hw/arm/bcm2836: Only provide "enabled-cpus" property to multicore SoCs
[qemu.git] / hw / i386 / amd_iommu.c
1 /*
2 * QEMU emulation of AMD IOMMU (AMD-Vi)
3 *
4 * Copyright (C) 2011 Eduard - Gabriel Munteanu
5 * Copyright (C) 2015, 2016 David Kiarie Kahurani
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, see <http://www.gnu.org/licenses/>.
19 *
20 * Cache implementation inspired by hw/i386/intel_iommu.c
21 */
22
23 #include "qemu/osdep.h"
24 #include "hw/i386/pc.h"
25 #include "hw/pci/msi.h"
26 #include "hw/pci/pci_bus.h"
27 #include "migration/vmstate.h"
28 #include "amd_iommu.h"
29 #include "qapi/error.h"
30 #include "qemu/error-report.h"
31 #include "hw/i386/apic_internal.h"
32 #include "trace.h"
33 #include "hw/i386/apic-msidef.h"
34
35 /* used AMD-Vi MMIO registers */
36 const char *amdvi_mmio_low[] = {
37 "AMDVI_MMIO_DEVTAB_BASE",
38 "AMDVI_MMIO_CMDBUF_BASE",
39 "AMDVI_MMIO_EVTLOG_BASE",
40 "AMDVI_MMIO_CONTROL",
41 "AMDVI_MMIO_EXCL_BASE",
42 "AMDVI_MMIO_EXCL_LIMIT",
43 "AMDVI_MMIO_EXT_FEATURES",
44 "AMDVI_MMIO_PPR_BASE",
45 "UNHANDLED"
46 };
47 const char *amdvi_mmio_high[] = {
48 "AMDVI_MMIO_COMMAND_HEAD",
49 "AMDVI_MMIO_COMMAND_TAIL",
50 "AMDVI_MMIO_EVTLOG_HEAD",
51 "AMDVI_MMIO_EVTLOG_TAIL",
52 "AMDVI_MMIO_STATUS",
53 "AMDVI_MMIO_PPR_HEAD",
54 "AMDVI_MMIO_PPR_TAIL",
55 "UNHANDLED"
56 };
57
58 struct AMDVIAddressSpace {
59 uint8_t bus_num; /* bus number */
60 uint8_t devfn; /* device function */
61 AMDVIState *iommu_state; /* AMDVI - one per machine */
62 MemoryRegion root; /* AMDVI Root memory map region */
63 IOMMUMemoryRegion iommu; /* Device's address translation region */
64 MemoryRegion iommu_ir; /* Device's interrupt remapping region */
65 AddressSpace as; /* device's corresponding address space */
66 };
67
68 /* AMDVI cache entry */
69 typedef struct AMDVIIOTLBEntry {
70 uint16_t domid; /* assigned domain id */
71 uint16_t devid; /* device owning entry */
72 uint64_t perms; /* access permissions */
73 uint64_t translated_addr; /* translated address */
74 uint64_t page_mask; /* physical page size */
75 } AMDVIIOTLBEntry;
76
77 /* configure MMIO registers at startup/reset */
78 static void amdvi_set_quad(AMDVIState *s, hwaddr addr, uint64_t val,
79 uint64_t romask, uint64_t w1cmask)
80 {
81 stq_le_p(&s->mmior[addr], val);
82 stq_le_p(&s->romask[addr], romask);
83 stq_le_p(&s->w1cmask[addr], w1cmask);
84 }
85
86 static uint16_t amdvi_readw(AMDVIState *s, hwaddr addr)
87 {
88 return lduw_le_p(&s->mmior[addr]);
89 }
90
91 static uint32_t amdvi_readl(AMDVIState *s, hwaddr addr)
92 {
93 return ldl_le_p(&s->mmior[addr]);
94 }
95
96 static uint64_t amdvi_readq(AMDVIState *s, hwaddr addr)
97 {
98 return ldq_le_p(&s->mmior[addr]);
99 }
100
101 /* internal write */
102 static void amdvi_writeq_raw(AMDVIState *s, uint64_t val, hwaddr addr)
103 {
104 stq_le_p(&s->mmior[addr], val);
105 }
106
107 /* external write */
108 static void amdvi_writew(AMDVIState *s, hwaddr addr, uint16_t val)
109 {
110 uint16_t romask = lduw_le_p(&s->romask[addr]);
111 uint16_t w1cmask = lduw_le_p(&s->w1cmask[addr]);
112 uint16_t oldval = lduw_le_p(&s->mmior[addr]);
113 stw_le_p(&s->mmior[addr],
114 ((oldval & romask) | (val & ~romask)) & ~(val & w1cmask));
115 }
116
117 static void amdvi_writel(AMDVIState *s, hwaddr addr, uint32_t val)
118 {
119 uint32_t romask = ldl_le_p(&s->romask[addr]);
120 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
121 uint32_t oldval = ldl_le_p(&s->mmior[addr]);
122 stl_le_p(&s->mmior[addr],
123 ((oldval & romask) | (val & ~romask)) & ~(val & w1cmask));
124 }
125
126 static void amdvi_writeq(AMDVIState *s, hwaddr addr, uint64_t val)
127 {
128 uint64_t romask = ldq_le_p(&s->romask[addr]);
129 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
130 uint32_t oldval = ldq_le_p(&s->mmior[addr]);
131 stq_le_p(&s->mmior[addr],
132 ((oldval & romask) | (val & ~romask)) & ~(val & w1cmask));
133 }
134
135 /* OR a 64-bit register with a 64-bit value */
136 static bool amdvi_test_mask(AMDVIState *s, hwaddr addr, uint64_t val)
137 {
138 return amdvi_readq(s, addr) | val;
139 }
140
141 /* OR a 64-bit register with a 64-bit value storing result in the register */
142 static void amdvi_assign_orq(AMDVIState *s, hwaddr addr, uint64_t val)
143 {
144 amdvi_writeq_raw(s, addr, amdvi_readq(s, addr) | val);
145 }
146
147 /* AND a 64-bit register with a 64-bit value storing result in the register */
148 static void amdvi_assign_andq(AMDVIState *s, hwaddr addr, uint64_t val)
149 {
150 amdvi_writeq_raw(s, addr, amdvi_readq(s, addr) & val);
151 }
152
153 static void amdvi_generate_msi_interrupt(AMDVIState *s)
154 {
155 MSIMessage msg = {};
156 MemTxAttrs attrs = {
157 .requester_id = pci_requester_id(&s->pci.dev)
158 };
159
160 if (msi_enabled(&s->pci.dev)) {
161 msg = msi_get_message(&s->pci.dev, 0);
162 address_space_stl_le(&address_space_memory, msg.address, msg.data,
163 attrs, NULL);
164 }
165 }
166
167 static void amdvi_log_event(AMDVIState *s, uint64_t *evt)
168 {
169 /* event logging not enabled */
170 if (!s->evtlog_enabled || amdvi_test_mask(s, AMDVI_MMIO_STATUS,
171 AMDVI_MMIO_STATUS_EVT_OVF)) {
172 return;
173 }
174
175 /* event log buffer full */
176 if (s->evtlog_tail >= s->evtlog_len) {
177 amdvi_assign_orq(s, AMDVI_MMIO_STATUS, AMDVI_MMIO_STATUS_EVT_OVF);
178 /* generate interrupt */
179 amdvi_generate_msi_interrupt(s);
180 return;
181 }
182
183 if (dma_memory_write(&address_space_memory, s->evtlog + s->evtlog_tail,
184 evt, AMDVI_EVENT_LEN)) {
185 trace_amdvi_evntlog_fail(s->evtlog, s->evtlog_tail);
186 }
187
188 s->evtlog_tail += AMDVI_EVENT_LEN;
189 amdvi_assign_orq(s, AMDVI_MMIO_STATUS, AMDVI_MMIO_STATUS_COMP_INT);
