Merge remote-tracking branch 'remotes/philmd-gitlab/tags/renesas-20201027' into staging
[qemu.git] / hw / dma / etraxfs_dma.c
1 /*
2 * QEMU ETRAX DMA Controller.
3 *
4 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "hw/irq.h"
28 #include "qemu/main-loop.h"
29 #include "sysemu/runstate.h"
30 #include "exec/address-spaces.h"
31
32 #include "hw/cris/etraxfs_dma.h"
33
34 #define D(x)
35
36 #define RW_DATA (0x0 / 4)
37 #define RW_SAVED_DATA (0x58 / 4)
38 #define RW_SAVED_DATA_BUF (0x5c / 4)
39 #define RW_GROUP (0x60 / 4)
40 #define RW_GROUP_DOWN (0x7c / 4)
41 #define RW_CMD (0x80 / 4)
42 #define RW_CFG (0x84 / 4)
43 #define RW_STAT (0x88 / 4)
44 #define RW_INTR_MASK (0x8c / 4)
45 #define RW_ACK_INTR (0x90 / 4)
46 #define R_INTR (0x94 / 4)
47 #define R_MASKED_INTR (0x98 / 4)
48 #define RW_STREAM_CMD (0x9c / 4)
49
50 #define DMA_REG_MAX (0x100 / 4)
51
52 /* descriptors */
53
54 // ------------------------------------------------------------ dma_descr_group
55 typedef struct dma_descr_group {
56 uint32_t next;
57 unsigned eol : 1;
58 unsigned tol : 1;
59 unsigned bol : 1;
60 unsigned : 1;
61 unsigned intr : 1;
62 unsigned : 2;
63 unsigned en : 1;
64 unsigned : 7;
65 unsigned dis : 1;
66 unsigned md : 16;
67 struct dma_descr_group *up;
68 union {
69 struct dma_descr_context *context;
70 struct dma_descr_group *group;
71 } down;
72 } dma_descr_group;
73
74 // ---------------------------------------------------------- dma_descr_context
75 typedef struct dma_descr_context {
76 uint32_t next;
77 unsigned eol : 1;
78 unsigned : 3;
79 unsigned intr : 1;
80 unsigned : 1;
81 unsigned store_mode : 1;
82 unsigned en : 1;
83 unsigned : 7;
84 unsigned dis : 1;
85 unsigned md0 : 16;
86 unsigned md1;
87 unsigned md2;
88 unsigned md3;
89 unsigned md4;
90 uint32_t saved_data;
91 uint32_t saved_data_buf;
92 } dma_descr_context;
93
94 // ------------------------------------------------------------- dma_descr_data
95 typedef struct dma_descr_data {
96 uint32_t next;
97 uint32_t buf;
98 unsigned eol : 1;
99 unsigned : 2;
100 unsigned out_eop : 1;
101 unsigned intr : 1;
102 unsigned wait : 1;
103 unsigned : 2;
104 unsigned : 3;
105 unsigned in_eop : 1;
106 unsigned : 4;
107 unsigned md : 16;
108 uint32_t after;
109 } dma_descr_data;
110
111 /* Constants */
112 enum {
113 regk_dma_ack_pkt = 0x00000100,
114 regk_dma_anytime = 0x00000001,
115 regk_dma_array = 0x00000008,
116 regk_dma_burst = 0x00000020,
117 regk_dma_client = 0x00000002,
118 regk_dma_copy_next = 0x00000010,
119 regk_dma_copy_up = 0x00000020,
120 regk_dma_data_at_eol = 0x00000001,
121 regk_dma_dis_c = 0x00000010,
122 regk_dma_dis_g = 0x00000020,
123 regk_dma_idle = 0x00000001,
124 regk_dma_intern = 0x00000004,
125 regk_dma_load_c = 0x00000200,
126 regk_dma_load_c_n = 0x00000280,
127 regk_dma_load_c_next = 0x00000240,
128 regk_dma_load_d = 0x00000140,
129 regk_dma_load_g = 0x00000300,
130 regk_dma_load_g_down = 0x000003c0,
131 regk_dma_load_g_next = 0x00000340,
132 regk_dma_load_g_up = 0x00000380,
