meson: convert hw/vfio
[qemu.git] / hw / block / m25p80.c
1 /*
2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3 * set. Known devices table current as of Jun/2012 and taken from linux.
4 * See drivers/mtd/devices/m25p80.c.
5 *
6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8 * Copyright (C) 2012 PetaLogix
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 or
13 * (at your option) a later version of the License.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 */
23
24 #include "qemu/osdep.h"
25 #include "qemu/units.h"
26 #include "sysemu/block-backend.h"
27 #include "hw/qdev-properties.h"
28 #include "hw/ssi/ssi.h"
29 #include "migration/vmstate.h"
30 #include "qemu/bitops.h"
31 #include "qemu/log.h"
32 #include "qemu/module.h"
33 #include "qemu/error-report.h"
34 #include "qapi/error.h"
35 #include "trace.h"
36
37 /* Fields for FlashPartInfo->flags */
38
39 /* erase capabilities */
40 #define ER_4K 1
41 #define ER_32K 2
42 /* set to allow the page program command to write 0s back to 1. Useful for
43 * modelling EEPROM with SPI flash command set
44 */
45 #define EEPROM 0x100
46
47 /* 16 MiB max in 3 byte address mode */
48 #define MAX_3BYTES_SIZE 0x1000000
49
50 #define SPI_NOR_MAX_ID_LEN 6
51
52 typedef struct FlashPartInfo {
53 const char *part_name;
54 /*
55 * This array stores the ID bytes.
56 * The first three bytes are the JEDIC ID.
57 * JEDEC ID zero means "no ID" (mostly older chips).
58 */
59 uint8_t id[SPI_NOR_MAX_ID_LEN];
60 uint8_t id_len;
61 /* there is confusion between manufacturers as to what a sector is. In this
62 * device model, a "sector" is the size that is erased by the ERASE_SECTOR
63 * command (opcode 0xd8).
64 */
65 uint32_t sector_size;
66 uint32_t n_sectors;
67 uint32_t page_size;
68 uint16_t flags;
69 /*
70 * Big sized spi nor are often stacked devices, thus sometime
71 * replace chip erase with die erase.
72 * This field inform how many die is in the chip.
73 */
74 uint8_t die_cnt;
75 } FlashPartInfo;
76
77 /* adapted from linux */
78 /* Used when the "_ext_id" is two bytes at most */
79 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
80 .part_name = _part_name,\
81 .id = {\
82 ((_jedec_id) >> 16) & 0xff,\
83 ((_jedec_id) >> 8) & 0xff,\
84 (_jedec_id) & 0xff,\
85 ((_ext_id) >> 8) & 0xff,\
86 (_ext_id) & 0xff,\
87 },\
88 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
89 .sector_size = (_sector_size),\
90 .n_sectors = (_n_sectors),\
91 .page_size = 256,\
92 .flags = (_flags),\
93 .die_cnt = 0
94
95 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
96 .part_name = _part_name,\
97 .id = {\
98 ((_jedec_id) >> 16) & 0xff,\
99 ((_jedec_id) >> 8) & 0xff,\
100 (_jedec_id) & 0xff,\
101 ((_ext_id) >> 16) & 0xff,\
102 ((_ext_id) >> 8) & 0xff,\
103 (_ext_id) & 0xff,\
104 },\
105 .id_len = 6,\
106 .sector_size = (_sector_size),\
107 .n_sectors = (_n_sectors),\
108 .page_size = 256,\
109 .flags = (_flags),\
110 .die_cnt = 0
111
112 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
113 _flags, _die_cnt)\
114 .part_name = _part_name,\
115 .id = {\
116 ((_jedec_id) >> 16) & 0xff,\
117 ((_jedec_id) >> 8) & 0xff,\
118 (_jedec_id) & 0xff,\
119 ((_ext_id) >> 8) & 0xff,\
120 (_ext_id) & 0xff,\
121 },\
122 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
123 .sector_size = (_sector_size),\
124 .n_sectors = (_n_sectors),\
125 .page_size = 256,\
126 .flags = (_flags),\
127 .die_cnt = _die_cnt
128
129 #define JEDEC_NUMONYX 0x20
130 #define JEDEC_WINBOND 0xEF
131 #define JEDEC_SPANSION 0x01
132
133 /* Numonyx (Micron) Configuration register macros */
134 #define VCFG_DUMMY 0x1
135 #define VCFG_WRAP_SEQUENTIAL 0x2
136 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
137 #define NVCFG_XIP_MODE_MASK (7 << 9)
138 #define VCFG_XIP_MODE_ENABLED (1 << 3)
139 #define CFG_DUMMY_CLK_LEN 4
140 #define NVCFG_DUMMY_CLK_POS 12
141 #define VCFG_DUMMY_CLK_POS 4
142 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
143 #define EVCFG_VPP_ACCELERATOR (1 << 3)
144 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
145 #define NVCFG_DUAL_IO_MASK (1 << 2)
146 #define EVCFG_DUAL_IO_ENABLED (1 << 6)
147 #define NVCFG_QUAD_IO_MASK (1 << 3)
148 #define EVCFG_QUAD_IO_ENABLED (1 << 7)
149 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
150 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
151
152 /* Numonyx (Micron) Flag Status Register macros */
153 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
154 #define FSR_FLASH_READY (1 << 7)
155
156 /* Spansion configuration registers macros. */
157 #define SPANSION_QUAD_CFG_POS 0
158 #define SPANSION_QUAD_CFG_LEN 1
159 #define SPANSION_DUMMY_CLK_POS 0
160 #define SPANSION_DUMMY_CLK_LEN 4
161 #define SPANSION_ADDR_LEN_POS 7
162 #define SPANSION_ADDR_LEN_LEN 1
163
164 /*
165 * Spansion read mode command length in bytes,
166 * the mode is currently not supported.