190 amdvi_generate_msi_interrupt(s);
191 }
192
193 static void amdvi_setevent_bits(uint64_t *buffer, uint64_t value, int start,
194 int length)
195 {
196 int index = start / 64, bitpos = start % 64;
197 uint64_t mask = MAKE_64BIT_MASK(start, length);
198 buffer[index] &= ~mask;
199 buffer[index] |= (value << bitpos) & mask;
200 }
201 /*
202 * AMDVi event structure
203 * 0:15 -> DeviceID
204 * 55:63 -> event type + miscellaneous info
205 * 63:127 -> related address
206 */
207 static void amdvi_encode_event(uint64_t *evt, uint16_t devid, uint64_t addr,
208 uint16_t info)
209 {
210 amdvi_setevent_bits(evt, devid, 0, 16);
211 amdvi_setevent_bits(evt, info, 55, 8);
212 amdvi_setevent_bits(evt, addr, 63, 64);
213 }
214 /* log an error encountered during a page walk
215 *
216 * @addr: virtual address in translation request
217 */
218 static void amdvi_page_fault(AMDVIState *s, uint16_t devid,
219 hwaddr addr, uint16_t info)
220 {
221 uint64_t evt[4];
222
223 info |= AMDVI_EVENT_IOPF_I | AMDVI_EVENT_IOPF;
224 amdvi_encode_event(evt, devid, addr, info);
225 amdvi_log_event(s, evt);
226 pci_word_test_and_set_mask(s->pci.dev.config + PCI_STATUS,
227 PCI_STATUS_SIG_TARGET_ABORT);
228 }
229 /*
230 * log a master abort accessing device table
231 * @devtab : address of device table entry
232 * @info : error flags
233 */
234 static void amdvi_log_devtab_error(AMDVIState *s, uint16_t devid,
235 hwaddr devtab, uint16_t info)
236 {
237 uint64_t evt[4];
238
239 info |= AMDVI_EVENT_DEV_TAB_HW_ERROR;
240
241 amdvi_encode_event(evt, devid, devtab, info);
242 amdvi_log_event(s, evt);
243 pci_word_test_and_set_mask(s->pci.dev.config + PCI_STATUS,
244 PCI_STATUS_SIG_TARGET_ABORT);
245 }
246 /* log an event trying to access command buffer
247 * @addr : address that couldn't be accessed
248 */
249 static void amdvi_log_command_error(AMDVIState *s, hwaddr addr)
250 {
251 uint64_t evt[4], info = AMDVI_EVENT_COMMAND_HW_ERROR;
252
253 amdvi_encode_event(evt, 0, addr, info);
254 amdvi_log_event(s, evt);
255 pci_word_test_and_set_mask(s->pci.dev.config + PCI_STATUS,
256 PCI_STATUS_SIG_TARGET_ABORT);
257 }
258 /* log an illegal comand event
259 * @addr : address of illegal command
260 */
261 static void amdvi_log_illegalcom_error(AMDVIState *s, uint16_t info,
262 hwaddr addr)
263 {
264 uint64_t evt[4];
265
266 info |= AMDVI_EVENT_ILLEGAL_COMMAND_ERROR;
267 amdvi_encode_event(evt, 0, addr, info);
268 amdvi_log_event(s, evt);
269 }
270 /* log an error accessing device table
271 *
272 * @devid : device owning the table entry
273 * @devtab : address of device table entry
274 * @info : error flags
275 */
276 static void amdvi_log_illegaldevtab_error(AMDVIState *s, uint16_t devid,
277 hwaddr addr, uint16_t info)
278 {
279 uint64_t evt[4];
280
281 info |= AMDVI_EVENT_ILLEGAL_DEVTAB_ENTRY;
282 amdvi_encode_event(evt, devid, addr, info);
283 amdvi_log_event(s, evt);
284 }
285 /* log an error accessing a PTE entry
286 * @addr : address that couldn't be accessed
287 */
288 static void amdvi_log_pagetab_error(AMDVIState *s, uint16_t devid,
289 hwaddr addr, uint16_t info)
290 {
291 uint64_t evt[4];
292
293 info |= AMDVI_EVENT_PAGE_TAB_HW_ERROR;
294 amdvi_encode_event(evt, devid, addr, info);
295 amdvi_log_event(s, evt);
296 pci_word_test_and_set_mask(s->pci.dev.config + PCI_STATUS,
297 PCI_STATUS_SIG_TARGET_ABORT);
298 }
299
300 static gboolean amdvi_uint64_equal(gconstpointer v1, gconstpointer v2)
301 {
302 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
303 }
304
305 static guint amdvi_uint64_hash(gconstpointer v)
306 {
307 return (guint)*(const uint64_t *)v;
308 }
309
310 static AMDVIIOTLBEntry *amdvi_iotlb_lookup(AMDVIState *s, hwaddr addr,
311 uint64_t devid)
312 {
313 uint64_t key = (addr >> AMDVI_PAGE_SHIFT_4K) |
314 ((uint64_t)(devid) << AMDVI_DEVID_SHIFT);
315 return g_hash_table_lookup(s->iotlb, &key);
316 }
317
318 static void amdvi_iotlb_reset(AMDVIState *s)
319 {
320 assert(s->iotlb);
321 trace_amdvi_iotlb_reset();
322 g_hash_table_remove_all(s->iotlb);
323 }
324
325 static gboolean amdvi_iotlb_remove_by_devid(gpointer key, gpointer value,
326 gpointer user_data)
327 {
328 AMDVIIOTLBEntry *entry = (AMDVIIOTLBEntry *)value;
329 uint16_t devid = *(uint16_t *)user_data;
330 return entry->devid == devid;
331 }
332
333 static void amdvi_iotlb_remove_page(AMDVIState *s, hwaddr addr,
334 uint64_t devid)
335 {
336 uint64_t key = (addr >> AMDVI_PAGE_SHIFT_4K) |
337 ((uint64_t)(devid) << AMDVI_DEVID_SHIFT);
338 g_hash_table_remove(s->iotlb, &key);
339 }
340
341 static void amdvi_update_iotlb(AMDVIState *s, uint16_t devid,
342 uint64_t gpa, IOMMUTLBEntry to_cache,
343 uint16_t domid)
344 {
345 AMDVIIOTLBEntry *entry = g_new(AMDVIIOTLBEntry, 1);
346 uint64_t *key = g_new(uint64_t, 1);
347 uint64_t gfn = gpa >> AMDVI_PAGE_SHIFT_4K;
348
349 /* don't cache erroneous translations */
350 if (to_cache.perm != IOMMU_NONE) {
351 trace_amdvi_cache_update(domid, PCI_BUS_NUM(devid), PCI_SLOT(devid),
352 PCI_FUNC(devid), gpa, to_cache.translated_addr);
353
354 if (g_hash_table_size(s->iotlb) >= AMDVI_IOTLB_MAX_SIZE) {
355 amdvi_iotlb_reset(s);
356 }
357
358 entry->domid = domid;
359 entry->perms = to_cache.perm;
360 entry->translated_addr = to_cache.translated_addr;
361 entry->page_mask = to_cache.addr_mask;
362 *key = gfn | ((uint64_t)(devid) << AMDVI_DEVID_SHIFT);
363 g_hash_table_replace(s->iotlb, key, entry);
364 }
365 }
366
367 static void amdvi_completion_wait(AMDVIState *s, uint64_t *cmd)
368 {
369 /* pad the last 3 bits */
370 hwaddr addr = cpu_to_le64(extract64(cmd[0], 3, 49)) << 3;
371 uint64_t data = cpu_to_le64(cmd[1]);
372
373 if (extract64(cmd[0], 52, 8)) {
