pcie_aer: support configurable AER capa version
[qemu.git] / hw / dma / etraxfs_dma.c
1 /*
2 * QEMU ETRAX DMA Controller.
3 *
4 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "exec/address-spaces.h"
27 #include "qemu-common.h"
28 #include "sysemu/sysemu.h"
29
30 #include "hw/cris/etraxfs_dma.h"
31
32 #define D(x)
33
34 #define RW_DATA (0x0 / 4)
35 #define RW_SAVED_DATA (0x58 / 4)
36 #define RW_SAVED_DATA_BUF (0x5c / 4)
37 #define RW_GROUP (0x60 / 4)
38 #define RW_GROUP_DOWN (0x7c / 4)
39 #define RW_CMD (0x80 / 4)
40 #define RW_CFG (0x84 / 4)
41 #define RW_STAT (0x88 / 4)
42 #define RW_INTR_MASK (0x8c / 4)
43 #define RW_ACK_INTR (0x90 / 4)
44 #define R_INTR (0x94 / 4)
45 #define R_MASKED_INTR (0x98 / 4)
46 #define RW_STREAM_CMD (0x9c / 4)
47
48 #define DMA_REG_MAX (0x100 / 4)
49
50 /* descriptors */
51
52 // ------------------------------------------------------------ dma_descr_group
53 typedef struct dma_descr_group {
54 uint32_t next;
55 unsigned eol : 1;
56 unsigned tol : 1;
57 unsigned bol : 1;
58 unsigned : 1;
59 unsigned intr : 1;
60 unsigned : 2;
61 unsigned en : 1;
62 unsigned : 7;
63 unsigned dis : 1;
64 unsigned md : 16;
65 struct dma_descr_group *up;
66 union {
67 struct dma_descr_context *context;
68 struct dma_descr_group *group;
69 } down;
70 } dma_descr_group;
71
72 // ---------------------------------------------------------- dma_descr_context
73 typedef struct dma_descr_context {
74 uint32_t next;
75 unsigned eol : 1;
76 unsigned : 3;
77 unsigned intr : 1;
78 unsigned : 1;
79 unsigned store_mode : 1;
80 unsigned en : 1;
81 unsigned : 7;
82 unsigned dis : 1;
83 unsigned md0 : 16;
84 unsigned md1;
85 unsigned md2;
86 unsigned md3;
87 unsigned md4;
88 uint32_t saved_data;
89 uint32_t saved_data_buf;
90 } dma_descr_context;
91
92 // ------------------------------------------------------------- dma_descr_data
93 typedef struct dma_descr_data {
94 uint32_t next;
95 uint32_t buf;
96 unsigned eol : 1;
97 unsigned : 2;
98 unsigned out_eop : 1;
99 unsigned intr : 1;
100 unsigned wait : 1;
101 unsigned : 2;
102 unsigned : 3;
103 unsigned in_eop : 1;
104 unsigned : 4;
105 unsigned md : 16;
106 uint32_t after;
107 } dma_descr_data;
108
109 /* Constants */
110 enum {
111 regk_dma_ack_pkt = 0x00000100,
112 regk_dma_anytime = 0x00000001,
113 regk_dma_array = 0x00000008,
114 regk_dma_burst = 0x00000020,
115 regk_dma_client = 0x00000002,
116 regk_dma_copy_next = 0x00000010,
117 regk_dma_copy_up = 0x00000020,
118 regk_dma_data_at_eol = 0x00000001,
119 regk_dma_dis_c = 0x00000010,
120 regk_dma_dis_g = 0x00000020,
121 regk_dma_idle = 0x00000001,
122 regk_dma_intern = 0x00000004,
123 regk_dma_load_c = 0x00000200,
124 regk_dma_load_c_n = 0x00000280,
125 regk_dma_load_c_next = 0x00000240,
126 regk_dma_load_d = 0x00000140,
127 regk_dma_load_g = 0x00000300,
128 regk_dma_load_g_down = 0x000003c0,
129 regk_dma_load_g_next = 0x00000340,
130 regk_dma_load_g_up = 0x00000380,
131 regk_dma_next_en = 0x00000010,
132 regk_dma_next_pkt = 0x00000010,
