capstone: Update to upstream "next" branch
[qemu.git] / hw / block / m25p80.c
1 /*
2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3 * set. Known devices table current as of Jun/2012 and taken from linux.
4 * See drivers/mtd/devices/m25p80.c.
5 *
6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8 * Copyright (C) 2012 PetaLogix
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 or
13 * (at your option) a later version of the License.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 */
23
24 #include "qemu/osdep.h"
25 #include "qemu/units.h"
26 #include "sysemu/block-backend.h"
27 #include "hw/qdev-properties.h"
28 #include "hw/ssi/ssi.h"
29 #include "migration/vmstate.h"
30 #include "qemu/bitops.h"
31 #include "qemu/log.h"
32 #include "qemu/module.h"
33 #include "qemu/error-report.h"
34 #include "qapi/error.h"
35 #include "trace.h"
36 #include "qom/object.h"
37
38 /* Fields for FlashPartInfo->flags */
39
40 /* erase capabilities */
41 #define ER_4K 1
42 #define ER_32K 2
43 /* set to allow the page program command to write 0s back to 1. Useful for
44 * modelling EEPROM with SPI flash command set
45 */
46 #define EEPROM 0x100
47
48 /* 16 MiB max in 3 byte address mode */
49 #define MAX_3BYTES_SIZE 0x1000000
50
51 #define SPI_NOR_MAX_ID_LEN 6
52
53 typedef struct FlashPartInfo {
54 const char *part_name;
55 /*
56 * This array stores the ID bytes.
57 * The first three bytes are the JEDIC ID.
58 * JEDEC ID zero means "no ID" (mostly older chips).
59 */
60 uint8_t id[SPI_NOR_MAX_ID_LEN];
61 uint8_t id_len;
62 /* there is confusion between manufacturers as to what a sector is. In this
63 * device model, a "sector" is the size that is erased by the ERASE_SECTOR
64 * command (opcode 0xd8).
65 */
66 uint32_t sector_size;
67 uint32_t n_sectors;
68 uint32_t page_size;
69 uint16_t flags;
70 /*
71 * Big sized spi nor are often stacked devices, thus sometime
72 * replace chip erase with die erase.
73 * This field inform how many die is in the chip.
74 */
75 uint8_t die_cnt;
76 } FlashPartInfo;
77
78 /* adapted from linux */
79 /* Used when the "_ext_id" is two bytes at most */
80 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
81 .part_name = _part_name,\
82 .id = {\
83 ((_jedec_id) >> 16) & 0xff,\
84 ((_jedec_id) >> 8) & 0xff,\
85 (_jedec_id) & 0xff,\
86 ((_ext_id) >> 8) & 0xff,\
87 (_ext_id) & 0xff,\
88 },\
89 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
90 .sector_size = (_sector_size),\
91 .n_sectors = (_n_sectors),\
92 .page_size = 256,\
93 .flags = (_flags),\
94 .die_cnt = 0
95
96 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
97 .part_name = _part_name,\
98 .id = {\
99 ((_jedec_id) >> 16) & 0xff,\
100 ((_jedec_id) >> 8) & 0xff,\
101 (_jedec_id) & 0xff,\
102 ((_ext_id) >> 16) & 0xff,\
103 ((_ext_id) >> 8) & 0xff,\
104 (_ext_id) & 0xff,\
105 },\
106 .id_len = 6,\
107 .sector_size = (_sector_size),\
108 .n_sectors = (_n_sectors),\
109 .page_size = 256,\
110 .flags = (_flags),\
111 .die_cnt = 0
112
113 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
114 _flags, _die_cnt)\
115 .part_name = _part_name,\
116 .id = {\
117 ((_jedec_id) >> 16) & 0xff,\
118 ((_jedec_id) >> 8) & 0xff,\
119 (_jedec_id) & 0xff,\
120 ((_ext_id) >> 8) & 0xff,\
121 (_ext_id) & 0xff,\
122 },\
123 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
124 .sector_size = (_sector_size),\
125 .n_sectors = (_n_sectors),\
126 .page_size = 256,\
127 .flags = (_flags),\
128 .die_cnt = _die_cnt
129
130 #define JEDEC_NUMONYX 0x20
131 #define JEDEC_WINBOND 0xEF
132 #define JEDEC_SPANSION 0x01
133
134 /* Numonyx (Micron) Configuration register macros */
135 #define VCFG_DUMMY 0x1
136 #define VCFG_WRAP_SEQUENTIAL 0x2
137 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
138 #define NVCFG_XIP_MODE_MASK (7 << 9)
139 #define VCFG_XIP_MODE_ENABLED (1 << 3)
140 #define CFG_DUMMY_CLK_LEN 4
141 #define NVCFG_DUMMY_CLK_POS 12
142 #define VCFG_DUMMY_CLK_POS 4
143 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
144 #define EVCFG_VPP_ACCELERATOR (1 << 3)
145 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
146 #define NVCFG_DUAL_IO_MASK (1 << 2)
147 #define EVCFG_DUAL_IO_ENABLED (1 << 6)
148 #define NVCFG_QUAD_IO_MASK (1 << 3)
149 #define EVCFG_QUAD_IO_ENABLED (1 << 7)
150 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
151 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
152
153 /* Numonyx (Micron) Flag Status Register macros */
154 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
155 #define FSR_FLASH_READY (1 << 7)
156
157 /* Spansion configuration registers macros. */
158 #define SPANSION_QUAD_CFG_POS 0
159 #define SPANSION_QUAD_CFG_LEN 1
160 #define SPANSION_DUMMY_CLK_POS 0
161 #define SPANSION_DUMMY_CLK_LEN 4
162 #define SPANSION_ADDR_LEN_POS 7
163 #define SPANSION_ADDR_LEN_LEN 1
164
165 /*
166 * Spansion read mode command length in bytes,
167 * the mode is currently not supported.
