ = 0x06,
626 FD_CMD_RECALIBRATE = 0x07,
627 FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
628 FD_CMD_WRITE_DELETED = 0x09,
629 FD_CMD_READ_ID = 0x0a,
630 FD_CMD_READ_DELETED = 0x0c,
631 FD_CMD_FORMAT_TRACK = 0x0d,
632 FD_CMD_DUMPREG = 0x0e,
633 FD_CMD_SEEK = 0x0f,
634 FD_CMD_VERSION = 0x10,
635 FD_CMD_SCAN_EQUAL = 0x11,
636 FD_CMD_PERPENDICULAR_MODE = 0x12,
637 FD_CMD_CONFIGURE = 0x13,
638 FD_CMD_LOCK = 0x14,
639 FD_CMD_VERIFY = 0x16,
640 FD_CMD_POWERDOWN_MODE = 0x17,
641 FD_CMD_PART_ID = 0x18,
642 FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
643 FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
644 FD_CMD_SAVE = 0x2e,
645 FD_CMD_OPTION = 0x33,
646 FD_CMD_RESTORE = 0x4e,
647 FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
648 FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
649 FD_CMD_FORMAT_AND_WRITE = 0xcd,
650 FD_CMD_RELATIVE_SEEK_IN = 0xcf,
651 };
652
653 enum {
654 FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
655 FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
656 FD_CONFIG_POLL = 0x10, /* Poll enabled */
657 FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
658 FD_CONFIG_EIS = 0x40, /* No implied seeks */
659 };
660
661 enum {
662 FD_SR0_DS0 = 0x01,
663 FD_SR0_DS1 = 0x02,
664 FD_SR0_HEAD = 0x04,
665 FD_SR0_EQPMT = 0x10,
666 FD_SR0_SEEK = 0x20,
667 FD_SR0_ABNTERM = 0x40,
668 FD_SR0_INVCMD = 0x80,
669 FD_SR0_RDYCHG = 0xc0,
670 };
671
672 enum {
673 FD_SR1_MA = 0x01, /* Missing address mark */
674 FD_SR1_NW = 0x02, /* Not writable */
675 FD_SR1_EC = 0x80, /* End of cylinder */
676 };
677
678 enum {
679 FD_SR2_SNS = 0x04, /* Scan not satisfied */
680 FD_SR2_SEH = 0x08, /* Scan equal hit */
681 };
682
683 enum {
684 FD_SRA_DIR = 0x01,
685 FD_SRA_nWP = 0x02,
686 FD_SRA_nINDX = 0x04,
687 FD_SRA_HDSEL = 0x08,
688 FD_SRA_nTRK0 = 0x10,
689 FD_SRA_STEP = 0x20,
690 FD_SRA_nDRV2 = 0x40,
691 FD_SRA_INTPEND = 0x80,
692 };
693
694 enum {
695 FD_SRB_MTR0 = 0x01,
696 FD_SRB_MTR1 = 0x02,
697 FD_SRB_WGATE = 0x04,
698 FD_SRB_RDATA = 0x08,
699 FD_SRB_WDATA = 0x10,
700 FD_SRB_DR0 = 0x20,
701 };
702
703 enum {
704 #if MAX_FD == 4
705 FD_DOR_SELMASK = 0x03,
706 #else
707 FD_DOR_SELMASK = 0x01,
708 #endif
709 FD_DOR_nRESET = 0x04,
710 FD_DOR_DMAEN = 0x08,
711 FD_DOR_MOTEN0 = 0x10,
712 FD_DOR_MOTEN1 = 0x20,
713 FD_DOR_MOTEN2 = 0x40,
714 FD_DOR_MOTEN3 = 0x80,
715 };
716
717 enum {
718 #if MAX_FD == 4
719 FD_TDR_BOOTSEL = 0x0c,
720 #else
721 FD_TDR_BOOTSEL = 0x04,
722 #endif
723 };
724
725 enum {
726 FD_DSR_DRATEMASK= 0x03,
727 FD_DSR_PWRDOWN = 0x40,
728 FD_DSR_SWRESET = 0x80,
729 };
730
731 enum {
732 FD_MSR_DRV0BUSY = 0x01,
733 FD_MSR_DRV1BUSY = 0x02,
734 FD_MSR_DRV2BUSY = 0x04,
735 FD_MSR_DRV3BUSY = 0x08,
736 FD_MSR_CMDBUSY = 0x10,
737 FD_MSR_NONDMA = 0x20,
738 FD_MSR_DIO = 0x40,
739 FD_MSR_RQM = 0x80,
740 };
741
742 enum {
743 FD_DIR_DSKCHG = 0x80,
744 };
745
746 /*
747 * See chapter 5.0 "Controller phases" of the spec:
748 *
749 * Command phase:
750 * The host writes a command and its parameters into the FIFO. The command
751 * phase is completed when all parameters for the command have been supplied,
752 * and execution phase is entered.
753 *
754 * Execution phase:
755 * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
756 * contains the payload now, otherwise it's unused. When all bytes of the
757 * required data have been transferred, the state is switched to either result
758 * phase (if the command produces status bytes) or directly back into the
759 * command phase for the next command.
760 *
761 * Result phase:
762 * The host reads out the FIFO, which contains one or more result bytes now.
763 */
764 enum {
765 /* Only for migration: reconstruct phase from registers like qemu 2.3 */
766 FD_PHASE_RECONSTRUCT = 0,
767
768 FD_PHASE_COMMAND = 1,
769 FD_PHASE_EXECUTION = 2,
770 FD_PHASE_RESULT = 3,
771 };
772
773 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
774 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
775
776 static FloppyDriveType get_fallback_drive_type(FDrive *drv)
777 {
778 return drv->fdctrl->fallback;
779 }
780
781 uint32_t fdctrl_read(void *opaque, uint32_t reg)
782 {
783 FDCtrl *fdctrl = opaque;
784 uint32_t retval;
785
786 reg &= 7;
787 switch (reg) {
788 case FD_REG_SRA:
789 retval = fdctrl_read_statusA(fdctrl);
790 break;
791 case FD_REG_SRB:
792 retval = fdctrl_read_statusB(fdctrl);
793 break;
794 case FD_REG_DOR:
795 retval = fdctrl_read_dor(fdctrl);
796 break;
797 case FD_REG_TDR:
798 retval = fdctrl_read_tape(fdctrl);
799 break;
800 case FD_REG_MSR:
801 retval = fdctrl_read_main_status(fdctrl);
802 break;
803 case FD_REG_FIFO:
804 retval = fdctrl_read_data(fdctrl);
805 break;
806 case FD_REG_DIR:
807 retval = fdctrl_read_dir(fdctrl);
808 break;
809 default:
810 retval = (uint32_t)(-1);
811 break;
812 }
813 trace_fdc_ioport_read(reg, retval);
814
815 return retval;
816 }
817
818 void fdctrl_write(void *opaque, uint32_t reg, uint32_t value)
819 {
820 FDCtrl *fdctrl = opaque;
821
822 reg &= 7;
823 trace_fdc_ioport_write(reg, value);
824 switch (reg) {
825 case FD_REG_DOR:
826 fdctrl_write_dor(fdctrl, value);
827 break;
828 case FD_REG_TDR:
829 fdctrl_write_tape(fdctrl, value);
830 break;
831 case FD_REG_DSR:
832 fdctrl_write_rate(fdctrl, value);
833 break;
834 case FD_REG_FIFO:
835 fdctrl_write_data(fdctrl, value);
836 break;
837 case FD_REG_CCR:
838 fdctrl_write_ccr(fdctrl, value);
839 break;
840 default:
841 break;
842 }
843 }
844
845 static bool fdrive_media_changed_needed(void *opaque)
846 {
847 FDrive *drive = opaque;
848
849 return (drive->blk != NULL && drive->media_changed != 1);
850 }
851
852 static const VMStateDescription vmstate_fdrive_media_changed = {
853 .name = "fdrive/media_changed",
854 .version_id = 1,
855 .minimum_version_id = 1,
856 .needed = fdrive_media_changed_needed,
857 .fields = (VMStateField[]) {
858 VMSTATE_UINT8(media_changed, FDrive),
859 VMSTATE_END_OF_LIST()
860 }
861 };
862
863 static const VMStateDescription vmstate_fdrive_media_rate = {
864 .name = "fdrive/media_rate",
865 .version_id = 1,
866 .minimum_version_id = 1,
867 .fields = (VMStateField[]) {
868 VMSTATE_UINT8(media_rate, FDrive),
869 VMSTATE_END_OF_LIST()
870 }
871 };
872