133 regk_dma_next_en = 0x00000010,
134 regk_dma_next_pkt = 0x00000010,
135 regk_dma_no = 0x00000000,
136 regk_dma_only_at_wait = 0x00000000,
137 regk_dma_restore = 0x00000020,
138 regk_dma_rst = 0x00000001,
139 regk_dma_running = 0x00000004,
140 regk_dma_rw_cfg_default = 0x00000000,
141 regk_dma_rw_cmd_default = 0x00000000,
142 regk_dma_rw_intr_mask_default = 0x00000000,
143 regk_dma_rw_stat_default = 0x00000101,
144 regk_dma_rw_stream_cmd_default = 0x00000000,
145 regk_dma_save_down = 0x00000020,
146 regk_dma_save_up = 0x00000020,
147 regk_dma_set_reg = 0x00000050,
148 regk_dma_set_w_size1 = 0x00000190,
149 regk_dma_set_w_size2 = 0x000001a0,
150 regk_dma_set_w_size4 = 0x000001c0,
151 regk_dma_stopped = 0x00000002,
152 regk_dma_store_c = 0x00000002,
153 regk_dma_store_descr = 0x00000000,
154 regk_dma_store_g = 0x00000004,
155 regk_dma_store_md = 0x00000001,
156 regk_dma_sw = 0x00000008,
157 regk_dma_update_down = 0x00000020,
158 regk_dma_yes = 0x00000001
159 };
160
161 enum dma_ch_state
162 {
163 RST = 1,
164 STOPPED = 2,
165 RUNNING = 4
166 };
167
168 struct fs_dma_channel
169 {
170 qemu_irq irq;
171 struct etraxfs_dma_client *client;
172
173 /* Internal status. */
174 int stream_cmd_src;
175 enum dma_ch_state state;
176
177 unsigned int input : 1;
178 unsigned int eol : 1;
179
180 struct dma_descr_group current_g;
181 struct dma_descr_context current_c;
182 struct dma_descr_data current_d;
183
184 /* Control registers. */
185 uint32_t regs[DMA_REG_MAX];
186 };
187
188 struct fs_dma_ctrl
189 {
190 MemoryRegion mmio;
191 int nr_channels;
192 struct fs_dma_channel *channels;
193
194 QEMUBH *bh;
195 };
196
197 static void DMA_run(void *opaque);
198 static int channel_out_run(struct fs_dma_ctrl *ctrl, int c);
199
200 static inline uint32_t channel_reg(struct fs_dma_ctrl *ctrl, int c, int reg)
201 {
202 return ctrl->channels[c].regs[reg];
203 }
204
205 static inline int channel_stopped(struct fs_dma_ctrl *ctrl, int c)
206 {
207 return channel_reg(ctrl, c, RW_CFG) & 2;
208 }
209
210 static inline int channel_en(struct fs_dma_ctrl *ctrl, int c)
211 {
212 return (channel_reg(ctrl, c, RW_CFG) & 1)
213 && ctrl->channels[c].client;
214 }
215
216 static inline int fs_channel(hwaddr addr)
217 {
218 /* Every channel has a 0x2000 ctrl register map. */
219 return addr >> 13;
220 }
221
222 #ifdef USE_THIS_DEAD_CODE
223 static void channel_load_g(struct fs_dma_ctrl *ctrl, int c)
224 {
225 hwaddr addr = channel_reg(ctrl, c, RW_GROUP);
226
227 /* Load and decode. FIXME: handle endianness. */
228 cpu_physical_memory_read(addr, &ctrl->channels[c].current_g,
229 sizeof(ctrl->channels[c].current_g));
230 }
231
232 static void dump_c(int ch, struct dma_descr_context *c)
233 {
234 printf("%s ch=%d\n", __func__, ch);
235 printf("next=%x\n", c->next);
236 printf("saved_data=%x\n", c->saved_data);
237 printf("saved_data_buf=%x\n", c->saved_data_buf);
238 printf("eol=%x\n", (uint32_t) c->eol);
239 }
240
241 static void dump_d(int ch, struct dma_descr_data *d)
