PPC: e500: msync is 440 only, e500 has real sync
[qemu.git] / hw / e1000.c
1 /*
2 * QEMU e1000 emulation
3 *
4 * Software developer's manual:
5 * http://download.intel.com/design/network/manuals/8254x_GBe_SDM.pdf
6 *
7 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
8 * Copyright (c) 2008 Qumranet
9 * Based on work done by:
10 * Copyright (c) 2007 Dan Aloni
11 * Copyright (c) 2004 Antony T Curtis
12 *
13 * This library is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU Lesser General Public
15 * License as published by the Free Software Foundation; either
16 * version 2 of the License, or (at your option) any later version.
17 *
18 * This library is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * Lesser General Public License for more details.
22 *
23 * You should have received a copy of the GNU Lesser General Public
24 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
25 */
26
27
28 #include "hw.h"
29 #include "pci.h"
30 #include "net.h"
31 #include "net/checksum.h"
32 #include "loader.h"
33 #include "sysemu.h"
34 #include "dma.h"
35
36 #include "e1000_hw.h"
37
38 #define E1000_DEBUG
39
40 #ifdef E1000_DEBUG
41 enum {
42 DEBUG_GENERAL, DEBUG_IO, DEBUG_MMIO, DEBUG_INTERRUPT,
43 DEBUG_RX, DEBUG_TX, DEBUG_MDIC, DEBUG_EEPROM,
44 DEBUG_UNKNOWN, DEBUG_TXSUM, DEBUG_TXERR, DEBUG_RXERR,
45 DEBUG_RXFILTER, DEBUG_NOTYET,
46 };
47 #define DBGBIT(x) (1<<DEBUG_##x)
48 static int debugflags = DBGBIT(TXERR) | DBGBIT(GENERAL);
49
50 #define DBGOUT(what, fmt, ...) do { \
51 if (debugflags & DBGBIT(what)) \
52 fprintf(stderr, "e1000: " fmt, ## __VA_ARGS__); \
53 } while (0)
54 #else
55 #define DBGOUT(what, fmt, ...) do {} while (0)
56 #endif
57
58 #define IOPORT_SIZE 0x40
59 #define PNPMMIO_SIZE 0x20000
60 #define MIN_BUF_SIZE 60 /* Min. octets in an ethernet frame sans FCS */
61
62 /*
63 * HW models:
64 * E1000_DEV_ID_82540EM works with Windows and Linux
65 * E1000_DEV_ID_82573L OK with windoze and Linux 2.6.22,
66 * appears to perform better than 82540EM, but breaks with Linux 2.6.18
67 * E1000_DEV_ID_82544GC_COPPER appears to work; not well tested
68 * Others never tested
69 */
70 enum { E1000_DEVID = E1000_DEV_ID_82540EM };
71
72 /*
73 * May need to specify additional MAC-to-PHY entries --
74 * Intel's Windows driver refuses to initialize unless they match
75 */
76 enum {
77 PHY_ID2_INIT = E1000_DEVID == E1000_DEV_ID_82573L ? 0xcc2 :
78 E1000_DEVID == E1000_DEV_ID_82544GC_COPPER ? 0xc30 :
79 /* default to E1000_DEV_ID_82540EM */ 0xc20
80 };
81
82 typedef struct E1000State_st {
83 PCIDevice dev;
84 NICState *nic;
85 NICConf conf;
86 MemoryRegion mmio;
87 MemoryRegion io;
88
89 uint32_t mac_reg[0x8000];
90 uint16_t phy_reg[0x20];
91 uint16_t eeprom_data[64];
92
93 uint32_t rxbuf_size;
94 uint32_t rxbuf_min_shift;
95 int check_rxov;
96 struct e1000_tx {
97 unsigned char header[256];
98 unsigned char vlan_header[4];
99 /* Fields vlan and data must not be reordered or separated. */
100 unsigned char vlan[4];
101 unsigned char data[0x10000];
102 uint16_t size;
103 unsigned char sum_needed;
104 unsigned char vlan_needed;
105 uint8_t ipcss;
106 uint8_t ipcso;
107 uint16_t ipcse;
108 uint8_t tucss;
109 uint8_t tucso;
110 uint16_t tucse;
111 uint8_t hdr_len;
112 uint16_t mss;
113 uint32_t paylen;
114 uint16_t tso_frames;
115 char tse;
116 int8_t ip;
117 int8_t tcp;
118 char cptse; // current packet tse bit
119 } tx;
120
121 struct {
122 uint32_t val_in; // shifted in from guest driver
123 uint16_t bitnum_in;
124 uint16_t bitnum_out;
125 uint16_t reading;
126 uint32_t old_eecd;
127 } eecd_state;
128 } E1000State;
129
130 #define defreg(x) x = (E1000_##x>>2)
131 enum {
132 defreg(CTRL), defreg(EECD), defreg(EERD), defreg(GPRC),
133 defreg(GPTC), defreg(ICR), defreg(ICS), defreg(IMC),
134 defreg(IMS), defreg(LEDCTL), defreg(MANC), defreg(MDIC),
135 defreg(MPC), defreg(PBA), defreg(RCTL), defreg(RDBAH),
136 defreg(RDBAL), defreg(RDH), defreg(RDLEN), defreg(RDT),
137 defreg(STATUS), defreg(SWSM), defreg(TCTL), defreg(TDBAH),
138 defreg(TDBAL), defreg(TDH), defreg(TDLEN), defreg(TDT),
139 defreg(TORH), defreg(TORL), defreg(TOTH), defreg(TOTL),
140 defreg(TPR), defreg(TPT), defreg(TXDCTL), defreg(WUFC),
141 defreg(RA), defreg(MTA), defreg(CRCERRS),defreg(VFTA),
142 defreg(VET),
143 };
144
145 enum { PHY_R = 1, PHY_W = 2, PHY_RW = PHY_R | PHY_W };
146 static const char phy_regcap[0x20] = {
147 [PHY_STATUS] = PHY_R, [M88E1000_EXT_PHY_SPEC_CTRL] = PHY_RW,
148 [PHY_ID1] = PHY_R, [M88E1000_PHY_SPEC_CTRL] = PHY_RW,
149 [PHY_CTRL] = PHY_RW, [PHY_1000T_CTRL] = PHY_RW,
150 [PHY_LP_ABILITY] = PHY_R, [PHY_1000T_STATUS] = PHY_R,
151 [PHY_AUTONEG_ADV] = PHY_RW, [M88E1000_RX_ERR_CNTR] = PHY_R,
152 [PHY_ID2] = PHY_R, [M88E1000_PHY_SPEC_STATUS] = PHY_R
153 };
154
155 static void
156 set_interrupt_cause(E1000State *s, int index, uint32_t val)