133 regk_dma_no = 0x00000000,
134 regk_dma_only_at_wait = 0x00000000,
135 regk_dma_restore = 0x00000020,
136 regk_dma_rst = 0x00000001,
137 regk_dma_running = 0x00000004,
138 regk_dma_rw_cfg_default = 0x00000000,
139 regk_dma_rw_cmd_default = 0x00000000,
140 regk_dma_rw_intr_mask_default = 0x00000000,
141 regk_dma_rw_stat_default = 0x00000101,
142 regk_dma_rw_stream_cmd_default = 0x00000000,
143 regk_dma_save_down = 0x00000020,
144 regk_dma_save_up = 0x00000020,
145 regk_dma_set_reg = 0x00000050,
146 regk_dma_set_w_size1 = 0x00000190,
147 regk_dma_set_w_size2 = 0x000001a0,
148 regk_dma_set_w_size4 = 0x000001c0,
149 regk_dma_stopped = 0x00000002,
150 regk_dma_store_c = 0x00000002,
151 regk_dma_store_descr = 0x00000000,
152 regk_dma_store_g = 0x00000004,
153 regk_dma_store_md = 0x00000001,
154 regk_dma_sw = 0x00000008,
155 regk_dma_update_down = 0x00000020,
156 regk_dma_yes = 0x00000001
157 };
158
159 enum dma_ch_state
160 {
161 RST = 1,
162 STOPPED = 2,
163 RUNNING = 4
164 };
165
166 struct fs_dma_channel
167 {
168 qemu_irq irq;
169 struct etraxfs_dma_client *client;
170
171 /* Internal status. */
172 int stream_cmd_src;
173 enum dma_ch_state state;
174
175 unsigned int input : 1;
176 unsigned int eol : 1;
177
178 struct dma_descr_group current_g;
179 struct dma_descr_context current_c;
180 struct dma_descr_data current_d;
181
182 /* Control registers. */
183 uint32_t regs[DMA_REG_MAX];
184 };
185
186 struct fs_dma_ctrl
187 {
188 MemoryRegion mmio;
189 int nr_channels;
190 struct fs_dma_channel *channels;
191
192 QEMUBH *bh;
193 };
194
195 static void DMA_run(void *opaque);
196 static int channel_out_run(struct fs_dma_ctrl *ctrl, int c);
197
198 static inline uint32_t channel_reg(struct fs_dma_ctrl *ctrl, int c, int reg)
199 {
200 return ctrl->channels[c].regs[reg];
201 }
202
203 static inline int channel_stopped(struct fs_dma_ctrl *ctrl, int c)
204 {
205 return channel_reg(ctrl, c, RW_CFG) & 2;
206 }
207
208 static inline int channel_en(struct fs_dma_ctrl *ctrl, int c)
209 {
210 return (channel_reg(ctrl, c, RW_CFG) & 1)
211 && ctrl->channels[c].client;
212 }
213
214 static inline int fs_channel(hwaddr addr)
215 {
216 /* Every channel has a 0x2000 ctrl register map. */
217 return addr >> 13;
218 }
219
220 #ifdef USE_THIS_DEAD_CODE
221 static void channel_load_g(struct fs_dma_ctrl *ctrl, int c)
222 {
223 hwaddr addr = channel_reg(ctrl, c, RW_GROUP);
224
225 /* Load and decode. FIXME: handle endianness. */
226 cpu_physical_memory_read (addr,
227 (void *) &ctrl->channels[c].current_g,
228 sizeof ctrl->channels[c].current_g);
229 }
230
231 static void dump_c(int ch, struct dma_descr_context *c)
232 {
233 printf("%s ch=%d\n", __func__, ch);
234 printf("next=%x\n", c->next);
235 printf("saved_data=%x\n", c->saved_data);
236 printf("saved_data_buf=%x\n", c->saved_data_buf);
237 printf("eol=%x\n", (uint32_t) c->eol);
238 }
239
240 static void dump_d(int ch, struct dma_descr_data *d)
241 {
242 printf("%s ch=%d\n", __func__, ch);