168 */
169
170 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
171 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
172
173 static const FlashPartInfo known_devices[] = {
174 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
175 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K) },
176 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K) },
177
178 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K) },
179 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K) },
180 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K) },
181
182 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K) },
183 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K) },
184 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K) },
185 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K) },
186
187 { INFO("at45db081d", 0x1f2500, 0, 64 << 10, 16, ER_4K) },
188
189 /* Atmel EEPROMS - it is assumed, that don't care bit in command
190 * is set to 0. Block protection is not supported.
191 */
192 { INFO("at25128a-nonjedec", 0x0, 0, 1, 131072, EEPROM) },
193 { INFO("at25256a-nonjedec", 0x0, 0, 1, 262144, EEPROM) },
194
195 /* EON -- en25xxx */
196 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K) },
197 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) },
198 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) },
199 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) },
200 { INFO("en25q64", 0x1c3017, 0, 64 << 10, 128, ER_4K) },
201
202 /* GigaDevice */
203 { INFO("gd25q32", 0xc84016, 0, 64 << 10, 64, ER_4K) },
204 { INFO("gd25q64", 0xc84017, 0, 64 << 10, 128, ER_4K) },
205
206 /* Intel/Numonyx -- xxxs33b */
207 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) },
208 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) },
209 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) },
210 { INFO("n25q064", 0x20ba17, 0, 64 << 10, 128, 0) },
211
212 /* Macronix */
213 { INFO("mx25l2005a", 0xc22012, 0, 64 << 10, 4, ER_4K) },
214 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K) },
215 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) },
216 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K) },
217 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) },
218 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) },
219 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) },
220 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) },
221 { INFO6("mx25l25635e", 0xc22019, 0xc22019, 64 << 10, 512, 0) },
222 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) },
223 { INFO("mx66l51235f", 0xc2201a, 0, 64 << 10, 1024, ER_4K | ER_32K) },
224 { INFO("mx66u51235f", 0xc2253a, 0, 64 << 10, 1024, ER_4K | ER_32K) },
225 { INFO("mx66u1g45g", 0xc2253b, 0, 64 << 10, 2048, ER_4K | ER_32K) },
226 { INFO("mx66l1g45g", 0xc2201b, 0, 64 << 10, 2048, ER_4K | ER_32K) },
227
228 /* Micron */
229 { INFO("n25q032a11", 0x20bb16, 0, 64 << 10, 64, ER_4K) },
230 { INFO("n25q032a13", 0x20ba16, 0, 64 << 10, 64, ER_4K) },
231 { INFO("n25q064a11", 0x20bb17, 0, 64 << 10, 128, ER_4K) },
232 { INFO("n25q064a13", 0x20ba17, 0, 64 << 10, 128, ER_4K) },
233 { INFO("n25q128a11", 0x20bb18, 0, 64 << 10, 256, ER_4K) },
234 { INFO("n25q128a13", 0x20ba18, 0, 64 << 10, 256, ER_4K) },
235 { INFO("n25q256a11", 0x20bb19, 0, 64 << 10, 512, ER_4K) },
236 { INFO("n25q256a13", 0x20ba19, 0, 64 << 10, 512, ER_4K) },
237 { INFO("n25q512a11", 0x20bb20, 0, 64 << 10, 1024, ER_4K) },
238 { INFO("n25q512a13", 0x20ba20, 0, 64 << 10, 1024, ER_4K) },
239 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) },
240 { INFO("n25q256a", 0x20ba19, 0, 64 << 10, 512, ER_4K) },
241 { INFO("n25q512a", 0x20ba20, 0, 64 << 10, 1024, ER_4K) },
242 { INFO("n25q512ax3", 0x20ba20, 0x1000, 64 << 10, 1024, ER_4K) },
243 { INFO("mt25ql512ab", 0x20ba20, 0x1044, 64 << 10, 1024, ER_4K | ER_32K) },
244 { INFO_STACKED("n25q00", 0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
245 { INFO_STACKED("n25q00a", 0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
246 { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
247 { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
248
249 /* Spansion -- single (large) sector size only, at least
250 * for the chips listed here (without boot sectors).