873 static bool fdrive_perpendicular_needed(void *opaque)
874 {
875 FDrive *drive = opaque;
876
877 return drive->perpendicular != 0;
878 }
879
880 static const VMStateDescription vmstate_fdrive_perpendicular = {
881 .name = "fdrive/perpendicular",
882 .version_id = 1,
883 .minimum_version_id = 1,
884 .needed = fdrive_perpendicular_needed,
885 .fields = (VMStateField[]) {
886 VMSTATE_UINT8(perpendicular, FDrive),
887 VMSTATE_END_OF_LIST()
888 }
889 };
890
891 static int fdrive_post_load(void *opaque, int version_id)
892 {
893 fd_revalidate(opaque);
894 return 0;
895 }
896
897 static const VMStateDescription vmstate_fdrive = {
898 .name = "fdrive",
899 .version_id = 1,
900 .minimum_version_id = 1,
901 .post_load = fdrive_post_load,
902 .fields = (VMStateField[]) {
903 VMSTATE_UINT8(head, FDrive),
904 VMSTATE_UINT8(track, FDrive),
905 VMSTATE_UINT8(sect, FDrive),
906 VMSTATE_END_OF_LIST()
907 },
908 .subsections = (const VMStateDescription*[]) {
909 &vmstate_fdrive_media_changed,
910 &vmstate_fdrive_media_rate,
911 &vmstate_fdrive_perpendicular,
912 NULL
913 }
914 };
915
916 /*
917 * Reconstructs the phase from register values according to the logic that was
918 * implemented in qemu 2.3. This is the default value that is used if the phase
919 * subsection is not present on migration.
920 *
921 * Don't change this function to reflect newer qemu versions, it is part of
922 * the migration ABI.
923 */
924 static int reconstruct_phase(FDCtrl *fdctrl)
925 {
926 if (fdctrl->msr & FD_MSR_NONDMA) {
927 return FD_PHASE_EXECUTION;
928 } else if ((fdctrl->msr & FD_MSR_RQM) == 0) {
929 /* qemu 2.3 disabled RQM only during DMA transfers */
930 return FD_PHASE_EXECUTION;
931 } else if (fdctrl->msr & FD_MSR_DIO) {
932 return FD_PHASE_RESULT;
933 } else {
934 return FD_PHASE_COMMAND;
935 }
936 }
937
938 static int fdc_pre_save(void *opaque)
939 {
940 FDCtrl *s = opaque;
941
942 s->dor_vmstate = s->dor | GET_CUR_DRV(s);
943
944 return 0;
945 }
946
947 static int fdc_pre_load(void *opaque)
948 {
949 FDCtrl *s = opaque;
950 s->phase = FD_PHASE_RECONSTRUCT;
951 return 0;
952 }
953
954 static int fdc_post_load(void *opaque, int version_id)
955 {
956 FDCtrl *s = opaque;
957
958 SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK);
959 s->dor = s->dor_vmstate & ~FD_DOR_SELMASK;
960
961 if (s->phase == FD_PHASE_RECONSTRUCT) {
962 s->phase = reconstruct_phase(s);
963 }
964
965 return 0;
966 }
967
968 static bool fdc_reset_sensei_needed(void *opaque)
969 {
970 FDCtrl *s = opaque;
971
972 return s->reset_sensei != 0;
973 }
974
975 static const VMStateDescription vmstate_fdc_reset_sensei = {
976 .name = "fdc/reset_sensei",
977 .version_id = 1,
978 .minimum_version_id = 1,
979 .needed = fdc_reset_sensei_needed,
980 .fields = (VMStateField[]) {
981 VMSTATE_INT32(reset_sensei, FDCtrl),
982 VMSTATE_END_OF_LIST()
983 }
984 };
985
986 static bool fdc_result_timer_needed(void *opaque)
987 {
988 FDCtrl *s = opaque;
989
990 return timer_pending(s->result_timer);
991 }
992
993 static const VMStateDescription vmstate_fdc_result_timer = {
994 .name = "fdc/result_timer",
995 .version_id = 1,
996 .minimum_version_id = 1,
997 .needed = fdc_result_timer_needed,
998 .fields = (VMStateField[]) {
999 VMSTATE_TIMER_PTR(result_timer, FDCtrl),
1000 VMSTATE_END_OF_LIST()
1001 }
1002 };
1003
1004 static bool fdc_phase_needed(void *opaque)
1005 {
1006 FDCtrl *fdctrl = opaque;
1007
1008 return reconstruct_phase(fdctrl) != fdctrl->phase;
1009 }
1010
1011 static const VMStateDescription vmstate_fdc_phase = {
1012 .name = "fdc/phase",
1013 .version_id = 1,
1014 .minimum_version_id = 1,
1015 .needed = fdc_phase_needed,
1016 .fields = (VMStateField[]) {
1017 VMSTATE_UINT8(phase, FDCtrl),
1018 VMSTATE_END_OF_LIST()
1019 }
1020 };
1021
1022 const VMStateDescription vmstate_fdc = {
1023 .name = "fdc",
1024 .version_id = 2,
1025 .minimum_version_id = 2,
1026 .pre_save = fdc_pre_save,
1027 .pre_load = fdc_pre_load,
1028 .post_load = fdc_post_load,
1029 .fields = (VMStateField[]) {
1030 /* Controller State */
1031 VMSTATE_UINT8(sra, FDCtrl),
1032 VMSTATE_UINT8(srb, FDCtrl),
1033 VMSTATE_UINT8(dor_vmstate, FDCtrl),
1034 VMSTATE_UINT8(tdr, FDCtrl),
1035 VMSTATE_UINT8(dsr, FDCtrl),
1036 VMSTATE_UINT8(msr, FDCtrl),
1037 VMSTATE_UINT8(status0, FDCtrl),
1038 VMSTATE_UINT8(status1, FDCtrl),
1039 VMSTATE_UINT8(status2, FDCtrl),
1040 /* Command FIFO */
1041 VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8,
1042 uint8_t),
1043 VMSTATE_UINT32(data_pos, FDCtrl),
1044 VMSTATE_UINT32(data_len, FDCtrl),
1045 VMSTATE_UINT8(data_state, FDCtrl),
1046 VMSTATE_UINT8(data_dir, FDCtrl),
1047 VMSTATE_UINT8(eot, FDCtrl),
1048 /* States kept only to be returned back */
1049 VMSTATE_UINT8(timer0, FDCtrl),
1050 VMSTATE_UINT8(timer1, FDCtrl),
1051 VMSTATE_UINT8(precomp_trk, FDCtrl),
1052 VMSTATE_UINT8(config, FDCtrl),
1053 VMSTATE_UINT8(lock, FDCtrl),
1054 VMSTATE_UINT8(pwrd, FDCtrl),
1055 VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl, NULL),
1056 VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1,
1057 vmstate_fdrive, FDrive),
1058 VMSTATE_END_OF_LIST()
1059 },
1060 .subsections = (const VMStateDescription*[]) {
1061 &vmstate_fdc_reset_sensei,
1062 &vmstate_fdc_result_timer,
1063 &vmstate_fdc_phase,
1064 NULL
1065 }
1066 };
1067
1068 /* Change IRQ state */
1069 static void fdctrl_reset_irq(FDCtrl *fdctrl)
1070 {
1071 fdctrl->status0 = 0;
1072 if (!(fdctrl->sra & FD_SRA_INTPEND))
1073 return;
1074 FLOPPY_DPRINTF("Reset interrupt\n");
1075 qemu_set_irq(fdctrl->irq, 0);
1076 fdctrl->sra &= ~FD_SRA_INTPEND;
1077 }
1078
1079 static void fdctrl_raise_irq(FDCtrl *fdctrl)
1080 {
1081 if (!(fdctrl->sra & FD_SRA_INTPEND)) {
1082 qemu_set_irq(fdctrl->irq, 1);
1083 fdctrl->sra |= FD_SRA_INTPEND;
1084 }
1085
1086 fdctrl->reset_sensei = 0;
1087 FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
1088 }
1089
1090 /* Reset controller */
1091 void fdctrl_reset(FDCtrl *fdctrl, int do_irq)
1092 {
1093 int i;
1094
1095 FLOPPY_DPRINTF("reset controller\n");
1096 fdctrl_reset_irq(fdctrl);
1097 /* Initialise controller */
1098 fdctrl->sra = 0;
1099 fdctrl->srb = 0xc0;
1100 if (!fdctrl->drives[1].blk) {
1101 fdctrl->sra |= FD_SRA_nDRV2;