243 printf("next=%x\n", d->next);
244 printf("buf=%x\n", d->buf);
245 printf("after=%x\n", d->after);
246 printf("intr=%x\n", (uint32_t) d->intr);
247 printf("out_eop=%x\n", (uint32_t) d->out_eop);
248 printf("in_eop=%x\n", (uint32_t) d->in_eop);
249 printf("eol=%x\n", (uint32_t) d->eol);
250 }
251 #endif
252
253 static void channel_load_c(struct fs_dma_ctrl *ctrl, int c)
254 {
255 hwaddr addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
256
257 /* Load and decode. FIXME: handle endianness. */
258 cpu_physical_memory_read (addr,
259 (void *) &ctrl->channels[c].current_c,
260 sizeof ctrl->channels[c].current_c);
261
262 D(dump_c(c, &ctrl->channels[c].current_c));
263 /* I guess this should update the current pos. */
264 ctrl->channels[c].regs[RW_SAVED_DATA] =
265 (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data;
266 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
267 (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data_buf;
268 }
269
270 static void channel_load_d(struct fs_dma_ctrl *ctrl, int c)
271 {
272 hwaddr addr = channel_reg(ctrl, c, RW_SAVED_DATA);
273
274 /* Load and decode. FIXME: handle endianness. */
275 D(printf("%s ch=%d addr=" TARGET_FMT_plx "\n", __func__, c, addr));
276 cpu_physical_memory_read (addr,
277 (void *) &ctrl->channels[c].current_d,
278 sizeof ctrl->channels[c].current_d);
279
280 D(dump_d(c, &ctrl->channels[c].current_d));
281 ctrl->channels[c].regs[RW_DATA] = addr;
282 }
283
284 static void channel_store_c(struct fs_dma_ctrl *ctrl, int c)
285 {
286 hwaddr addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
287
288 /* Encode and store. FIXME: handle endianness. */
289 D(printf("%s ch=%d addr=" TARGET_FMT_plx "\n", __func__, c, addr));
290 D(dump_d(c, &ctrl->channels[c].current_d));
291 cpu_physical_memory_write (addr,
292 (void *) &ctrl->channels[c].current_c,
293 sizeof ctrl->channels[c].current_c);
294 }
295
296 static void channel_store_d(struct fs_dma_ctrl *ctrl, int c)
297 {
298 hwaddr addr = channel_reg(ctrl, c, RW_SAVED_DATA);
299
300 /* Encode and store. FIXME: handle endianness. */
301 D(printf("%s ch=%d addr=" TARGET_FMT_plx "\n", __func__, c, addr));
302 cpu_physical_memory_write (addr,
303 (void *) &ctrl->channels[c].current_d,
304 sizeof ctrl->channels[c].current_d);
305 }
306
307 static inline void channel_stop(struct fs_dma_ctrl *ctrl, int c)
308 {
309 /* FIXME: */
310 }
311
312 static inline void channel_start(struct fs_dma_ctrl *ctrl, int c)
313 {
314 if (ctrl->channels[c].client)
315 {
316 ctrl->channels[c].eol = 0;
317 ctrl->channels[c].state = RUNNING;
318 if (!ctrl->channels[c].input)
319 channel_out_run(ctrl, c);
320 } else
321 printf("WARNING: starting DMA ch %d with no client\n", c);
322
323 qemu_bh_schedule_idle(ctrl->bh);
324 }
325
326 static void channel_continue(struct fs_dma_ctrl *ctrl, int c)
327 {
328 if (!channel_en(ctrl, c)
329 || channel_stopped(ctrl, c)
330 || ctrl->channels[c].state != RUNNING
331 /* Only reload the current data descriptor if it has eol set. */