251 */
252 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K) },
253 { INFO("s25sl064p", 0x010216, 0x4d00, 64 << 10, 128, ER_4K) },
254 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) },
255 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) },
256 { INFO6("s25fl512s", 0x010220, 0x4d0080, 256 << 10, 256, 0) },
257 { INFO6("s70fl01gs", 0x010221, 0x4d0080, 256 << 10, 512, 0) },
258 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) },
259 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) },
260 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) },
261 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) },
262 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) },
263 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) },
264 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) },
265 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) },
266 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) },
267 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K | ER_32K) },
268 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K | ER_32K) },
269
270 /* Spansion -- boot sectors support */
271 { INFO6("s25fs512s", 0x010220, 0x4d0081, 256 << 10, 256, 0) },
272 { INFO6("s70fs01gs", 0x010221, 0x4d0081, 256 << 10, 512, 0) },
273
274 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
275 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K) },
276 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K) },
277 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K) },
278 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K) },
279 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K) },
280 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K) },
281 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K) },
282 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K) },
283 { INFO("sst25wf080", 0xbf2505, 0, 64 << 10, 16, ER_4K) },
284
285 /* ST Microelectronics -- newer production may have feature updates */
286 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) },
287 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) },
288 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) },
289 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) },
290 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) },
291 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) },
292 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) },
293 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) },
294 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) },
295 { INFO("n25q032", 0x20ba16, 0, 64 << 10, 64, 0) },
296
297 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) },
298 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) },
299 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) },
300
301 { INFO("m25pe20", 0x208012, 0, 64 << 10, 4, 0) },
302 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) },
303 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K) },
304
305 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K) },
306 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K) },
307 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K) },
308 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) },
309
310 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
311 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K) },
312 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K) },
313 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K) },
314 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K) },
315 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K) },
316 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K) },
317 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K) },
318 { INFO("w25q32dw", 0xef6016, 0, 64 << 10, 64, ER_4K) },
319 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K) },
320 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K) },
321 { INFO("w25q80", 0xef5014, 0, 64 << 10, 16, ER_4K) },
322 { INFO("w25q80bl", 0xef4014, 0, 64 << 10, 16, ER_4K) },
323 { INFO("w25q256", 0xef4019, 0, 64 << 10, 512, ER_4K) },
324 { INFO("w25q512jv", 0xef4020, 0, 64 << 10, 1024, ER_4K) },
325 };
326
327 typedef enum {
328 NOP = 0,
329 WRSR = 0x1,
330 WRDI = 0x4,
331 RDSR = 0x5,
332 WREN = 0x6,
333 BRRD = 0x16,
334 BRWR = 0x17,
335 JEDEC_READ = 0x9f,
336 BULK_ERASE_60 = 0x60,
337 BULK_ERASE = 0xc7,
338 READ_FSR = 0x70,
339 RDCR = 0x15,
340
341 READ = 0x03,
342 READ4 = 0x13,
343 FAST_READ = 0x0b,
344 FAST_READ4 = 0x0c,
345 DOR = 0x3b,
346 DOR4 = 0x3c,
347 QOR = 0x6b,
348 QOR4 = 0x6c,
349 DIOR = 0xbb,
350 DIOR4 = 0xbc,
351 QIOR = 0xeb,
352 QIOR4 = 0xec,
353
354 PP = 0x02,
355 PP4 = 0x12,
356 PP4_4 = 0x3e,
357 DPP = 0xa2,
358 QPP = 0x32,
359 QPP_4 = 0x34,
360 RDID_90 = 0x90,
361 RDID_AB = 0xab,
362
363 ERASE_4K = 0x20,
364 ERASE4_4K = 0x21,
365 ERASE_32K = 0x52,
366 ERASE4_32K = 0x5c,
367 ERASE_SECTOR = 0xd8,
368 ERASE4_SECTOR = 0xdc,
369
370 EN_4BYTE_ADDR = 0xB7,
371 EX_4BYTE_ADDR = 0xE9,
372
373 EXTEND_ADDR_READ = 0xC8,
374 EXTEND_ADDR_WRITE = 0xC5,
375
376 RESET_ENABLE = 0x66,
377 RESET_MEMORY = 0x99,
378
379 /*
380 * Micron: 0x35 - enable QPI
381 * Spansion: 0x35 - read control register
382 */
383 RDCR_EQIO = 0x35,
384 RSTQIO = 0xf5,
385
386 RNVCR = 0xB5,
387 WNVCR = 0xB1,
388
389 RVCR = 0x85,
390 WVCR = 0x81,
391
392 REVCR = 0x65,
393 WEVCR = 0x61,
394
395 DIE_ERASE = 0xC4,
396 } FlashCMD;
397
398 typedef enum {
399 STATE_IDLE,
400 STATE_PAGE_PROGRAM,
401 STATE_READ,
402 STATE_COLLECTING_DATA,
403 STATE_COLLECTING_VAR_LEN_DATA,
404 STATE_READING_DATA,
405 } CMDState;
406
407 typedef enum {
408 MAN_SPANSION,
409 MAN_MACRONIX,
410 MAN_NUMONYX,
411 MAN_WINBOND,
412 MAN_SST,
413 MAN_GENERIC,
414 } Manufacturer;
415
416 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
417
418 struct Flash {
419 SSISlave parent_obj;
420
421 BlockBackend *blk;
422
423 uint8_t *storage;
424 uint32_t size;
425 int page_size;
426
427 uint8_t state;
428 uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
429 uint32_t len;
430 uint32_t pos;
431 bool data_read_loop;
432 uint8_t needed_bytes;
433 uint8_t cmd_in_progress;
434 uint32_t cur_addr;
435 uint32_t nonvolatile_cfg;
436 /* Configuration register for Macronix */
437 uint32_t volatile_cfg;
438 uint32_t enh_volatile_cfg;
439 /* Spansion cfg registers. */
440 uint8_t spansion_cr1nv;
441 uint8_t spansion_cr2nv;
442 uint8_t spansion_cr3nv;
443 uint8_t spansion_cr4nv;
444 uint8_t spansion_cr1v;
445 uint8_t spansion_cr2v;
446 uint8_t spansion_cr3v;
447 uint8_t spansion_cr4v;
448 bool write_enable;
449 bool four_bytes_address_mode;
450 bool reset_enable;
451 bool quad_enable;
452 uint8_t ear;
453
454 int64_t dirty_page;
455
456 const FlashPartInfo *pi;
457
458 };
459
460 struct M25P80Class {
461 SSISlaveClass parent_class;
462 FlashPartInfo *pi;
463 };
464
465 #define TYPE_M25P80 "m25p80-generic"
466 OBJECT_DECLARE_TYPE(Flash, M25P80Class, M25P80)
467
468 static inline Manufacturer get_man(Flash *s)
469 {
470 switch (s->pi->id[0]) {
471 case 0x20:
472 return MAN_NUMONYX;
473 case 0xEF:
474 return MAN_WINBOND;
475 case 0x01:
476 return MAN_SPANSION;
477 case 0xC2:
478 return MAN_MACRONIX;
479 case 0xBF:
480 return MAN_SST;
481 default:
482 return MAN_GENERIC;
483 }
484 }
485
486 static void blk_sync_complete(void *opaque, int ret)
487 {
488 QEMUIOVector *iov = opaque;
489
490 qemu_iovec_destroy(iov);
491 g_free(iov);
492
493 /* do nothing. Masters do not directly interact with the backing store,
494 * only the working copy so no mutexing required.