1102 }
1103 fdctrl->cur_drv = 0;
1104 fdctrl->dor = FD_DOR_nRESET;
1105 fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
1106 fdctrl->msr = FD_MSR_RQM;
1107 fdctrl->reset_sensei = 0;
1108 timer_del(fdctrl->result_timer);
1109 /* FIFO state */
1110 fdctrl->data_pos = 0;
1111 fdctrl->data_len = 0;
1112 fdctrl->data_state = 0;
1113 fdctrl->data_dir = FD_DIR_WRITE;
1114 for (i = 0; i < MAX_FD; i++)
1115 fd_recalibrate(&fdctrl->drives[i]);
1116 fdctrl_to_command_phase(fdctrl);
1117 if (do_irq) {
1118 fdctrl->status0 |= FD_SR0_RDYCHG;
1119 fdctrl_raise_irq(fdctrl);
1120 fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
1121 }
1122 }
1123
1124 static inline FDrive *drv0(FDCtrl *fdctrl)
1125 {
1126 return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
1127 }
1128
1129 static inline FDrive *drv1(FDCtrl *fdctrl)
1130 {
1131 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
1132 return &fdctrl->drives[1];
1133 else
1134 return &fdctrl->drives[0];
1135 }
1136
1137 #if MAX_FD == 4
1138 static inline FDrive *drv2(FDCtrl *fdctrl)
1139 {
1140 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
1141 return &fdctrl->drives[2];
1142 else
1143 return &fdctrl->drives[1];
1144 }
1145
1146 static inline FDrive *drv3(FDCtrl *fdctrl)
1147 {
1148 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
1149 return &fdctrl->drives[3];
1150 else
1151 return &fdctrl->drives[2];
1152 }
1153 #endif
1154
1155 static FDrive *get_drv(FDCtrl *fdctrl, int unit)
1156 {
1157 switch (unit) {
1158 case 0: return drv0(fdctrl);
1159 case 1: return drv1(fdctrl);
1160 #if MAX_FD == 4
1161 case 2: return drv2(fdctrl);
1162 case 3: return drv3(fdctrl);
1163 #endif
1164 default: return NULL;
1165 }
1166 }
1167
1168 static FDrive *get_cur_drv(FDCtrl *fdctrl)
1169 {
1170 FDrive *cur_drv = get_drv(fdctrl, fdctrl->cur_drv);
1171
1172 if (!cur_drv->blk) {
1173 /*
1174 * Kludge: empty drive line selected. Create an anonymous
1175 * BlockBackend to avoid NULL deref with various BlockBackend
1176 * API calls within this model (CVE-2021-20196).
1177 * Due to the controller QOM model limitations, we don't
1178 * attach the created to the controller device.
1179 */
1180 cur_drv->blk = blk_create_empty_drive();
1181 }
1182 return cur_drv;
1183 }
1184
1185 /* Status A register : 0x00 (read-only) */
1186 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl)
1187 {
1188 uint32_t retval = fdctrl->sra;
1189
1190 FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
1191
1192 return retval;
1193 }
1194
1195 /* Status B register : 0x01 (read-only) */
1196 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl)
1197 {
1198 uint32_t retval = fdctrl->srb;
1199
1200 FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
1201
1202 return retval;
1203 }
1204
1205 /* Digital output register : 0x02 */
1206 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl)
1207 {
1208 uint32_t retval = fdctrl->dor;
1209
1210 /* Selected drive */
1211 retval |= fdctrl->cur_drv;
1212 FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
1213
1214 return retval;
1215 }
1216
1217 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value)
1218 {
1219 FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
1220
1221 /* Motors */
1222 if (value & FD_DOR_MOTEN0)
1223 fdctrl->srb |= FD_SRB_MTR0;
1224 else
1225 fdctrl->srb &= ~FD_SRB_MTR0;
1226 if (value & FD_DOR_MOTEN1)
1227 fdctrl->srb |= FD_SRB_MTR1;
1228 else
1229 fdctrl->srb &= ~FD_SRB_MTR1;
1230
1231 /* Drive */
1232 if (value & 1)
1233 fdctrl->srb |= FD_SRB_DR0;
1234 else
1235 fdctrl->srb &= ~FD_SRB_DR0;
1236
1237 /* Reset */
1238 if (!(value & FD_DOR_nRESET)) {
1239 if (fdctrl->dor & FD_DOR_nRESET) {
1240 FLOPPY_DPRINTF("controller enter RESET state\n");
1241 }
1242 } else {
1243 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1244 FLOPPY_DPRINTF("controller out of RESET state\n");
1245 fdctrl_reset(fdctrl, 1);
1246 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1247 }
1248 }
1249 /* Selected drive */
1250 fdctrl->cur_drv = value & FD_DOR_SELMASK;
1251
1252 fdctrl->dor = value;
1253 }
1254
1255 /* Tape drive register : 0x03 */
1256 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl)
1257 {
1258 uint32_t retval = fdctrl->tdr;
1259
1260 FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
1261
1262 return retval;
1263 }
1264
1265 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value)
1266 {
1267 /* Reset mode */
1268 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1269 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1270 return;
1271 }
1272 FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
1273 /* Disk boot selection indicator */
1274 fdctrl->tdr = value & FD_TDR_BOOTSEL;
1275 /* Tape indicators: never allow */
1276 }
1277
1278 /* Main status register : 0x04 (read) */
1279 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl)
1280 {
1281 uint32_t retval = fdctrl->msr;
1282
1283 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1284 fdctrl->dor |= FD_DOR_nRESET;
1285
1286 FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
1287
1288 return retval;
1289 }
1290
1291 /* Data select rate register : 0x04 (write) */
1292 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value)
1293 {
1294 /* Reset mode */
1295 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1296 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1297 return;
1298 }
1299 FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
1300 /* Reset: autoclear */
1301 if (value & FD_DSR_SWRESET) {
1302 fdctrl->dor &= ~FD_DOR_nRESET;
1303 fdctrl_reset(fdctrl, 1);
1304 fdctrl->dor |= FD_DOR_nRESET;
1305 }
1306 if (value & FD_DSR_PWRDOWN) {
1307 fdctrl_reset(fdctrl, 1);
1308 }
1309 fdctrl->dsr = value;
1310 }
1311
1312 /* Configuration control register: 0x07 (write) */
1313 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value)
1314 {
1315 /* Reset mode */
1316 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1317 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1318 return;
1319 }
1320 FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value);
1321
1322 /* Only the rate selection bits used in AT mode, and we
1323 * store those in the DSR.