332 || !ctrl->channels[c].current_d.eol) {
333 D(printf("continue failed ch=%d state=%d stopped=%d en=%d eol=%d\n",
334 c, ctrl->channels[c].state,
335 channel_stopped(ctrl, c),
336 channel_en(ctrl,c),
337 ctrl->channels[c].eol));
338 D(dump_d(c, &ctrl->channels[c].current_d));
339 return;
340 }
341
342 /* Reload the current descriptor. */
343 channel_load_d(ctrl, c);
344
345 /* If the current descriptor cleared the eol flag and we had already
346 reached eol state, do the continue. */
347 if (!ctrl->channels[c].current_d.eol && ctrl->channels[c].eol) {
348 D(printf("continue %d ok %x\n", c,
349 ctrl->channels[c].current_d.next));
350 ctrl->channels[c].regs[RW_SAVED_DATA] =
351 (uint32_t)(unsigned long)ctrl->channels[c].current_d.next;
352 channel_load_d(ctrl, c);
353 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
354 (uint32_t)(unsigned long)ctrl->channels[c].current_d.buf;
355
356 channel_start(ctrl, c);
357 }
358 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
359 (uint32_t)(unsigned long)ctrl->channels[c].current_d.buf;
360 }
361
362 static void channel_stream_cmd(struct fs_dma_ctrl *ctrl, int c, uint32_t v)
363 {
364 unsigned int cmd = v & ((1 << 10) - 1);
365
366 D(printf("%s ch=%d cmd=%x\n",
367 __func__, c, cmd));
368 if (cmd & regk_dma_load_d) {
369 channel_load_d(ctrl, c);
370 if (cmd & regk_dma_burst)
371 channel_start(ctrl, c);
372 }
373
374 if (cmd & regk_dma_load_c) {
375 channel_load_c(ctrl, c);
376 }
377 }
378
379 static void channel_update_irq(struct fs_dma_ctrl *ctrl, int c)
380 {
381 D(printf("%s %d\n", __func__, c));
382 ctrl->channels[c].regs[R_INTR] &=
383 ~(ctrl->channels[c].regs[RW_ACK_INTR]);
384
385 ctrl->channels[c].regs[R_MASKED_INTR] =
386 ctrl->channels[c].regs[R_INTR]
387 & ctrl->channels[c].regs[RW_INTR_MASK];
388
389 D(printf("%s: chan=%d masked_intr=%x\n", __func__,
390 c,
391 ctrl->channels[c].regs[R_MASKED_INTR]));
392
393 qemu_set_irq(ctrl->channels[c].irq,
394 !!ctrl->channels[c].regs[R_MASKED_INTR]);
395 }
396
397 static int channel_out_run(struct fs_dma_ctrl *ctrl, int c)
398 {
399 uint32_t len;
400 uint32_t saved_data_buf;
401 unsigned char buf[2 * 1024];
402
403 struct dma_context_metadata meta;
404 bool send_context = true;
405
406 if (ctrl->channels[c].eol)
407 return 0;
408
409 do {
410 bool out_eop;
411 D(printf("ch=%d buf=%x after=%x\n",
412 c,
413 (uint32_t)ctrl->channels[c].current_d.buf,
414 (uint32_t)ctrl->channels[c].current_d.after));
415
416 if (send_context) {
417 if (ctrl->channels[c].client->client.metadata_push) {
418 meta.metadata = ctrl->channels[c].current_d.md;
419 ctrl->channels[c].client->client.metadata_push(
420 ctrl->channels[c].client->client.opaque,
421 &meta);
422 }
423 send_context = false;
424 }
425
426 channel_load_d(ctrl, c);
427 saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
428 len = (uint32_t)(unsigned long)
429 ctrl->channels[c].current_d.after;
430 len -= saved_data_buf;
431
432 if (len > sizeof buf)