167 */
168
169 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
170 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
171
172 static const FlashPartInfo known_devices[] = {
173 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
174 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K) },
175 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K) },
176
177 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K) },
178 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K) },
179 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K) },
180
181 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K) },
182 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K) },
183 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K) },
184 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K) },
185
186 { INFO("at45db081d", 0x1f2500, 0, 64 << 10, 16, ER_4K) },
187
188 /* Atmel EEPROMS - it is assumed, that don't care bit in command
189 * is set to 0. Block protection is not supported.
190 */
191 { INFO("at25128a-nonjedec", 0x0, 0, 1, 131072, EEPROM) },
192 { INFO("at25256a-nonjedec", 0x0, 0, 1, 262144, EEPROM) },
193
194 /* EON -- en25xxx */
195 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K) },
196 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) },
197 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) },
198 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) },
199 { INFO("en25q64", 0x1c3017, 0, 64 << 10, 128, ER_4K) },
200
201 /* GigaDevice */
202 { INFO("gd25q32", 0xc84016, 0, 64 << 10, 64, ER_4K) },
203 { INFO("gd25q64", 0xc84017, 0, 64 << 10, 128, ER_4K) },
204
205 /* Intel/Numonyx -- xxxs33b */
206 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) },
207 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) },
208 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) },
209 { INFO("n25q064", 0x20ba17, 0, 64 << 10, 128, 0) },
210
211 /* Macronix */
212 { INFO("mx25l2005a", 0xc22012, 0, 64 << 10, 4, ER_4K) },
213 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K) },
214 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) },
215 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K) },
216 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) },
217 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) },
218 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) },
219 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) },
220 { INFO("mx25l25635e", 0xc22019, 0, 64 << 10, 512, 0) },
221 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) },
222 { INFO("mx66u51235f", 0xc2253a, 0, 64 << 10, 1024, ER_4K | ER_32K) },
223 { INFO("mx66u1g45g", 0xc2253b, 0, 64 << 10, 2048, ER_4K | ER_32K) },
224 { INFO("mx66l1g45g", 0xc2201b, 0, 64 << 10, 2048, ER_4K | ER_32K) },
225
226 /* Micron */
227 { INFO("n25q032a11", 0x20bb16, 0, 64 << 10, 64, ER_4K) },
228 { INFO("n25q032a13", 0x20ba16, 0, 64 << 10, 64, ER_4K) },
229 { INFO("n25q064a11", 0x20bb17, 0, 64 << 10, 128, ER_4K) },
230 { INFO("n25q064a13", 0x20ba17, 0, 64 << 10, 128, ER_4K) },
231 { INFO("n25q128a11", 0x20bb18, 0, 64 << 10, 256, ER_4K) },
232 { INFO("n25q128a13", 0x20ba18, 0, 64 << 10, 256, ER_4K) },
233 { INFO("n25q256a11", 0x20bb19, 0, 64 << 10, 512, ER_4K) },
234 { INFO("n25q256a13", 0x20ba19, 0, 64 << 10, 512, ER_4K) },
235 { INFO("n25q512a11", 0x20bb20, 0, 64 << 10, 1024, ER_4K) },
236 { INFO("n25q512a13", 0x20ba20, 0, 64 << 10, 1024, ER_4K) },
237 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) },
238 { INFO("n25q256a", 0x20ba19, 0, 64 << 10, 512, ER_4K) },
239 { INFO("n25q512a", 0x20ba20, 0, 64 << 10, 1024, ER_4K) },
240 { INFO_STACKED("n25q00", 0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
241 { INFO_STACKED("n25q00a", 0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
242 { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
243 { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
244
245 /* Spansion -- single (large) sector size only, at least
246 * for the chips listed here (without boot sectors).
247 */
248 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K) },
249 { INFO("s25sl064p", 0x010216, 0x4d00, 64 << 10, 128, ER_4K) },
250 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) },
251 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) },
252 { INFO6("s25fl512s", 0x010220, 0x4d0080, 256 << 10, 256, 0) },
253 { INFO6("s70fl01gs", 0x010221, 0x4d0080, 256 << 10, 512, 0) },
254 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) },
255 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) },
256 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) },
257 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) },
258 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) },
259 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) },
260 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) },
261 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) },
262 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) },
263 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K | ER_32K) },
264 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K | ER_32K) },
265
266 /* Spansion -- boot sectors support */
267 { INFO6("s25fs512s", 0x010220, 0x4d0081, 256 << 10, 256, 0) },
268 { INFO6("s70fs01gs", 0x010221, 0x4d0081, 256 << 10, 512, 0) },
269
270 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
271 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K) },
272 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K) },
273 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K) },
274 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K) },
275 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K) },
276 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K) },
277 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K) },
278 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K) },
279 { INFO("sst25wf080", 0xbf2505, 0, 64 << 10, 16, ER_4K) },
