sm501: Add missing arbitration control register
[qemu.git] / hw / core / loader.c
1 /*
2 * QEMU Executable loader
3 *
4 * Copyright (c) 2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 *
24 * Gunzip functionality in this file is derived from u-boot:
25 *
26 * (C) Copyright 2008 Semihalf
27 *
28 * (C) Copyright 2000-2005
29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
30 *
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License as
33 * published by the Free Software Foundation; either version 2 of
34 * the License, or (at your option) any later version.
35 *
36 * This program is distributed in the hope that it will be useful,
37 * but WITHOUT ANY WARRANTY; without even the implied warranty of
38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
39 * GNU General Public License for more details.
40 *
41 * You should have received a copy of the GNU General Public License along
42 * with this program; if not, see <http://www.gnu.org/licenses/>.
43 */
44
45 #include "qemu/osdep.h"
46 #include "qapi/error.h"
47 #include "hw/hw.h"
48 #include "disas/disas.h"
49 #include "monitor/monitor.h"
50 #include "sysemu/sysemu.h"
51 #include "uboot_image.h"
52 #include "hw/loader.h"
53 #include "hw/nvram/fw_cfg.h"
54 #include "exec/memory.h"
55 #include "exec/address-spaces.h"
56 #include "hw/boards.h"
57 #include "qemu/cutils.h"
58
59 #include <zlib.h>
60
61 static int roms_loaded;
62
63 /* return the size or -1 if error */
64 int get_image_size(const char *filename)
65 {
66 int fd, size;
67 fd = open(filename, O_RDONLY | O_BINARY);
68 if (fd < 0)
69 return -1;
70 size = lseek(fd, 0, SEEK_END);
71 close(fd);
72 return size;
73 }
74
75 /* return the size or -1 if error */
76 /* deprecated, because caller does not specify buffer size! */
77 int load_image(const char *filename, uint8_t *addr)
78 {
79 int fd, size;
80 fd = open(filename, O_RDONLY | O_BINARY);
81 if (fd < 0)
82 return -1;
83 size = lseek(fd, 0, SEEK_END);
84 if (size == -1) {
85 fprintf(stderr, "file %-20s: get size error: %s\n",
86 filename, strerror(errno));
87 close(fd);
88 return -1;
89 }
90
91 lseek(fd, 0, SEEK_SET);
92 if (read(fd, addr, size) != size) {
93 close(fd);
94 return -1;
95 }
96 close(fd);
97 return size;
98 }
99
100 /* return the size or -1 if error */
101 ssize_t load_image_size(const char *filename, void *addr, size_t size)
102 {
103 int fd;
104 ssize_t actsize;
105
106 fd = open(filename, O_RDONLY | O_BINARY);
107 if (fd < 0) {
108 return -1;
109 }
110
111 actsize = read(fd, addr, size);
112 if (actsize < 0) {
113 close(fd);
114 return -1;
115 }
116 close(fd);
117
118 return actsize;
119 }
120
121 /* read()-like version */
122 ssize_t read_targphys(const char *name,
123 int fd, hwaddr dst_addr, size_t nbytes)
124 {
125 uint8_t *buf;
126 ssize_t did;
127
128 buf = g_malloc(nbytes);
129 did = read(fd, buf, nbytes);
130 if (did > 0)
131 rom_add_blob_fixed("read", buf, did, dst_addr);
132 g_free(buf);
133 return did;
134 }
135
136 int load_image_targphys(const char *filename,
137 hwaddr addr, uint64_t max_sz)
138 {
139 return load_image_targphys_as(filename, addr, max_sz, NULL);
140 }
141
142 /* return the size or -1 if error */
143 int load_image_targphys_as(const char *filename,
144 hwaddr addr, uint64_t max_sz, AddressSpace *as)
145 {
146 int size;
147
148 size = get_image_size(filename);
149 if (size > max_sz) {
150 return -1;
151 }
152 if (size > 0) {
153 rom_add_file_fixed_as(filename, addr, -1, as);
154 }
155 return size;
156 }
157
158 int load_image_mr(const char *filename, MemoryRegion *mr)
159 {
160 int size;
161
162 if (!memory_access_is_direct(mr, false)) {
163 /* Can only load an image into RAM or ROM */
164 return -1;
165 }
166
167 size = get_image_size(filename);
168
169 if (size > memory_region_size(mr)) {
170 return -1;
171 }
172 if (size > 0) {
173 if (rom_add_file_mr(filename, mr, -1) < 0) {
174 return -1;