242 {
243 printf("%s ch=%d\n", __func__, ch);
244 printf("next=%x\n", d->next);
245 printf("buf=%x\n", d->buf);
246 printf("after=%x\n", d->after);
247 printf("intr=%x\n", (uint32_t) d->intr);
248 printf("out_eop=%x\n", (uint32_t) d->out_eop);
249 printf("in_eop=%x\n", (uint32_t) d->in_eop);
250 printf("eol=%x\n", (uint32_t) d->eol);
251 }
252 #endif
253
254 static void channel_load_c(struct fs_dma_ctrl *ctrl, int c)
255 {
256 hwaddr addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
257
258 /* Load and decode. FIXME: handle endianness. */
259 cpu_physical_memory_read(addr, &ctrl->channels[c].current_c,
260 sizeof(ctrl->channels[c].current_c));
261
262 D(dump_c(c, &ctrl->channels[c].current_c));
263 /* I guess this should update the current pos. */
264 ctrl->channels[c].regs[RW_SAVED_DATA] =
265 (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data;
266 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
267 (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data_buf;
268 }
269
270 static void channel_load_d(struct fs_dma_ctrl *ctrl, int c)
271 {
272 hwaddr addr = channel_reg(ctrl, c, RW_SAVED_DATA);
273
274 /* Load and decode. FIXME: handle endianness. */
275 D(printf("%s ch=%d addr=" TARGET_FMT_plx "\n", __func__, c, addr));
276 cpu_physical_memory_read(addr, &ctrl->channels[c].current_d,
277 sizeof(ctrl->channels[c].current_d));
278
279 D(dump_d(c, &ctrl->channels[c].current_d));
280 ctrl->channels[c].regs[RW_DATA] = addr;
281 }
282
283 static void channel_store_c(struct fs_dma_ctrl *ctrl, int c)
284 {
285 hwaddr addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
286
287 /* Encode and store. FIXME: handle endianness. */
288 D(printf("%s ch=%d addr=" TARGET_FMT_plx "\n", __func__, c, addr));
289 D(dump_d(c, &ctrl->channels[c].current_d));
290 cpu_physical_memory_write(addr, &ctrl->channels[c].current_c,
291 sizeof(ctrl->channels[c].current_c));
292 }
293
294 static void channel_store_d(struct fs_dma_ctrl *ctrl, int c)
295 {
296 hwaddr addr = channel_reg(ctrl, c, RW_SAVED_DATA);
297
298 /* Encode and store. FIXME: handle endianness. */
299 D(printf("%s ch=%d addr=" TARGET_FMT_plx "\n", __func__, c, addr));
300 cpu_physical_memory_write(addr, &ctrl->channels[c].current_d,
301 sizeof(ctrl->channels[c].current_d));
302 }
303
304 static inline void channel_stop(struct fs_dma_ctrl *ctrl, int c)
305 {
306 /* FIXME: */
307 }
308
309 static inline void channel_start(struct fs_dma_ctrl *ctrl, int c)
310 {
311 if (ctrl->channels[c].client)
312 {
313 ctrl->channels[c].eol = 0;
314 ctrl->channels[c].state = RUNNING;
315 if (!ctrl->channels[c].input)
316 channel_out_run(ctrl, c);
317 } else
318 printf("WARNING: starting DMA ch %d with no client\n", c);
319
320 qemu_bh_schedule_idle(ctrl->bh);
321 }
322
323 static void channel_continue(struct fs_dma_ctrl *ctrl, int c)
324 {
325 if (!channel_en(ctrl, c)
326 || channel_stopped(ctrl, c)
327 || ctrl->channels[c].state != RUNNING
328 /* Only reload the current data descriptor if it has eol set. */