433 len = sizeof buf;
434 cpu_physical_memory_read (saved_data_buf, buf, len);
435
436 out_eop = ((saved_data_buf + len) ==
437 ctrl->channels[c].current_d.after) &&
438 ctrl->channels[c].current_d.out_eop;
439
440 D(printf("channel %d pushes %x %u bytes eop=%u\n", c,
441 saved_data_buf, len, out_eop));
442
443 if (ctrl->channels[c].client->client.push) {
444 if (len > 0) {
445 ctrl->channels[c].client->client.push(
446 ctrl->channels[c].client->client.opaque,
447 buf, len, out_eop);
448 }
449 } else {
450 printf("WARNING: DMA ch%d dataloss,"
451 " no attached client.\n", c);
452 }
453
454 saved_data_buf += len;
455
456 if (saved_data_buf == (uint32_t)(unsigned long)
457 ctrl->channels[c].current_d.after) {
458 /* Done. Step to next. */
459 if (ctrl->channels[c].current_d.out_eop) {
460 send_context = true;
461 }
462 if (ctrl->channels[c].current_d.intr) {
463 /* data intr. */
464 D(printf("signal intr %d eol=%d\n",
465 len, ctrl->channels[c].current_d.eol));
466 ctrl->channels[c].regs[R_INTR] |= (1 << 2);
467 channel_update_irq(ctrl, c);
468 }
469 channel_store_d(ctrl, c);
470 if (ctrl->channels[c].current_d.eol) {
471 D(printf("channel %d EOL\n", c));
472 ctrl->channels[c].eol = 1;
473
474 /* Mark the context as disabled. */
475 ctrl->channels[c].current_c.dis = 1;
476 channel_store_c(ctrl, c);
477
478 channel_stop(ctrl, c);
479 } else {
480 ctrl->channels[c].regs[RW_SAVED_DATA] =
481 (uint32_t)(unsigned long)ctrl->
482 channels[c].current_d.next;
483 /* Load new descriptor. */
484 channel_load_d(ctrl, c);
485 saved_data_buf = (uint32_t)(unsigned long)
486 ctrl->channels[c].current_d.buf;
487 }
488
489 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
490 saved_data_buf;
491 D(dump_d(c, &ctrl->channels[c].current_d));
492 }
493 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
494 } while (!ctrl->channels[c].eol);
495 return 1;
496 }
497
498 static int channel_in_process(struct fs_dma_ctrl *ctrl, int c,
499 unsigned char *buf, int buflen, int eop)
500 {
501 uint32_t len;
502 uint32_t saved_data_buf;
503
504 if (ctrl->channels[c].eol == 1)
505 return 0;
506
507 channel_load_d(ctrl, c);
508 saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
509 len = (uint32_t)(unsigned long)ctrl->channels[c].current_d.after;
510 len -= saved_data_buf;
511
512 if (len > buflen)
513 len = buflen;
514
515 cpu_physical_memory_write (saved_data_buf, buf, len);
516 saved_data_buf += len;
517
518 if (saved_data_buf ==
519 (uint32_t)(unsigned long)ctrl->channels[c].current_d.after
520 || eop) {
521 uint32_t r_intr = ctrl->channels[c].regs[R_INTR];
522
523 D(printf("in dscr end len=%d\n",
524 ctrl->channels[c].current_d.after
525 - ctrl->channels[c].current_d.buf));
526 ctrl->channels[c].current_d.after = saved_data_buf;
527
528 /* Done. Step to next. */
529 if (ctrl->channels[c].current_d.intr) {
530 /* TODO: signal eop to the client. */
531 /* data intr. */
532 ctrl->channels[c].regs[R_INTR] |= 3;
533 }
534 if (eop) {
535 ctrl->channels[c].current_d.in_eop = 1;