374 amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4),
375 s->cmdbuf + s->cmdbuf_head);
376 }
377 if (extract64(cmd[0], 0, 1)) {
378 if (dma_memory_write(&address_space_memory, addr, &data,
379 AMDVI_COMPLETION_DATA_SIZE)) {
380 trace_amdvi_completion_wait_fail(addr);
381 }
382 }
383 /* set completion interrupt */
384 if (extract64(cmd[0], 1, 1)) {
385 amdvi_test_mask(s, AMDVI_MMIO_STATUS, AMDVI_MMIO_STATUS_COMP_INT);
386 /* generate interrupt */
387 amdvi_generate_msi_interrupt(s);
388 }
389 trace_amdvi_completion_wait(addr, data);
390 }
391
392 /* log error without aborting since linux seems to be using reserved bits */
393 static void amdvi_inval_devtab_entry(AMDVIState *s, uint64_t *cmd)
394 {
395 uint16_t devid = cpu_to_le16((uint16_t)extract64(cmd[0], 0, 16));
396
397 /* This command should invalidate internal caches of which there isn't */
398 if (extract64(cmd[0], 16, 44) || cmd[1]) {
399 amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4),
400 s->cmdbuf + s->cmdbuf_head);
401 }
402 trace_amdvi_devtab_inval(PCI_BUS_NUM(devid), PCI_SLOT(devid),
403 PCI_FUNC(devid));
404 }
405
406 static void amdvi_complete_ppr(AMDVIState *s, uint64_t *cmd)
407 {
408 if (extract64(cmd[0], 16, 16) || extract64(cmd[0], 52, 8) ||
409 extract64(cmd[1], 0, 2) || extract64(cmd[1], 3, 29)
410 || extract64(cmd[1], 48, 16)) {
411 amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4),
412 s->cmdbuf + s->cmdbuf_head);
413 }
414 trace_amdvi_ppr_exec();
415 }
416
417 static void amdvi_inval_all(AMDVIState *s, uint64_t *cmd)
418 {
419 if (extract64(cmd[0], 0, 60) || cmd[1]) {
420 amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4),
421 s->cmdbuf + s->cmdbuf_head);
422 }
423
424 amdvi_iotlb_reset(s);
425 trace_amdvi_all_inval();
426 }
427
428 static gboolean amdvi_iotlb_remove_by_domid(gpointer key, gpointer value,
429 gpointer user_data)
430 {
431 AMDVIIOTLBEntry *entry = (AMDVIIOTLBEntry *)value;
432 uint16_t domid = *(uint16_t *)user_data;
433 return entry->domid == domid;
434 }
435
436 /* we don't have devid - we can't remove pages by address */
437 static void amdvi_inval_pages(AMDVIState *s, uint64_t *cmd)
438 {
439 uint16_t domid = cpu_to_le16((uint16_t)extract64(cmd[0], 32, 16));
440
441 if (extract64(cmd[0], 20, 12) || extract64(cmd[0], 48, 12) ||
442 extract64(cmd[1], 3, 9)) {
443 amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4),
444 s->cmdbuf + s->cmdbuf_head);
445 }
446
447 g_hash_table_foreach_remove(s->iotlb, amdvi_iotlb_remove_by_domid,
448 &domid);
449 trace_amdvi_pages_inval(domid);
450 }
451
452 static void amdvi_prefetch_pages(AMDVIState *s, uint64_t *cmd)
453 {
454 if (extract64(cmd[0], 16, 8) || extract64(cmd[0], 52, 8) ||
455 extract64(cmd[1], 1, 1) || extract64(cmd[1], 3, 1) ||
456 extract64(cmd[1], 5, 7)) {
457 amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4),
458 s->cmdbuf + s->cmdbuf_head);
459 }
460
461 trace_amdvi_prefetch_pages();
462 }
463
464 static void amdvi_inval_inttable(AMDVIState *s, uint64_t *cmd)
465 {
466 if (extract64(cmd[0], 16, 44) || cmd[1]) {
467 amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4),
468 s->cmdbuf + s->cmdbuf_head);
469 return;
470 }
471
472 trace_amdvi_intr_inval();
473 }
474
475 /* FIXME: Try to work with the specified size instead of all the pages
476 * when the S bit is on
477 */
478 static void iommu_inval_iotlb(AMDVIState *s, uint64_t *cmd)
479 {
480
481 uint16_t devid = extract64(cmd[0], 0, 16);
482 if (extract64(cmd[1], 1, 1) || extract64(cmd[1], 3, 1) ||
483 extract64(cmd[1], 6, 6)) {
484 amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4),
485 s->cmdbuf + s->cmdbuf_head);
486 return;
487 }
488
489 if (extract64(cmd[1], 0, 1)) {
490 g_hash_table_foreach_remove(s->iotlb, amdvi_iotlb_remove_by_devid,
491 &devid);
492 } else {
493 amdvi_iotlb_remove_page(s, cpu_to_le64(extract64(cmd[1], 12, 52)) << 12,
494 cpu_to_le16(extract64(cmd[1], 0, 16)));
495 }
496 trace_amdvi_iotlb_inval();
497 }
498
499 /* not honouring reserved bits is regarded as an illegal command */
500 static void amdvi_cmdbuf_exec(AMDVIState *s)
501 {
502 uint64_t cmd[2];
503
504 if (dma_memory_read(&address_space_memory, s->cmdbuf + s->cmdbuf_head,
505 cmd, AMDVI_COMMAND_SIZE)) {
506 trace_amdvi_command_read_fail(s->cmdbuf, s->cmdbuf_head);
507 amdvi_log_command_error(s, s->cmdbuf + s->cmdbuf_head);
508 return;
509 }
510
511 switch (extract64(cmd[0], 60, 4)) {
512 case AMDVI_CMD_COMPLETION_WAIT:
513 amdvi_completion_wait(s, cmd);
514 break;
515 case AMDVI_CMD_INVAL_DEVTAB_ENTRY:
516 amdvi_inval_devtab_entry(s, cmd);
517 break;
518 case AMDVI_CMD_INVAL_AMDVI_PAGES:
519 amdvi_inval_pages(s, cmd);
520 break;
521 case AMDVI_CMD_INVAL_IOTLB_PAGES:
522 iommu_inval_iotlb(s, cmd);
523 break;
524 case AMDVI_CMD_INVAL_INTR_TABLE:
525 amdvi_inval_inttable(s, cmd);
526 break;
527 case AMDVI_CMD_PREFETCH_AMDVI_PAGES:
528 amdvi_prefetch_pages(s, cmd);
529 break;
530 case AMDVI_CMD_COMPLETE_PPR_REQUEST:
531 amdvi_complete_ppr(s, cmd);
532 break;
533 case AMDVI_CMD_INVAL_AMDVI_ALL:
534 amdvi_inval_all(s, cmd);
535 break;
536 default:
537 trace_amdvi_unhandled_command(extract64(cmd[1], 60, 4));
538 /* log illegal command */
539 amdvi_log_illegalcom_error(s, extract64(cmd[1], 60, 4),
540 s->cmdbuf + s->cmdbuf_head);
541 }
542 }
543
544 static void amdvi_cmdbuf_run(AMDVIState *s)
545 {
546 if (!s->cmdbuf_enabled) {
547 trace_amdvi_command_error(amdvi_readq(s, AMDVI_MMIO_CONTROL));
548 return;
549 }
550
551 /* check if there is work to do. */
552 while (s->cmdbuf_head != s->cmdbuf_tail) {
553 trace_amdvi_command_exec(s->cmdbuf_head, s->cmdbuf_tail, s->cmdbuf);
554 amdvi_cmdbuf_exec(s);
555 s->cmdbuf_head += AMDVI_COMMAND_SIZE;