329 || !ctrl->channels[c].current_d.eol) {
330 D(printf("continue failed ch=%d state=%d stopped=%d en=%d eol=%d\n",
331 c, ctrl->channels[c].state,
332 channel_stopped(ctrl, c),
333 channel_en(ctrl,c),
334 ctrl->channels[c].eol));
335 D(dump_d(c, &ctrl->channels[c].current_d));
336 return;
337 }
338
339 /* Reload the current descriptor. */
340 channel_load_d(ctrl, c);
341
342 /* If the current descriptor cleared the eol flag and we had already
343 reached eol state, do the continue. */
344 if (!ctrl->channels[c].current_d.eol && ctrl->channels[c].eol) {
345 D(printf("continue %d ok %x\n", c,
346 ctrl->channels[c].current_d.next));
347 ctrl->channels[c].regs[RW_SAVED_DATA] =
348 (uint32_t)(unsigned long)ctrl->channels[c].current_d.next;
349 channel_load_d(ctrl, c);
350 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
351 (uint32_t)(unsigned long)ctrl->channels[c].current_d.buf;
352
353 channel_start(ctrl, c);
354 }
355 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
356 (uint32_t)(unsigned long)ctrl->channels[c].current_d.buf;
357 }
358
359 static void channel_stream_cmd(struct fs_dma_ctrl *ctrl, int c, uint32_t v)
360 {
361 unsigned int cmd = v & ((1 << 10) - 1);
362
363 D(printf("%s ch=%d cmd=%x\n",
364 __func__, c, cmd));
365 if (cmd & regk_dma_load_d) {
366 channel_load_d(ctrl, c);
367 if (cmd & regk_dma_burst)
368 channel_start(ctrl, c);
369 }
370
371 if (cmd & regk_dma_load_c) {
372 channel_load_c(ctrl, c);
373 }
374 }
375
376 static void channel_update_irq(struct fs_dma_ctrl *ctrl, int c)
377 {
378 D(printf("%s %d\n", __func__, c));
379 ctrl->channels[c].regs[R_INTR] &=
380 ~(ctrl->channels[c].regs[RW_ACK_INTR]);
381
382 ctrl->channels[c].regs[R_MASKED_INTR] =
383 ctrl->channels[c].regs[R_INTR]
384 & ctrl->channels[c].regs[RW_INTR_MASK];
385
386 D(printf("%s: chan=%d masked_intr=%x\n", __func__,
387 c,
388 ctrl->channels[c].regs[R_MASKED_INTR]));
389
390 qemu_set_irq(ctrl->channels[c].irq,
391 !!ctrl->channels[c].regs[R_MASKED_INTR]);
392 }
393
394 static int channel_out_run(struct fs_dma_ctrl *ctrl, int c)
395 {
396 uint32_t len;
397 uint32_t saved_data_buf;
398 unsigned char buf[2 * 1024];
399
400 struct dma_context_metadata meta;
401 bool send_context = true;
402
403 if (ctrl->channels[c].eol)
404 return 0;
405
406 do {
407 bool out_eop;
408 D(printf("ch=%d buf=%x after=%x\n",
409 c,
410 (uint32_t)ctrl->channels[c].current_d.buf,
411 (uint32_t)ctrl->channels[c].current_d.after));
412
413 if (send_context) {
414 if (ctrl->channels[c].client->client.metadata_push) {
415 meta.metadata = ctrl->channels[c].current_d.md;
416 ctrl->channels[c].client->client.metadata_push(
417 ctrl->channels[c].client->client.opaque,
418 &meta);
419 }
420 send_context = false;
421 }
422
423 channel_load_d(ctrl, c);
424 saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
425 len = (uint32_t)(unsigned long)
426 ctrl->channels[c].current_d.after;
427 len -= saved_data_buf;
428
429 if (len > sizeof buf)