157 {
158 if (val)
159 val |= E1000_ICR_INT_ASSERTED;
160 s->mac_reg[ICR] = val;
161 s->mac_reg[ICS] = val;
162 qemu_set_irq(s->dev.irq[0], (s->mac_reg[IMS] & s->mac_reg[ICR]) != 0);
163 }
164
165 static void
166 set_ics(E1000State *s, int index, uint32_t val)
167 {
168 DBGOUT(INTERRUPT, "set_ics %x, ICR %x, IMR %x\n", val, s->mac_reg[ICR],
169 s->mac_reg[IMS]);
170 set_interrupt_cause(s, 0, val | s->mac_reg[ICR]);
171 }
172
173 static int
174 rxbufsize(uint32_t v)
175 {
176 v &= E1000_RCTL_BSEX | E1000_RCTL_SZ_16384 | E1000_RCTL_SZ_8192 |
177 E1000_RCTL_SZ_4096 | E1000_RCTL_SZ_2048 | E1000_RCTL_SZ_1024 |
178 E1000_RCTL_SZ_512 | E1000_RCTL_SZ_256;
179 switch (v) {
180 case E1000_RCTL_BSEX | E1000_RCTL_SZ_16384:
181 return 16384;
182 case E1000_RCTL_BSEX | E1000_RCTL_SZ_8192:
183 return 8192;
184 case E1000_RCTL_BSEX | E1000_RCTL_SZ_4096:
185 return 4096;
186 case E1000_RCTL_SZ_1024:
187 return 1024;
188 case E1000_RCTL_SZ_512:
189 return 512;
190 case E1000_RCTL_SZ_256:
191 return 256;
192 }
193 return 2048;
194 }
195
196 static void
197 set_ctrl(E1000State *s, int index, uint32_t val)
198 {
199 /* RST is self clearing */
200 s->mac_reg[CTRL] = val & ~E1000_CTRL_RST;
201 }
202
203 static void
204 set_rx_control(E1000State *s, int index, uint32_t val)
205 {
206 s->mac_reg[RCTL] = val;
207 s->rxbuf_size = rxbufsize(val);
208 s->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1;
209 DBGOUT(RX, "RCTL: %d, mac_reg[RCTL] = 0x%x\n", s->mac_reg[RDT],
210 s->mac_reg[RCTL]);
211 }
212
213 static void
214 set_mdic(E1000State *s, int index, uint32_t val)
215 {
216 uint32_t data = val & E1000_MDIC_DATA_MASK;
217 uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
218
219 if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) // phy #
220 val = s->mac_reg[MDIC] | E1000_MDIC_ERROR;
221 else if (val & E1000_MDIC_OP_READ) {
222 DBGOUT(MDIC, "MDIC read reg 0x%x\n", addr);
223 if (!(phy_regcap[addr] & PHY_R)) {
224 DBGOUT(MDIC, "MDIC read reg %x unhandled\n", addr);
225 val |= E1000_MDIC_ERROR;
226 } else
227 val = (val ^ data) | s->phy_reg[addr];
228 } else if (val & E1000_MDIC_OP_WRITE) {
229 DBGOUT(MDIC, "MDIC write reg 0x%x, value 0x%x\n", addr, data);
230 if (!(phy_regcap[addr] & PHY_W)) {
231 DBGOUT(MDIC, "MDIC write reg %x unhandled\n", addr);
232 val |= E1000_MDIC_ERROR;
233 } else
234 s->phy_reg[addr] = data;
235 }
236 s->mac_reg[MDIC] = val | E1000_MDIC_READY;
237 set_ics(s, 0, E1000_ICR_MDAC);
238 }
239
240 static uint32_t
241 get_eecd(E1000State *s, int index)
242 {
243 uint32_t ret = E1000_EECD_PRES|E1000_EECD_GNT | s->eecd_state.old_eecd;
244
245 DBGOUT(EEPROM, "reading eeprom bit %d (reading %d)\n",
246 s->eecd_state.bitnum_out, s->eecd_state.reading);
247 if (!s->eecd_state.reading ||
248 ((s->eeprom_data[(s->eecd_state.bitnum_out >> 4) & 0x3f] >>
249 ((s->eecd_state.bitnum_out & 0xf) ^ 0xf))) & 1)
250 ret |= E1000_EECD_DO;
251 return ret;
252 }
253
254 static void
255 set_eecd(E1000State *s, int index, uint32_t val)
256 {
257 uint32_t oldval = s->eecd_state.old_eecd;
258
259 s->eecd_state.old_eecd = val & (E1000_EECD_SK | E1000_EECD_CS |
260 E1000_EECD_DI|E1000_EECD_FWE_MASK|E1000_EECD_REQ);
261 if (!(E1000_EECD_CS & val)) // CS inactive; nothing to do
262 return;
263 if (E1000_EECD_CS & (val ^ oldval)) { // CS rise edge; reset state
264 s->eecd_state.val_in = 0;
265 s->eecd_state.bitnum_in = 0;
266 s->eecd_state.bitnum_out = 0;
267 s->eecd_state.reading = 0;
268 }
269 if (!(E1000_EECD_SK & (val ^ oldval))) // no clock edge
270 return;
271 if (!(E1000_EECD_SK & val)) { // falling edge
272 s->eecd_state.bitnum_out++;
273 return;
274 }
275 s->eecd_state.val_in <<= 1;
276 if (val & E1000_EECD_DI)
277 s->eecd_state.val_in |= 1;
278 if (++s->eecd_state.bitnum_in == 9 && !s->eecd_state.reading) {
279 s->eecd_state.bitnum_out = ((s->eecd_state.val_in & 0x3f)<<4)-1;
280 s->eecd_state.reading = (((s->eecd_state.val_in >> 6) & 7) ==
281 EEPROM_READ_OPCODE_MICROWIRE);
282 }
283 DBGOUT(EEPROM, "eeprom bitnum in %d out %d, reading %d\n",
284 s->eecd_state.bitnum_in, s->eecd_state.bitnum_out,
285 s->eecd_state.reading);
286 }
287
288 static uint32_t
289 flash_eerd_read(E1000State *s, int x)
290 {
291 unsigned int index, r = s->mac_reg[EERD] & ~E1000_EEPROM_RW_REG_START;
292
293 if ((s->mac_reg[EERD] & E1000_EEPROM_RW_REG_START) == 0)
294 return (s->mac_reg[EERD]);
295
296 if ((index = r >> E1000_EEPROM_RW_ADDR_SHIFT) > EEPROM_CHECKSUM_REG)
297 return (E1000_EEPROM_RW_REG_DONE | r);
298
299 return ((s->eeprom_data[index] << E1000_EEPROM_RW_REG_DATA) |
300 E1000_EEPROM_RW_REG_DONE | r);
301 }
302
303 static void
304 putsum(uint8_t *data, uint32_t n, uint32_t sloc, uint32_t css, uint32_t cse)
305 {
306 uint32_t sum;
307
308 if (cse && cse < n)
309 n = cse + 1;
310 if (sloc < n-1) {