495 */
496 }
497
498 static void flash_sync_page(Flash *s, int page)
499 {
500 QEMUIOVector *iov;
501
502 if (!s->blk || blk_is_read_only(s->blk)) {
503 return;
504 }
505
506 iov = g_new(QEMUIOVector, 1);
507 qemu_iovec_init(iov, 1);
508 qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
509 s->pi->page_size);
510 blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
511 blk_sync_complete, iov);
512 }
513
514 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
515 {
516 QEMUIOVector *iov;
517
518 if (!s->blk || blk_is_read_only(s->blk)) {
519 return;
520 }
521
522 assert(!(len % BDRV_SECTOR_SIZE));
523 iov = g_new(QEMUIOVector, 1);
524 qemu_iovec_init(iov, 1);
525 qemu_iovec_add(iov, s->storage + off, len);
526 blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
527 }
528
529 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
530 {
531 uint32_t len;
532 uint8_t capa_to_assert = 0;
533
534 switch (cmd) {
535 case ERASE_4K:
536 case ERASE4_4K:
537 len = 4 * KiB;
538 capa_to_assert = ER_4K;
539 break;
540 case ERASE_32K:
541 case ERASE4_32K:
542 len = 32 * KiB;
543 capa_to_assert = ER_32K;
544 break;
545 case ERASE_SECTOR:
546 case ERASE4_SECTOR:
547 len = s->pi->sector_size;
548 break;
549 case BULK_ERASE:
550 len = s->size;
551 break;
552 case DIE_ERASE:
553 if (s->pi->die_cnt) {
554 len = s->size / s->pi->die_cnt;
555 offset = offset & (~(len - 1));
556 } else {
557 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
558 " by device\n");
559 return;
560 }
561 break;
562 default:
563 abort();
564 }
565
566 trace_m25p80_flash_erase(s, offset, len);
567
568 if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
569 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
570 " device\n", len);
571 }
572
573 if (!s->write_enable) {
574 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
575 return;
576 }
577 memset(s->storage + offset, 0xff, len);
578 flash_sync_area(s, offset, len);
579 }
580
581 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
582 {
583 if (s->dirty_page >= 0 && s->dirty_page != newpage) {
584 flash_sync_page(s, s->dirty_page);
585 s->dirty_page = newpage;
586 }
587 }
588
589 static inline
590 void flash_write8(Flash *s, uint32_t addr, uint8_t data)
591 {
592 uint32_t page = addr / s->pi->page_size;
593 uint8_t prev = s->storage[s->cur_addr];
594
595 if (!s->write_enable) {
596 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
597 }
598
599 if ((prev ^ data) & data) {
600 trace_m25p80_programming_zero_to_one(s, addr, prev, data);
601 }
602
603 if (s->pi->flags & EEPROM) {
604 s->storage[s->cur_addr] = data;
605 } else {
606 s->storage[s->cur_addr] &= data;
607 }
608
609 flash_sync_dirty(s, page);
610 s->dirty_page = page;
611 }
612
613 static inline int get_addr_length(Flash *s)
614 {
615 /* check if eeprom is in use */
616 if (s->pi->flags == EEPROM) {
617 return 2;
618 }
619
620 switch (s->cmd_in_progress) {
621 case PP4:
622 case PP4_4:
623 case QPP_4:
624 case READ4:
625 case QIOR4:
626 case ERASE4_4K:
627 case ERASE4_32K:
628 case ERASE4_SECTOR:
629 case FAST_READ4:
630 case DOR4:
631 case QOR4:
632 case DIOR4:
633 return 4;
634 default:
635 return s->four_bytes_address_mode ? 4 : 3;
636 }
637 }
638
639 static void complete_collecting_data(Flash *s)
640 {
641 int i, n;
642
643 n = get_addr_length(s);
644 s->cur_addr = (n == 3 ? s->ear : 0);
645 for (i = 0; i < n; ++i) {
646 s->cur_addr <<= 8;
647 s->cur_addr |= s->data[i];
648 }
649
650 s->cur_addr &= s->size - 1;
651
652 s->state = STATE_IDLE;
653
654 trace_m25p80_complete_collecting(s, s->cmd_in_progress, n, s->ear,
655 s->cur_addr);
656
657 switch (s->cmd_in_progress) {
658 case DPP:
659 case QPP:
660 case QPP_4:
661 case PP:
662 case PP4:
663 case PP4_4:
664 s->state = STATE_PAGE_PROGRAM;
665 break;
666 case READ:
667 case READ4:
668 case FAST_READ:
669 case FAST_READ4:
670 case DOR:
671 case DOR4:
672 case QOR:
673 case QOR4:
674 case DIOR:
675 case DIOR4:
676 case QIOR:
677 case QIOR4:
678 s->state = STATE_READ;
679 break;
680 case ERASE_4K:
681 case ERASE4_4K:
682 case ERASE_32K:
683 case ERASE4_32K:
684 case ERASE_SECTOR:
685 case ERASE4_SECTOR:
686 case DIE_ERASE:
687 flash_erase(s, s->cur_addr, s->cmd_in_progress);
688 break;
689 case WRSR:
690 switch (get_man(s)) {
691 case MAN_SPANSION:
692 s->quad_enable = !!(s->data[1] & 0x02);
693 break;
694 case MAN_MACRONIX:
695 s->quad_enable = extract32(s->data[0], 6, 1);
696 if (s->len > 1) {
697 s->volatile_cfg = s->data[1];