536 ctrl->channels[c].regs[R_INTR] |= 8;
537 }
538 if (r_intr != ctrl->channels[c].regs[R_INTR])
539 channel_update_irq(ctrl, c);
540
541 channel_store_d(ctrl, c);
542 D(dump_d(c, &ctrl->channels[c].current_d));
543
544 if (ctrl->channels[c].current_d.eol) {
545 D(printf("channel %d EOL\n", c));
546 ctrl->channels[c].eol = 1;
547
548 /* Mark the context as disabled. */
549 ctrl->channels[c].current_c.dis = 1;
550 channel_store_c(ctrl, c);
551
552 channel_stop(ctrl, c);
553 } else {
554 ctrl->channels[c].regs[RW_SAVED_DATA] =
555 (uint32_t)(unsigned long)ctrl->
556 channels[c].current_d.next;
557 /* Load new descriptor. */
558 channel_load_d(ctrl, c);
559 saved_data_buf = (uint32_t)(unsigned long)
560 ctrl->channels[c].current_d.buf;
561 }
562 }
563
564 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
565 return len;
566 }
567
568 static inline int channel_in_run(struct fs_dma_ctrl *ctrl, int c)
569 {
570 if (ctrl->channels[c].client->client.pull) {
571 ctrl->channels[c].client->client.pull(
572 ctrl->channels[c].client->client.opaque);
573 return 1;
574 } else
575 return 0;
576 }
577
578 static uint32_t dma_rinvalid (void *opaque, hwaddr addr)
579 {
580 hw_error("Unsupported short raccess. reg=" TARGET_FMT_plx "\n", addr);
581 return 0;
582 }
583
584 static uint64_t
585 dma_read(void *opaque, hwaddr addr, unsigned int size)
586 {
587 struct fs_dma_ctrl *ctrl = opaque;
588 int c;
589 uint32_t r = 0;
590
591 if (size != 4) {
592 dma_rinvalid(opaque, addr);
593 }
594
595 /* Make addr relative to this channel and bounded to nr regs. */
596 c = fs_channel(addr);
597 addr &= 0xff;
598 addr >>= 2;
599 switch (addr)
600 {
601 case RW_STAT:
602 r = ctrl->channels[c].state & 7;
603 r |= ctrl->channels[c].eol << 5;
604 r |= ctrl->channels[c].stream_cmd_src << 8;
605 break;
606
607 default:
608 r = ctrl->channels[c].regs[addr];
609 D(printf ("%s c=%d addr=" TARGET_FMT_plx "\n",
610 __func__, c, addr));
611 break;
612 }
613 return r;
614 }
615
616 static void
617 dma_winvalid (void *opaque, hwaddr addr, uint32_t value)
618 {
619 hw_error("Unsupported short waccess. reg=" TARGET_FMT_plx "\n", addr);
620 }
621
622 static void
623 dma_update_state(struct fs_dma_ctrl *ctrl, int c)
624 {
625 if (ctrl->channels[c].regs[RW_CFG] & 2)
626 ctrl->channels[c].state = STOPPED;
627 if (!(ctrl->channels[c].regs[RW_CFG] & 1))
628 ctrl->channels[c].state = RST;
629 }
630
631 static void
632 dma_write(void *opaque, hwaddr addr,
633 uint64_t val64, unsigned int size)
634 {
635 struct fs_dma_ctrl *ctrl = opaque;
636 uint32_t value = val64;
637 int c;
638
639 if (size != 4) {
640 dma_winvalid(opaque, addr, value);
641 }
642
643 /* Make addr relative to this channel and bounded to nr regs. */
644 c = fs_channel(addr);
645 addr &= 0xff;
646 addr >>= 2;
647 switch (addr)
648 {
649 case RW_DATA:
650 ctrl->channels[c].regs[addr] = value;
651 break;
652
653 case RW_CFG:
654 ctrl->channels[c].regs[addr] = value;
655 dma_update_state(ctrl, c);