430 len = sizeof buf;
431 cpu_physical_memory_read (saved_data_buf, buf, len);
432
433 out_eop = ((saved_data_buf + len) ==
434 ctrl->channels[c].current_d.after) &&
435 ctrl->channels[c].current_d.out_eop;
436
437 D(printf("channel %d pushes %x %u bytes eop=%u\n", c,
438 saved_data_buf, len, out_eop));
439
440 if (ctrl->channels[c].client->client.push) {
441 if (len > 0) {
442 ctrl->channels[c].client->client.push(
443 ctrl->channels[c].client->client.opaque,
444 buf, len, out_eop);
445 }
446 } else {
447 printf("WARNING: DMA ch%d dataloss,"
448 " no attached client.\n", c);
449 }
450
451 saved_data_buf += len;
452
453 if (saved_data_buf == (uint32_t)(unsigned long)
454 ctrl->channels[c].current_d.after) {
455 /* Done. Step to next. */
456 if (ctrl->channels[c].current_d.out_eop) {
457 send_context = true;
458 }
459 if (ctrl->channels[c].current_d.intr) {
460 /* data intr. */
461 D(printf("signal intr %d eol=%d\n",
462 len, ctrl->channels[c].current_d.eol));
463 ctrl->channels[c].regs[R_INTR] |= (1 << 2);
464 channel_update_irq(ctrl, c);
465 }
466 channel_store_d(ctrl, c);
467 if (ctrl->channels[c].current_d.eol) {
468 D(printf("channel %d EOL\n", c));
469 ctrl->channels[c].eol = 1;
470
471 /* Mark the context as disabled. */
472 ctrl->channels[c].current_c.dis = 1;
473 channel_store_c(ctrl, c);
474
475 channel_stop(ctrl, c);
476 } else {
477 ctrl->channels[c].regs[RW_SAVED_DATA] =
478 (uint32_t)(unsigned long)ctrl->
479 channels[c].current_d.next;
480 /* Load new descriptor. */
481 channel_load_d(ctrl, c);
482 saved_data_buf = (uint32_t)(unsigned long)
483 ctrl->channels[c].current_d.buf;
484 }
485
486 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
487 saved_data_buf;
488 D(dump_d(c, &ctrl->channels[c].current_d));
489 }
490 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
491 } while (!ctrl->channels[c].eol);
492 return 1;
493 }
494
495 static int channel_in_process(struct fs_dma_ctrl *ctrl, int c,
496 unsigned char *buf, int buflen, int eop)
497 {
498 uint32_t len;
499 uint32_t saved_data_buf;
500
501 if (ctrl->channels[c].eol == 1)
502 return 0;
503
504 channel_load_d(ctrl, c);
505 saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
506 len = (uint32_t)(unsigned long)ctrl->channels[c].current_d.after;
507 len -= saved_data_buf;
508
509 if (len > buflen)
510 len = buflen;
511
512 cpu_physical_memory_write (saved_data_buf, buf, len);
513 saved_data_buf += len;
514
515 if (saved_data_buf ==
516 (uint32_t)(unsigned long)ctrl->channels[c].current_d.after
517 || eop) {
518 uint32_t r_intr = ctrl->channels[c].regs[R_INTR];
519
520 D(printf("in dscr end len=%d\n",
521 ctrl->channels[c].current_d.after
522 - ctrl->channels[c].current_d.buf));
523 ctrl->channels[c].current_d.after = saved_data_buf;
524
525 /* Done. Step to next. */
526 if (ctrl->channels[c].current_d.intr) {
527 /* TODO: signal eop to the client. */
528 /* data intr. */
529 ctrl->channels[c].regs[R_INTR] |= 3;
530 }
531 if (eop) {
532 ctrl->channels[c].current_d.in_eop = 1;