280
281 /* ST Microelectronics -- newer production may have feature updates */
282 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) },
283 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) },
284 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) },
285 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) },
286 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) },
287 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) },
288 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) },
289 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) },
290 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) },
291 { INFO("n25q032", 0x20ba16, 0, 64 << 10, 64, 0) },
292
293 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) },
294 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) },
295 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) },
296
297 { INFO("m25pe20", 0x208012, 0, 64 << 10, 4, 0) },
298 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) },
299 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K) },
300
301 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K) },
302 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K) },
303 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K) },
304 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) },
305
306 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
307 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K) },
308 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K) },
309 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K) },
310 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K) },
311 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K) },
312 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K) },
313 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K) },
314 { INFO("w25q32dw", 0xef6016, 0, 64 << 10, 64, ER_4K) },
315 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K) },
316 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K) },
317 { INFO("w25q80", 0xef5014, 0, 64 << 10, 16, ER_4K) },
318 { INFO("w25q80bl", 0xef4014, 0, 64 << 10, 16, ER_4K) },
319 { INFO("w25q256", 0xef4019, 0, 64 << 10, 512, ER_4K) },
320 { INFO("w25q512jv", 0xef4020, 0, 64 << 10, 1024, ER_4K) },
321 };
322
323 typedef enum {
324 NOP = 0,
325 WRSR = 0x1,
326 WRDI = 0x4,
327 RDSR = 0x5,
328 WREN = 0x6,
329 BRRD = 0x16,
330 BRWR = 0x17,
331 JEDEC_READ = 0x9f,
332 BULK_ERASE_60 = 0x60,
333 BULK_ERASE = 0xc7,
334 READ_FSR = 0x70,
335 RDCR = 0x15,
336
337 READ = 0x03,
338 READ4 = 0x13,
339 FAST_READ = 0x0b,
340 FAST_READ4 = 0x0c,
341 DOR = 0x3b,
342 DOR4 = 0x3c,
343 QOR = 0x6b,
344 QOR4 = 0x6c,
345 DIOR = 0xbb,
346 DIOR4 = 0xbc,
347 QIOR = 0xeb,
348 QIOR4 = 0xec,
349
350 PP = 0x02,
351 PP4 = 0x12,
352 PP4_4 = 0x3e,
353 DPP = 0xa2,
354 QPP = 0x32,
355 QPP_4 = 0x34,
356 RDID_90 = 0x90,
357 RDID_AB = 0xab,
358
359 ERASE_4K = 0x20,
360 ERASE4_4K = 0x21,
361 ERASE_32K = 0x52,
362 ERASE4_32K = 0x5c,
363 ERASE_SECTOR = 0xd8,
364 ERASE4_SECTOR = 0xdc,
365
366 EN_4BYTE_ADDR = 0xB7,
367 EX_4BYTE_ADDR = 0xE9,
368
369 EXTEND_ADDR_READ = 0xC8,
370 EXTEND_ADDR_WRITE = 0xC5,
371
372 RESET_ENABLE = 0x66,
373 RESET_MEMORY = 0x99,
374
375 /*
376 * Micron: 0x35 - enable QPI
377 * Spansion: 0x35 - read control register
378 */
379 RDCR_EQIO = 0x35,
380 RSTQIO = 0xf5,
381
382 RNVCR = 0xB5,
383 WNVCR = 0xB1,
384
385 RVCR = 0x85,
386 WVCR = 0x81,
387
388 REVCR = 0x65,
389 WEVCR = 0x61,
390
391 DIE_ERASE = 0xC4,
392 } FlashCMD;
393
394 typedef enum {
395 STATE_IDLE,
396 STATE_PAGE_PROGRAM,
397 STATE_READ,
398 STATE_COLLECTING_DATA,
399 STATE_COLLECTING_VAR_LEN_DATA,
400 STATE_READING_DATA,
401 } CMDState;
402
403 typedef enum {
404 MAN_SPANSION,
405 MAN_MACRONIX,
406 MAN_NUMONYX,
407 MAN_WINBOND,
408 MAN_SST,
409 MAN_GENERIC,
410 } Manufacturer;
411
412 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
413
414 typedef struct Flash {
415 SSISlave parent_obj;
416
417 BlockBackend *blk;
418
419 uint8_t *storage;
420 uint32_t size;
421 int page_size;
422
423 uint8_t state;
424 uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
425 uint32_t len;
426 uint32_t pos;
427 bool data_read_loop;
428 uint8_t needed_bytes;
429 uint8_t cmd_in_progress;
430 uint32_t cur_addr;
431 uint32_t nonvolatile_cfg;
432 /* Configuration register for Macronix */
433 uint32_t volatile_cfg;
434 uint32_t enh_volatile_cfg;
435 /* Spansion cfg registers. */
436 uint8_t spansion_cr1nv;
437 uint8_t spansion_cr2nv;
438 uint8_t spansion_cr3nv;
439 uint8_t spansion_cr4nv;
440 uint8_t spansion_cr1v;
441 uint8_t spansion_cr2v;
442 uint8_t spansion_cr3v;
443 uint8_t spansion_cr4v;
444 bool write_enable;
445 bool four_bytes_address_mode;
446 bool reset_enable;
447 bool quad_enable;
448 uint8_t ear;
449
450 int64_t dirty_page;
451
452 const FlashPartInfo *pi;
453
454 } Flash;
455
456 typedef struct M25P80Class {
457 SSISlaveClass parent_class;
458 FlashPartInfo *pi;
459 } M25P80Class;
460
461 #define TYPE_M25P80 "m25p80-generic"
462 #define M25P80(obj) \
463 OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
464 #define M25P80_CLASS(klass) \
465 OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
466 #define M25P80_GET_CLASS(obj) \
467 OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
468
469 static inline Manufacturer get_man(Flash *s)
470 {
471 switch (s->pi->id[0]) {
472 case 0x20:
473 return MAN_NUMONYX;
474 case 0xEF:
475 return MAN_WINBOND;
476 case 0x01:
477 return MAN_SPANSION;
478 case 0xC2:
479 return MAN_MACRONIX;
480 case 0xBF:
481 return MAN_SST;
482 default:
483 return MAN_GENERIC;
484 }
485 }
486
487 static void blk_sync_complete(void *opaque, int ret)
488 {
489 QEMUIOVector *iov = opaque;
490
491 qemu_iovec_destroy(iov);
492 g_free(iov);
493
494 /* do nothing. Masters do not directly interact with the backing store,
495 * only the working copy so no mutexing required.