175 }
176 }
177 return size;
178 }
179
180 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size,
181 const char *source)
182 {
183 const char *nulp;
184 char *ptr;
185
186 if (buf_size <= 0) return;
187 nulp = memchr(source, 0, buf_size);
188 if (nulp) {
189 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest);
190 } else {
191 rom_add_blob_fixed(name, source, buf_size, dest);
192 ptr = rom_ptr(dest + buf_size - 1);
193 *ptr = 0;
194 }
195 }
196
197 /* A.OUT loader */
198
199 struct exec
200 {
201 uint32_t a_info; /* Use macros N_MAGIC, etc for access */
202 uint32_t a_text; /* length of text, in bytes */
203 uint32_t a_data; /* length of data, in bytes */
204 uint32_t a_bss; /* length of uninitialized data area, in bytes */
205 uint32_t a_syms; /* length of symbol table data in file, in bytes */
206 uint32_t a_entry; /* start address */
207 uint32_t a_trsize; /* length of relocation info for text, in bytes */
208 uint32_t a_drsize; /* length of relocation info for data, in bytes */
209 };
210
211 static void bswap_ahdr(struct exec *e)
212 {
213 bswap32s(&e->a_info);
214 bswap32s(&e->a_text);
215 bswap32s(&e->a_data);
216 bswap32s(&e->a_bss);
217 bswap32s(&e->a_syms);
218 bswap32s(&e->a_entry);
219 bswap32s(&e->a_trsize);
220 bswap32s(&e->a_drsize);
221 }
222
223 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
224 #define OMAGIC 0407
225 #define NMAGIC 0410
226 #define ZMAGIC 0413
227 #define QMAGIC 0314
228 #define _N_HDROFF(x) (1024 - sizeof (struct exec))
229 #define N_TXTOFF(x) \
230 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \
231 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))
232 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0)
233 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1))
234
235 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text)
236
237 #define N_DATADDR(x, target_page_size) \
238 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \
239 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size)))
240
241
242 int load_aout(const char *filename, hwaddr addr, int max_sz,
243 int bswap_needed, hwaddr target_page_size)
244 {
245 int fd;
246 ssize_t size, ret;
247 struct exec e;
248 uint32_t magic;
249
250 fd = open(filename, O_RDONLY | O_BINARY);
251 if (fd < 0)
252 return -1;
253
254 size = read(fd, &e, sizeof(e));
255 if (size < 0)
256 goto fail;
257
258 if (bswap_needed) {
259 bswap_ahdr(&e);
260 }
261
262 magic = N_MAGIC(e);
263 switch (magic) {
264 case ZMAGIC:
265 case QMAGIC:
266 case OMAGIC:
267 if (e.a_text + e.a_data > max_sz)
268 goto fail;
269 lseek(fd, N_TXTOFF(e), SEEK_SET);
270 size = read_targphys(filename, fd, addr, e.a_text + e.a_data);
271 if (size < 0)
272 goto fail;
273 break;
274 case NMAGIC:
275 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz)
276 goto fail;
277 lseek(fd, N_TXTOFF(e), SEEK_SET);
278 size = read_targphys(filename, fd, addr, e.a_text);
279 if (size < 0)
280 goto fail;
281 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size),
282 e.a_data);
283 if (ret < 0)
284 goto fail;
285 size += ret;
286 break;
287 default:
288 goto fail;
289 }
290 close(fd);
291 return size;
292 fail:
293 close(fd);
294 return -1;
295 }
296
297 /* ELF loader */
298
299 static void *load_at(int fd, off_t offset, size_t size)
300 {
301 void *ptr;
302 if (lseek(fd, offset, SEEK_SET) < 0)
303 return NULL;
304 ptr = g_malloc(size);
305 if (read(fd, ptr, size) != size) {
306 g_free(ptr);
307 return NULL;
308 }
309 return ptr;
310 }
311
312 #ifdef ELF_CLASS
313 #undef ELF_CLASS
314 #endif
315
316 #define ELF_CLASS ELFCLASS32
317 #include "elf.h"
318
319 #define SZ 32
320 #define elf_word uint32_t
321 #define elf_sword int32_t
322 #define bswapSZs bswap32s
323 #include "hw/elf_ops.h"
324
325 #undef elfhdr
326 #undef elf_phdr
327 #undef elf_shdr
328 #undef elf_sym
329 #undef elf_rela
330 #undef elf_note
331 #undef elf_word