698 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
699 }
700 break;
701 default:
702 break;
703 }
704 if (s->write_enable) {
705 s->write_enable = false;
706 }
707 break;
708 case BRWR:
709 case EXTEND_ADDR_WRITE:
710 s->ear = s->data[0];
711 break;
712 case WNVCR:
713 s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
714 break;
715 case WVCR:
716 s->volatile_cfg = s->data[0];
717 break;
718 case WEVCR:
719 s->enh_volatile_cfg = s->data[0];
720 break;
721 case RDID_90:
722 case RDID_AB:
723 if (get_man(s) == MAN_SST) {
724 if (s->cur_addr <= 1) {
725 if (s->cur_addr) {
726 s->data[0] = s->pi->id[2];
727 s->data[1] = s->pi->id[0];
728 } else {
729 s->data[0] = s->pi->id[0];
730 s->data[1] = s->pi->id[2];
731 }
732 s->pos = 0;
733 s->len = 2;
734 s->data_read_loop = true;
735 s->state = STATE_READING_DATA;
736 } else {
737 qemu_log_mask(LOG_GUEST_ERROR,
738 "M25P80: Invalid read id address\n");
739 }
740 } else {
741 qemu_log_mask(LOG_GUEST_ERROR,
742 "M25P80: Read id (command 0x90/0xAB) is not supported"
743 " by device\n");
744 }
745 break;
746 default:
747 break;
748 }
749 }
750
751 static void reset_memory(Flash *s)
752 {
753 s->cmd_in_progress = NOP;
754 s->cur_addr = 0;
755 s->ear = 0;
756 s->four_bytes_address_mode = false;
757 s->len = 0;
758 s->needed_bytes = 0;
759 s->pos = 0;
760 s->state = STATE_IDLE;
761 s->write_enable = false;
762 s->reset_enable = false;
763 s->quad_enable = false;
764
765 switch (get_man(s)) {
766 case MAN_NUMONYX:
767 s->volatile_cfg = 0;
768 s->volatile_cfg |= VCFG_DUMMY;
769 s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
770 if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
771 != NVCFG_XIP_MODE_DISABLED) {
772 s->volatile_cfg |= VCFG_XIP_MODE_ENABLED;
773 }
774 s->volatile_cfg |= deposit32(s->volatile_cfg,
775 VCFG_DUMMY_CLK_POS,
776 CFG_DUMMY_CLK_LEN,
777 extract32(s->nonvolatile_cfg,
778 NVCFG_DUMMY_CLK_POS,
779 CFG_DUMMY_CLK_LEN)
780 );
781
782 s->enh_volatile_cfg = 0;
783 s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
784 s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
785 s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
786 if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
787 s->enh_volatile_cfg |= EVCFG_DUAL_IO_ENABLED;
788 }
789 if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
790 s->enh_volatile_cfg |= EVCFG_QUAD_IO_ENABLED;
791 }
792 if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
793 s->four_bytes_address_mode = true;
794 }
795 if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
796 s->ear = s->size / MAX_3BYTES_SIZE - 1;
797 }
798 break;
799 case MAN_MACRONIX:
800 s->volatile_cfg = 0x7;
801 break;
802 case MAN_SPANSION:
803 s->spansion_cr1v = s->spansion_cr1nv;
804 s->spansion_cr2v = s->spansion_cr2nv;
805 s->spansion_cr3v = s->spansion_cr3nv;
806 s->spansion_cr4v = s->spansion_cr4nv;
807 s->quad_enable = extract32(s->spansion_cr1v,
808 SPANSION_QUAD_CFG_POS,
809 SPANSION_QUAD_CFG_LEN
810 );
811 s->four_bytes_address_mode = extract32(s->spansion_cr2v,
812 SPANSION_ADDR_LEN_POS,
813 SPANSION_ADDR_LEN_LEN
814 );
815 break;
816 default:
817 break;
818 }
819
820 trace_m25p80_reset_done(s);
821 }
822
823 static void decode_fast_read_cmd(Flash *s)
824 {
825 s->needed_bytes = get_addr_length(s);
826 switch (get_man(s)) {
827 /* Dummy cycles - modeled with bytes writes instead of bits */
828 case MAN_WINBOND:
829 s->needed_bytes += 8;
830 break;
831 case MAN_NUMONYX:
832 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
833 break;
834 case MAN_MACRONIX:
835 if (extract32(s->volatile_cfg, 6, 2) == 1) {
836 s->needed_bytes += 6;
837 } else {
838 s->needed_bytes += 8;
839 }
840 break;
841 case MAN_SPANSION:
842 s->needed_bytes += extract32(s->spansion_cr2v,
843 SPANSION_DUMMY_CLK_POS,
844 SPANSION_DUMMY_CLK_LEN
845 );
846 break;
847 default:
848 break;
849 }
850 s->pos = 0;
851 s->len = 0;
852 s->state = STATE_COLLECTING_DATA;
853 }
854
855 static void decode_dio_read_cmd(Flash *s)
856 {
857 s->needed_bytes = get_addr_length(s);
858 /* Dummy cycles modeled with bytes writes instead of bits */
859 switch (get_man(s)) {
860 case MAN_WINBOND:
861 s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
862 break;
863 case MAN_SPANSION:
864 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
865 s->needed_bytes += extract32(s->spansion_cr2v,
866 SPANSION_DUMMY_CLK_POS,
867 SPANSION_DUMMY_CLK_LEN
868 );
869 break;
870 case MAN_NUMONYX:
871 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
872 break;
873 case MAN_MACRONIX:
874 switch (extract32(s->volatile_cfg, 6, 2)) {
875 case 1:
876 s->needed_bytes += 6;
877 break;
878 case 2:
879 s->needed_bytes += 8;
880 break;
881 default:
882 s->needed_bytes += 4;
883 break;
884 }
885 break;
886 default:
887 break;
888 }
889 s->pos = 0;
890 s->len = 0;
891 s->state = STATE_COLLECTING_DATA;
892 }
893
894 static void decode_qio_read_cmd(Flash *s)
895 {
896 s->needed_bytes = get_addr_length(s);
897 /* Dummy cycles modeled with bytes writes instead of bits */
898 switch (get_man(s)) {
899 case MAN_WINBOND:
900 s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
901 s->needed_bytes += 4;
902 break;
903 case MAN_SPANSION:
904 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
905 s->needed_bytes += extract32(s->spansion_cr2v,
906 SPANSION_DUMMY_CLK_POS,
907 SPANSION_DUMMY_CLK_LEN
908 );
909 break;
910 case MAN_NUMONYX:
911 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
912 break;
913 case MAN_MACRONIX:
914 switch (extract32(s->volatile_cfg, 6, 2)) {
915 case 1:
916 s->needed_bytes += 4;
917 break;
918 case 2:
919 s->needed_bytes += 8;
920 break;
921 default:
922 s->needed_bytes += 6;
923 break;
924 }
925 break;
926 default:
927 break;
928 }
929 s->pos = 0;
930 s->len = 0;
931 s->state = STATE_COLLECTING_DATA;
932 }
933
934 static void decode_new_cmd(Flash *s, uint32_t value)
935 {
936 int i;
937
938 s->cmd_in_progress = value;
939 trace_m25p80_command_decoded(s, value);
940
941 if (value != RESET_MEMORY) {
942 s->reset_enable = false;
943 }
944
945 switch (value) {
946
947 case ERASE_4K:
948 case ERASE4_4K:
949 case ERASE_32K:
950 case ERASE4_32K:
951 case ERASE_SECTOR:
952 case ERASE4_SECTOR:
953 case READ:
954 case READ4:
955 case DPP:
956 case QPP:
957 case QPP_4:
958 case PP:
959 case PP4:
960 case PP4_4:
961 case DIE_ERASE:
962 case RDID_90:
963 case RDID_AB:
964 s->needed_bytes = get_addr_length(s);
965 s->pos = 0;
966 s->len = 0;
967 s->state = STATE_COLLECTING_DATA;
968 break;
969
970 case FAST_READ:
971 case FAST_READ4:
972 case DOR:
973 case DOR4:
974 case QOR:
975 case QOR4:
976 decode_fast_read_cmd(s);
977 break;
978
979 case DIOR:
980 case DIOR4:
981 decode_dio_read_cmd(s);
982 break;
983
984 case QIOR:
985 case QIOR4:
986 decode_qio_read_cmd(s);
987 break;
988
989 case WRSR:
990 if (s->write_enable) {
991 switch (get_man(s)) {
992 case MAN_SPANSION:
993 s->needed_bytes = 2;
994 s->state = STATE_COLLECTING_DATA;
995 break;
996 case MAN_MACRONIX:
997 s->needed_bytes = 2;
998 s->state = STATE_COLLECTING_VAR_LEN_DATA;
999 break;
1000 default:
1001 s->needed_bytes = 1;
1002 s->state = STATE_COLLECTING_DATA;
1003 }
1004 s->pos = 0;
1005 }
1006 break;
1007
1008 case WRDI:
1009 s->write_enable = false;
1010 break;
1011 case WREN:
1012 s->write_enable = true;
1013 break;
1014
1015 case RDSR:
1016 s->data[0] = (!!s->write_enable) << 1;
1017 if (get_man(s) == MAN_MACRONIX) {
1018 s->data[0] |= (!!s->quad_enable) << 6;
1019 }
1020 s->pos = 0;
1021 s->len = 1;
1022 s->data_read_loop = true;
1023 s->state = STATE_READING_DATA;
1024 break;
1025
1026 case READ_FSR:
1027 s->data[0] = FSR_FLASH_READY;
1028 if (s->four_bytes_address_mode) {
1029 s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
1030 }
1031 s->pos = 0;
1032 s->len = 1;
1033 s->data_read_loop = true;
1034 s->state = STATE_READING_DATA;
1035 break;
1036
1037 case JEDEC_READ:
1038 trace_m25p80_populated_jedec(s);
1039 for (i = 0; i < s->pi->id_len; i++) {
1040 s->data[i] = s->pi->id[i];
1041 }
1042 for (; i < SPI_NOR_MAX_ID_LEN; i++) {
1043 s->data[i] = 0;
1044 }
1045
1046 s->len = SPI_NOR_MAX_ID_LEN;
1047 s->pos = 0;
1048 s->state = STATE_READING_DATA;
1049 break;
1050
1051 case RDCR:
1052 s->data[0] = s->volatile_cfg & 0xFF;
1053 s->data[0] |= (!!s->four_bytes_address_mode) << 5;
1054 s->pos = 0;
1055 s->len = 1;
1056 s->state = STATE_READING_DATA;
1057 break;
1058
1059 case BULK_ERASE_60:
1060 case BULK_ERASE:
1061 if (s->write_enable) {
1062 trace_m25p80_chip_erase(s);
1063 flash_erase(s, 0, BULK_ERASE);
1064 } else {
1065 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
1066 "protect!\n");
1067 }
1068 break;
1069 case NOP:
1070 break;
1071 case EN_4BYTE_ADDR:
1072 s->four_bytes_address_mode = true;
1073 break;
1074 case EX_4BYTE_ADDR:
1075 s->four_bytes_address_mode = false;
1076 break;
1077 case BRRD:
1078 case EXTEND_ADDR_READ:
1079 s->data[0] = s->ear;
1080 s->pos = 0;
1081 s->len = 1;