496 */
497 }
498
499 static void flash_sync_page(Flash *s, int page)
500 {
501 QEMUIOVector *iov;
502
503 if (!s->blk || blk_is_read_only(s->blk)) {
504 return;
505 }
506
507 iov = g_new(QEMUIOVector, 1);
508 qemu_iovec_init(iov, 1);
509 qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
510 s->pi->page_size);
511 blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
512 blk_sync_complete, iov);
513 }
514
515 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
516 {
517 QEMUIOVector *iov;
518
519 if (!s->blk || blk_is_read_only(s->blk)) {
520 return;
521 }
522
523 assert(!(len % BDRV_SECTOR_SIZE));
524 iov = g_new(QEMUIOVector, 1);
525 qemu_iovec_init(iov, 1);
526 qemu_iovec_add(iov, s->storage + off, len);
527 blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
528 }
529
530 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
531 {
532 uint32_t len;
533 uint8_t capa_to_assert = 0;
534
535 switch (cmd) {
536 case ERASE_4K:
537 case ERASE4_4K:
538 len = 4 * KiB;
539 capa_to_assert = ER_4K;
540 break;
541 case ERASE_32K:
542 case ERASE4_32K:
543 len = 32 * KiB;
544 capa_to_assert = ER_32K;
545 break;
546 case ERASE_SECTOR:
547 case ERASE4_SECTOR:
548 len = s->pi->sector_size;
549 break;
550 case BULK_ERASE:
551 len = s->size;
552 break;
553 case DIE_ERASE:
554 if (s->pi->die_cnt) {
555 len = s->size / s->pi->die_cnt;
556 offset = offset & (~(len - 1));
557 } else {
558 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
559 " by device\n");
560 return;
561 }
562 break;
563 default:
564 abort();
565 }
566
567 trace_m25p80_flash_erase(s, offset, len);
568
569 if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
570 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
571 " device\n", len);
572 }
573
574 if (!s->write_enable) {
575 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
576 return;
577 }
578 memset(s->storage + offset, 0xff, len);
579 flash_sync_area(s, offset, len);
580 }
581
582 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
583 {
584 if (s->dirty_page >= 0 && s->dirty_page != newpage) {
585 flash_sync_page(s, s->dirty_page);
586 s->dirty_page = newpage;
587 }
588 }
589
590 static inline
591 void flash_write8(Flash *s, uint32_t addr, uint8_t data)
592 {
593 uint32_t page = addr / s->pi->page_size;
594 uint8_t prev = s->storage[s->cur_addr];
595
596 if (!s->write_enable) {
597 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
598 }
599
600 if ((prev ^ data) & data) {
601 trace_m25p80_programming_zero_to_one(s, addr, prev, data);
602 }
603
604 if (s->pi->flags & EEPROM) {
605 s->storage[s->cur_addr] = data;
606 } else {
607 s->storage[s->cur_addr] &= data;
608 }
609
610 flash_sync_dirty(s, page);
611 s->dirty_page = page;
612 }
613
614 static inline int get_addr_length(Flash *s)
615 {
616 /* check if eeprom is in use */
617 if (s->pi->flags == EEPROM) {
618 return 2;
619 }
620
621 switch (s->cmd_in_progress) {
622 case PP4:
623 case PP4_4:
624 case QPP_4:
625 case READ4:
626 case QIOR4:
627 case ERASE4_4K:
628 case ERASE4_32K:
629 case ERASE4_SECTOR:
630 case FAST_READ4:
631 case DOR4:
632 case QOR4:
633 case DIOR4:
634 return 4;
635 default:
636 return s->four_bytes_address_mode ? 4 : 3;
637 }
638 }
639
640 static void complete_collecting_data(Flash *s)
641 {
642 int i, n;
643
644 n = get_addr_length(s);
645 s->cur_addr = (n == 3 ? s->ear : 0);
646 for (i = 0; i < n; ++i) {
647 s->cur_addr <<= 8;
648 s->cur_addr |= s->data[i];
649 }
650
651 s->cur_addr &= s->size - 1;
652
653 s->state = STATE_IDLE;
654
655 trace_m25p80_complete_collecting(s, s->cmd_in_progress, n, s->ear,
656 s->cur_addr);
657
658 switch (s->cmd_in_progress) {
659 case DPP:
660 case QPP:
661 case QPP_4:
662 case PP:
663 case PP4:
664 case PP4_4:
665 s->state = STATE_PAGE_PROGRAM;
666 break;
667 case READ:
668 case READ4:
669 case FAST_READ:
670 case FAST_READ4:
671 case DOR:
672 case DOR4:
673 case QOR:
674 case QOR4:
675 case DIOR:
676 case DIOR4:
677 case QIOR:
678 case QIOR4:
679 s->state = STATE_READ;
680 break;
681 case ERASE_4K:
682 case ERASE4_4K:
683 case ERASE_32K:
684 case ERASE4_32K:
685 case ERASE_SECTOR:
686 case ERASE4_SECTOR:
687 case DIE_ERASE:
688 flash_erase(s, s->cur_addr, s->cmd_in_progress);
689 break;
690 case WRSR:
691 switch (get_man(s)) {
692 case MAN_SPANSION:
693 s->quad_enable = !!(s->data[1] & 0x02);
694 break;
695 case MAN_MACRONIX:
696 s->quad_enable = extract32(s->data[0], 6, 1);
697 if (s->len > 1) {
698 s->volatile_cfg = s->data[1];