332 #undef elf_sword
333 #undef bswapSZs
334 #undef SZ
335 #define elfhdr elf64_hdr
336 #define elf_phdr elf64_phdr
337 #define elf_note elf64_note
338 #define elf_shdr elf64_shdr
339 #define elf_sym elf64_sym
340 #define elf_rela elf64_rela
341 #define elf_word uint64_t
342 #define elf_sword int64_t
343 #define bswapSZs bswap64s
344 #define SZ 64
345 #include "hw/elf_ops.h"
346
347 const char *load_elf_strerror(int error)
348 {
349 switch (error) {
350 case 0:
351 return "No error";
352 case ELF_LOAD_FAILED:
353 return "Failed to load ELF";
354 case ELF_LOAD_NOT_ELF:
355 return "The image is not ELF";
356 case ELF_LOAD_WRONG_ARCH:
357 return "The image is from incompatible architecture";
358 case ELF_LOAD_WRONG_ENDIAN:
359 return "The image has incorrect endianness";
360 default:
361 return "Unknown error";
362 }
363 }
364
365 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp)
366 {
367 int fd;
368 uint8_t e_ident_local[EI_NIDENT];
369 uint8_t *e_ident;
370 size_t hdr_size, off;
371 bool is64l;
372
373 if (!hdr) {
374 hdr = e_ident_local;
375 }
376 e_ident = hdr;
377
378 fd = open(filename, O_RDONLY | O_BINARY);
379 if (fd < 0) {
380 error_setg_errno(errp, errno, "Failed to open file: %s", filename);
381 return;
382 }
383 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) {
384 error_setg_errno(errp, errno, "Failed to read file: %s", filename);
385 goto fail;
386 }
387 if (e_ident[0] != ELFMAG0 ||
388 e_ident[1] != ELFMAG1 ||
389 e_ident[2] != ELFMAG2 ||
390 e_ident[3] != ELFMAG3) {
391 error_setg(errp, "Bad ELF magic");
392 goto fail;
393 }
394
395 is64l = e_ident[EI_CLASS] == ELFCLASS64;
396 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr);
397 if (is64) {
398 *is64 = is64l;
399 }
400
401 off = EI_NIDENT;
402 while (hdr != e_ident_local && off < hdr_size) {
403 size_t br = read(fd, hdr + off, hdr_size - off);
404 switch (br) {
405 case 0:
406 error_setg(errp, "File too short: %s", filename);
407 goto fail;
408 case -1:
409 error_setg_errno(errp, errno, "Failed to read file: %s",
410 filename);
411 goto fail;
412 }
413 off += br;
414 }
415
416 fail:
417 close(fd);
418 }
419
420 /* return < 0 if error, otherwise the number of bytes loaded in memory */
421 int load_elf(const char *filename, uint64_t (*translate_fn)(void *, uint64_t),
422 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
423 uint64_t *highaddr, int big_endian, int elf_machine,
424 int clear_lsb, int data_swab)
425 {
426 return load_elf_as(filename, translate_fn, translate_opaque, pentry,
427 lowaddr, highaddr, big_endian, elf_machine, clear_lsb,
428 data_swab, NULL);
429 }
430
431 /* return < 0 if error, otherwise the number of bytes loaded in memory */
432 int load_elf_as(const char *filename,
433 uint64_t (*translate_fn)(void *, uint64_t),
434 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
435 uint64_t *highaddr, int big_endian, int elf_machine,
436 int clear_lsb, int data_swab, AddressSpace *as)
437 {
438 return load_elf_ram(filename, translate_fn, translate_opaque,
439 pentry, lowaddr, highaddr, big_endian, elf_machine,
440 clear_lsb, data_swab, as, true);
441 }
442
443 /* return < 0 if error, otherwise the number of bytes loaded in memory */
444 int load_elf_ram(const char *filename,
445 uint64_t (*translate_fn)(void *, uint64_t),
446 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
447 uint64_t *highaddr, int big_endian, int elf_machine,
448 int clear_lsb, int data_swab, AddressSpace *as,
449 bool load_rom)
450 {
451 int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED;
452 uint8_t e_ident[EI_NIDENT];
453
454 fd = open(filename, O_RDONLY | O_BINARY);
455 if (fd < 0) {
456 perror(filename);
457 return -1;
458 }
459 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident))
460 goto fail;
461 if (e_ident[0] != ELFMAG0 ||
462 e_ident[1] != ELFMAG1 ||
463 e_ident[2] != ELFMAG2 ||
464 e_ident[3] != ELFMAG3) {