556 amdvi_writeq_raw(s, s->cmdbuf_head, AMDVI_MMIO_COMMAND_HEAD);
557
558 /* wrap head pointer */
559 if (s->cmdbuf_head >= s->cmdbuf_len * AMDVI_COMMAND_SIZE) {
560 s->cmdbuf_head = 0;
561 }
562 }
563 }
564
565 static void amdvi_mmio_trace(hwaddr addr, unsigned size)
566 {
567 uint8_t index = (addr & ~0x2000) / 8;
568
569 if ((addr & 0x2000)) {
570 /* high table */
571 index = index >= AMDVI_MMIO_REGS_HIGH ? AMDVI_MMIO_REGS_HIGH : index;
572 trace_amdvi_mmio_read(amdvi_mmio_high[index], addr, size, addr & ~0x07);
573 } else {
574 index = index >= AMDVI_MMIO_REGS_LOW ? AMDVI_MMIO_REGS_LOW : index;
575 trace_amdvi_mmio_read(amdvi_mmio_low[index], addr, size, addr & ~0x07);
576 }
577 }
578
579 static uint64_t amdvi_mmio_read(void *opaque, hwaddr addr, unsigned size)
580 {
581 AMDVIState *s = opaque;
582
583 uint64_t val = -1;
584 if (addr + size > AMDVI_MMIO_SIZE) {
585 trace_amdvi_mmio_read_invalid(AMDVI_MMIO_SIZE, addr, size);
586 return (uint64_t)-1;
587 }
588
589 if (size == 2) {
590 val = amdvi_readw(s, addr);
591 } else if (size == 4) {
592 val = amdvi_readl(s, addr);
593 } else if (size == 8) {
594 val = amdvi_readq(s, addr);
595 }
596 amdvi_mmio_trace(addr, size);
597
598 return val;
599 }
600
601 static void amdvi_handle_control_write(AMDVIState *s)
602 {
603 unsigned long control = amdvi_readq(s, AMDVI_MMIO_CONTROL);
604 s->enabled = !!(control & AMDVI_MMIO_CONTROL_AMDVIEN);
605
606 s->ats_enabled = !!(control & AMDVI_MMIO_CONTROL_HTTUNEN);
607 s->evtlog_enabled = s->enabled && !!(control &
608 AMDVI_MMIO_CONTROL_EVENTLOGEN);
609
610 s->evtlog_intr = !!(control & AMDVI_MMIO_CONTROL_EVENTINTEN);
611 s->completion_wait_intr = !!(control & AMDVI_MMIO_CONTROL_COMWAITINTEN);
612 s->cmdbuf_enabled = s->enabled && !!(control &
613 AMDVI_MMIO_CONTROL_CMDBUFLEN);
614 s->ga_enabled = !!(control & AMDVI_MMIO_CONTROL_GAEN);
615
616 /* update the flags depending on the control register */
617 if (s->cmdbuf_enabled) {
618 amdvi_assign_orq(s, AMDVI_MMIO_STATUS, AMDVI_MMIO_STATUS_CMDBUF_RUN);
619 } else {
620 amdvi_assign_andq(s, AMDVI_MMIO_STATUS, ~AMDVI_MMIO_STATUS_CMDBUF_RUN);
621 }
622 if (s->evtlog_enabled) {
623 amdvi_assign_orq(s, AMDVI_MMIO_STATUS, AMDVI_MMIO_STATUS_EVT_RUN);
624 } else {
625 amdvi_assign_andq(s, AMDVI_MMIO_STATUS, ~AMDVI_MMIO_STATUS_EVT_RUN);
626 }
627
628 trace_amdvi_control_status(control);
629 amdvi_cmdbuf_run(s);
630 }
631
632 static inline void amdvi_handle_devtab_write(AMDVIState *s)
633
634 {
635 uint64_t val = amdvi_readq(s, AMDVI_MMIO_DEVICE_TABLE);
636 s->devtab = (val & AMDVI_MMIO_DEVTAB_BASE_MASK);
637
638 /* set device table length */
639 s->devtab_len = ((val & AMDVI_MMIO_DEVTAB_SIZE_MASK) + 1 *
640 (AMDVI_MMIO_DEVTAB_SIZE_UNIT /
641 AMDVI_MMIO_DEVTAB_ENTRY_SIZE));
642 }
643
644 static inline void amdvi_handle_cmdhead_write(AMDVIState *s)
645 {
646 s->cmdbuf_head = amdvi_readq(s, AMDVI_MMIO_COMMAND_HEAD)
647 & AMDVI_MMIO_CMDBUF_HEAD_MASK;
648 amdvi_cmdbuf_run(s);
649 }
650
651 static inline void amdvi_handle_cmdbase_write(AMDVIState *s)
652 {
653 s->cmdbuf = amdvi_readq(s, AMDVI_MMIO_COMMAND_BASE)
654 & AMDVI_MMIO_CMDBUF_BASE_MASK;
655 s->cmdbuf_len = 1UL << (amdvi_readq(s, AMDVI_MMIO_CMDBUF_SIZE_BYTE)
656 & AMDVI_MMIO_CMDBUF_SIZE_MASK);
657 s->cmdbuf_head = s->cmdbuf_tail = 0;
658 }
659
660 static inline void amdvi_handle_cmdtail_write(AMDVIState *s)
661 {
662 s->cmdbuf_tail = amdvi_readq(s, AMDVI_MMIO_COMMAND_TAIL)
663 & AMDVI_MMIO_CMDBUF_TAIL_MASK;
664 amdvi_cmdbuf_run(s);
665 }
666
667 static inline void amdvi_handle_excllim_write(AMDVIState *s)
668 {
669 uint64_t val = amdvi_readq(s, AMDVI_MMIO_EXCL_LIMIT);
670 s->excl_limit = (val & AMDVI_MMIO_EXCL_LIMIT_MASK) |
671 AMDVI_MMIO_EXCL_LIMIT_LOW;
672 }
673
674 static inline void amdvi_handle_evtbase_write(AMDVIState *s)
675 {
676 uint64_t val = amdvi_readq(s, AMDVI_MMIO_EVENT_BASE);
677 s->evtlog = val & AMDVI_MMIO_EVTLOG_BASE_MASK;
678 s->evtlog_len = 1UL << (amdvi_readq(s, AMDVI_MMIO_EVTLOG_SIZE_BYTE)
679 & AMDVI_MMIO_EVTLOG_SIZE_MASK);
680 }
681
682 static inline void amdvi_handle_evttail_write(AMDVIState *s)
683 {
684 uint64_t val = amdvi_readq(s, AMDVI_MMIO_EVENT_TAIL);
685 s->evtlog_tail = val & AMDVI_MMIO_EVTLOG_TAIL_MASK;
686 }
687
688 static inline void amdvi_handle_evthead_write(AMDVIState *s)
689 {
690 uint64_t val = amdvi_readq(s, AMDVI_MMIO_EVENT_HEAD);
691 s->evtlog_head = val & AMDVI_MMIO_EVTLOG_HEAD_MASK;
692 }
693
694 static inline void amdvi_handle_pprbase_write(AMDVIState *s)
695 {
696 uint64_t val = amdvi_readq(s, AMDVI_MMIO_PPR_BASE);
697 s->ppr_log = val & AMDVI_MMIO_PPRLOG_BASE_MASK;
698 s->pprlog_len = 1UL << (amdvi_readq(s, AMDVI_MMIO_PPRLOG_SIZE_BYTE)
699 & AMDVI_MMIO_PPRLOG_SIZE_MASK);
700 }
701
702 static inline void amdvi_handle_pprhead_write(AMDVIState *s)
703 {
704 uint64_t val = amdvi_readq(s, AMDVI_MMIO_PPR_HEAD);
705 s->pprlog_head = val & AMDVI_MMIO_PPRLOG_HEAD_MASK;
706 }
707
708 static inline void amdvi_handle_pprtail_write(AMDVIState *s)
709 {
710 uint64_t val = amdvi_readq(s, AMDVI_MMIO_PPR_TAIL);
711 s->pprlog_tail = val & AMDVI_MMIO_PPRLOG_TAIL_MASK;
712 }
713
714 /* FIXME: something might go wrong if System Software writes in chunks
715 * of one byte but linux writes in chunks of 4 bytes so currently it
716 * works correctly with linux but will definitely be busted if software
717 * reads/writes 8 bytes
718 */
719 static void amdvi_mmio_reg_write(AMDVIState *s, unsigned size, uint64_t val,
720 hwaddr addr)
721 {
722 if (size == 2) {
723 amdvi_writew(s, addr, val);
724 } else if (size == 4) {
725 amdvi_writel(s, addr, val);
726 } else if (size == 8) {
727 amdvi_writeq(s, addr, val);
728 }
729 }
730