311 sum = net_checksum_add(n-css, data+css);
312 cpu_to_be16wu((uint16_t *)(data + sloc),
313 net_checksum_finish(sum));
314 }
315 }
316
317 static inline int
318 vlan_enabled(E1000State *s)
319 {
320 return ((s->mac_reg[CTRL] & E1000_CTRL_VME) != 0);
321 }
322
323 static inline int
324 vlan_rx_filter_enabled(E1000State *s)
325 {
326 return ((s->mac_reg[RCTL] & E1000_RCTL_VFE) != 0);
327 }
328
329 static inline int
330 is_vlan_packet(E1000State *s, const uint8_t *buf)
331 {
332 return (be16_to_cpup((uint16_t *)(buf + 12)) ==
333 le16_to_cpup((uint16_t *)(s->mac_reg + VET)));
334 }
335
336 static inline int
337 is_vlan_txd(uint32_t txd_lower)
338 {
339 return ((txd_lower & E1000_TXD_CMD_VLE) != 0);
340 }
341
342 /* FCS aka Ethernet CRC-32. We don't get it from backends and can't
343 * fill it in, just pad descriptor length by 4 bytes unless guest
344 * told us to strip it off the packet. */
345 static inline int
346 fcs_len(E1000State *s)
347 {
348 return (s->mac_reg[RCTL] & E1000_RCTL_SECRC) ? 0 : 4;
349 }
350
351 static void
352 xmit_seg(E1000State *s)
353 {
354 uint16_t len, *sp;
355 unsigned int frames = s->tx.tso_frames, css, sofar, n;
356 struct e1000_tx *tp = &s->tx;
357
358 if (tp->tse && tp->cptse) {
359 css = tp->ipcss;
360 DBGOUT(TXSUM, "frames %d size %d ipcss %d\n",
361 frames, tp->size, css);
362 if (tp->ip) { // IPv4
363 cpu_to_be16wu((uint16_t *)(tp->data+css+2),
364 tp->size - css);
365 cpu_to_be16wu((uint16_t *)(tp->data+css+4),
366 be16_to_cpup((uint16_t *)(tp->data+css+4))+frames);
367 } else // IPv6
368 cpu_to_be16wu((uint16_t *)(tp->data+css+4),
369 tp->size - css);
370 css = tp->tucss;
371 len = tp->size - css;
372 DBGOUT(TXSUM, "tcp %d tucss %d len %d\n", tp->tcp, css, len);
373 if (tp->tcp) {
374 sofar = frames * tp->mss;
375 cpu_to_be32wu((uint32_t *)(tp->data+css+4), // seq
376 be32_to_cpupu((uint32_t *)(tp->data+css+4))+sofar);
377 if (tp->paylen - sofar > tp->mss)
378 tp->data[css + 13] &= ~9; // PSH, FIN
379 } else // UDP
380 cpu_to_be16wu((uint16_t *)(tp->data+css+4), len);
381 if (tp->sum_needed & E1000_TXD_POPTS_TXSM) {
382 unsigned int phsum;
383 // add pseudo-header length before checksum calculation
384 sp = (uint16_t *)(tp->data + tp->tucso);
385 phsum = be16_to_cpup(sp) + len;
386 phsum = (phsum >> 16) + (phsum & 0xffff);
387 cpu_to_be16wu(sp, phsum);
388 }
389 tp->tso_frames++;
390 }
391
392 if (tp->sum_needed & E1000_TXD_POPTS_TXSM)
393 putsum(tp->data, tp->size, tp->tucso, tp->tucss, tp->tucse);
394 if (tp->sum_needed & E1000_TXD_POPTS_IXSM)
395 putsum(tp->data, tp->size, tp->ipcso, tp->ipcss, tp->ipcse);
396 if (tp->vlan_needed) {
397 memmove(tp->vlan, tp->data, 4);
398 memmove(tp->data, tp->data + 4, 8);
399 memcpy(tp->data + 8, tp->vlan_header, 4);
400 qemu_send_packet(&s->nic->nc, tp->vlan, tp->size + 4);
401 } else
402 qemu_send_packet(&s->nic->nc, tp->data, tp->size);
403 s->mac_reg[TPT]++;
404 s->mac_reg[GPTC]++;
405 n = s->mac_reg[TOTL];
406 if ((s->mac_reg[TOTL] += s->tx.size) < n)
407 s->mac_reg[TOTH]++;
408 }
409
410 static void
411 process_tx_desc(E1000State *s, struct e1000_tx_desc *dp)
412 {
413 uint32_t txd_lower = le32_to_cpu(dp->lower.data);
414 uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
415 unsigned int split_size = txd_lower & 0xffff, bytes, sz, op;
416 unsigned int msh = 0xfffff, hdr = 0;
417 uint64_t addr;
418 struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
419 struct e1000_tx *tp = &s->tx;
420
421 if (dtype == E1000_TXD_CMD_DEXT) { // context descriptor
422 op = le32_to_cpu(xp->cmd_and_length);
423 tp->ipcss = xp->lower_setup.ip_fields.ipcss;
424 tp->ipcso = xp->lower_setup.ip_fields.ipcso;
425 tp->ipcse = le16_to_cpu(xp->lower_setup.ip_fields.ipcse);
426 tp->tucss = xp->upper_setup.tcp_fields.tucss;
427 tp->tucso = xp->upper_setup.tcp_fields.tucso;
428 tp->tucse = le16_to_cpu(xp->upper_setup.tcp_fields.tucse);
429 tp->paylen = op & 0xfffff;
430 tp->hdr_len = xp->tcp_seg_setup.fields.hdr_len;
431 tp->mss = le16_to_cpu(xp->tcp_seg_setup.fields.mss);
432 tp->ip = (op & E1000_TXD_CMD_IP) ? 1 : 0;
433 tp->tcp = (op & E1000_TXD_CMD_TCP) ? 1 : 0;
434 tp->tse = (op & E1000_TXD_CMD_TSE) ? 1 : 0;
435 tp->tso_frames = 0;
436 if (tp->tucso == 0) { // this is probably wrong
437 DBGOUT(TXSUM, "TCP/UDP: cso 0!\n");
438 tp->tucso = tp->tucss + (tp->tcp ? 16 : 6);
439 }
440 return;
441 } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
442 // data descriptor
443 if (tp->size == 0) {
444 tp->sum_needed = le32_to_cpu(dp->upper.data) >> 8;
445 }
446 tp->cptse = ( txd_lower & E1000_TXD_CMD_TSE ) ? 1 : 0;
447 } else {
448 // legacy descriptor
449 tp->cptse = 0;
450 }
451
452 if (vlan_enabled(s) && is_vlan_txd(txd_lower) &&
453 (tp->cptse || txd_lower & E1000_TXD_CMD_EOP)) {
454 tp->vlan_needed = 1;
455 cpu_to_be16wu((uint16_t *)(tp->vlan_header),