465 ret = ELF_LOAD_NOT_ELF;
466 goto fail;
467 }
468 #ifdef HOST_WORDS_BIGENDIAN
469 data_order = ELFDATA2MSB;
470 #else
471 data_order = ELFDATA2LSB;
472 #endif
473 must_swab = data_order != e_ident[EI_DATA];
474 if (big_endian) {
475 target_data_order = ELFDATA2MSB;
476 } else {
477 target_data_order = ELFDATA2LSB;
478 }
479
480 if (target_data_order != e_ident[EI_DATA]) {
481 ret = ELF_LOAD_WRONG_ENDIAN;
482 goto fail;
483 }
484
485 lseek(fd, 0, SEEK_SET);
486 if (e_ident[EI_CLASS] == ELFCLASS64) {
487 ret = load_elf64(filename, fd, translate_fn, translate_opaque, must_swab,
488 pentry, lowaddr, highaddr, elf_machine, clear_lsb,
489 data_swab, as, load_rom);
490 } else {
491 ret = load_elf32(filename, fd, translate_fn, translate_opaque, must_swab,
492 pentry, lowaddr, highaddr, elf_machine, clear_lsb,
493 data_swab, as, load_rom);
494 }
495
496 fail:
497 close(fd);
498 return ret;
499 }
500
501 static void bswap_uboot_header(uboot_image_header_t *hdr)
502 {
503 #ifndef HOST_WORDS_BIGENDIAN
504 bswap32s(&hdr->ih_magic);
505 bswap32s(&hdr->ih_hcrc);
506 bswap32s(&hdr->ih_time);
507 bswap32s(&hdr->ih_size);
508 bswap32s(&hdr->ih_load);
509 bswap32s(&hdr->ih_ep);
510 bswap32s(&hdr->ih_dcrc);
511 #endif
512 }
513
514
515 #define ZALLOC_ALIGNMENT 16
516
517 static void *zalloc(void *x, unsigned items, unsigned size)
518 {
519 void *p;
520
521 size *= items;
522 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1);
523
524 p = g_malloc(size);
525
526 return (p);
527 }
528
529 static void zfree(void *x, void *addr)
530 {
531 g_free(addr);
532 }
533
534
535 #define HEAD_CRC 2
536 #define EXTRA_FIELD 4
537 #define ORIG_NAME 8
538 #define COMMENT 0x10
539 #define RESERVED 0xe0
540
541 #define DEFLATED 8
542
543 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen)
544 {
545 z_stream s;
546 ssize_t dstbytes;
547 int r, i, flags;
548
549 /* skip header */
550 i = 10;
551 flags = src[3];
552 if (src[2] != DEFLATED || (flags & RESERVED) != 0) {
553 puts ("Error: Bad gzipped data\n");
554 return -1;
555 }
556 if ((flags & EXTRA_FIELD) != 0)
557 i = 12 + src[10] + (src[11] << 8);
558 if ((flags & ORIG_NAME) != 0)
559 while (src[i++] != 0)
560 ;
561 if ((flags & COMMENT) != 0)
562 while (src[i++] != 0)
563 ;
564 if ((flags & HEAD_CRC) != 0)
565 i += 2;
566 if (i >= srclen) {
567 puts ("Error: gunzip out of data in header\n");
568 return -1;
569 }
570
571 s.zalloc = zalloc;
572 s.zfree = zfree;
573
574 r = inflateInit2(&s, -MAX_WBITS);
575 if (r != Z_OK) {
576 printf ("Error: inflateInit2() returned %d\n", r);
577 return (-1);
578 }
579 s.next_in = src + i;
580 s.avail_in = srclen - i;
581 s.next_out = dst;
582 s.avail_out = dstlen;
583 r = inflate(&s, Z_FINISH);
584 if (r != Z_OK && r != Z_STREAM_END) {
585 printf ("Error: inflate() returned %d\n", r);
586 return -1;
587 }
588 dstbytes = s.next_out - (unsigned char *) dst;
589 inflateEnd(&s);
590
591 return dstbytes;
592 }
593
594 /* Load a U-Boot image. */
595 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr,
596 int *is_linux, uint8_t image_type,
597 uint64_t (*translate_fn)(void *, uint64_t),
598 void *translate_opaque, AddressSpace *as)
599 {
600 int fd;
601 int size;
602 hwaddr address;
603 uboot_image_header_t h;
604 uboot_image_header_t *hdr = &h;
605 uint8_t *data = NULL;
606 int ret = -1;
607 int do_uncompress = 0;
608
609 fd = open(filename, O_RDONLY | O_BINARY);
610 if (fd < 0)
611 return -1;
612
613 size = read(fd, hdr, sizeof(uboot_image_header_t));
614 if (size < 0)
615 goto out;
616
617 bswap_uboot_header(hdr);
618
619 if (hdr->ih_magic != IH_MAGIC)
620 goto out;
621
622 if (hdr->ih_type != image_type) {
623 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type,
624 image_type);
625 goto out;
626 }
627
628 /* TODO: Implement other image types. */
629 switch (hdr->ih_type) {
630 case IH_TYPE_KERNEL:
631 address = hdr->ih_load;
632 if (translate_fn) {