1324 */
1325 fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) |
1326 (value & FD_DSR_DRATEMASK);
1327 }
1328
1329 static int fdctrl_media_changed(FDrive *drv)
1330 {
1331 return drv->media_changed;
1332 }
1333
1334 /* Digital input register : 0x07 (read-only) */
1335 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl)
1336 {
1337 uint32_t retval = 0;
1338
1339 if (fdctrl_media_changed(get_cur_drv(fdctrl))) {
1340 retval |= FD_DIR_DSKCHG;
1341 }
1342 if (retval != 0) {
1343 FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
1344 }
1345
1346 return retval;
1347 }
1348
1349 /* Clear the FIFO and update the state for receiving the next command */
1350 static void fdctrl_to_command_phase(FDCtrl *fdctrl)
1351 {
1352 fdctrl->phase = FD_PHASE_COMMAND;
1353 fdctrl->data_dir = FD_DIR_WRITE;
1354 fdctrl->data_pos = 0;
1355 fdctrl->data_len = 1; /* Accept command byte, adjust for params later */
1356 fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
1357 fdctrl->msr |= FD_MSR_RQM;
1358 }
1359
1360 /* Update the state to allow the guest to read out the command status.
1361 * @fifo_len is the number of result bytes to be read out. */
1362 static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len)
1363 {
1364 fdctrl->phase = FD_PHASE_RESULT;
1365 fdctrl->data_dir = FD_DIR_READ;
1366 fdctrl->data_len = fifo_len;
1367 fdctrl->data_pos = 0;
1368 fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
1369 }
1370
1371 /* Set an error: unimplemented/unknown command */
1372 static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction)
1373 {
1374 qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
1375 fdctrl->fifo[0]);
1376 fdctrl->fifo[0] = FD_SR0_INVCMD;
1377 fdctrl_to_result_phase(fdctrl, 1);
1378 }
1379
1380 /* Seek to next sector
1381 * returns 0 when end of track reached (for DBL_SIDES on head 1)
1382 * otherwise returns 1
1383 */
1384 static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv)
1385 {
1386 FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1387 cur_drv->head, cur_drv->track, cur_drv->sect,
1388 fd_sector(cur_drv));
1389 /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1390 error in fact */
1391 uint8_t new_head = cur_drv->head;
1392 uint8_t new_track = cur_drv->track;
1393 uint8_t new_sect = cur_drv->sect;
1394
1395 int ret = 1;
1396
1397 if (new_sect >= cur_drv->last_sect ||
1398 new_sect == fdctrl->eot) {
1399 new_sect = 1;
1400 if (FD_MULTI_TRACK(fdctrl->data_state)) {
1401 if (new_head == 0 &&
1402 (cur_drv->flags & FDISK_DBL_SIDES) != 0) {
1403 new_head = 1;
1404 } else {
1405 new_head = 0;
1406 new_track++;
1407 fdctrl->status0 |= FD_SR0_SEEK;
1408 if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) {
1409 ret = 0;
1410 }
1411 }
1412 } else {
1413 fdctrl->status0 |= FD_SR0_SEEK;
1414 new_track++;
1415 ret = 0;
1416 }
1417 if (ret == 1) {
1418 FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1419 new_head, new_track, new_sect, fd_sector(cur_drv));
1420 }
1421 } else {
1422 new_sect++;
1423 }
1424 fd_seek(cur_drv, new_head, new_track, new_sect, 1);
1425 return ret;
1426 }
1427
1428 /* Callback for transfer end (stop or abort) */
1429 static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0,
1430 uint8_t status1, uint8_t status2)
1431 {
1432 FDrive *cur_drv;
1433 cur_drv = get_cur_drv(fdctrl);
1434
1435 fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD);
1436 fdctrl->status0 |= GET_CUR_DRV(fdctrl);
1437 if (cur_drv->head) {
1438 fdctrl->status0 |= FD_SR0_HEAD;
1439 }
1440 fdctrl->status0 |= status0;
1441
1442 FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1443 status0, status1, status2, fdctrl->status0);
1444 fdctrl->fifo[0] = fdctrl->status0;
1445 fdctrl->fifo[1] = status1;
1446 fdctrl->fifo[2] = status2;
1447 fdctrl->fifo[3] = cur_drv->track;
1448 fdctrl->fifo[4] = cur_drv->head;
1449 fdctrl->fifo[5] = cur_drv->sect;
1450 fdctrl->fifo[6] = FD_SECTOR_SC;
1451 fdctrl->data_dir = FD_DIR_READ;
1452 if (fdctrl->dma_chann != -1 && !(fdctrl->msr & FD_MSR_NONDMA)) {
1453 IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1454 k->release_DREQ(fdctrl->dma, fdctrl->dma_chann);
1455 }
1456 fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
1457 fdctrl->msr &= ~FD_MSR_NONDMA;
1458
1459 fdctrl_to_result_phase(fdctrl, 7);
1460 fdctrl_raise_irq(fdctrl);
1461 }
1462
1463 /* Prepare a data transfer (either DMA or FIFO) */
1464 static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction)
1465 {
1466 FDrive *cur_drv;
1467 uint8_t kh, kt, ks;
1468
1469 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1470 cur_drv = get_cur_drv(fdctrl);
1471 kt = fdctrl->fifo[2];
1472 kh = fdctrl->fifo[3];
1473 ks = fdctrl->fifo[4];
1474 FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1475 GET_CUR_DRV(fdctrl), kh, kt, ks,
1476 fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1477 NUM_SIDES(cur_drv)));
1478 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1479 case 2:
1480 /* sect too big */
1481 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1482 fdctrl->fifo[3] = kt;
1483 fdctrl->fifo[4] = kh;
1484 fdctrl->fifo[5] = ks;
1485 return;
1486 case 3:
1487 /* track too big */
1488 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1489 fdctrl->fifo[3] = kt;
1490 fdctrl->fifo[4] = kh;
1491 fdctrl->fifo[5] = ks;
1492 return;
1493 case 4:
1494 /* No seek enabled */
1495 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1496 fdctrl->fifo[3] = kt;
1497 fdctrl->fifo[4] = kh;
1498 fdctrl->fifo[5] = ks;
1499 return;
1500 case 1:
1501 fdctrl->status0 |= FD_SR0_SEEK;
1502 break;
1503 default:
1504 break;
1505 }
1506
1507 /* Check the data rate. If the programmed data rate does not match
1508 * the currently inserted medium, the operation has to fail. */
1509 if ((fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
1510 FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1511 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
1512 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
1513 fdctrl->fifo[3] = kt;
1514 fdctrl->fifo[4] = kh;
1515 fdctrl->fifo[5] = ks;
1516 return;
1517 }
1518
1519 /* Set the FIFO state */
1520 fdctrl->data_dir = direction;
1521 fdctrl->data_pos = 0;
1522 assert(fdctrl->msr & FD_MSR_CMDBUSY);
1523 if (fdctrl->fifo[0] & 0x80)
1524 fdctrl->data_state |= FD_STATE_MULTI;
1525 else
1526 fdctrl->data_state &= ~FD_STATE_MULTI;
1527 if (fdctrl->fifo[5] == 0) {
1528 fdctrl->data_len = fdctrl->fifo[8];
1529 } else {
1530 int tmp;
1531 fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
1532 tmp = (fdctrl->fifo[6] - ks + 1);
1533 if (tmp < 0) {
1534 FLOPPY_DPRINTF("invalid EOT: %d\n", tmp);
1535 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
1536 fdctrl->fifo[3] = kt;
1537 fdctrl->fifo[4] = kh;
1538 fdctrl->fifo[5] = ks;
1539 return;
1540 }
1541 if (fdctrl->fifo[0] & 0x80)
1542 tmp += fdctrl->fifo[6];
1543 fdctrl->data_len *= tmp;
1544 }
1545 fdctrl->eot = fdctrl->fifo[6];
1546 if (fdctrl->dor & FD_DOR_DMAEN) {
1547 /* DMA transfer is enabled. */
1548 IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1549
1550 FLOPPY_DPRINTF("direction=%d (%d - %d)\n",
1551 direction, (128 << fdctrl->fifo[5]) *
1552 (cur_drv->last_sect - ks + 1), fdctrl->data_len);
1553
1554 /* No access is allowed until DMA transfer has completed */
1555 fdctrl->msr &= ~FD_MSR_RQM;
1556 if (direction != FD_DIR_VERIFY) {
1557 /*
1558 * Now, we just have to wait for the DMA controller to
1559 * recall us...