1082 s->state = STATE_READING_DATA;
1083 break;
1084 case BRWR:
1085 case EXTEND_ADDR_WRITE:
1086 if (s->write_enable) {
1087 s->needed_bytes = 1;
1088 s->pos = 0;
1089 s->len = 0;
1090 s->state = STATE_COLLECTING_DATA;
1091 }
1092 break;
1093 case RNVCR:
1094 s->data[0] = s->nonvolatile_cfg & 0xFF;
1095 s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1096 s->pos = 0;
1097 s->len = 2;
1098 s->state = STATE_READING_DATA;
1099 break;
1100 case WNVCR:
1101 if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1102 s->needed_bytes = 2;
1103 s->pos = 0;
1104 s->len = 0;
1105 s->state = STATE_COLLECTING_DATA;
1106 }
1107 break;
1108 case RVCR:
1109 s->data[0] = s->volatile_cfg & 0xFF;
1110 s->pos = 0;
1111 s->len = 1;
1112 s->state = STATE_READING_DATA;
1113 break;
1114 case WVCR:
1115 if (s->write_enable) {
1116 s->needed_bytes = 1;
1117 s->pos = 0;
1118 s->len = 0;
1119 s->state = STATE_COLLECTING_DATA;
1120 }
1121 break;
1122 case REVCR:
1123 s->data[0] = s->enh_volatile_cfg & 0xFF;
1124 s->pos = 0;
1125 s->len = 1;
1126 s->state = STATE_READING_DATA;
1127 break;
1128 case WEVCR:
1129 if (s->write_enable) {
1130 s->needed_bytes = 1;
1131 s->pos = 0;
1132 s->len = 0;
1133 s->state = STATE_COLLECTING_DATA;
1134 }
1135 break;
1136 case RESET_ENABLE:
1137 s->reset_enable = true;
1138 break;
1139 case RESET_MEMORY:
1140 if (s->reset_enable) {
1141 reset_memory(s);
1142 }
1143 break;
1144 case RDCR_EQIO:
1145 switch (get_man(s)) {
1146 case MAN_SPANSION:
1147 s->data[0] = (!!s->quad_enable) << 1;
1148 s->pos = 0;
1149 s->len = 1;
1150 s->state = STATE_READING_DATA;
1151 break;
1152 case MAN_MACRONIX:
1153 s->quad_enable = true;
1154 break;
1155 default:
1156 break;
1157 }
1158 break;
1159 case RSTQIO:
1160 s->quad_enable = false;
1161 break;
1162 default:
1163 s->pos = 0;
1164 s->len = 1;
1165 s->state = STATE_READING_DATA;
1166 s->data_read_loop = true;
1167 s->data[0] = 0;
1168 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1169 break;
1170 }
1171 }
1172
1173 static int m25p80_cs(SSISlave *ss, bool select)
1174 {
1175 Flash *s = M25P80(ss);
1176
1177 if (select) {
1178 if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1179 complete_collecting_data(s);
1180 }
1181 s->len = 0;
1182 s->pos = 0;
1183 s->state = STATE_IDLE;
1184 flash_sync_dirty(s, -1);
1185 s->data_read_loop = false;
1186 }
1187
1188 trace_m25p80_select(s, select ? "de" : "");
1189
1190 return 0;
1191 }
1192
1193 static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
1194 {
1195 Flash *s = M25P80(ss);
1196 uint32_t r = 0;
1197
1198 trace_m25p80_transfer(s, s->state, s->len, s->needed_bytes, s->pos,
1199 s->cur_addr, (uint8_t)tx);
1200
1201 switch (s->state) {
1202
1203 case STATE_PAGE_PROGRAM:
1204 trace_m25p80_page_program(s, s->cur_addr, (uint8_t)tx);
1205 flash_write8(s, s->cur_addr, (uint8_t)tx);
1206 s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1207 break;
1208
1209 case STATE_READ:
1210 r = s->storage[s->cur_addr];
1211 trace_m25p80_read_byte(s, s->cur_addr, (uint8_t)r);
1212 s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1213 break;
1214
1215 case STATE_COLLECTING_DATA:
1216 case STATE_COLLECTING_VAR_LEN_DATA:
1217
1218 if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1219 qemu_log_mask(LOG_GUEST_ERROR,
1220 "M25P80: Write overrun internal data buffer. "
1221 "SPI controller (QEMU emulator or guest driver) "
1222 "is misbehaving\n");
1223 s->len = s->pos = 0;
1224 s->state = STATE_IDLE;
1225 break;
1226 }
1227
1228 s->data[s->len] = (uint8_t)tx;
1229 s->len++;
1230
1231 if (s->len == s->needed_bytes) {
1232 complete_collecting_data(s);
1233 }
1234 break;
1235
1236 case STATE_READING_DATA:
1237
1238 if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1239 qemu_log_mask(LOG_GUEST_ERROR,
1240 "M25P80: Read overrun internal data buffer. "
1241 "SPI controller (QEMU emulator or guest driver) "
1242 "is misbehaving\n");
1243 s->len = s->pos = 0;
1244 s->state = STATE_IDLE;
1245 break;
1246 }
1247
1248 r = s->data[s->pos];
1249 trace_m25p80_read_data(s, s->pos, (uint8_t)r);
1250 s->pos++;
1251 if (s->pos == s->len) {
1252 s->pos = 0;
1253 if (!s->data_read_loop) {
1254 s->state = STATE_IDLE;
1255 }
1256 }
1257 break;
1258
1259 default:
1260 case STATE_IDLE:
1261 decode_new_cmd(s, (uint8_t)tx);
1262 break;
1263 }
1264
1265 return r;
1266 }
1267
1268 static void m25p80_realize(SSISlave *ss, Error **errp)
1269 {
1270 Flash *s = M25P80(ss);
1271 M25P80Class *mc = M25P80_GET_CLASS(s);