633 address = translate_fn(translate_opaque, address);
634 }
635 if (loadaddr) {
636 *loadaddr = hdr->ih_load;
637 }
638
639 switch (hdr->ih_comp) {
640 case IH_COMP_NONE:
641 break;
642 case IH_COMP_GZIP:
643 do_uncompress = 1;
644 break;
645 default:
646 fprintf(stderr,
647 "Unable to load u-boot images with compression type %d\n",
648 hdr->ih_comp);
649 goto out;
650 }
651
652 if (ep) {
653 *ep = hdr->ih_ep;
654 }
655
656 /* TODO: Check CPU type. */
657 if (is_linux) {
658 if (hdr->ih_os == IH_OS_LINUX) {
659 *is_linux = 1;
660 } else {
661 *is_linux = 0;
662 }
663 }
664
665 break;
666 case IH_TYPE_RAMDISK:
667 address = *loadaddr;
668 break;
669 default:
670 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type);
671 goto out;
672 }
673
674 data = g_malloc(hdr->ih_size);
675
676 if (read(fd, data, hdr->ih_size) != hdr->ih_size) {
677 fprintf(stderr, "Error reading file\n");
678 goto out;
679 }
680
681 if (do_uncompress) {
682 uint8_t *compressed_data;
683 size_t max_bytes;
684 ssize_t bytes;
685
686 compressed_data = data;
687 max_bytes = UBOOT_MAX_GUNZIP_BYTES;
688 data = g_malloc(max_bytes);
689
690 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size);
691 g_free(compressed_data);
692 if (bytes < 0) {
693 fprintf(stderr, "Unable to decompress gzipped image!\n");
694 goto out;
695 }
696 hdr->ih_size = bytes;
697 }
698
699 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as);
700
701 ret = hdr->ih_size;
702
703 out:
704 g_free(data);
705 close(fd);
706 return ret;
707 }
708
709 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr,
710 int *is_linux,
711 uint64_t (*translate_fn)(void *, uint64_t),
712 void *translate_opaque)
713 {
714 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
715 translate_fn, translate_opaque, NULL);
716 }
717
718 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr,
719 int *is_linux,
720 uint64_t (*translate_fn)(void *, uint64_t),
721 void *translate_opaque, AddressSpace *as)
722 {
723 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
724 translate_fn, translate_opaque, as);
725 }
726
727 /* Load a ramdisk. */
728 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz)
729 {
730 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK,
731 NULL, NULL, NULL);
732 }
733
734 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */
735 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz,
736 uint8_t **buffer)
737 {
738 uint8_t *compressed_data = NULL;
739 uint8_t *data = NULL;
740 gsize len;
741 ssize_t bytes;
742 int ret = -1;
743
744 if (!g_file_get_contents(filename, (char **) &compressed_data, &len,
745 NULL)) {
746 goto out;
747 }
748
749 /* Is it a gzip-compressed file? */
750 if (len < 2 ||
751 compressed_data[0] != 0x1f ||
752 compressed_data[1] != 0x8b) {
753 goto out;
754 }
755
756 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) {
757 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES;
758 }
759
760 data = g_malloc(max_sz);
761 bytes = gunzip(data, max_sz, compressed_data, len);
762 if (bytes < 0) {
763 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n",
764 filename);
765 goto out;
766 }
767
768 /* trim to actual size and return to caller */
769 *buffer = g_realloc(data, bytes);
770 ret = bytes;
771 /* ownership has been transferred to caller */
772 data = NULL;
773
774 out:
775 g_free(compressed_data);
776 g_free(data);
777 return ret;
778 }
779
780 /* Load a gzip-compressed kernel. */
781 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz)
782 {
783 int bytes;
784 uint8_t *data;
785
786 bytes = load_image_gzipped_buffer(filename, max_sz, &data);
787 if (bytes != -1) {
788 rom_add_blob_fixed(filename, data, bytes, addr);
789 g_free(data);
790 }
791 return bytes;
792 }
793
794 /*
795 * Functions for reboot-persistent memory regions.
796 * - used for vga bios and option roms.
797 * - also linux kernel (-kernel / -initrd).