533 ctrl->channels[c].regs[R_INTR] |= 8;
534 }
535 if (r_intr != ctrl->channels[c].regs[R_INTR])
536 channel_update_irq(ctrl, c);
537
538 channel_store_d(ctrl, c);
539 D(dump_d(c, &ctrl->channels[c].current_d));
540
541 if (ctrl->channels[c].current_d.eol) {
542 D(printf("channel %d EOL\n", c));
543 ctrl->channels[c].eol = 1;
544
545 /* Mark the context as disabled. */
546 ctrl->channels[c].current_c.dis = 1;
547 channel_store_c(ctrl, c);
548
549 channel_stop(ctrl, c);
550 } else {
551 ctrl->channels[c].regs[RW_SAVED_DATA] =
552 (uint32_t)(unsigned long)ctrl->
553 channels[c].current_d.next;
554 /* Load new descriptor. */
555 channel_load_d(ctrl, c);
556 saved_data_buf = (uint32_t)(unsigned long)
557 ctrl->channels[c].current_d.buf;
558 }
559 }
560
561 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
562 return len;
563 }
564
565 static inline int channel_in_run(struct fs_dma_ctrl *ctrl, int c)
566 {
567 if (ctrl->channels[c].client->client.pull) {
568 ctrl->channels[c].client->client.pull(
569 ctrl->channels[c].client->client.opaque);
570 return 1;
571 } else
572 return 0;
573 }
574
575 static uint32_t dma_rinvalid (void *opaque, hwaddr addr)
576 {
577 hw_error("Unsupported short raccess. reg=" TARGET_FMT_plx "\n", addr);
578 return 0;
579 }
580
581 static uint64_t
582 dma_read(void *opaque, hwaddr addr, unsigned int size)
583 {
584 struct fs_dma_ctrl *ctrl = opaque;
585 int c;
586 uint32_t r = 0;
587
588 if (size != 4) {
589 dma_rinvalid(opaque, addr);
590 }
591
592 /* Make addr relative to this channel and bounded to nr regs. */
593 c = fs_channel(addr);
594 addr &= 0xff;
595 addr >>= 2;
596 switch (addr)
597 {
598 case RW_STAT:
599 r = ctrl->channels[c].state & 7;
600 r |= ctrl->channels[c].eol << 5;
601 r |= ctrl->channels[c].stream_cmd_src << 8;
602 break;
603
604 default:
605 r = ctrl->channels[c].regs[addr];
606 D(printf ("%s c=%d addr=" TARGET_FMT_plx "\n",
607 __func__, c, addr));
608 break;
609 }
610 return r;
611 }
612
613 static void
614 dma_winvalid (void *opaque, hwaddr addr, uint32_t value)
615 {
616 hw_error("Unsupported short waccess. reg=" TARGET_FMT_plx "\n", addr);
617 }
618
619 static void
620 dma_update_state(struct fs_dma_ctrl *ctrl, int c)
621 {
622 if (ctrl->channels[c].regs[RW_CFG] & 2)
623 ctrl->channels[c].state = STOPPED;
624 if (!(ctrl->channels[c].regs[RW_CFG] & 1))
625 ctrl->channels[c].state = RST;
626 }
627
628 static void
629 dma_write(void *opaque, hwaddr addr,
630 uint64_t val64, unsigned int size)
631 {
632 struct fs_dma_ctrl *ctrl = opaque;
633 uint32_t value = val64;
634 int c;
635
636 if (size != 4) {
637 dma_winvalid(opaque, addr, value);
638 }
639
640 /* Make addr relative to this channel and bounded to nr regs. */
641 c = fs_channel(addr);
642 addr &= 0xff;
643 addr >>= 2;
644 switch (addr)
645 {
646 case RW_DATA:
647 ctrl->channels[c].regs[addr] = value;
648 break;
649
650 case RW_CFG:
651 ctrl->channels[c].regs[addr] = value;
652 dma_update_state(ctrl, c);