699 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
700 }
701 break;
702 default:
703 break;
704 }
705 if (s->write_enable) {
706 s->write_enable = false;
707 }
708 break;
709 case BRWR:
710 case EXTEND_ADDR_WRITE:
711 s->ear = s->data[0];
712 break;
713 case WNVCR:
714 s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
715 break;
716 case WVCR:
717 s->volatile_cfg = s->data[0];
718 break;
719 case WEVCR:
720 s->enh_volatile_cfg = s->data[0];
721 break;
722 case RDID_90:
723 case RDID_AB:
724 if (get_man(s) == MAN_SST) {
725 if (s->cur_addr <= 1) {
726 if (s->cur_addr) {
727 s->data[0] = s->pi->id[2];
728 s->data[1] = s->pi->id[0];
729 } else {
730 s->data[0] = s->pi->id[0];
731 s->data[1] = s->pi->id[2];
732 }
733 s->pos = 0;
734 s->len = 2;
735 s->data_read_loop = true;
736 s->state = STATE_READING_DATA;
737 } else {
738 qemu_log_mask(LOG_GUEST_ERROR,
739 "M25P80: Invalid read id address\n");
740 }
741 } else {
742 qemu_log_mask(LOG_GUEST_ERROR,
743 "M25P80: Read id (command 0x90/0xAB) is not supported"
744 " by device\n");
745 }
746 break;
747 default:
748 break;
749 }
750 }
751
752 static void reset_memory(Flash *s)
753 {
754 s->cmd_in_progress = NOP;
755 s->cur_addr = 0;
756 s->ear = 0;
757 s->four_bytes_address_mode = false;
758 s->len = 0;
759 s->needed_bytes = 0;
760 s->pos = 0;
761 s->state = STATE_IDLE;
762 s->write_enable = false;
763 s->reset_enable = false;
764 s->quad_enable = false;
765
766 switch (get_man(s)) {
767 case MAN_NUMONYX:
768 s->volatile_cfg = 0;
769 s->volatile_cfg |= VCFG_DUMMY;
770 s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
771 if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
772 != NVCFG_XIP_MODE_DISABLED) {
773 s->volatile_cfg |= VCFG_XIP_MODE_ENABLED;
774 }
775 s->volatile_cfg |= deposit32(s->volatile_cfg,
776 VCFG_DUMMY_CLK_POS,
777 CFG_DUMMY_CLK_LEN,
778 extract32(s->nonvolatile_cfg,
779 NVCFG_DUMMY_CLK_POS,
780 CFG_DUMMY_CLK_LEN)
781 );
782
783 s->enh_volatile_cfg = 0;
784 s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
785 s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
786 s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
787 if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
788 s->enh_volatile_cfg |= EVCFG_DUAL_IO_ENABLED;
789 }
790 if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
791 s->enh_volatile_cfg |= EVCFG_QUAD_IO_ENABLED;
792 }
793 if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
794 s->four_bytes_address_mode = true;
795 }
796 if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
797 s->ear = s->size / MAX_3BYTES_SIZE - 1;
798 }
799 break;
800 case MAN_MACRONIX:
801 s->volatile_cfg = 0x7;
802 break;
803 case MAN_SPANSION:
804 s->spansion_cr1v = s->spansion_cr1nv;
805 s->spansion_cr2v = s->spansion_cr2nv;
806 s->spansion_cr3v = s->spansion_cr3nv;
807 s->spansion_cr4v = s->spansion_cr4nv;
808 s->quad_enable = extract32(s->spansion_cr1v,
809 SPANSION_QUAD_CFG_POS,
810 SPANSION_QUAD_CFG_LEN
811 );
812 s->four_bytes_address_mode = extract32(s->spansion_cr2v,
813 SPANSION_ADDR_LEN_POS,
814 SPANSION_ADDR_LEN_LEN
815 );
816 break;
817 default:
818 break;
819 }
820
821 trace_m25p80_reset_done(s);
822 }
823
824 static void decode_fast_read_cmd(Flash *s)
825 {
826 s->needed_bytes = get_addr_length(s);
827 switch (get_man(s)) {
828 /* Dummy cycles - modeled with bytes writes instead of bits */
829 case MAN_WINBOND:
830 s->needed_bytes += 8;
831 break;
832 case MAN_NUMONYX:
833 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
834 break;
835 case MAN_MACRONIX:
836 if (extract32(s->volatile_cfg, 6, 2) == 1) {
837 s->needed_bytes += 6;
838 } else {
839 s->needed_bytes += 8;
840 }
841 break;
842 case MAN_SPANSION:
843 s->needed_bytes += extract32(s->spansion_cr2v,
844 SPANSION_DUMMY_CLK_POS,
845 SPANSION_DUMMY_CLK_LEN
846 );
847 break;
848 default:
849 break;
850 }
851 s->pos = 0;
852 s->len = 0;
853 s->state = STATE_COLLECTING_DATA;
854 }
855
856 static void decode_dio_read_cmd(Flash *s)
857 {
858 s->needed_bytes = get_addr_length(s);
859 /* Dummy cycles modeled with bytes writes instead of bits */
860 switch (get_man(s)) {
861 case MAN_WINBOND:
862 s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
863 break;
864 case MAN_SPANSION:
865 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
866 s->needed_bytes += extract32(s->spansion_cr2v,
867 SPANSION_DUMMY_CLK_POS,
868 SPANSION_DUMMY_CLK_LEN
869 );
870 break;
871 case MAN_NUMONYX:
872 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
873 break;
874 case MAN_MACRONIX:
875 switch (extract32(s->volatile_cfg, 6, 2)) {
876 case 1:
877 s->needed_bytes += 6;
878 break;
879 case 2:
880 s->needed_bytes += 8;
881 break;
882 default:
883 s->needed_bytes += 4;
884 break;
885 }
886 break;
887 default:
888 break;
889 }
890 s->pos = 0;
891 s->len = 0;
892 s->state = STATE_COLLECTING_DATA;
893 }
894
895 static void decode_qio_read_cmd(Flash *s)
896 {
897 s->needed_bytes = get_addr_length(s);
898 /* Dummy cycles modeled with bytes writes instead of bits */
899 switch (get_man(s)) {
900 case MAN_WINBOND:
901 s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
902 s->needed_bytes += 4;
903 break;
904 case MAN_SPANSION:
905 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
906 s->needed_bytes += extract32(s->spansion_cr2v,
907 SPANSION_DUMMY_CLK_POS,
908 SPANSION_DUMMY_CLK_LEN
909 );
910 break;
911 case MAN_NUMONYX:
912 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
913 break;
914 case MAN_MACRONIX:
915 switch (extract32(s->volatile_cfg, 6, 2)) {
916 case 1:
917 s->needed_bytes += 4;
918 break;
919 case 2:
920 s->needed_bytes += 8;
921 break;
922 default:
923 s->needed_bytes += 6;
924 break;
925 }
926 break;
927 default:
928 break;
929 }
930 s->pos = 0;
931 s->len = 0;
932 s->state = STATE_COLLECTING_DATA;
933 }
934
935 static void decode_new_cmd(Flash *s, uint32_t value)
936 {
937 int i;
938
939 s->cmd_in_progress = value;
940 trace_m25p80_command_decoded(s, value);
941
942 if (value != RESET_MEMORY) {
943 s->reset_enable = false;
944 }
945
946 switch (value) {
947
948 case ERASE_4K:
949 case ERASE4_4K:
950 case ERASE_32K:
951 case ERASE4_32K:
952 case ERASE_SECTOR:
953 case ERASE4_SECTOR:
954 case READ:
955 case READ4:
956 case DPP:
957 case QPP:
958 case QPP_4:
959 case PP:
960 case PP4:
961 case PP4_4:
962 case DIE_ERASE:
963 case RDID_90:
964 case RDID_AB:
965 s->needed_bytes = get_addr_length(s);
966 s->pos = 0;
967 s->len = 0;
968 s->state = STATE_COLLECTING_DATA;
969 break;
970
971 case FAST_READ:
972 case FAST_READ4:
973 case DOR:
974 case DOR4:
975 case QOR:
976 case QOR4:
977 decode_fast_read_cmd(s);
978 break;
979
980 case DIOR:
981 case DIOR4:
982 decode_dio_read_cmd(s);
983 break;
984
985 case QIOR:
986 case QIOR4:
987 decode_qio_read_cmd(s);
988 break;
989
990 case WRSR:
991 if (s->write_enable) {
992 switch (get_man(s)) {
993 case MAN_SPANSION:
994 s->needed_bytes = 2;
995 s->state = STATE_COLLECTING_DATA;
996 break;
997 case MAN_MACRONIX:
998 s->needed_bytes = 2;
999 s->state = STATE_COLLECTING_VAR_LEN_DATA;
1000 break;
1001 default:
1002 s->needed_bytes = 1;
1003 s->state = STATE_COLLECTING_DATA;
1004 }
1005 s->pos = 0;
1006 }
1007 break;
1008
1009 case WRDI:
1010 s->write_enable = false;
1011 break;
1012 case WREN:
1013 s->write_enable = true;
1014 break;
1015
1016 case RDSR:
1017 s->data[0] = (!!s->write_enable) << 1;
1018 if (get_man(s) == MAN_MACRONIX) {
1019 s->data[0] |= (!!s->quad_enable) << 6;
1020 }
1021 s->pos = 0;
1022 s->len = 1;
1023 s->data_read_loop = true;
1024 s->state = STATE_READING_DATA;
1025 break;
1026
1027 case READ_FSR:
1028 s->data[0] = FSR_FLASH_READY;
1029 if (s->four_bytes_address_mode) {
1030 s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
1031 }
1032 s->pos = 0;
1033 s->len = 1;
1034 s->data_read_loop = true;
1035 s->state = STATE_READING_DATA;
1036 break;
1037
1038 case JEDEC_READ:
1039 trace_m25p80_populated_jedec(s);
1040 for (i = 0; i < s->pi->id_len; i++) {
1041 s->data[i] = s->pi->id[i];
1042 }
1043 for (; i < SPI_NOR_MAX_ID_LEN; i++) {
1044 s->data[i] = 0;
1045 }
1046
1047 s->len = SPI_NOR_MAX_ID_LEN;
1048 s->pos = 0;
1049 s->state = STATE_READING_DATA;
1050 break;
1051
1052 case RDCR:
1053 s->data[0] = s->volatile_cfg & 0xFF;
1054 s->data[0] |= (!!s->four_bytes_address_mode) << 5;
1055 s->pos = 0;
1056 s->len = 1;
1057 s->state = STATE_READING_DATA;
1058 break;
1059
1060 case BULK_ERASE_60:
1061 case BULK_ERASE:
1062 if (s->write_enable) {
1063 trace_m25p80_chip_erase(s);
1064 flash_erase(s, 0, BULK_ERASE);
1065 } else {
1066 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
1067 "protect!\n");
1068 }
1069 break;
1070 case NOP:
1071 break;
1072 case EN_4BYTE_ADDR:
1073 s->four_bytes_address_mode = true;
1074 break;
1075 case EX_4BYTE_ADDR:
1076 s->four_bytes_address_mode = false;
1077 break;
1078 case BRRD:
1079 case EXTEND_ADDR_READ:
1080 s->data[0] = s->ear;
1081 s->pos = 0;
1082 s->len = 1;