456 le16_to_cpup((uint16_t *)(s->mac_reg + VET)));
457 cpu_to_be16wu((uint16_t *)(tp->vlan_header + 2),
458 le16_to_cpu(dp->upper.fields.special));
459 }
460
461 addr = le64_to_cpu(dp->buffer_addr);
462 if (tp->tse && tp->cptse) {
463 hdr = tp->hdr_len;
464 msh = hdr + tp->mss;
465 do {
466 bytes = split_size;
467 if (tp->size + bytes > msh)
468 bytes = msh - tp->size;
469
470 bytes = MIN(sizeof(tp->data) - tp->size, bytes);
471 pci_dma_read(&s->dev, addr, tp->data + tp->size, bytes);
472 if ((sz = tp->size + bytes) >= hdr && tp->size < hdr)
473 memmove(tp->header, tp->data, hdr);
474 tp->size = sz;
475 addr += bytes;
476 if (sz == msh) {
477 xmit_seg(s);
478 memmove(tp->data, tp->header, hdr);
479 tp->size = hdr;
480 }
481 } while (split_size -= bytes);
482 } else if (!tp->tse && tp->cptse) {
483 // context descriptor TSE is not set, while data descriptor TSE is set
484 DBGOUT(TXERR, "TCP segmentaion Error\n");
485 } else {
486 split_size = MIN(sizeof(tp->data) - tp->size, split_size);
487 pci_dma_read(&s->dev, addr, tp->data + tp->size, split_size);
488 tp->size += split_size;
489 }
490
491 if (!(txd_lower & E1000_TXD_CMD_EOP))
492 return;
493 if (!(tp->tse && tp->cptse && tp->size < hdr))
494 xmit_seg(s);
495 tp->tso_frames = 0;
496 tp->sum_needed = 0;
497 tp->vlan_needed = 0;
498 tp->size = 0;
499 tp->cptse = 0;
500 }
501
502 static uint32_t
503 txdesc_writeback(E1000State *s, dma_addr_t base, struct e1000_tx_desc *dp)
504 {
505 uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
506
507 if (!(txd_lower & (E1000_TXD_CMD_RS|E1000_TXD_CMD_RPS)))
508 return 0;
509 txd_upper = (le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD) &
510 ~(E1000_TXD_STAT_EC | E1000_TXD_STAT_LC | E1000_TXD_STAT_TU);
511 dp->upper.data = cpu_to_le32(txd_upper);
512 pci_dma_write(&s->dev, base + ((char *)&dp->upper - (char *)dp),
513 &dp->upper, sizeof(dp->upper));
514 return E1000_ICR_TXDW;
515 }
516
517 static uint64_t tx_desc_base(E1000State *s)
518 {
519 uint64_t bah = s->mac_reg[TDBAH];
520 uint64_t bal = s->mac_reg[TDBAL] & ~0xf;
521
522 return (bah << 32) + bal;
523 }
524
525 static void
526 start_xmit(E1000State *s)
527 {
528 dma_addr_t base;
529 struct e1000_tx_desc desc;
530 uint32_t tdh_start = s->mac_reg[TDH], cause = E1000_ICS_TXQE;
531
532 if (!(s->mac_reg[TCTL] & E1000_TCTL_EN)) {
533 DBGOUT(TX, "tx disabled\n");
534 return;
535 }
536
537 while (s->mac_reg[TDH] != s->mac_reg[TDT]) {
538 base = tx_desc_base(s) +
539 sizeof(struct e1000_tx_desc) * s->mac_reg[TDH];
540 pci_dma_read(&s->dev, base, &desc, sizeof(desc));
541
542 DBGOUT(TX, "index %d: %p : %x %x\n", s->mac_reg[TDH],
543 (void *)(intptr_t)desc.buffer_addr, desc.lower.data,
544 desc.upper.data);
545
546 process_tx_desc(s, &desc);
547 cause |= txdesc_writeback(s, base, &desc);
548
549 if (++s->mac_reg[TDH] * sizeof(desc) >= s->mac_reg[TDLEN])
550 s->mac_reg[TDH] = 0;
551 /*
552 * the following could happen only if guest sw assigns
553 * bogus values to TDT/TDLEN.
554 * there's nothing too intelligent we could do about this.
555 */
556 if (s->mac_reg[TDH] == tdh_start) {
557 DBGOUT(TXERR, "TDH wraparound @%x, TDT %x, TDLEN %x\n",
558 tdh_start, s->mac_reg[TDT], s->mac_reg[TDLEN]);
559 break;
560 }
561 }
562 set_ics(s, 0, cause);
563 }
564
565 static int
566 receive_filter(E1000State *s, const uint8_t *buf, int size)
567 {
568 static const uint8_t bcast[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
569 static const int mta_shift[] = {4, 3, 2, 0};
570 uint32_t f, rctl = s->mac_reg[RCTL], ra[2], *rp;
571
572 if (is_vlan_packet(s, buf) && vlan_rx_filter_enabled(s)) {
573 uint16_t vid = be16_to_cpup((uint16_t *)(buf + 14));
574 uint32_t vfta = le32_to_cpup((uint32_t *)(s->mac_reg + VFTA) +
575 ((vid >> 5) & 0x7f));
576 if ((vfta & (1 << (vid & 0x1f))) == 0)
577 return 0;
578 }
579
580 if (rctl & E1000_RCTL_UPE) // promiscuous
581 return 1;
582
583 if ((buf[0] & 1) && (rctl & E1000_RCTL_MPE)) // promiscuous mcast
584 return 1;
585
586 if ((rctl & E1000_RCTL_BAM) && !memcmp(buf, bcast, sizeof bcast))
587 return 1;
588
589 for (rp = s->mac_reg + RA; rp < s->mac_reg + RA + 32; rp += 2) {
590 if (!(rp[1] & E1000_RAH_AV))
591 continue;
592 ra[0] = cpu_to_le32(rp[0]);
593 ra[1] = cpu_to_le32(rp[1]);
594 if (!memcmp(buf, (uint8_t *)ra, 6)) {
595 DBGOUT(RXFILTER,
596 "unicast match[%d]: %02x:%02x:%02x:%02x:%02x:%02x\n",
597 (int)(rp - s->mac_reg - RA)/2,
598 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
599 return 1;
600 }
601 }
602 DBGOUT(RXFILTER, "unicast mismatch: %02x:%02x:%02x:%02x:%02x:%02x\n",
603 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
604
605 f = mta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3];
606 f = (((buf[5] << 8) | buf[4]) >> f) & 0xfff;
607 if (s->mac_reg[MTA + (f >> 5)] & (1 << (f & 0x1f)))