1560 */
1561 k->hold_DREQ(fdctrl->dma, fdctrl->dma_chann);
1562 k->schedule(fdctrl->dma);
1563 } else {
1564 /* Start transfer */
1565 fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0,
1566 fdctrl->data_len);
1567 }
1568 return;
1569 }
1570 FLOPPY_DPRINTF("start non-DMA transfer\n");
1571 fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM;
1572 if (direction != FD_DIR_WRITE)
1573 fdctrl->msr |= FD_MSR_DIO;
1574 /* IO based transfer: calculate len */
1575 fdctrl_raise_irq(fdctrl);
1576 }
1577
1578 /* Prepare a transfer of deleted data */
1579 static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction)
1580 {
1581 qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n");
1582
1583 /* We don't handle deleted data,
1584 * so we don't return *ANYTHING*
1585 */
1586 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1587 }
1588
1589 /* handlers for DMA transfers */
1590 int fdctrl_transfer_handler(void *opaque, int nchan, int dma_pos, int dma_len)
1591 {
1592 FDCtrl *fdctrl;
1593 FDrive *cur_drv;
1594 int len, start_pos, rel_pos;
1595 uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
1596 IsaDmaClass *k;
1597
1598 fdctrl = opaque;
1599 if (fdctrl->msr & FD_MSR_RQM) {
1600 FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1601 return 0;
1602 }
1603 k = ISADMA_GET_CLASS(fdctrl->dma);
1604 cur_drv = get_cur_drv(fdctrl);
1605 if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
1606 fdctrl->data_dir == FD_DIR_SCANH)
1607 status2 = FD_SR2_SNS;
1608 if (dma_len > fdctrl->data_len)
1609 dma_len = fdctrl->data_len;
1610 if (cur_drv->blk == NULL) {
1611 if (fdctrl->data_dir == FD_DIR_WRITE)
1612 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1613 else
1614 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1615 len = 0;
1616 goto transfer_error;
1617 }
1618 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1619 for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
1620 len = dma_len - fdctrl->data_pos;
1621 if (len + rel_pos > FD_SECTOR_LEN)
1622 len = FD_SECTOR_LEN - rel_pos;
1623 FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1624 "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
1625 fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
1626 cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
1627 fd_sector(cur_drv) * FD_SECTOR_LEN);
1628 if (fdctrl->data_dir != FD_DIR_WRITE ||
1629 len < FD_SECTOR_LEN || rel_pos != 0) {
1630 /* READ & SCAN commands and realign to a sector for WRITE */
1631 if (blk_pread(cur_drv->blk, fd_offset(cur_drv), BDRV_SECTOR_SIZE,
1632 fdctrl->fifo, 0) < 0) {
1633 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1634 fd_sector(cur_drv));
1635 /* Sure, image size is too small... */
1636 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1637 }
1638 }
1639 switch (fdctrl->data_dir) {
1640 case FD_DIR_READ:
1641 /* READ commands */
1642 k->write_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1643 fdctrl->data_pos, len);
1644 break;
1645 case FD_DIR_WRITE:
1646 /* WRITE commands */
1647 if (cur_drv->ro) {
1648 /* Handle readonly medium early, no need to do DMA, touch the
1649 * LED or attempt any writes. A real floppy doesn't attempt
1650 * to write to readonly media either. */
1651 fdctrl_stop_transfer(fdctrl,
1652 FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW,
1653 0x00);
1654 goto transfer_error;
1655 }
1656
1657 k->read_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1658 fdctrl->data_pos, len);
1659 if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), BDRV_SECTOR_SIZE,
1660 fdctrl->fifo, 0) < 0) {
1661 FLOPPY_DPRINTF("error writing sector %d\n",
1662 fd_sector(cur_drv));
1663 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1664 goto transfer_error;
1665 }
1666 break;
1667 case FD_DIR_VERIFY:
1668 /* VERIFY commands */
1669 break;
1670 default:
1671 /* SCAN commands */
1672 {
1673 uint8_t tmpbuf[FD_SECTOR_LEN];
1674 int ret;
1675 k->read_memory(fdctrl->dma, nchan, tmpbuf, fdctrl->data_pos,
1676 len);
1677 ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
1678 if (ret == 0) {
1679 status2 = FD_SR2_SEH;
1680 goto end_transfer;
1681 }
1682 if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
1683 (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
1684 status2 = 0x00;
1685 goto end_transfer;
1686 }
1687 }
1688 break;
1689 }
1690 fdctrl->data_pos += len;
1691 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1692 if (rel_pos == 0) {
1693 /* Seek to next sector */
1694 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
1695 break;
1696 }
1697 }
1698 end_transfer:
1699 len = fdctrl->data_pos - start_pos;
1700 FLOPPY_DPRINTF("end transfer %d %d %d\n",
1701 fdctrl->data_pos, len, fdctrl->data_len);
1702 if (fdctrl->data_dir == FD_DIR_SCANE ||
1703 fdctrl->data_dir == FD_DIR_SCANL ||
1704 fdctrl->data_dir == FD_DIR_SCANH)
1705 status2 = FD_SR2_SEH;
1706 fdctrl->data_len -= len;
1707 fdctrl_stop_transfer(fdctrl, status0, status1, status2);
1708 transfer_error:
1709
1710 return len;
1711 }
1712
1713 /* Data register : 0x05 */
1714 static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
1715 {
1716 FDrive *cur_drv;
1717 uint32_t retval = 0;
1718 uint32_t pos;
1719
1720 cur_drv = get_cur_drv(fdctrl);
1721 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1722 if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
1723 FLOPPY_DPRINTF("error: controller not ready for reading\n");
1724 return 0;
1725 }
1726
1727 /* If data_len spans multiple sectors, the current position in the FIFO
1728 * wraps around while fdctrl->data_pos is the real position in the whole
1729 * request. */
1730 pos = fdctrl->data_pos;
1731 pos %= FD_SECTOR_LEN;
1732
1733 switch (fdctrl->phase) {
1734 case FD_PHASE_EXECUTION:
1735 assert(fdctrl->msr & FD_MSR_NONDMA);
1736 if (pos == 0) {
1737 if (fdctrl->data_pos != 0)
1738 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
1739 FLOPPY_DPRINTF("error seeking to next sector %d\n",
1740 fd_sector(cur_drv));
1741 return 0;
1742 }
1743 if (blk_pread(cur_drv->blk, fd_offset(cur_drv), BDRV_SECTOR_SIZE,
1744 fdctrl->fifo, 0)
1745 < 0) {
1746 FLOPPY_DPRINTF("error getting sector %d\n",
1747 fd_sector(cur_drv));
1748 /* Sure, image size is too small... */
1749 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1750 }
1751 }
1752
1753 if (++fdctrl->data_pos == fdctrl->data_len) {
1754 fdctrl->msr &= ~FD_MSR_RQM;
1755 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1756 }
1757 break;
1758
1759 case FD_PHASE_RESULT:
1760 assert(!(fdctrl->msr & FD_MSR_NONDMA));
1761 if (++fdctrl->data_pos == fdctrl->data_len) {
1762 fdctrl->msr &= ~FD_MSR_RQM;
1763 fdctrl_to_command_phase(fdctrl);