653 break;
654 case RW_CMD:
655 /* continue. */
656 if (value & ~1)
657 printf("Invalid store to ch=%d RW_CMD %x\n",
658 c, value);
659 ctrl->channels[c].regs[addr] = value;
660 channel_continue(ctrl, c);
661 break;
662
663 case RW_SAVED_DATA:
664 case RW_SAVED_DATA_BUF:
665 case RW_GROUP:
666 case RW_GROUP_DOWN:
667 ctrl->channels[c].regs[addr] = value;
668 break;
669
670 case RW_ACK_INTR:
671 case RW_INTR_MASK:
672 ctrl->channels[c].regs[addr] = value;
673 channel_update_irq(ctrl, c);
674 if (addr == RW_ACK_INTR)
675 ctrl->channels[c].regs[RW_ACK_INTR] = 0;
676 break;
677
678 case RW_STREAM_CMD:
679 if (value & ~1023)
680 printf("Invalid store to ch=%d "
681 "RW_STREAMCMD %x\n",
682 c, value);
683 ctrl->channels[c].regs[addr] = value;
684 D(printf("stream_cmd ch=%d\n", c));
685 channel_stream_cmd(ctrl, c, value);
686 break;
687
688 default:
689 D(printf ("%s c=%d " TARGET_FMT_plx "\n",
690 __func__, c, addr));
691 break;
692 }
693 }
694
695 static const MemoryRegionOps dma_ops = {
696 .read = dma_read,
697 .write = dma_write,
698 .endianness = DEVICE_NATIVE_ENDIAN,
699 .valid = {
700 .min_access_size = 1,
701 .max_access_size = 4
702 }
703 };
704
705 static int etraxfs_dmac_run(void *opaque)
706 {
707 struct fs_dma_ctrl *ctrl = opaque;
708 int i;
709 int p = 0;
710
711 for (i = 0;
712 i < ctrl->nr_channels;
713 i++)
714 {
715 if (ctrl->channels[i].state == RUNNING)
716 {
717 if (ctrl->channels[i].input) {
718 p += channel_in_run(ctrl, i);
719 } else {
720 p += channel_out_run(ctrl, i);
721 }
722 }
723 }
724 return p;
725 }
726
727 int etraxfs_dmac_input(struct etraxfs_dma_client *client,
728 void *buf, int len, int eop)
729 {
730 return channel_in_process(client->ctrl, client->channel,
731 buf, len, eop);
732 }
733
734 /* Connect an IRQ line with a channel. */
735 void etraxfs_dmac_connect(void *opaque, int c, qemu_irq *line, int input)
736 {
737 struct fs_dma_ctrl *ctrl = opaque;
738 ctrl->channels[c].irq = *line;
739 ctrl->channels[c].input = input;
740 }
741
742 void etraxfs_dmac_connect_client(void *opaque, int c,
743 struct etraxfs_dma_client *cl)
744 {
745 struct fs_dma_ctrl *ctrl = opaque;
746 cl->ctrl = ctrl;
747 cl->channel = c;
748 ctrl->channels[c].client = cl;
749 }
750
751
752 static void DMA_run(void *opaque)
753 {
754 struct fs_dma_ctrl *etraxfs_dmac = opaque;
755 int p = 1;
756
757 if (runstate_is_running())
758 p = etraxfs_dmac_run(etraxfs_dmac);
759
760 if (p)
761 qemu_bh_schedule_idle(etraxfs_dmac->bh);
762 }
763
764 void *etraxfs_dmac_init(hwaddr base, int nr_channels)
765 {
766 struct fs_dma_ctrl *ctrl = NULL;
767
768 ctrl = g_malloc0(sizeof *ctrl);
769
770 ctrl->bh = qemu_bh_new(DMA_run, ctrl);
771
772 ctrl->nr_channels = nr_channels;
773 ctrl->channels = g_malloc0(sizeof ctrl->channels[0] * nr_channels);
774
775 memory_region_init_io(&ctrl->mmio, NULL, &dma_ops, ctrl, "etraxfs-dma",
776 nr_channels * 0x2000);
777 memory_region_add_subregion(get_system_memory(), base, &ctrl->mmio);
778
779 return ctrl;
780 }