608 return 1;
609 DBGOUT(RXFILTER,
610 "dropping, inexact filter mismatch: %02x:%02x:%02x:%02x:%02x:%02x MO %d MTA[%d] %x\n",
611 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
612 (rctl >> E1000_RCTL_MO_SHIFT) & 3, f >> 5,
613 s->mac_reg[MTA + (f >> 5)]);
614
615 return 0;
616 }
617
618 static void
619 e1000_set_link_status(VLANClientState *nc)
620 {
621 E1000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
622 uint32_t old_status = s->mac_reg[STATUS];
623
624 if (nc->link_down) {
625 s->mac_reg[STATUS] &= ~E1000_STATUS_LU;
626 s->phy_reg[PHY_STATUS] &= ~MII_SR_LINK_STATUS;
627 } else {
628 s->mac_reg[STATUS] |= E1000_STATUS_LU;
629 s->phy_reg[PHY_STATUS] |= MII_SR_LINK_STATUS;
630 }
631
632 if (s->mac_reg[STATUS] != old_status)
633 set_ics(s, 0, E1000_ICR_LSC);
634 }
635
636 static bool e1000_has_rxbufs(E1000State *s, size_t total_size)
637 {
638 int bufs;
639 /* Fast-path short packets */
640 if (total_size <= s->rxbuf_size) {
641 return s->mac_reg[RDH] != s->mac_reg[RDT] || !s->check_rxov;
642 }
643 if (s->mac_reg[RDH] < s->mac_reg[RDT]) {
644 bufs = s->mac_reg[RDT] - s->mac_reg[RDH];
645 } else if (s->mac_reg[RDH] > s->mac_reg[RDT] || !s->check_rxov) {
646 bufs = s->mac_reg[RDLEN] / sizeof(struct e1000_rx_desc) +
647 s->mac_reg[RDT] - s->mac_reg[RDH];
648 } else {
649 return false;
650 }
651 return total_size <= bufs * s->rxbuf_size;
652 }
653
654 static int
655 e1000_can_receive(VLANClientState *nc)
656 {
657 E1000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
658
659 return (s->mac_reg[RCTL] & E1000_RCTL_EN) && e1000_has_rxbufs(s, 1);
660 }
661
662 static uint64_t rx_desc_base(E1000State *s)
663 {
664 uint64_t bah = s->mac_reg[RDBAH];
665 uint64_t bal = s->mac_reg[RDBAL] & ~0xf;
666
667 return (bah << 32) + bal;
668 }
669
670 static ssize_t
671 e1000_receive(VLANClientState *nc, const uint8_t *buf, size_t size)
672 {
673 E1000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
674 struct e1000_rx_desc desc;
675 dma_addr_t base;
676 unsigned int n, rdt;
677 uint32_t rdh_start;
678 uint16_t vlan_special = 0;
679 uint8_t vlan_status = 0, vlan_offset = 0;
680 uint8_t min_buf[MIN_BUF_SIZE];
681 size_t desc_offset;
682 size_t desc_size;
683 size_t total_size;
684
685 if (!(s->mac_reg[RCTL] & E1000_RCTL_EN))
686 return -1;
687
688 /* Pad to minimum Ethernet frame length */
689 if (size < sizeof(min_buf)) {
690 memcpy(min_buf, buf, size);
691 memset(&min_buf[size], 0, sizeof(min_buf) - size);
692 buf = min_buf;
693 size = sizeof(min_buf);
694 }
695
696 if (!receive_filter(s, buf, size))
697 return size;
698
699 if (vlan_enabled(s) && is_vlan_packet(s, buf)) {
700 vlan_special = cpu_to_le16(be16_to_cpup((uint16_t *)(buf + 14)));
701 memmove((uint8_t *)buf + 4, buf, 12);
702 vlan_status = E1000_RXD_STAT_VP;
703 vlan_offset = 4;
704 size -= 4;
705 }
706
707 rdh_start = s->mac_reg[RDH];
708 desc_offset = 0;
709 total_size = size + fcs_len(s);
710 if (!e1000_has_rxbufs(s, total_size)) {
711 set_ics(s, 0, E1000_ICS_RXO);
712 return -1;
713 }
714 do {
715 desc_size = total_size - desc_offset;
716 if (desc_size > s->rxbuf_size) {
717 desc_size = s->rxbuf_size;
718 }
719 base = rx_desc_base(s) + sizeof(desc) * s->mac_reg[RDH];
720 pci_dma_read(&s->dev, base, &desc, sizeof(desc));
721 desc.special = vlan_special;
722 desc.status |= (vlan_status | E1000_RXD_STAT_DD);
723 if (desc.buffer_addr) {
724 if (desc_offset < size) {
725 size_t copy_size = size - desc_offset;
726 if (copy_size > s->rxbuf_size) {
727 copy_size = s->rxbuf_size;
728 }
729 pci_dma_write(&s->dev, le64_to_cpu(desc.buffer_addr),
730 buf + desc_offset + vlan_offset, copy_size);
731 }
732 desc_offset += desc_size;
733 desc.length = cpu_to_le16(desc_size);
734 if (desc_offset >= total_size) {
735 desc.status |= E1000_RXD_STAT_EOP | E1000_RXD_STAT_IXSM;
736 } else {
737 /* Guest zeroing out status is not a hardware requirement.
738 Clear EOP in case guest didn't do it. */
739 desc.status &= ~E1000_RXD_STAT_EOP;
740 }
741 } else { // as per intel docs; skip descriptors with null buf addr
742 DBGOUT(RX, "Null RX descriptor!!\n");
743 }
744 pci_dma_write(&s->dev, base, &desc, sizeof(desc));
745
746 if (++s->mac_reg[RDH] * sizeof(desc) >= s->mac_reg[RDLEN])
747 s->mac_reg[RDH] = 0;
748 s->check_rxov = 1;
749 /* see comment in start_xmit; same here */
750 if (s->mac_reg[RDH] == rdh_start) {
751 DBGOUT(RXERR, "RDH wraparound @%x, RDT %x, RDLEN %x\n",
752 rdh_start, s->mac_reg[RDT], s->mac_reg[RDLEN]);
753 set_ics(s, 0, E1000_ICS_RXO);
754 return -1;
755 }
756 } while (desc_offset < total_size);
757
758 s->mac_reg[GPRC]++;
759 s->mac_reg[TPR]++;
760 /* TOR - Total Octets Received:
761 * This register includes bytes received in a packet from the <Destination
762 * Address> field through the <CRC> field, inclusively.