1083 s->state = STATE_READING_DATA;
1084 break;
1085 case BRWR:
1086 case EXTEND_ADDR_WRITE:
1087 if (s->write_enable) {
1088 s->needed_bytes = 1;
1089 s->pos = 0;
1090 s->len = 0;
1091 s->state = STATE_COLLECTING_DATA;
1092 }
1093 break;
1094 case RNVCR:
1095 s->data[0] = s->nonvolatile_cfg & 0xFF;
1096 s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1097 s->pos = 0;
1098 s->len = 2;
1099 s->state = STATE_READING_DATA;
1100 break;
1101 case WNVCR:
1102 if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1103 s->needed_bytes = 2;
1104 s->pos = 0;
1105 s->len = 0;
1106 s->state = STATE_COLLECTING_DATA;
1107 }
1108 break;
1109 case RVCR:
1110 s->data[0] = s->volatile_cfg & 0xFF;
1111 s->pos = 0;
1112 s->len = 1;
1113 s->state = STATE_READING_DATA;
1114 break;
1115 case WVCR:
1116 if (s->write_enable) {
1117 s->needed_bytes = 1;
1118 s->pos = 0;
1119 s->len = 0;
1120 s->state = STATE_COLLECTING_DATA;
1121 }
1122 break;
1123 case REVCR:
1124 s->data[0] = s->enh_volatile_cfg & 0xFF;
1125 s->pos = 0;
1126 s->len = 1;
1127 s->state = STATE_READING_DATA;
1128 break;
1129 case WEVCR:
1130 if (s->write_enable) {
1131 s->needed_bytes = 1;
1132 s->pos = 0;
1133 s->len = 0;
1134 s->state = STATE_COLLECTING_DATA;
1135 }
1136 break;
1137 case RESET_ENABLE:
1138 s->reset_enable = true;
1139 break;
1140 case RESET_MEMORY:
1141 if (s->reset_enable) {
1142 reset_memory(s);
1143 }
1144 break;
1145 case RDCR_EQIO:
1146 switch (get_man(s)) {
1147 case MAN_SPANSION:
1148 s->data[0] = (!!s->quad_enable) << 1;
1149 s->pos = 0;
1150 s->len = 1;
1151 s->state = STATE_READING_DATA;
1152 break;
1153 case MAN_MACRONIX:
1154 s->quad_enable = true;
1155 break;
1156 default:
1157 break;
1158 }
1159 break;
1160 case RSTQIO:
1161 s->quad_enable = false;
1162 break;
1163 default:
1164 s->pos = 0;
1165 s->len = 1;
1166 s->state = STATE_READING_DATA;
1167 s->data_read_loop = true;
1168 s->data[0] = 0;
1169 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1170 break;
1171 }
1172 }
1173
1174 static int m25p80_cs(SSISlave *ss, bool select)
1175 {
1176 Flash *s = M25P80(ss);
1177
1178 if (select) {
1179 if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1180 complete_collecting_data(s);
1181 }
1182 s->len = 0;
1183 s->pos = 0;
1184 s->state = STATE_IDLE;
1185 flash_sync_dirty(s, -1);
1186 s->data_read_loop = false;
1187 }
1188
1189 trace_m25p80_select(s, select ? "de" : "");
1190
1191 return 0;
1192 }
1193
1194 static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
1195 {
1196 Flash *s = M25P80(ss);
1197 uint32_t r = 0;
1198
1199 trace_m25p80_transfer(s, s->state, s->len, s->needed_bytes, s->pos,
1200 s->cur_addr, (uint8_t)tx);
1201
1202 switch (s->state) {
1203
1204 case STATE_PAGE_PROGRAM:
1205 trace_m25p80_page_program(s, s->cur_addr, (uint8_t)tx);
1206 flash_write8(s, s->cur_addr, (uint8_t)tx);
1207 s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1208 break;
1209
1210 case STATE_READ:
1211 r = s->storage[s->cur_addr];
1212 trace_m25p80_read_byte(s, s->cur_addr, (uint8_t)r);
1213 s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1214 break;
1215
1216 case STATE_COLLECTING_DATA:
1217 case STATE_COLLECTING_VAR_LEN_DATA:
1218
1219 if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1220 qemu_log_mask(LOG_GUEST_ERROR,
1221 "M25P80: Write overrun internal data buffer. "
1222 "SPI controller (QEMU emulator or guest driver) "
1223 "is misbehaving\n");
1224 s->len = s->pos = 0;
1225 s->state = STATE_IDLE;
1226 break;
1227 }
1228
1229 s->data[s->len] = (uint8_t)tx;
1230 s->len++;
1231
1232 if (s->len == s->needed_bytes) {
1233 complete_collecting_data(s);
1234 }
1235 break;
1236
1237 case STATE_READING_DATA:
1238
1239 if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1240 qemu_log_mask(LOG_GUEST_ERROR,
1241 "M25P80: Read overrun internal data buffer. "
1242 "SPI controller (QEMU emulator or guest driver) "
1243 "is misbehaving\n");
1244 s->len = s->pos = 0;
1245 s->state = STATE_IDLE;
1246 break;
1247 }
1248
1249 r = s->data[s->pos];
1250 trace_m25p80_read_data(s, s->pos, (uint8_t)r);
1251 s->pos++;
1252 if (s->pos == s->len) {
1253 s->pos = 0;
1254 if (!s->data_read_loop) {
1255 s->state = STATE_IDLE;
1256 }
1257 }
1258 break;
1259
1260 default:
1261 case STATE_IDLE:
1262 decode_new_cmd(s, (uint8_t)tx);
1263 break;
1264 }
1265
1266 return r;
1267 }
1268
1269 static void m25p80_realize(SSISlave *ss, Error **errp)
1270 {
1271 Flash *s = M25P80(ss);
1272 M25P80Class *mc = M25P80_GET_CLASS(s);