1764 fdctrl_reset_irq(fdctrl);
1765 }
1766 break;
1767
1768 case FD_PHASE_COMMAND:
1769 default:
1770 abort();
1771 }
1772
1773 retval = fdctrl->fifo[pos];
1774 FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
1775
1776 return retval;
1777 }
1778
1779 static void fdctrl_format_sector(FDCtrl *fdctrl)
1780 {
1781 FDrive *cur_drv;
1782 uint8_t kh, kt, ks;
1783
1784 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1785 cur_drv = get_cur_drv(fdctrl);
1786 kt = fdctrl->fifo[6];
1787 kh = fdctrl->fifo[7];
1788 ks = fdctrl->fifo[8];
1789 FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1790 GET_CUR_DRV(fdctrl), kh, kt, ks,
1791 fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1792 NUM_SIDES(cur_drv)));
1793 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1794 case 2:
1795 /* sect too big */
1796 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1797 fdctrl->fifo[3] = kt;
1798 fdctrl->fifo[4] = kh;
1799 fdctrl->fifo[5] = ks;
1800 return;
1801 case 3:
1802 /* track too big */
1803 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1804 fdctrl->fifo[3] = kt;
1805 fdctrl->fifo[4] = kh;
1806 fdctrl->fifo[5] = ks;
1807 return;
1808 case 4:
1809 /* No seek enabled */
1810 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1811 fdctrl->fifo[3] = kt;
1812 fdctrl->fifo[4] = kh;
1813 fdctrl->fifo[5] = ks;
1814 return;
1815 case 1:
1816 fdctrl->status0 |= FD_SR0_SEEK;
1817 break;
1818 default:
1819 break;
1820 }
1821 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1822 if (cur_drv->blk == NULL ||
1823 blk_pwrite(cur_drv->blk, fd_offset(cur_drv), BDRV_SECTOR_SIZE,
1824 fdctrl->fifo, 0) < 0) {
1825 FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv));
1826 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1827 } else {
1828 if (cur_drv->sect == cur_drv->last_sect) {
1829 fdctrl->data_state &= ~FD_STATE_FORMAT;
1830 /* Last sector done */
1831 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1832 } else {
1833 /* More to do */
1834 fdctrl->data_pos = 0;
1835 fdctrl->data_len = 4;
1836 }
1837 }
1838 }
1839
1840 static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction)
1841 {
1842 fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
1843 fdctrl->fifo[0] = fdctrl->lock << 4;
1844 fdctrl_to_result_phase(fdctrl, 1);
1845 }
1846
1847 static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
1848 {
1849 FDrive *cur_drv = get_cur_drv(fdctrl);
1850
1851 /* Drives position */
1852 fdctrl->fifo[0] = drv0(fdctrl)->track;
1853 fdctrl->fifo[1] = drv1(fdctrl)->track;
1854 #if MAX_FD == 4
1855 fdctrl->fifo[2] = drv2(fdctrl)->track;
1856 fdctrl->fifo[3] = drv3(fdctrl)->track;
1857 #else
1858 fdctrl->fifo[2] = 0;
1859 fdctrl->fifo[3] = 0;
1860 #endif
1861 /* timers */
1862 fdctrl->fifo[4] = fdctrl->timer0;
1863 fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
1864 fdctrl->fifo[6] = cur_drv->last_sect;
1865 fdctrl->fifo[7] = (fdctrl->lock << 7) |
1866 (cur_drv->perpendicular << 2);
1867 fdctrl->fifo[8] = fdctrl->config;
1868 fdctrl->fifo[9] = fdctrl->precomp_trk;
1869 fdctrl_to_result_phase(fdctrl, 10);
1870 }
1871
1872 static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
1873 {
1874 /* Controller's version */
1875 fdctrl->fifo[0] = fdctrl->version;
1876 fdctrl_to_result_phase(fdctrl, 1);
1877 }
1878
1879 static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
1880 {
1881 fdctrl->fifo[0] = 0x41; /* Stepping 1 */
1882 fdctrl_to_result_phase(fdctrl, 1);
1883 }
1884
1885 static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
1886 {
1887 FDrive *cur_drv = get_cur_drv(fdctrl);
1888
1889 /* Drives position */
1890 drv0(fdctrl)->track = fdctrl->fifo[3];
1891 drv1(fdctrl)->track = fdctrl->fifo[4];
1892 #if MAX_FD == 4
1893 drv2(fdctrl)->track = fdctrl->fifo[5];
1894 drv3(fdctrl)->track = fdctrl->fifo[6];
1895 #endif
1896 /* timers */
1897 fdctrl->timer0 = fdctrl->fifo[7];
1898 fdctrl->timer1 = fdctrl->fifo[8];
1899 cur_drv->last_sect = fdctrl->fifo[9];
1900 fdctrl->lock = fdctrl->fifo[10] >> 7;
1901 cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
1902 fdctrl->config = fdctrl->fifo[11];
1903 fdctrl->precomp_trk = fdctrl->fifo[12];
1904 fdctrl->pwrd = fdctrl->fifo[13];
1905 fdctrl_to_command_phase(fdctrl);
1906 }
1907
1908 static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
1909 {
1910 FDrive *cur_drv = get_cur_drv(fdctrl);
1911
1912 fdctrl->fifo[0] = 0;
1913 fdctrl->fifo[1] = 0;
1914 /* Drives position */
1915 fdctrl->fifo[2] = drv0(fdctrl)->track;
1916 fdctrl->fifo[3] = drv1(fdctrl)->track;
1917 #if MAX_FD == 4
1918 fdctrl->fifo[4] = drv2(fdctrl)->track;
1919 fdctrl->fifo[5] = drv3(fdctrl)->track;
1920 #else
1921 fdctrl->fifo[4] = 0;
1922 fdctrl->fifo[5] = 0;
1923 #endif
1924 /* timers */
1925 fdctrl->fifo[6] = fdctrl->timer0;
1926 fdctrl->fifo[7] = fdctrl->timer1;
1927 fdctrl->fifo[8] = cur_drv->last_sect;
1928 fdctrl->fifo[9] = (fdctrl->lock << 7) |
1929 (cur_drv->perpendicular << 2);
1930 fdctrl->fifo[10] = fdctrl->config;
1931 fdctrl->fifo[11] = fdctrl->precomp_trk;
1932 fdctrl->fifo[12] = fdctrl->pwrd;
1933 fdctrl->fifo[13] = 0;
1934 fdctrl->fifo[14] = 0;
1935 fdctrl_to_result_phase(fdctrl, 15);
1936 }
1937
1938 static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
1939 {
1940 FDrive *cur_drv = get_cur_drv(fdctrl);
1941
1942 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
1943 timer_mod(fdctrl->result_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1944 (NANOSECONDS_PER_SECOND / 50));
1945 }
1946
1947 static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction)
1948 {
1949 FDrive *cur_drv;
1950
1951 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1952 cur_drv = get_cur_drv(fdctrl);
1953 fdctrl->data_state |= FD_STATE_FORMAT;
1954 if (fdctrl->fifo[0] & 0x80)
1955 fdctrl->data_state |= FD_STATE_MULTI;
1956 else
1957 fdctrl->data_state &= ~FD_STATE_MULTI;
1958 cur_drv->bps =
1959 fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
1960 #if 0
1961 cur_drv->last_sect =
1962 cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
1963 fdctrl->fifo[3] / 2;
1964 #else
1965 cur_drv->last_sect = fdctrl->fifo[3];
1966 #endif
1967 /* TODO: implement format using DMA expected by the Bochs BIOS
1968 * and Linux fdformat (read 3 bytes per sector via DMA and fill
1969 * the sector with the specified fill byte
1970 */
1971 fdctrl->data_state &= ~FD_STATE_FORMAT;
1972 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1973 }
1974
1975 static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction)
1976 {
1977 fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
1978 fdctrl->timer1 = fdctrl->fifo[2] >> 1;
1979 if (fdctrl->fifo[2] & 1)
1980 fdctrl->dor &= ~FD_DOR_DMAEN;