763 */
764 n = s->mac_reg[TORL] + size + /* Always include FCS length. */ 4;
765 if (n < s->mac_reg[TORL])
766 s->mac_reg[TORH]++;
767 s->mac_reg[TORL] = n;
768
769 n = E1000_ICS_RXT0;
770 if ((rdt = s->mac_reg[RDT]) < s->mac_reg[RDH])
771 rdt += s->mac_reg[RDLEN] / sizeof(desc);
772 if (((rdt - s->mac_reg[RDH]) * sizeof(desc)) <= s->mac_reg[RDLEN] >>
773 s->rxbuf_min_shift)
774 n |= E1000_ICS_RXDMT0;
775
776 set_ics(s, 0, n);
777
778 return size;
779 }
780
781 static uint32_t
782 mac_readreg(E1000State *s, int index)
783 {
784 return s->mac_reg[index];
785 }
786
787 static uint32_t
788 mac_icr_read(E1000State *s, int index)
789 {
790 uint32_t ret = s->mac_reg[ICR];
791
792 DBGOUT(INTERRUPT, "ICR read: %x\n", ret);
793 set_interrupt_cause(s, 0, 0);
794 return ret;
795 }
796
797 static uint32_t
798 mac_read_clr4(E1000State *s, int index)
799 {
800 uint32_t ret = s->mac_reg[index];
801
802 s->mac_reg[index] = 0;
803 return ret;
804 }
805
806 static uint32_t
807 mac_read_clr8(E1000State *s, int index)
808 {
809 uint32_t ret = s->mac_reg[index];
810
811 s->mac_reg[index] = 0;
812 s->mac_reg[index-1] = 0;
813 return ret;
814 }
815
816 static void
817 mac_writereg(E1000State *s, int index, uint32_t val)
818 {
819 s->mac_reg[index] = val;
820 }
821
822 static void
823 set_rdt(E1000State *s, int index, uint32_t val)
824 {
825 s->check_rxov = 0;
826 s->mac_reg[index] = val & 0xffff;
827 }
828
829 static void
830 set_16bit(E1000State *s, int index, uint32_t val)
831 {
832 s->mac_reg[index] = val & 0xffff;
833 }
834
835 static void
836 set_dlen(E1000State *s, int index, uint32_t val)
837 {
838 s->mac_reg[index] = val & 0xfff80;
839 }
840
841 static void
842 set_tctl(E1000State *s, int index, uint32_t val)
843 {
844 s->mac_reg[index] = val;
845 s->mac_reg[TDT] &= 0xffff;
846 start_xmit(s);
847 }
848
849 static void
850 set_icr(E1000State *s, int index, uint32_t val)
851 {
852 DBGOUT(INTERRUPT, "set_icr %x\n", val);
853 set_interrupt_cause(s, 0, s->mac_reg[ICR] & ~val);
854 }
855
856 static void
857 set_imc(E1000State *s, int index, uint32_t val)
858 {
859 s->mac_reg[IMS] &= ~val;
860 set_ics(s, 0, 0);
861 }
862
863 static void
864 set_ims(E1000State *s, int index, uint32_t val)
865 {
866 s->mac_reg[IMS] |= val;
867 set_ics(s, 0, 0);
868 }
869
870 #define getreg(x) [x] = mac_readreg
871 static uint32_t (*macreg_readops[])(E1000State *, int) = {
872 getreg(PBA), getreg(RCTL), getreg(TDH), getreg(TXDCTL),
873 getreg(WUFC), getreg(TDT), getreg(CTRL), getreg(LEDCTL),
874 getreg(MANC), getreg(MDIC), getreg(SWSM), getreg(STATUS),
875 getreg(TORL), getreg(TOTL), getreg(IMS), getreg(TCTL),
876 getreg(RDH), getreg(RDT), getreg(VET), getreg(ICS),
877 getreg(TDBAL), getreg(TDBAH), getreg(RDBAH), getreg(RDBAL),
878 getreg(TDLEN), getreg(RDLEN),
879
880 [TOTH] = mac_read_clr8, [TORH] = mac_read_clr8, [GPRC] = mac_read_clr4,
881 [GPTC] = mac_read_clr4, [TPR] = mac_read_clr4, [TPT] = mac_read_clr4,
882 [ICR] = mac_icr_read, [EECD] = get_eecd, [EERD] = flash_eerd_read,
883 [CRCERRS ... MPC] = &mac_readreg,
884 [RA ... RA+31] = &mac_readreg,
885 [MTA ... MTA+127] = &mac_readreg,
886 [VFTA ... VFTA+127] = &mac_readreg,
887 };
888 enum { NREADOPS = ARRAY_SIZE(macreg_readops) };
889
890 #define putreg(x) [x] = mac_writereg
891 static void (*macreg_writeops[])(E1000State *, int, uint32_t) = {
892 putreg(PBA), putreg(EERD), putreg(SWSM), putreg(WUFC),
893 putreg(TDBAL), putreg(TDBAH), putreg(TXDCTL), putreg(RDBAH),
894 putreg(RDBAL), putreg(LEDCTL), putreg(VET),
895 [TDLEN] = set_dlen, [RDLEN] = set_dlen, [TCTL] = set_tctl,
896 [TDT] = set_tctl, [MDIC] = set_mdic, [ICS] = set_ics,
897 [TDH] = set_16bit, [RDH] = set_16bit, [RDT] = set_rdt,
898 [IMC] = set_imc, [IMS] = set_ims, [ICR] = set_icr,
899 [EECD] = set_eecd, [RCTL] = set_rx_control, [CTRL] = set_ctrl,
900 [RA ... RA+31] = &mac_writereg,
901 [MTA ... MTA+127] = &mac_writereg,
902 [VFTA ... VFTA+127] = &mac_writereg,
903 };
904 enum { NWRITEOPS = ARRAY_SIZE(macreg_writeops) };
905
906 static void
907 e1000_mmio_write(void *opaque, target_phys_addr_t addr, uint64_t val,
908 unsigned size)
909 {
910 E1000State *s = opaque;
911 unsigned int index = (addr & 0x1ffff) >> 2;
912
913 if (index < NWRITEOPS && macreg_writeops[index]) {
914 macreg_writeops[index](s, index, val);
915 } else if (index < NREADOPS && macreg_readops[index]) {
916 DBGOUT(MMIO, "e1000_mmio_writel RO %x: 0x%04"PRIx64"\n", index<<2, val);
917 } else {
918 DBGOUT(UNKNOWN, "MMIO unknown write addr=0x%08x,val=0x%08"PRIx64"\n",
919 index<<2, val);
920 }
921 }
922
923 static uint64_t
924 e1000_mmio_read(void *opaque, target_phys_addr_t addr, unsigned size)
925 {
926 E1000State *s = opaque;
927 unsigned int index = (addr & 0x1ffff) >> 2;
928
929 if (index < NREADOPS && macreg_readops[index])
930 {
931 return macreg_readops[index](s, index);
932 }
933 DBGOUT(UNKNOWN, "MMIO unknown read addr=0x%08x\n", index<<2);
934 return 0;
935 }
936
937 static const MemoryRegionOps e1000_mmio_ops = {
938 .read = e1000_mmio_read,
939 .write = e1000_mmio_write,
940 .endianness = DEVICE_LITTLE_ENDIAN,
941 .impl = {