1273 int ret;
1274
1275 s->pi = mc->pi;
1276
1277 s->size = s->pi->sector_size * s->pi->n_sectors;
1278 s->dirty_page = -1;
1279
1280 if (s->blk) {
1281 uint64_t perm = BLK_PERM_CONSISTENT_READ |
1282 (blk_is_read_only(s->blk) ? 0 : BLK_PERM_WRITE);
1283 ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
1284 if (ret < 0) {
1285 return;
1286 }
1287
1288 trace_m25p80_binding(s);
1289 s->storage = blk_blockalign(s->blk, s->size);
1290
1291 if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
1292 error_setg(errp, "failed to read the initial flash content");
1293 return;
1294 }
1295 } else {
1296 trace_m25p80_binding_no_bdrv(s);
1297 s->storage = blk_blockalign(NULL, s->size);
1298 memset(s->storage, 0xFF, s->size);
1299 }
1300 }
1301
1302 static void m25p80_reset(DeviceState *d)
1303 {
1304 Flash *s = M25P80(d);
1305
1306 reset_memory(s);
1307 }
1308
1309 static int m25p80_pre_save(void *opaque)
1310 {
1311 flash_sync_dirty((Flash *)opaque, -1);
1312
1313 return 0;
1314 }
1315
1316 static Property m25p80_properties[] = {
1317 /* This is default value for Micron flash */
1318 DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1319 DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1320 DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1321 DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1322 DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1323 DEFINE_PROP_DRIVE("drive", Flash, blk),
1324 DEFINE_PROP_END_OF_LIST(),
1325 };
1326
1327 static int m25p80_pre_load(void *opaque)
1328 {
1329 Flash *s = (Flash *)opaque;
1330
1331 s->data_read_loop = false;
1332 return 0;
1333 }
1334
1335 static bool m25p80_data_read_loop_needed(void *opaque)
1336 {
1337 Flash *s = (Flash *)opaque;
1338
1339 return s->data_read_loop;
1340 }
1341
1342 static const VMStateDescription vmstate_m25p80_data_read_loop = {
1343 .name = "m25p80/data_read_loop",
1344 .version_id = 1,
1345 .minimum_version_id = 1,
1346 .needed = m25p80_data_read_loop_needed,
1347 .fields = (VMStateField[]) {
1348 VMSTATE_BOOL(data_read_loop, Flash),
1349 VMSTATE_END_OF_LIST()
1350 }
1351 };
1352
1353 static const VMStateDescription vmstate_m25p80 = {
1354 .name = "m25p80",
1355 .version_id = 0,
1356 .minimum_version_id = 0,
1357 .pre_save = m25p80_pre_save,
1358 .pre_load = m25p80_pre_load,
1359 .fields = (VMStateField[]) {
1360 VMSTATE_UINT8(state, Flash),
1361 VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1362 VMSTATE_UINT32(len, Flash),
1363 VMSTATE_UINT32(pos, Flash),
1364 VMSTATE_UINT8(needed_bytes, Flash),
1365 VMSTATE_UINT8(cmd_in_progress, Flash),
1366 VMSTATE_UINT32(cur_addr, Flash),
1367 VMSTATE_BOOL(write_enable, Flash),
1368 VMSTATE_BOOL(reset_enable, Flash),
1369 VMSTATE_UINT8(ear, Flash),
1370 VMSTATE_BOOL(four_bytes_address_mode, Flash),
1371 VMSTATE_UINT32(nonvolatile_cfg, Flash),
1372 VMSTATE_UINT32(volatile_cfg, Flash),
1373 VMSTATE_UINT32(enh_volatile_cfg, Flash),
1374 VMSTATE_BOOL(quad_enable, Flash),
1375 VMSTATE_UINT8(spansion_cr1nv, Flash),
1376 VMSTATE_UINT8(spansion_cr2nv, Flash),
1377 VMSTATE_UINT8(spansion_cr3nv, Flash),
1378 VMSTATE_UINT8(spansion_cr4nv, Flash),
1379 VMSTATE_END_OF_LIST()
1380 },
1381 .subsections = (const VMStateDescription * []) {
1382 &vmstate_m25p80_data_read_loop,
1383 NULL
1384 }
1385 };
1386
1387 static void m25p80_class_init(ObjectClass *klass, void *data)
1388 {
1389 DeviceClass *dc = DEVICE_CLASS(klass);
1390 SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
1391 M25P80Class *mc = M25P80_CLASS(klass);
1392
1393 k->realize = m25p80_realize;
1394 k->transfer = m25p80_transfer8;
1395 k->set_cs = m25p80_cs;
1396 k->cs_polarity = SSI_CS_LOW;
1397 dc->vmsd = &vmstate_m25p80;
1398 device_class_set_props(dc, m25p80_properties);
1399 dc->reset = m25p80_reset;
1400 mc->pi = data;
1401 }
1402
1403 static const TypeInfo m25p80_info = {
1404 .name = TYPE_M25P80,
1405 .parent = TYPE_SSI_SLAVE,
1406 .instance_size = sizeof(Flash),
1407 .class_size = sizeof(M25P80Class),
1408 .abstract = true,
1409 };
1410
1411 static void m25p80_register_types(void)
1412 {
1413 int i;
1414
1415 type_register_static(&m25p80_info);
1416 for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1417 TypeInfo ti = {
1418 .name = known_devices[i].part_name,
1419 .parent = TYPE_M25P80,
1420 .class_init = m25p80_class_init,
1421 .class_data = (void *)&known_devices[i],
1422 };
1423 type_register(&ti);
1424 }
1425 }
1426
1427 type_init(m25p80_register_types)