798 */
799
800 typedef struct Rom Rom;
801
802 struct Rom {
803 char *name;
804 char *path;
805
806 /* datasize is the amount of memory allocated in "data". If datasize is less
807 * than romsize, it means that the area from datasize to romsize is filled
808 * with zeros.
809 */
810 size_t romsize;
811 size_t datasize;
812
813 uint8_t *data;
814 MemoryRegion *mr;
815 AddressSpace *as;
816 int isrom;
817 char *fw_dir;
818 char *fw_file;
819
820 hwaddr addr;
821 QTAILQ_ENTRY(Rom) next;
822 };
823
824 static FWCfgState *fw_cfg;
825 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms);
826
827 static inline bool rom_order_compare(Rom *rom, Rom *item)
828 {
829 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) ||
830 (rom->as == item->as && rom->addr >= item->addr);
831 }
832
833 static void rom_insert(Rom *rom)
834 {
835 Rom *item;
836
837 if (roms_loaded) {
838 hw_error ("ROM images must be loaded at startup\n");
839 }
840
841 /* The user didn't specify an address space, this is the default */
842 if (!rom->as) {
843 rom->as = &address_space_memory;
844 }
845
846 /* List is ordered by load address in the same address space */
847 QTAILQ_FOREACH(item, &roms, next) {
848 if (rom_order_compare(rom, item)) {
849 continue;
850 }
851 QTAILQ_INSERT_BEFORE(item, rom, next);
852 return;
853 }
854 QTAILQ_INSERT_TAIL(&roms, rom, next);
855 }
856
857 static void fw_cfg_resized(const char *id, uint64_t length, void *host)
858 {
859 if (fw_cfg) {
860 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length);
861 }
862 }
863
864 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro)
865 {
866 void *data;
867
868 rom->mr = g_malloc(sizeof(*rom->mr));
869 memory_region_init_resizeable_ram(rom->mr, owner, name,
870 rom->datasize, rom->romsize,
871 fw_cfg_resized,
872 &error_fatal);
873 memory_region_set_readonly(rom->mr, ro);
874 vmstate_register_ram_global(rom->mr);
875
876 data = memory_region_get_ram_ptr(rom->mr);
877 memcpy(data, rom->data, rom->datasize);
878
879 return data;
880 }
881
882 int rom_add_file(const char *file, const char *fw_dir,
883 hwaddr addr, int32_t bootindex,
884 bool option_rom, MemoryRegion *mr,
885 AddressSpace *as)
886 {
887 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
888 Rom *rom;
889 int rc, fd = -1;
890 char devpath[100];
891
892 if (as && mr) {
893 fprintf(stderr, "Specifying an Address Space and Memory Region is " \
894 "not valid when loading a rom\n");
895 /* We haven't allocated anything so we don't need any cleanup */
896 return -1;
897 }
898
899 rom = g_malloc0(sizeof(*rom));
900 rom->name = g_strdup(file);
901 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name);
902 rom->as = as;
903 if (rom->path == NULL) {
904 rom->path = g_strdup(file);
905 }
906
907 fd = open(rom->path, O_RDONLY | O_BINARY);
908 if (fd == -1) {
909 fprintf(stderr, "Could not open option rom '%s': %s\n",
910 rom->path, strerror(errno));
911 goto err;
912 }
913
914 if (fw_dir) {
915 rom->fw_dir = g_strdup(fw_dir);
916 rom->fw_file = g_strdup(file);
917 }
918 rom->addr = addr;
919 rom->romsize = lseek(fd, 0, SEEK_END);
920 if (rom->romsize == -1) {
921 fprintf(stderr, "rom: file %-20s: get size error: %s\n",
922 rom->name, strerror(errno));
923 goto err;
924 }
925
926 rom->datasize = rom->romsize;
927 rom->data = g_malloc0(rom->datasize);
928 lseek(fd, 0, SEEK_SET);
929 rc = read(fd, rom->data, rom->datasize);
930 if (rc != rom->datasize) {
931 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n",
932 rom->name, rc, rom->datasize);
933 goto err;
934 }
935 close(fd);
936 rom_insert(rom);
937 if (rom->fw_file && fw_cfg) {
938 const char *basename;
939 char fw_file_name[FW_CFG_MAX_FILE_PATH];
940 void *data;
941
942 basename = strrchr(rom->fw_file, '/');
943 if (basename) {
944 basename++;
945 } else {
946 basename = rom->fw_file;
947 }
948 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir,