731 static void amdvi_mmio_write(void *opaque, hwaddr addr, uint64_t val,
732 unsigned size)
733 {
734 AMDVIState *s = opaque;
735 unsigned long offset = addr & 0x07;
736
737 if (addr + size > AMDVI_MMIO_SIZE) {
738 trace_amdvi_mmio_write("error: addr outside region: max ",
739 (uint64_t)AMDVI_MMIO_SIZE, size, val, offset);
740 return;
741 }
742
743 amdvi_mmio_trace(addr, size);
744 switch (addr & ~0x07) {
745 case AMDVI_MMIO_CONTROL:
746 amdvi_mmio_reg_write(s, size, val, addr);
747 amdvi_handle_control_write(s);
748 break;
749 case AMDVI_MMIO_DEVICE_TABLE:
750 amdvi_mmio_reg_write(s, size, val, addr);
751 /* set device table address
752 * This also suffers from inability to tell whether software
753 * is done writing
754 */
755 if (offset || (size == 8)) {
756 amdvi_handle_devtab_write(s);
757 }
758 break;
759 case AMDVI_MMIO_COMMAND_HEAD:
760 amdvi_mmio_reg_write(s, size, val, addr);
761 amdvi_handle_cmdhead_write(s);
762 break;
763 case AMDVI_MMIO_COMMAND_BASE:
764 amdvi_mmio_reg_write(s, size, val, addr);
765 /* FIXME - make sure System Software has finished writing incase
766 * it writes in chucks less than 8 bytes in a robust way.As for
767 * now, this hacks works for the linux driver
768 */
769 if (offset || (size == 8)) {
770 amdvi_handle_cmdbase_write(s);
771 }
772 break;
773 case AMDVI_MMIO_COMMAND_TAIL:
774 amdvi_mmio_reg_write(s, size, val, addr);
775 amdvi_handle_cmdtail_write(s);
776 break;
777 case AMDVI_MMIO_EVENT_BASE:
778 amdvi_mmio_reg_write(s, size, val, addr);
779 amdvi_handle_evtbase_write(s);
780 break;
781 case AMDVI_MMIO_EVENT_HEAD:
782 amdvi_mmio_reg_write(s, size, val, addr);
783 amdvi_handle_evthead_write(s);
784 break;
785 case AMDVI_MMIO_EVENT_TAIL:
786 amdvi_mmio_reg_write(s, size, val, addr);
787 amdvi_handle_evttail_write(s);
788 break;
789 case AMDVI_MMIO_EXCL_LIMIT:
790 amdvi_mmio_reg_write(s, size, val, addr);
791 amdvi_handle_excllim_write(s);
792 break;
793 /* PPR log base - unused for now */
794 case AMDVI_MMIO_PPR_BASE:
795 amdvi_mmio_reg_write(s, size, val, addr);
796 amdvi_handle_pprbase_write(s);
797 break;
798 /* PPR log head - also unused for now */
799 case AMDVI_MMIO_PPR_HEAD:
800 amdvi_mmio_reg_write(s, size, val, addr);
801 amdvi_handle_pprhead_write(s);
802 break;
803 /* PPR log tail - unused for now */
804 case AMDVI_MMIO_PPR_TAIL:
805 amdvi_mmio_reg_write(s, size, val, addr);
806 amdvi_handle_pprtail_write(s);
807 break;
808 }
809 }
810
811 static inline uint64_t amdvi_get_perms(uint64_t entry)
812 {
813 return (entry & (AMDVI_DEV_PERM_READ | AMDVI_DEV_PERM_WRITE)) >>
814 AMDVI_DEV_PERM_SHIFT;
815 }
816
817 /* validate that reserved bits are honoured */
818 static bool amdvi_validate_dte(AMDVIState *s, uint16_t devid,
819 uint64_t *dte)
820 {
821 if ((dte[0] & AMDVI_DTE_LOWER_QUAD_RESERVED)
822 || (dte[1] & AMDVI_DTE_MIDDLE_QUAD_RESERVED)
823 || (dte[2] & AMDVI_DTE_UPPER_QUAD_RESERVED) || dte[3]) {
824 amdvi_log_illegaldevtab_error(s, devid,
825 s->devtab +
826 devid * AMDVI_DEVTAB_ENTRY_SIZE, 0);
827 return false;
828 }
829
830 return true;
831 }
832
833 /* get a device table entry given the devid */
834 static bool amdvi_get_dte(AMDVIState *s, int devid, uint64_t *entry)
835 {
836 uint32_t offset = devid * AMDVI_DEVTAB_ENTRY_SIZE;
837
838 if (dma_memory_read(&address_space_memory, s->devtab + offset, entry,
839 AMDVI_DEVTAB_ENTRY_SIZE)) {
840 trace_amdvi_dte_get_fail(s->devtab, offset);
841 /* log error accessing dte */
842 amdvi_log_devtab_error(s, devid, s->devtab + offset, 0);
843 return false;
844 }
845
846 *entry = le64_to_cpu(*entry);
847 if (!amdvi_validate_dte(s, devid, entry)) {
848 trace_amdvi_invalid_dte(entry[0]);
849 return false;
850 }
851
852 return true;
853 }
854
855 /* get pte translation mode */
856 static inline uint8_t get_pte_translation_mode(uint64_t pte)
857 {
858 return (pte >> AMDVI_DEV_MODE_RSHIFT) & AMDVI_DEV_MODE_MASK;
859 }
860
861 static inline uint64_t pte_override_page_mask(uint64_t pte)
862 {
863 uint8_t page_mask = 12;
864 uint64_t addr = (pte & AMDVI_DEV_PT_ROOT_MASK) ^ AMDVI_DEV_PT_ROOT_MASK;
865 /* find the first zero bit */
866 while (addr & 1) {
867 page_mask++;
868 addr = addr >> 1;
869 }
870
871 return ~((1ULL << page_mask) - 1);
872 }
873
874 static inline uint64_t pte_get_page_mask(uint64_t oldlevel)
875 {
876 return ~((1UL << ((oldlevel * 9) + 3)) - 1);
877 }
878
879 static inline uint64_t amdvi_get_pte_entry(AMDVIState *s, uint64_t pte_addr,
880 uint16_t devid)
881 {
882 uint64_t pte;
883
884 if (dma_memory_read(&address_space_memory, pte_addr, &pte, sizeof(pte))) {
885 trace_amdvi_get_pte_hwerror(pte_addr);
886 amdvi_log_pagetab_error(s, devid, pte_addr, 0);
887 pte = 0;
888 return pte;
889 }
890
891 pte = le64_to_cpu(pte);
892 return pte;
893 }
894
895 static void amdvi_page_walk(AMDVIAddressSpace *as, uint64_t *dte,
896 IOMMUTLBEntry *ret, unsigned perms,
897 hwaddr addr)
898 {
899 unsigned level, present, pte_perms, oldlevel;
900 uint64_t pte = dte[0], pte_addr, page_mask;
901
902 /* make sure the DTE has TV = 1 */
903 if (pte & AMDVI_DEV_TRANSLATION_VALID) {
904 level = get_pte_translation_mode(pte);
905 if (level >= 7) {
906 trace_amdvi_mode_invalid(level, addr);
907 return;
908 }
909 if (level == 0) {
910 goto no_remap;
911 }
912
913 /* we are at the leaf page table or page table encodes a huge page */
914 while (level > 0) {
915 pte_perms = amdvi_get_perms(pte);
916 present = pte & 1;
917 if (!present || perms != (perms & pte_perms)) {
918 amdvi_page_fault(as->iommu_state, as->devfn, addr, perms);
919 trace_amdvi_page_fault(addr);
920 return;
921 }
922
923 /* go to the next lower level */
924 pte_addr = pte & AMDVI_DEV_PT_ROOT_MASK;