942 .min_access_size = 4,
943 .max_access_size = 4,
944 },
945 };
946
947 static uint64_t e1000_io_read(void *opaque, target_phys_addr_t addr,
948 unsigned size)
949 {
950 E1000State *s = opaque;
951
952 (void)s;
953 return 0;
954 }
955
956 static void e1000_io_write(void *opaque, target_phys_addr_t addr,
957 uint64_t val, unsigned size)
958 {
959 E1000State *s = opaque;
960
961 (void)s;
962 }
963
964 static const MemoryRegionOps e1000_io_ops = {
965 .read = e1000_io_read,
966 .write = e1000_io_write,
967 .endianness = DEVICE_LITTLE_ENDIAN,
968 };
969
970 static bool is_version_1(void *opaque, int version_id)
971 {
972 return version_id == 1;
973 }
974
975 static const VMStateDescription vmstate_e1000 = {
976 .name = "e1000",
977 .version_id = 2,
978 .minimum_version_id = 1,
979 .minimum_version_id_old = 1,
980 .fields = (VMStateField []) {
981 VMSTATE_PCI_DEVICE(dev, E1000State),
982 VMSTATE_UNUSED_TEST(is_version_1, 4), /* was instance id */
983 VMSTATE_UNUSED(4), /* Was mmio_base. */
984 VMSTATE_UINT32(rxbuf_size, E1000State),
985 VMSTATE_UINT32(rxbuf_min_shift, E1000State),
986 VMSTATE_UINT32(eecd_state.val_in, E1000State),
987 VMSTATE_UINT16(eecd_state.bitnum_in, E1000State),
988 VMSTATE_UINT16(eecd_state.bitnum_out, E1000State),
989 VMSTATE_UINT16(eecd_state.reading, E1000State),
990 VMSTATE_UINT32(eecd_state.old_eecd, E1000State),
991 VMSTATE_UINT8(tx.ipcss, E1000State),
992 VMSTATE_UINT8(tx.ipcso, E1000State),
993 VMSTATE_UINT16(tx.ipcse, E1000State),
994 VMSTATE_UINT8(tx.tucss, E1000State),
995 VMSTATE_UINT8(tx.tucso, E1000State),
996 VMSTATE_UINT16(tx.tucse, E1000State),
997 VMSTATE_UINT32(tx.paylen, E1000State),
998 VMSTATE_UINT8(tx.hdr_len, E1000State),
999 VMSTATE_UINT16(tx.mss, E1000State),
1000 VMSTATE_UINT16(tx.size, E1000State),
1001 VMSTATE_UINT16(tx.tso_frames, E1000State),
1002 VMSTATE_UINT8(tx.sum_needed, E1000State),
1003 VMSTATE_INT8(tx.ip, E1000State),
1004 VMSTATE_INT8(tx.tcp, E1000State),
1005 VMSTATE_BUFFER(tx.header, E1000State),
1006 VMSTATE_BUFFER(tx.data, E1000State),
1007 VMSTATE_UINT16_ARRAY(eeprom_data, E1000State, 64),
1008 VMSTATE_UINT16_ARRAY(phy_reg, E1000State, 0x20),
1009 VMSTATE_UINT32(mac_reg[CTRL], E1000State),
1010 VMSTATE_UINT32(mac_reg[EECD], E1000State),
1011 VMSTATE_UINT32(mac_reg[EERD], E1000State),
1012 VMSTATE_UINT32(mac_reg[GPRC], E1000State),
1013 VMSTATE_UINT32(mac_reg[GPTC], E1000State),
1014 VMSTATE_UINT32(mac_reg[ICR], E1000State),
1015 VMSTATE_UINT32(mac_reg[ICS], E1000State),
1016 VMSTATE_UINT32(mac_reg[IMC], E1000State),
1017 VMSTATE_UINT32(mac_reg[IMS], E1000State),
1018 VMSTATE_UINT32(mac_reg[LEDCTL], E1000State),
1019 VMSTATE_UINT32(mac_reg[MANC], E1000State),
1020 VMSTATE_UINT32(mac_reg[MDIC], E1000State),
1021 VMSTATE_UINT32(mac_reg[MPC], E1000State),
1022 VMSTATE_UINT32(mac_reg[PBA], E1000State),
1023 VMSTATE_UINT32(mac_reg[RCTL], E1000State),
1024 VMSTATE_UINT32(mac_reg[RDBAH], E1000State),
1025 VMSTATE_UINT32(mac_reg[RDBAL], E1000State),
1026 VMSTATE_UINT32(mac_reg[RDH], E1000State),
1027 VMSTATE_UINT32(mac_reg[RDLEN], E1000State),
1028 VMSTATE_UINT32(mac_reg[RDT], E1000State),
1029 VMSTATE_UINT32(mac_reg[STATUS], E1000State),
1030 VMSTATE_UINT32(mac_reg[SWSM], E1000State),
1031 VMSTATE_UINT32(mac_reg[TCTL], E1000State),
1032 VMSTATE_UINT32(mac_reg[TDBAH], E1000State),
1033 VMSTATE_UINT32(mac_reg[TDBAL], E1000State),
1034 VMSTATE_UINT32(mac_reg[TDH], E1000State),
1035 VMSTATE_UINT32(mac_reg[TDLEN], E1000State),
1036 VMSTATE_UINT32(mac_reg[TDT], E1000State),
1037 VMSTATE_UINT32(mac_reg[TORH], E1000State),
1038 VMSTATE_UINT32(mac_reg[TORL], E1000State),
1039 VMSTATE_UINT32(mac_reg[TOTH], E1000State),
1040 VMSTATE_UINT32(mac_reg[TOTL], E1000State),
1041 VMSTATE_UINT32(mac_reg[TPR], E1000State),
1042 VMSTATE_UINT32(mac_reg[TPT], E1000State),
1043 VMSTATE_UINT32(mac_reg[TXDCTL], E1000State),
1044 VMSTATE_UINT32(mac_reg[WUFC], E1000State),
1045 VMSTATE_UINT32(mac_reg[VET], E1000State),
1046 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, RA, 32),
1047 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, MTA, 128),
1048 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, VFTA, 128),
1049 VMSTATE_END_OF_LIST()
1050 }
1051 };
1052
1053 static const uint16_t e1000_eeprom_template[64] = {
1054 0x0000, 0x0000, 0x0000, 0x0000, 0xffff, 0x0000, 0x0000, 0x0000,
1055 0x3000, 0x1000, 0x6403, E1000_DEVID, 0x8086, E1000_DEVID, 0x8086, 0x3040,
1056 0x0008, 0x2000, 0x7e14, 0x0048, 0x1000, 0x00d8, 0x0000, 0x2700,
1057 0x6cc9, 0x3150, 0x0722, 0x040b, 0x0984, 0x0000, 0xc000, 0x0706,
1058 0x1008, 0x0000, 0x0f04, 0x7fff, 0x4d01, 0xffff, 0xffff, 0xffff,
1059 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
1060 0x0100, 0x4000, 0x121c, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
1061 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0000,
1062 };
1063
1064 static const uint16_t phy_reg_init[] = {
1065 [PHY_CTRL] = 0x1140, [PHY_STATUS] = 0x796d, // link initially up
1066 [PHY_ID1] = 0x141, [PHY_ID2] = PHY_ID2_INIT,
1067 [PHY_1000T_CTRL] = 0x0e00, [M88E1000_PHY_SPEC_CTRL] = 0x360,