949 basename);
950 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
951
952 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) {
953 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true);
954 } else {
955 data = rom->data;
956 }
957
958 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize);
959 } else {
960 if (mr) {
961 rom->mr = mr;
962 snprintf(devpath, sizeof(devpath), "/rom@%s", file);
963 } else {
964 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr);
965 }
966 }
967
968 add_boot_device_path(bootindex, NULL, devpath);
969 return 0;
970
971 err:
972 if (fd != -1)
973 close(fd);
974
975 g_free(rom->data);
976 g_free(rom->path);
977 g_free(rom->name);
978 if (fw_dir) {
979 g_free(rom->fw_dir);
980 g_free(rom->fw_file);
981 }
982 g_free(rom);
983
984 return -1;
985 }
986
987 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len,
988 size_t max_len, hwaddr addr, const char *fw_file_name,
989 FWCfgReadCallback fw_callback, void *callback_opaque,
990 AddressSpace *as, bool read_only)
991 {
992 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
993 Rom *rom;
994 MemoryRegion *mr = NULL;
995
996 rom = g_malloc0(sizeof(*rom));
997 rom->name = g_strdup(name);
998 rom->as = as;
999 rom->addr = addr;
1000 rom->romsize = max_len ? max_len : len;
1001 rom->datasize = len;
1002 rom->data = g_malloc0(rom->datasize);
1003 memcpy(rom->data, blob, len);
1004 rom_insert(rom);
1005 if (fw_file_name && fw_cfg) {
1006 char devpath[100];
1007 void *data;
1008
1009 if (read_only) {
1010 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1011 } else {
1012 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name);
1013 }
1014
1015 if (mc->rom_file_has_mr) {
1016 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only);
1017 mr = rom->mr;
1018 } else {
1019 data = rom->data;
1020 }
1021
1022 fw_cfg_add_file_callback(fw_cfg, fw_file_name,
1023 fw_callback, callback_opaque,
1024 data, rom->datasize, read_only);
1025 }
1026 return mr;
1027 }
1028
1029 /* This function is specific for elf program because we don't need to allocate
1030 * all the rom. We just allocate the first part and the rest is just zeros. This
1031 * is why romsize and datasize are different. Also, this function seize the
1032 * memory ownership of "data", so we don't have to allocate and copy the buffer.
1033 */
1034 int rom_add_elf_program(const char *name, void *data, size_t datasize,
1035 size_t romsize, hwaddr addr, AddressSpace *as)
1036 {
1037 Rom *rom;
1038
1039 rom = g_malloc0(sizeof(*rom));
1040 rom->name = g_strdup(name);
1041 rom->addr = addr;
1042 rom->datasize = datasize;
1043 rom->romsize = romsize;
1044 rom->data = data;
1045 rom->as = as;
1046 rom_insert(rom);
1047 return 0;
1048 }
1049
1050 int rom_add_vga(const char *file)
1051 {
1052 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL);
1053 }
1054
1055 int rom_add_option(const char *file, int32_t bootindex)
1056 {
1057 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL);
1058 }
1059
1060 static void rom_reset(void *unused)
1061 {
1062 Rom *rom;
1063
1064 QTAILQ_FOREACH(rom, &roms, next) {
1065 if (rom->fw_file) {
1066 continue;
1067 }
1068 if (rom->data == NULL) {
1069 continue;
1070 }
1071 if (rom->mr) {
1072 void *host = memory_region_get_ram_ptr(rom->mr);
1073 memcpy(host, rom->data, rom->datasize);
1074 } else {
1075 cpu_physical_memory_write_rom(rom->as, rom->addr, rom->data,
1076 rom->datasize);
1077 }
1078 if (rom->isrom) {
1079 /* rom needs to be written only once */
1080 g_free(rom->data);
1081 rom->data = NULL;
1082 }
1083 /*
1084 * The rom loader is really on the same level as firmware in the guest
1085 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure
1086 * that the instruction cache for that new region is clear, so that the
1087 * CPU definitely fetches its instructions from the just written data.