1981 else
1982 fdctrl->dor |= FD_DOR_DMAEN;
1983 /* No result back */
1984 fdctrl_to_command_phase(fdctrl);
1985 }
1986
1987 static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
1988 {
1989 FDrive *cur_drv;
1990
1991 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1992 cur_drv = get_cur_drv(fdctrl);
1993 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
1994 /* 1 Byte status back */
1995 fdctrl->fifo[0] = (cur_drv->ro << 6) |
1996 (cur_drv->track == 0 ? 0x10 : 0x00) |
1997 (cur_drv->head << 2) |
1998 GET_CUR_DRV(fdctrl) |
1999 0x28;
2000 fdctrl_to_result_phase(fdctrl, 1);
2001 }
2002
2003 static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
2004 {
2005 FDrive *cur_drv;
2006
2007 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2008 cur_drv = get_cur_drv(fdctrl);
2009 fd_recalibrate(cur_drv);
2010 fdctrl_to_command_phase(fdctrl);
2011 /* Raise Interrupt */
2012 fdctrl->status0 |= FD_SR0_SEEK;
2013 fdctrl_raise_irq(fdctrl);
2014 }
2015
2016 static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
2017 {
2018 FDrive *cur_drv = get_cur_drv(fdctrl);
2019
2020 if (fdctrl->reset_sensei > 0) {
2021 fdctrl->fifo[0] =
2022 FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
2023 fdctrl->reset_sensei--;
2024 } else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
2025 fdctrl->fifo[0] = FD_SR0_INVCMD;
2026 fdctrl_to_result_phase(fdctrl, 1);
2027 return;
2028 } else {
2029 fdctrl->fifo[0] =
2030 (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0))
2031 | GET_CUR_DRV(fdctrl);
2032 }
2033
2034 fdctrl->fifo[1] = cur_drv->track;
2035 fdctrl_to_result_phase(fdctrl, 2);
2036 fdctrl_reset_irq(fdctrl);
2037 fdctrl->status0 = FD_SR0_RDYCHG;
2038 }
2039
2040 static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction)
2041 {
2042 FDrive *cur_drv;
2043
2044 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2045 cur_drv = get_cur_drv(fdctrl);
2046 fdctrl_to_command_phase(fdctrl);
2047 /* The seek command just sends step pulses to the drive and doesn't care if
2048 * there is a medium inserted of if it's banging the head against the drive.
2049 */
2050 fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1);
2051 /* Raise Interrupt */
2052 fdctrl->status0 |= FD_SR0_SEEK;
2053 fdctrl_raise_irq(fdctrl);
2054 }
2055
2056 static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
2057 {
2058 FDrive *cur_drv = get_cur_drv(fdctrl);
2059
2060 if (fdctrl->fifo[1] & 0x80)
2061 cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
2062 /* No result back */
2063 fdctrl_to_command_phase(fdctrl);
2064 }
2065
2066 static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
2067 {
2068 fdctrl->config = fdctrl->fifo[2];
2069 fdctrl->precomp_trk = fdctrl->fifo[3];
2070 /* No result back */
2071 fdctrl_to_command_phase(fdctrl);
2072 }
2073
2074 static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction)
2075 {
2076 fdctrl->pwrd = fdctrl->fifo[1];
2077 fdctrl->fifo[0] = fdctrl->fifo[1];
2078 fdctrl_to_result_phase(fdctrl, 1);
2079 }
2080
2081 static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
2082 {
2083 /* No result back */
2084 fdctrl_to_command_phase(fdctrl);
2085 }
2086
2087 static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction)
2088 {
2089 FDrive *cur_drv = get_cur_drv(fdctrl);
2090 uint32_t pos;
2091
2092 pos = fdctrl->data_pos - 1;
2093 pos %= FD_SECTOR_LEN;
2094 if (fdctrl->fifo[pos] & 0x80) {
2095 /* Command parameters done */
2096 if (fdctrl->fifo[pos] & 0x40) {
2097 fdctrl->fifo[0] = fdctrl->fifo[1];
2098 fdctrl->fifo[2] = 0;
2099 fdctrl->fifo[3] = 0;
2100 fdctrl_to_result_phase(fdctrl, 4);
2101 } else {
2102 fdctrl_to_command_phase(fdctrl);
2103 }
2104 } else if (fdctrl->data_len > 7) {
2105 /* ERROR */
2106 fdctrl->fifo[0] = 0x80 |
2107 (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
2108 fdctrl_to_result_phase(fdctrl, 1);
2109 }
2110 }
2111
2112 static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction)
2113 {
2114 FDrive *cur_drv;
2115
2116 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2117 cur_drv = get_cur_drv(fdctrl);
2118 if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
2119 fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1,
2120 cur_drv->sect, 1);
2121 } else {
2122 fd_seek(cur_drv, cur_drv->head,
2123 cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1);
2124 }
2125 fdctrl_to_command_phase(fdctrl);
2126 /* Raise Interrupt */
2127 fdctrl->status0 |= FD_SR0_SEEK;
2128 fdctrl_raise_irq(fdctrl);
2129 }
2130
2131 static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
2132 {
2133 FDrive *cur_drv;
2134
2135 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2136 cur_drv = get_cur_drv(fdctrl);
2137 if (fdctrl->fifo[2] > cur_drv->track) {
2138 fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1);
2139 } else {
2140 fd_seek(cur_drv, cur_drv->head,
2141 cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1);
2142 }
2143 fdctrl_to_command_phase(fdctrl);
2144 /* Raise Interrupt */
2145 fdctrl->status0 |= FD_SR0_SEEK;
2146 fdctrl_raise_irq(fdctrl);
2147 }
2148
2149 /*
2150 * Handlers for the execution phase of each command
2151 */
2152 typedef struct FDCtrlCommand {
2153 uint8_t value;
2154 uint8_t mask;
2155 const char* name;
2156 int parameters;
2157 void (*handler)(FDCtrl *fdctrl, int direction);
2158 int direction;
2159 } FDCtrlCommand;
2160
2161 static const FDCtrlCommand handlers[] = {
2162 { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
2163 { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
2164 { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
2165 { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
2166 { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
2167 { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
2168 { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
2169 { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
2170 { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
2171 { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
2172 { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
2173 { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY },
2174 { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
2175 { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
2176 { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
2177 { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
2178 { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
2179 { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
2180 { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
2181 { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
2182 { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