656 break;
657 case RW_CMD:
658 /* continue. */
659 if (value & ~1)
660 printf("Invalid store to ch=%d RW_CMD %x\n",
661 c, value);
662 ctrl->channels[c].regs[addr] = value;
663 channel_continue(ctrl, c);
664 break;
665
666 case RW_SAVED_DATA:
667 case RW_SAVED_DATA_BUF:
668 case RW_GROUP:
669 case RW_GROUP_DOWN:
670 ctrl->channels[c].regs[addr] = value;
671 break;
672
673 case RW_ACK_INTR:
674 case RW_INTR_MASK:
675 ctrl->channels[c].regs[addr] = value;
676 channel_update_irq(ctrl, c);
677 if (addr == RW_ACK_INTR)
678 ctrl->channels[c].regs[RW_ACK_INTR] = 0;
679 break;
680
681 case RW_STREAM_CMD:
682 if (value & ~1023)
683 printf("Invalid store to ch=%d "
684 "RW_STREAMCMD %x\n",
685 c, value);
686 ctrl->channels[c].regs[addr] = value;
687 D(printf("stream_cmd ch=%d\n", c));
688 channel_stream_cmd(ctrl, c, value);
689 break;
690
691 default:
692 D(printf ("%s c=%d " TARGET_FMT_plx "\n",
693 __func__, c, addr));
694 break;
695 }
696 }
697
698 static const MemoryRegionOps dma_ops = {
699 .read = dma_read,
700 .write = dma_write,
701 .endianness = DEVICE_NATIVE_ENDIAN,
702 .valid = {
703 .min_access_size = 1,
704 .max_access_size = 4
705 }
706 };
707
708 static int etraxfs_dmac_run(void *opaque)
709 {
710 struct fs_dma_ctrl *ctrl = opaque;
711 int i;
712 int p = 0;
713
714 for (i = 0;
715 i < ctrl->nr_channels;
716 i++)
717 {
718 if (ctrl->channels[i].state == RUNNING)
719 {
720 if (ctrl->channels[i].input) {
721 p += channel_in_run(ctrl, i);
722 } else {
723 p += channel_out_run(ctrl, i);
724 }
725 }
726 }
727 return p;
728 }
729
730 int etraxfs_dmac_input(struct etraxfs_dma_client *client,
731 void *buf, int len, int eop)
732 {
733 return channel_in_process(client->ctrl, client->channel,
734 buf, len, eop);
735 }
736
737 /* Connect an IRQ line with a channel. */
738 void etraxfs_dmac_connect(void *opaque, int c, qemu_irq *line, int input)
739 {
740 struct fs_dma_ctrl *ctrl = opaque;
741 ctrl->channels[c].irq = *line;
742 ctrl->channels[c].input = input;
743 }
744
745 void etraxfs_dmac_connect_client(void *opaque, int c,
746 struct etraxfs_dma_client *cl)
747 {
748 struct fs_dma_ctrl *ctrl = opaque;
749 cl->ctrl = ctrl;
750 cl->channel = c;
751 ctrl->channels[c].client = cl;
752 }
753
754
755 static void DMA_run(void *opaque)
756 {
757 struct fs_dma_ctrl *etraxfs_dmac = opaque;
758 int p = 1;
759
760 if (runstate_is_running())
761 p = etraxfs_dmac_run(etraxfs_dmac);
762
763 if (p)
764 qemu_bh_schedule_idle(etraxfs_dmac->bh);
765 }
766
767 void *etraxfs_dmac_init(hwaddr base, int nr_channels)
768 {
769 struct fs_dma_ctrl *ctrl = NULL;
770
771 ctrl = g_malloc0(sizeof *ctrl);
772
773 ctrl->bh = qemu_bh_new(DMA_run, ctrl);
774
775 ctrl->nr_channels = nr_channels;
776 ctrl->channels = g_malloc0(sizeof ctrl->channels[0] * nr_channels);
777
778 memory_region_init_io(&ctrl->mmio, NULL, &dma_ops, ctrl, "etraxfs-dma",
779 nr_channels * 0x2000);
780 memory_region_add_subregion(get_system_memory(), base, &ctrl->mmio);
781
782 return ctrl;
783 }