925 /* add offset and load pte */
926 pte_addr += ((addr >> (3 + 9 * level)) & 0x1FF) << 3;
927 pte = amdvi_get_pte_entry(as->iommu_state, pte_addr, as->devfn);
928 if (!pte) {
929 return;
930 }
931 oldlevel = level;
932 level = get_pte_translation_mode(pte);
933 if (level == 0x7) {
934 break;
935 }
936 }
937
938 if (level == 0x7) {
939 page_mask = pte_override_page_mask(pte);
940 } else {
941 page_mask = pte_get_page_mask(oldlevel);
942 }
943
944 /* get access permissions from pte */
945 ret->iova = addr & page_mask;
946 ret->translated_addr = (pte & AMDVI_DEV_PT_ROOT_MASK) & page_mask;
947 ret->addr_mask = ~page_mask;
948 ret->perm = amdvi_get_perms(pte);
949 return;
950 }
951 no_remap:
952 ret->iova = addr & AMDVI_PAGE_MASK_4K;
953 ret->translated_addr = addr & AMDVI_PAGE_MASK_4K;
954 ret->addr_mask = ~AMDVI_PAGE_MASK_4K;
955 ret->perm = amdvi_get_perms(pte);
956 }
957
958 static void amdvi_do_translate(AMDVIAddressSpace *as, hwaddr addr,
959 bool is_write, IOMMUTLBEntry *ret)
960 {
961 AMDVIState *s = as->iommu_state;
962 uint16_t devid = PCI_BUILD_BDF(as->bus_num, as->devfn);
963 AMDVIIOTLBEntry *iotlb_entry = amdvi_iotlb_lookup(s, addr, devid);
964 uint64_t entry[4];
965
966 if (iotlb_entry) {
967 trace_amdvi_iotlb_hit(PCI_BUS_NUM(devid), PCI_SLOT(devid),
968 PCI_FUNC(devid), addr, iotlb_entry->translated_addr);
969 ret->iova = addr & ~iotlb_entry->page_mask;
970 ret->translated_addr = iotlb_entry->translated_addr;
971 ret->addr_mask = iotlb_entry->page_mask;
972 ret->perm = iotlb_entry->perms;
973 return;
974 }
975
976 if (!amdvi_get_dte(s, devid, entry)) {
977 return;
978 }
979
980 /* devices with V = 0 are not translated */
981 if (!(entry[0] & AMDVI_DEV_VALID)) {
982 goto out;
983 }
984
985 amdvi_page_walk(as, entry, ret,
986 is_write ? AMDVI_PERM_WRITE : AMDVI_PERM_READ, addr);
987
988 amdvi_update_iotlb(s, devid, addr, *ret,
989 entry[1] & AMDVI_DEV_DOMID_ID_MASK);
990 return;
991
992 out:
993 ret->iova = addr & AMDVI_PAGE_MASK_4K;
994 ret->translated_addr = addr & AMDVI_PAGE_MASK_4K;
995 ret->addr_mask = ~AMDVI_PAGE_MASK_4K;
996 ret->perm = IOMMU_RW;
997 }
998
999 static inline bool amdvi_is_interrupt_addr(hwaddr addr)
1000 {
1001 return addr >= AMDVI_INT_ADDR_FIRST && addr <= AMDVI_INT_ADDR_LAST;
1002 }
1003
1004 static IOMMUTLBEntry amdvi_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
1005 IOMMUAccessFlags flag, int iommu_idx)
1006 {
1007 AMDVIAddressSpace *as = container_of(iommu, AMDVIAddressSpace, iommu);
1008 AMDVIState *s = as->iommu_state;
1009 IOMMUTLBEntry ret = {
1010 .target_as = &address_space_memory,
1011 .iova = addr,
1012 .translated_addr = 0,
1013 .addr_mask = ~(hwaddr)0,
1014 .perm = IOMMU_NONE
1015 };
1016
1017 if (!s->enabled) {
1018 /* AMDVI disabled - corresponds to iommu=off not
1019 * failure to provide any parameter
1020 */
1021 ret.iova = addr & AMDVI_PAGE_MASK_4K;
1022 ret.translated_addr = addr & AMDVI_PAGE_MASK_4K;
1023 ret.addr_mask = ~AMDVI_PAGE_MASK_4K;
1024 ret.perm = IOMMU_RW;
1025 return ret;
1026 } else if (amdvi_is_interrupt_addr(addr)) {
1027 ret.iova = addr & AMDVI_PAGE_MASK_4K;
1028 ret.translated_addr = addr & AMDVI_PAGE_MASK_4K;
1029 ret.addr_mask = ~AMDVI_PAGE_MASK_4K;
1030 ret.perm = IOMMU_WO;
1031 return ret;
1032 }
1033
1034 amdvi_do_translate(as, addr, flag & IOMMU_WO, &ret);
1035 trace_amdvi_translation_result(as->bus_num, PCI_SLOT(as->devfn),
1036 PCI_FUNC(as->devfn), addr, ret.translated_addr);
1037 return ret;
1038 }
1039
1040 static int amdvi_get_irte(AMDVIState *s, MSIMessage *origin, uint64_t *dte,
1041 union irte *irte, uint16_t devid)
1042 {
1043 uint64_t irte_root, offset;
1044
1045 irte_root = dte[2] & AMDVI_IR_PHYS_ADDR_MASK;
1046 offset = (origin->data & AMDVI_IRTE_OFFSET) << 2;
1047
1048 trace_amdvi_ir_irte(irte_root, offset);
1049
1050 if (dma_memory_read(&address_space_memory, irte_root + offset,
1051 irte, sizeof(*irte))) {
1052 trace_amdvi_ir_err("failed to get irte");
1053 return -AMDVI_IR_GET_IRTE;
1054 }
1055
1056 trace_amdvi_ir_irte_val(irte->val);
1057
1058 return 0;
1059 }
1060
1061 static int amdvi_int_remap_legacy(AMDVIState *iommu,
1062 MSIMessage *origin,
1063 MSIMessage *translated,
1064 uint64_t *dte,
1065 X86IOMMUIrq *irq,
1066 uint16_t sid)
1067 {
1068 int ret;
1069 union irte irte;
1070
1071 /* get interrupt remapping table */
1072 ret = amdvi_get_irte(iommu, origin, dte, &irte, sid);
1073 if (ret < 0) {
1074 return ret;
1075 }
1076
1077 if (!irte.fields.valid) {
1078 trace_amdvi_ir_target_abort("RemapEn is disabled");
1079 return -AMDVI_IR_TARGET_ABORT;
1080 }
1081
1082 if (irte.fields.guest_mode) {
1083 error_report_once("guest mode is not zero");
1084 return -AMDVI_IR_ERR;
1085 }
1086
1087 if (irte.fields.int_type > AMDVI_IOAPIC_INT_TYPE_ARBITRATED) {
1088 error_report_once("reserved int_type");
1089 return -AMDVI_IR_ERR;
1090 }
1091
1092 irq->delivery_mode = irte.fields.int_type;
1093 irq->vector = irte.fields.vector;
1094 irq->dest_mode = irte.fields.dm;
1095 irq->redir_hint = irte.fields.rq_eoi;
1096 irq->dest = irte.fields.destination;
1097
1098 return 0;
1099 }
1100
1101 static int amdvi_get_irte_ga(AMDVIState *s, MSIMessage *origin, uint64_t *dte,
1102 struct irte_ga *irte, uint16_t devid)
1103 {
1104 uint64_t irte_root, offset;
1105
1106 irte_root = dte[2] & AMDVI_IR_PHYS_ADDR_MASK;
1107 offset = (origin->data & AMDVI_IRTE_OFFSET) << 4;
1108 trace_amdvi_ir_irte(irte_root, offset);
1109
1110 if (dma_memory_read(&address_space_memory, irte_root + offset,
1111 irte, sizeof(*irte))) {
1112 trace_amdvi_ir_err("failed to get irte_ga");
1113 return -AMDVI_IR_GET_IRTE;
1114 }
1115
1116 trace_amdvi_ir_irte_ga_val(irte->hi.val, irte->lo.val);