1272 int ret;
1273
1274 s->pi = mc->pi;
1275
1276 s->size = s->pi->sector_size * s->pi->n_sectors;
1277 s->dirty_page = -1;
1278
1279 if (s->blk) {
1280 uint64_t perm = BLK_PERM_CONSISTENT_READ |
1281 (blk_is_read_only(s->blk) ? 0 : BLK_PERM_WRITE);
1282 ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
1283 if (ret < 0) {
1284 return;
1285 }
1286
1287 trace_m25p80_binding(s);
1288 s->storage = blk_blockalign(s->blk, s->size);
1289
1290 if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
1291 error_setg(errp, "failed to read the initial flash content");
1292 return;
1293 }
1294 } else {
1295 trace_m25p80_binding_no_bdrv(s);
1296 s->storage = blk_blockalign(NULL, s->size);
1297 memset(s->storage, 0xFF, s->size);
1298 }
1299 }
1300
1301 static void m25p80_reset(DeviceState *d)
1302 {
1303 Flash *s = M25P80(d);
1304
1305 reset_memory(s);
1306 }
1307
1308 static int m25p80_pre_save(void *opaque)
1309 {
1310 flash_sync_dirty((Flash *)opaque, -1);
1311
1312 return 0;
1313 }
1314
1315 static Property m25p80_properties[] = {
1316 /* This is default value for Micron flash */
1317 DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1318 DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1319 DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1320 DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1321 DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1322 DEFINE_PROP_DRIVE("drive", Flash, blk),
1323 DEFINE_PROP_END_OF_LIST(),
1324 };
1325
1326 static int m25p80_pre_load(void *opaque)
1327 {
1328 Flash *s = (Flash *)opaque;
1329
1330 s->data_read_loop = false;
1331 return 0;
1332 }
1333
1334 static bool m25p80_data_read_loop_needed(void *opaque)
1335 {
1336 Flash *s = (Flash *)opaque;
1337
1338 return s->data_read_loop;
1339 }
1340
1341 static const VMStateDescription vmstate_m25p80_data_read_loop = {
1342 .name = "m25p80/data_read_loop",
1343 .version_id = 1,
1344 .minimum_version_id = 1,
1345 .needed = m25p80_data_read_loop_needed,
1346 .fields = (VMStateField[]) {
1347 VMSTATE_BOOL(data_read_loop, Flash),
1348 VMSTATE_END_OF_LIST()
1349 }
1350 };
1351
1352 static const VMStateDescription vmstate_m25p80 = {
1353 .name = "m25p80",
1354 .version_id = 0,
1355 .minimum_version_id = 0,
1356 .pre_save = m25p80_pre_save,
1357 .pre_load = m25p80_pre_load,
1358 .fields = (VMStateField[]) {
1359 VMSTATE_UINT8(state, Flash),
1360 VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1361 VMSTATE_UINT32(len, Flash),
1362 VMSTATE_UINT32(pos, Flash),
1363 VMSTATE_UINT8(needed_bytes, Flash),
1364 VMSTATE_UINT8(cmd_in_progress, Flash),
1365 VMSTATE_UINT32(cur_addr, Flash),
1366 VMSTATE_BOOL(write_enable, Flash),
1367 VMSTATE_BOOL(reset_enable, Flash),
1368 VMSTATE_UINT8(ear, Flash),
1369 VMSTATE_BOOL(four_bytes_address_mode, Flash),
1370 VMSTATE_UINT32(nonvolatile_cfg, Flash),
1371 VMSTATE_UINT32(volatile_cfg, Flash),
1372 VMSTATE_UINT32(enh_volatile_cfg, Flash),
1373 VMSTATE_BOOL(quad_enable, Flash),
1374 VMSTATE_UINT8(spansion_cr1nv, Flash),
1375 VMSTATE_UINT8(spansion_cr2nv, Flash),
1376 VMSTATE_UINT8(spansion_cr3nv, Flash),
1377 VMSTATE_UINT8(spansion_cr4nv, Flash),
1378 VMSTATE_END_OF_LIST()
1379 },
1380 .subsections = (const VMStateDescription * []) {
1381 &vmstate_m25p80_data_read_loop,
1382 NULL
1383 }
1384 };
1385
1386 static void m25p80_class_init(ObjectClass *klass, void *data)
1387 {
1388 DeviceClass *dc = DEVICE_CLASS(klass);
1389 SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
1390 M25P80Class *mc = M25P80_CLASS(klass);
1391
1392 k->realize = m25p80_realize;
1393 k->transfer = m25p80_transfer8;
1394 k->set_cs = m25p80_cs;
1395 k->cs_polarity = SSI_CS_LOW;
1396 dc->vmsd = &vmstate_m25p80;
1397 device_class_set_props(dc, m25p80_properties);
1398 dc->reset = m25p80_reset;
1399 mc->pi = data;
1400 }
1401
1402 static const TypeInfo m25p80_info = {
1403 .name = TYPE_M25P80,
1404 .parent = TYPE_SSI_SLAVE,
1405 .instance_size = sizeof(Flash),
1406 .class_size = sizeof(M25P80Class),
1407 .abstract = true,
1408 };
1409
1410 static void m25p80_register_types(void)
1411 {
1412 int i;
1413
1414 type_register_static(&m25p80_info);
1415 for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1416 TypeInfo ti = {
1417 .name = known_devices[i].part_name,
1418 .parent = TYPE_M25P80,
1419 .class_init = m25p80_class_init,
1420 .class_data = (void *)&known_devices[i],
1421 };
1422 type_register(&ti);
1423 }
1424 }
1425
1426 type_init(m25p80_register_types)