1088 */
1089 cpu_flush_icache_range(rom->addr, rom->datasize);
1090 }
1091 }
1092
1093 int rom_check_and_register_reset(void)
1094 {
1095 hwaddr addr = 0;
1096 MemoryRegionSection section;
1097 Rom *rom;
1098 AddressSpace *as = NULL;
1099
1100 QTAILQ_FOREACH(rom, &roms, next) {
1101 if (rom->fw_file) {
1102 continue;
1103 }
1104 if ((addr > rom->addr) && (as == rom->as)) {
1105 fprintf(stderr, "rom: requested regions overlap "
1106 "(rom %s. free=0x" TARGET_FMT_plx
1107 ", addr=0x" TARGET_FMT_plx ")\n",
1108 rom->name, addr, rom->addr);
1109 return -1;
1110 }
1111 addr = rom->addr;
1112 addr += rom->romsize;
1113 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(),
1114 rom->addr, 1);
1115 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr);
1116 memory_region_unref(section.mr);
1117 as = rom->as;
1118 }
1119 qemu_register_reset(rom_reset, NULL);
1120 roms_loaded = 1;
1121 return 0;
1122 }
1123
1124 void rom_set_fw(FWCfgState *f)
1125 {
1126 fw_cfg = f;
1127 }
1128
1129 void rom_set_order_override(int order)
1130 {
1131 if (!fw_cfg)
1132 return;
1133 fw_cfg_set_order_override(fw_cfg, order);
1134 }
1135
1136 void rom_reset_order_override(void)
1137 {
1138 if (!fw_cfg)
1139 return;
1140 fw_cfg_reset_order_override(fw_cfg);
1141 }
1142
1143 static Rom *find_rom(hwaddr addr)
1144 {
1145 Rom *rom;
1146
1147 QTAILQ_FOREACH(rom, &roms, next) {
1148 if (rom->fw_file) {
1149 continue;
1150 }
1151 if (rom->mr) {
1152 continue;
1153 }
1154 if (rom->addr > addr) {
1155 continue;
1156 }
1157 if (rom->addr + rom->romsize < addr) {
1158 continue;
1159 }
1160 return rom;
1161 }
1162 return NULL;
1163 }
1164
1165 /*
1166 * Copies memory from registered ROMs to dest. Any memory that is contained in
1167 * a ROM between addr and addr + size is copied. Note that this can involve
1168 * multiple ROMs, which need not start at addr and need not end at addr + size.
1169 */
1170 int rom_copy(uint8_t *dest, hwaddr addr, size_t size)
1171 {
1172 hwaddr end = addr + size;
1173 uint8_t *s, *d = dest;
1174 size_t l = 0;
1175 Rom *rom;
1176
1177 QTAILQ_FOREACH(rom, &roms, next) {
1178 if (rom->fw_file) {
1179 continue;
1180 }
1181 if (rom->mr) {
1182 continue;
1183 }
1184 if (rom->addr + rom->romsize < addr) {
1185 continue;
1186 }
1187 if (rom->addr > end) {
1188 break;
1189 }
1190
1191 d = dest + (rom->addr - addr);
1192 s = rom->data;
1193 l = rom->datasize;
1194
1195 if ((d + l) > (dest + size)) {
1196 l = dest - d;
1197 }
1198
1199 if (l > 0) {
1200 memcpy(d, s, l);
1201 }
1202
1203 if (rom->romsize > rom->datasize) {
1204 /* If datasize is less than romsize, it means that we didn't
1205 * allocate all the ROM because the trailing data are only zeros.
1206 */
1207
1208 d += l;
1209 l = rom->romsize - rom->datasize;
1210
1211 if ((d + l) > (dest + size)) {
1212 /* Rom size doesn't fit in the destination area. Adjust to avoid
1213 * overflow.
1214 */
1215 l = dest - d;
1216 }
1217
1218 if (l > 0) {
1219 memset(d, 0x0, l);
1220 }
1221 }
1222 }
1223
1224 return (d + l) - dest;
1225 }
1226
1227 void *rom_ptr(hwaddr addr)
1228 {
1229 Rom *rom;
1230
1231 rom = find_rom(addr);
1232 if (!rom || !rom->data)
1233 return NULL;
1234 return rom->data + (addr - rom->addr);
1235 }
1236
1237 void hmp_info_roms(Monitor *mon, const QDict *qdict)
1238 {
1239 Rom *rom;
1240
1241 QTAILQ_FOREACH(rom, &roms, next) {
1242 if (rom->mr) {
1243 monitor_printf(mon, "%s"
1244 " size=0x%06zx name=\"%s\"\n",
1245 memory_region_name(rom->mr),
1246 rom->romsize,
1247 rom->name);
1248 } else if (!rom->fw_file) {
1249 monitor_printf(mon, "addr=" TARGET_FMT_plx
1250 " size=0x%06zx mem=%s name=\"%s\"\n",
1251 rom->addr, rom->romsize,
1252 rom->isrom ? "rom" : "ram",
1253 rom->name);
1254 } else {
1255 monitor_printf(mon, "fw=%s/%s"
1256 " size=0x%06zx name=\"%s\"\n",
1257 rom->fw_dir,
1258 rom->fw_file,
1259 rom->romsize,
1260 rom->name);
1261 }
1262 }
1263 }