1117 return 0;
1118 }
1119
1120 static int amdvi_int_remap_ga(AMDVIState *iommu,
1121 MSIMessage *origin,
1122 MSIMessage *translated,
1123 uint64_t *dte,
1124 X86IOMMUIrq *irq,
1125 uint16_t sid)
1126 {
1127 int ret;
1128 struct irte_ga irte;
1129
1130 /* get interrupt remapping table */
1131 ret = amdvi_get_irte_ga(iommu, origin, dte, &irte, sid);
1132 if (ret < 0) {
1133 return ret;
1134 }
1135
1136 if (!irte.lo.fields_remap.valid) {
1137 trace_amdvi_ir_target_abort("RemapEn is disabled");
1138 return -AMDVI_IR_TARGET_ABORT;
1139 }
1140
1141 if (irte.lo.fields_remap.guest_mode) {
1142 error_report_once("guest mode is not zero");
1143 return -AMDVI_IR_ERR;
1144 }
1145
1146 if (irte.lo.fields_remap.int_type > AMDVI_IOAPIC_INT_TYPE_ARBITRATED) {
1147 error_report_once("reserved int_type is set");
1148 return -AMDVI_IR_ERR;
1149 }
1150
1151 irq->delivery_mode = irte.lo.fields_remap.int_type;
1152 irq->vector = irte.hi.fields.vector;
1153 irq->dest_mode = irte.lo.fields_remap.dm;
1154 irq->redir_hint = irte.lo.fields_remap.rq_eoi;
1155 irq->dest = irte.lo.fields_remap.destination;
1156
1157 return 0;
1158 }
1159
1160 static int __amdvi_int_remap_msi(AMDVIState *iommu,
1161 MSIMessage *origin,
1162 MSIMessage *translated,
1163 uint64_t *dte,
1164 X86IOMMUIrq *irq,
1165 uint16_t sid)
1166 {
1167 int ret;
1168 uint8_t int_ctl;
1169
1170 int_ctl = (dte[2] >> AMDVI_IR_INTCTL_SHIFT) & 3;
1171 trace_amdvi_ir_intctl(int_ctl);
1172
1173 switch (int_ctl) {
1174 case AMDVI_IR_INTCTL_PASS:
1175 memcpy(translated, origin, sizeof(*origin));
1176 return 0;
1177 case AMDVI_IR_INTCTL_REMAP:
1178 break;
1179 case AMDVI_IR_INTCTL_ABORT:
1180 trace_amdvi_ir_target_abort("int_ctl abort");
1181 return -AMDVI_IR_TARGET_ABORT;
1182 default:
1183 trace_amdvi_ir_err("int_ctl reserved");
1184 return -AMDVI_IR_ERR;
1185 }
1186
1187 if (iommu->ga_enabled) {
1188 ret = amdvi_int_remap_ga(iommu, origin, translated, dte, irq, sid);
1189 } else {
1190 ret = amdvi_int_remap_legacy(iommu, origin, translated, dte, irq, sid);
1191 }
1192
1193 return ret;
1194 }
1195
1196 /* Interrupt remapping for MSI/MSI-X entry */
1197 static int amdvi_int_remap_msi(AMDVIState *iommu,
1198 MSIMessage *origin,
1199 MSIMessage *translated,
1200 uint16_t sid)
1201 {
1202 int ret = 0;
1203 uint64_t pass = 0;
1204 uint64_t dte[4] = { 0 };
1205 X86IOMMUIrq irq = { 0 };
1206 uint8_t dest_mode, delivery_mode;
1207
1208 assert(origin && translated);
1209
1210 /*
1211 * When IOMMU is enabled, interrupt remap request will come either from
1212 * IO-APIC or PCI device. If interrupt is from PCI device then it will
1213 * have a valid requester id but if the interrupt is from IO-APIC
1214 * then requester id will be invalid.
1215 */
1216 if (sid == X86_IOMMU_SID_INVALID) {
1217 sid = AMDVI_IOAPIC_SB_DEVID;
1218 }
1219
1220 trace_amdvi_ir_remap_msi_req(origin->address, origin->data, sid);
1221
1222 /* check if device table entry is set before we go further. */
1223 if (!iommu || !iommu->devtab_len) {
1224 memcpy(translated, origin, sizeof(*origin));
1225 goto out;
1226 }
1227
1228 if (!amdvi_get_dte(iommu, sid, dte)) {
1229 return -AMDVI_IR_ERR;
1230 }
1231
1232 /* Check if IR is enabled in DTE */
1233 if (!(dte[2] & AMDVI_IR_REMAP_ENABLE)) {
1234 memcpy(translated, origin, sizeof(*origin));
1235 goto out;
1236 }
1237
1238 /* validate that we are configure with intremap=on */
1239 if (!x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu))) {
1240 trace_amdvi_err("Interrupt remapping is enabled in the guest but "
1241 "not in the host. Use intremap=on to enable interrupt "
1242 "remapping in amd-iommu.");
1243 return -AMDVI_IR_ERR;
1244 }
1245
1246 if (origin->address & AMDVI_MSI_ADDR_HI_MASK) {
1247 trace_amdvi_err("MSI address high 32 bits non-zero when "
1248 "Interrupt Remapping enabled.");
1249 return -AMDVI_IR_ERR;
1250 }
1251
1252 if ((origin->address & AMDVI_MSI_ADDR_LO_MASK) != APIC_DEFAULT_ADDRESS) {
1253 trace_amdvi_err("MSI is not from IOAPIC.");
1254 return -AMDVI_IR_ERR;
1255 }
1256
1257 /*
1258 * The MSI data register [10:8] are used to get the upstream interrupt type.
1259 *
1260 * See MSI/MSI-X format:
1261 * https://pdfs.semanticscholar.org/presentation/9420/c279e942eca568157711ef5c92b800c40a79.pdf
1262 * (page 5)
1263 */
1264 delivery_mode = (origin->data >> MSI_DATA_DELIVERY_MODE_SHIFT) & 7;
1265
1266 switch (delivery_mode) {
1267 case AMDVI_IOAPIC_INT_TYPE_FIXED:
1268 case AMDVI_IOAPIC_INT_TYPE_ARBITRATED:
1269 trace_amdvi_ir_delivery_mode("fixed/arbitrated");
1270 ret = __amdvi_int_remap_msi(iommu, origin, translated, dte, &irq, sid);
1271 if (ret < 0) {
1272 goto remap_fail;
1273 } else {
1274 /* Translate IRQ to MSI messages */
1275 x86_iommu_irq_to_msi_message(&irq, translated);
1276 goto out;
1277 }
1278 break;
1279 case AMDVI_IOAPIC_INT_TYPE_SMI:
1280 error_report("SMI is not supported!");
1281 ret = -AMDVI_IR_ERR;
1282 break;
1283 case AMDVI_IOAPIC_INT_TYPE_NMI:
1284 pass = dte[3] & AMDVI_DEV_NMI_PASS_MASK;
1285 trace_amdvi_ir_delivery_mode("nmi");
1286 break;
1287 case AMDVI_IOAPIC_INT_TYPE_INIT:
1288 pass = dte[3] & AMDVI_DEV_INT_PASS_MASK;
1289 trace_amdvi_ir_delivery_mode("init");
1290 break;
1291 case AMDVI_IOAPIC_INT_TYPE_EINT:
1292 pass = dte[3] & AMDVI_DEV_EINT_PASS_MASK;
1293 trace_amdvi_ir_delivery_mode("eint");
1294 break;
1295 default:
1296 trace_amdvi_ir_delivery_mode("unsupported delivery_mode");
1297 ret = -AMDVI_IR_ERR;
1298 break;
1299 }
1300
1301 if (ret < 0) {
1302 goto remap_fail;
1303 }
1304
1305 /*
1306 * The MSI address register bit[2] is used to get the destination
1307 * mode. The dest_mode 1 is valid for fixed and arbitrated interrupts
1308 * only.