2183 { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
2184 { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
2185 { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
2186 { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
2187 { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
2188 { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
2189 { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
2190 { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
2191 { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
2192 { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
2193 { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
2194 };
2195 /* Associate command to an index in the 'handlers' array */
2196 static uint8_t command_to_handler[256];
2197
2198 static const FDCtrlCommand *get_command(uint8_t cmd)
2199 {
2200 int idx;
2201
2202 idx = command_to_handler[cmd];
2203 FLOPPY_DPRINTF("%s command\n", handlers[idx].name);
2204 return &handlers[idx];
2205 }
2206
2207 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
2208 {
2209 FDrive *cur_drv;
2210 const FDCtrlCommand *cmd;
2211 uint32_t pos;
2212
2213 /* Reset mode */
2214 if (!(fdctrl->dor & FD_DOR_nRESET)) {
2215 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2216 return;
2217 }
2218 if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
2219 FLOPPY_DPRINTF("error: controller not ready for writing\n");
2220 return;
2221 }
2222 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
2223
2224 FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
2225
2226 /* If data_len spans multiple sectors, the current position in the FIFO
2227 * wraps around while fdctrl->data_pos is the real position in the whole
2228 * request. */
2229 pos = fdctrl->data_pos++;
2230 pos %= FD_SECTOR_LEN;
2231 fdctrl->fifo[pos] = value;
2232
2233 if (fdctrl->data_pos == fdctrl->data_len) {
2234 fdctrl->msr &= ~FD_MSR_RQM;
2235 }
2236
2237 switch (fdctrl->phase) {
2238 case FD_PHASE_EXECUTION:
2239 /* For DMA requests, RQM should be cleared during execution phase, so
2240 * we would have errored out above. */
2241 assert(fdctrl->msr & FD_MSR_NONDMA);
2242
2243 /* FIFO data write */
2244 if (pos == FD_SECTOR_LEN - 1 ||
2245 fdctrl->data_pos == fdctrl->data_len) {
2246 cur_drv = get_cur_drv(fdctrl);
2247 if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), BDRV_SECTOR_SIZE,
2248 fdctrl->fifo, 0) < 0) {
2249 FLOPPY_DPRINTF("error writing sector %d\n",
2250 fd_sector(cur_drv));
2251 break;
2252 }
2253 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
2254 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2255 fd_sector(cur_drv));
2256 break;
2257 }
2258 }
2259
2260 /* Switch to result phase when done with the transfer */
2261 if (fdctrl->data_pos == fdctrl->data_len) {
2262 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2263 }
2264 break;
2265
2266 case FD_PHASE_COMMAND:
2267 assert(!(fdctrl->msr & FD_MSR_NONDMA));
2268 assert(fdctrl->data_pos < FD_SECTOR_LEN);
2269
2270 if (pos == 0) {
2271 /* The first byte specifies the command. Now we start reading
2272 * as many parameters as this command requires. */
2273 cmd = get_command(value);
2274 fdctrl->data_len = cmd->parameters + 1;
2275 if (cmd->parameters) {
2276 fdctrl->msr |= FD_MSR_RQM;
2277 }
2278 fdctrl->msr |= FD_MSR_CMDBUSY;
2279 }
2280
2281 if (fdctrl->data_pos == fdctrl->data_len) {
2282 /* We have all parameters now, execute the command */
2283 fdctrl->phase = FD_PHASE_EXECUTION;
2284
2285 if (fdctrl->data_state & FD_STATE_FORMAT) {
2286 fdctrl_format_sector(fdctrl);
2287 break;
2288 }
2289
2290 cmd = get_command(fdctrl->fifo[0]);
2291 FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name);
2292 cmd->handler(fdctrl, cmd->direction);
2293 }
2294 break;
2295
2296 case FD_PHASE_RESULT:
2297 default:
2298 abort();
2299 }
2300 }
2301
2302 static void fdctrl_result_timer(void *opaque)
2303 {
2304 FDCtrl *fdctrl = opaque;
2305 FDrive *cur_drv = get_cur_drv(fdctrl);
2306
2307 /* Pretend we are spinning.
2308 * This is needed for Coherent, which uses READ ID to check for
2309 * sector interleaving.
2310 */
2311 if (cur_drv->last_sect != 0) {
2312 cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
2313 }
2314 /* READ_ID can't automatically succeed! */
2315 if ((fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
2316 FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2317 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
2318 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
2319 } else {
2320 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2321 }
2322 }
2323
2324 /* Init functions */
2325
2326 void fdctrl_init_drives(FloppyBus *bus, DriveInfo **fds)
2327 {
2328 DeviceState *dev;
2329 int i;
2330
2331 for (i = 0; i < MAX_FD; i++) {
2332 if (fds[i]) {
2333 dev = qdev_new("floppy");
2334 qdev_prop_set_uint32(dev, "unit", i);
2335 qdev_prop_set_enum(dev, "drive-type", FLOPPY_DRIVE_TYPE_AUTO);
2336 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(fds[i]),
2337 &error_fatal);
2338 qdev_realize_and_unref(dev, &bus->bus, &error_fatal);
2339 }
2340 }
2341 }
2342
2343 void fdctrl_realize_common(DeviceState *dev, FDCtrl *fdctrl, Error **errp)
2344 {
2345 int i, j;
2346 FDrive *drive;
2347 static int command_tables_inited = 0;
2348
2349 if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) {
2350 error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'");
2351 return;
2352 }
2353
2354 /* Fill 'command_to_handler' lookup table */
2355 if (!command_tables_inited) {
2356 command_tables_inited = 1;
2357 for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
2358 for (j = 0; j < sizeof(command_to_handler); j++) {
2359 if ((j & handlers[i].mask) == handlers[i].value) {
2360 command_to_handler[j] = i;
2361 }
2362 }
2363 }
2364 }
2365
2366 FLOPPY_DPRINTF("init controller\n");
2367 fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
2368 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
2369 fdctrl->fifo_size = 512;
2370 fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2371 fdctrl_result_timer, fdctrl);
2372
2373 fdctrl->version = 0x90; /* Intel 82078 controller */
2374 fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
2375 fdctrl->num_floppies = MAX_FD;
2376
2377 floppy_bus_create(fdctrl, &fdctrl->bus, dev);
2378
2379 for (i = 0; i < MAX_FD; i++) {
2380 drive = &fdctrl->drives[i];
2381 drive->fdctrl = fdctrl;
2382 fd_init(drive);
2383 fd_revalidate(drive);
2384 }
2385 }
2386
2387 static void fdc_register_types(void)
2388 {
2389 type_register_static(&floppy_bus_info);
2390 type_register_static(&floppy_drive_info);
2391 }
2392
2393 type_init(fdc_register_types)