1068 [M88E1000_EXT_PHY_SPEC_CTRL] = 0x0d60, [PHY_AUTONEG_ADV] = 0xde1,
1069 [PHY_LP_ABILITY] = 0x1e0, [PHY_1000T_STATUS] = 0x3c00,
1070 [M88E1000_PHY_SPEC_STATUS] = 0xac00,
1071 };
1072
1073 static const uint32_t mac_reg_init[] = {
1074 [PBA] = 0x00100030,
1075 [LEDCTL] = 0x602,
1076 [CTRL] = E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
1077 E1000_CTRL_SPD_1000 | E1000_CTRL_SLU,
1078 [STATUS] = 0x80000000 | E1000_STATUS_GIO_MASTER_ENABLE |
1079 E1000_STATUS_ASDV | E1000_STATUS_MTXCKOK |
1080 E1000_STATUS_SPEED_1000 | E1000_STATUS_FD |
1081 E1000_STATUS_LU,
1082 [MANC] = E1000_MANC_EN_MNG2HOST | E1000_MANC_RCV_TCO_EN |
1083 E1000_MANC_ARP_EN | E1000_MANC_0298_EN |
1084 E1000_MANC_RMCP_EN,
1085 };
1086
1087 /* PCI interface */
1088
1089 static void
1090 e1000_mmio_setup(E1000State *d)
1091 {
1092 int i;
1093 const uint32_t excluded_regs[] = {
1094 E1000_MDIC, E1000_ICR, E1000_ICS, E1000_IMS,
1095 E1000_IMC, E1000_TCTL, E1000_TDT, PNPMMIO_SIZE
1096 };
1097
1098 memory_region_init_io(&d->mmio, &e1000_mmio_ops, d, "e1000-mmio",
1099 PNPMMIO_SIZE);
1100 memory_region_add_coalescing(&d->mmio, 0, excluded_regs[0]);
1101 for (i = 0; excluded_regs[i] != PNPMMIO_SIZE; i++)
1102 memory_region_add_coalescing(&d->mmio, excluded_regs[i] + 4,
1103 excluded_regs[i+1] - excluded_regs[i] - 4);
1104 memory_region_init_io(&d->io, &e1000_io_ops, d, "e1000-io", IOPORT_SIZE);
1105 }
1106
1107 static void
1108 e1000_cleanup(VLANClientState *nc)
1109 {
1110 E1000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
1111
1112 s->nic = NULL;
1113 }
1114
1115 static int
1116 pci_e1000_uninit(PCIDevice *dev)
1117 {
1118 E1000State *d = DO_UPCAST(E1000State, dev, dev);
1119
1120 memory_region_destroy(&d->mmio);
1121 memory_region_destroy(&d->io);
1122 qemu_del_vlan_client(&d->nic->nc);
1123 return 0;
1124 }
1125
1126 static void e1000_reset(void *opaque)
1127 {
1128 E1000State *d = opaque;
1129
1130 memset(d->phy_reg, 0, sizeof d->phy_reg);
1131 memmove(d->phy_reg, phy_reg_init, sizeof phy_reg_init);
1132 memset(d->mac_reg, 0, sizeof d->mac_reg);
1133 memmove(d->mac_reg, mac_reg_init, sizeof mac_reg_init);
1134 d->rxbuf_min_shift = 1;
1135 memset(&d->tx, 0, sizeof d->tx);
1136
1137 if (d->nic->nc.link_down) {
1138 d->mac_reg[STATUS] &= ~E1000_STATUS_LU;
1139 d->phy_reg[PHY_STATUS] &= ~MII_SR_LINK_STATUS;
1140 }
1141 }
1142
1143 static NetClientInfo net_e1000_info = {
1144 .type = NET_CLIENT_TYPE_NIC,
1145 .size = sizeof(NICState),
1146 .can_receive = e1000_can_receive,
1147 .receive = e1000_receive,
1148 .cleanup = e1000_cleanup,
1149 .link_status_changed = e1000_set_link_status,
1150 };
1151
1152 static int pci_e1000_init(PCIDevice *pci_dev)
1153 {
1154 E1000State *d = DO_UPCAST(E1000State, dev, pci_dev);
1155 uint8_t *pci_conf;
1156 uint16_t checksum = 0;
1157 int i;
1158 uint8_t *macaddr;
1159
1160 pci_conf = d->dev.config;
1161
1162 /* TODO: RST# value should be 0, PCI spec 6.2.4 */
1163 pci_conf[PCI_CACHE_LINE_SIZE] = 0x10;
1164
1165 pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
1166
1167 e1000_mmio_setup(d);
1168
1169 pci_register_bar(&d->dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &d->mmio);
1170
1171 pci_register_bar(&d->dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &d->io);
1172
1173 memmove(d->eeprom_data, e1000_eeprom_template,
1174 sizeof e1000_eeprom_template);
1175 qemu_macaddr_default_if_unset(&d->conf.macaddr);
1176 macaddr = d->conf.macaddr.a;
1177 for (i = 0; i < 3; i++)
1178 d->eeprom_data[i] = (macaddr[2*i+1]<<8) | macaddr[2*i];
1179 for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
1180 checksum += d->eeprom_data[i];
1181 checksum = (uint16_t) EEPROM_SUM - checksum;
1182 d->eeprom_data[EEPROM_CHECKSUM_REG] = checksum;
1183
1184 d->nic = qemu_new_nic(&net_e1000_info, &d->conf,
1185 object_get_typename(OBJECT(d)), d->dev.qdev.id, d);
1186
1187 qemu_format_nic_info_str(&d->nic->nc, macaddr);
1188
1189 add_boot_device_path(d->conf.bootindex, &pci_dev->qdev, "/ethernet-phy@0");
1190
1191 return 0;
1192 }
1193
1194 static void qdev_e1000_reset(DeviceState *dev)
1195 {
1196 E1000State *d = DO_UPCAST(E1000State, dev.qdev, dev);
1197 e1000_reset(d);
1198 }
1199
1200 static Property e1000_properties[] = {
1201 DEFINE_NIC_PROPERTIES(E1000State, conf),
1202 DEFINE_PROP_END_OF_LIST(),
1203 };
1204
1205 static void e1000_class_init(ObjectClass *klass, void *data)
1206 {
1207 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1208
1209 k->init = pci_e1000_init;
1210 k->exit = pci_e1000_uninit;
1211 k->romfile = "pxe-e1000.rom";
1212 k->vendor_id = PCI_VENDOR_ID_INTEL;
1213 k->device_id = E1000_DEVID;
1214 k->revision = 0x03;
1215 k->class_id = PCI_CLASS_NETWORK_ETHERNET;
1216 }
1217
1218 static DeviceInfo e1000_info = {
1219 .name = "e1000",
1220 .desc = "Intel Gigabit Ethernet",
1221 .size = sizeof(E1000State),
1222 .reset = qdev_e1000_reset,
1223 .vmsd = &vmstate_e1000,
1224 .props = e1000_properties,
1225 .class_init = e1000_class_init,
1226 };
1227
1228 static void e1000_register_devices(void)
1229 {
1230 pci_qdev_register(&e1000_info);
1231 }
1232
1233 device_init(e1000_register_devices)