1309 */
1310 dest_mode = (origin->address >> MSI_ADDR_DEST_MODE_SHIFT) & 1;
1311 if (dest_mode) {
1312 trace_amdvi_ir_err("invalid dest_mode");
1313 ret = -AMDVI_IR_ERR;
1314 goto remap_fail;
1315 }
1316
1317 if (pass) {
1318 memcpy(translated, origin, sizeof(*origin));
1319 } else {
1320 trace_amdvi_ir_err("passthrough is not enabled");
1321 ret = -AMDVI_IR_ERR;
1322 goto remap_fail;
1323 }
1324
1325 out:
1326 trace_amdvi_ir_remap_msi(origin->address, origin->data,
1327 translated->address, translated->data);
1328 return 0;
1329
1330 remap_fail:
1331 return ret;
1332 }
1333
1334 static int amdvi_int_remap(X86IOMMUState *iommu,
1335 MSIMessage *origin,
1336 MSIMessage *translated,
1337 uint16_t sid)
1338 {
1339 return amdvi_int_remap_msi(AMD_IOMMU_DEVICE(iommu), origin,
1340 translated, sid);
1341 }
1342
1343 static MemTxResult amdvi_mem_ir_write(void *opaque, hwaddr addr,
1344 uint64_t value, unsigned size,
1345 MemTxAttrs attrs)
1346 {
1347 int ret;
1348 MSIMessage from = { 0, 0 }, to = { 0, 0 };
1349 uint16_t sid = AMDVI_IOAPIC_SB_DEVID;
1350
1351 from.address = (uint64_t) addr + AMDVI_INT_ADDR_FIRST;
1352 from.data = (uint32_t) value;
1353
1354 trace_amdvi_mem_ir_write_req(addr, value, size);
1355
1356 if (!attrs.unspecified) {
1357 /* We have explicit Source ID */
1358 sid = attrs.requester_id;
1359 }
1360
1361 ret = amdvi_int_remap_msi(opaque, &from, &to, sid);
1362 if (ret < 0) {
1363 /* TODO: log the event using IOMMU log event interface */
1364 error_report_once("failed to remap interrupt from devid 0x%x", sid);
1365 return MEMTX_ERROR;
1366 }
1367
1368 apic_get_class()->send_msi(&to);
1369
1370 trace_amdvi_mem_ir_write(to.address, to.data);
1371 return MEMTX_OK;
1372 }
1373
1374 static MemTxResult amdvi_mem_ir_read(void *opaque, hwaddr addr,
1375 uint64_t *data, unsigned size,
1376 MemTxAttrs attrs)
1377 {
1378 return MEMTX_OK;
1379 }
1380
1381 static const MemoryRegionOps amdvi_ir_ops = {
1382 .read_with_attrs = amdvi_mem_ir_read,
1383 .write_with_attrs = amdvi_mem_ir_write,
1384 .endianness = DEVICE_LITTLE_ENDIAN,
1385 .impl = {
1386 .min_access_size = 4,
1387 .max_access_size = 4,
1388 },
1389 .valid = {
1390 .min_access_size = 4,
1391 .max_access_size = 4,
1392 }
1393 };
1394
1395 static AddressSpace *amdvi_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
1396 {
1397 char name[128];
1398 AMDVIState *s = opaque;
1399 AMDVIAddressSpace **iommu_as, *amdvi_dev_as;
1400 int bus_num = pci_bus_num(bus);
1401
1402 iommu_as = s->address_spaces[bus_num];
1403
1404 /* allocate memory during the first run */
1405 if (!iommu_as) {
1406 iommu_as = g_malloc0(sizeof(AMDVIAddressSpace *) * PCI_DEVFN_MAX);
1407 s->address_spaces[bus_num] = iommu_as;
1408 }
1409
1410 /* set up AMD-Vi region */
1411 if (!iommu_as[devfn]) {
1412 snprintf(name, sizeof(name), "amd_iommu_devfn_%d", devfn);
1413
1414 iommu_as[devfn] = g_malloc0(sizeof(AMDVIAddressSpace));
1415 iommu_as[devfn]->bus_num = (uint8_t)bus_num;
1416 iommu_as[devfn]->devfn = (uint8_t)devfn;
1417 iommu_as[devfn]->iommu_state = s;
1418
1419 amdvi_dev_as = iommu_as[devfn];
1420
1421 /*
1422 * Memory region relationships looks like (Address range shows
1423 * only lower 32 bits to make it short in length...):
1424 *
1425 * |-----------------+-------------------+----------|
1426 * | Name | Address range | Priority |
1427 * |-----------------+-------------------+----------+
1428 * | amdvi_root | 00000000-ffffffff | 0 |
1429 * | amdvi_iommu | 00000000-ffffffff | 1 |
1430 * | amdvi_iommu_ir | fee00000-feefffff | 64 |
1431 * |-----------------+-------------------+----------|
1432 */
1433 memory_region_init_iommu(&amdvi_dev_as->iommu,
1434 sizeof(amdvi_dev_as->iommu),
1435 TYPE_AMD_IOMMU_MEMORY_REGION,
1436 OBJECT(s),
1437 "amd_iommu", UINT64_MAX);
1438 memory_region_init(&amdvi_dev_as->root, OBJECT(s),
1439 "amdvi_root", UINT64_MAX);
1440 address_space_init(&amdvi_dev_as->as, &amdvi_dev_as->root, name);
1441 memory_region_init_io(&amdvi_dev_as->iommu_ir, OBJECT(s),
1442 &amdvi_ir_ops, s, "amd_iommu_ir",
1443 AMDVI_INT_ADDR_SIZE);
1444 memory_region_add_subregion_overlap(&amdvi_dev_as->root,
1445 AMDVI_INT_ADDR_FIRST,
1446 &amdvi_dev_as->iommu_ir,
1447 64);
1448 memory_region_add_subregion_overlap(&amdvi_dev_as->root, 0,
1449 MEMORY_REGION(&amdvi_dev_as->iommu),
1450 1);
1451 }
1452 return &iommu_as[devfn]->as;
1453 }
1454
1455 static const MemoryRegionOps mmio_mem_ops = {
1456 .read = amdvi_mmio_read,
1457 .write = amdvi_mmio_write,
1458 .endianness = DEVICE_LITTLE_ENDIAN,
1459 .impl = {
1460 .min_access_size = 1,
1461 .max_access_size = 8,
1462 .unaligned = false,
1463 },
1464 .valid = {
1465 .min_access_size = 1,
1466 .max_access_size = 8,
1467 }
1468 };
1469
1470 static int amdvi_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
1471 IOMMUNotifierFlag old,
1472 IOMMUNotifierFlag new,
1473 Error **errp)
1474 {
1475 AMDVIAddressSpace *as = container_of(iommu, AMDVIAddressSpace, iommu);
1476
1477 if (new & IOMMU_NOTIFIER_MAP) {
1478 error_setg(errp,
1479 "device %02x.%02x.%x requires iommu notifier which is not "
1480 "currently supported", as->bus_num, PCI_SLOT(as->devfn),
1481 PCI_FUNC(as->devfn));
1482 return -EINVAL;
1483 }
1484 return 0;
1485 }
1486
1487 static void amdvi_init(AMDVIState *s)
1488 {
1489 amdvi_iotlb_reset(s);
1490
1491 s->devtab_len = 0;
1492 s->cmdbuf_len = 0;
1493 s->cmdbuf_head = 0;
1494 s->cmdbuf_tail = 0;
1495 s->evtlog_head = 0;
1496 s->evtlog_tail = 0;
1497 s->excl_enabled = false;
1498 s->excl_allow = false;
1499 s->mmio_enabled = false;
1500 s->enabled = false;
1501 s->ats_enabled = false;
1502 s->cmdbuf_enabled = false;
1503
1504 /* reset MMIO */
1505 memset(s->mmior, 0, AMDVI_MMIO_SIZE);
1506 amdvi_set_quad(s, AMDVI_MMIO_EXT_FEATURES, AMDVI_EXT_FEATURES,
1507 0xffffffffffffffef, 0);
1508 amdvi_set_quad(s, AMDVI_MMIO_STATUS, 0, 0x98, 0x67);
1509
1510 /* reset device ident */
1511 pci_config_set_vendor_id(s->pci.dev.config, PCI_VENDOR_ID_AMD);
1512 pci_config_set_prog_interface(s->pci.dev.config, 00);
1513 pci_config_set_device_id(s->pci.dev.config, s->devid);
1514 pci_config_set_class(s->pci.dev.config, 0x0806);
1515
1516 /* reset AMDVI specific capabilities, all r/o */
1517 pci_set_long(s->pci.dev.config + s->capab_offset, AMDVI_CAPAB_FEATURES);
1518 pci_set_long(s->pci.dev.config + s->capab_offset + AMDVI_CAPAB_BAR_LOW,
1519 s->mmio.addr & ~(0xffff0000));
1520 pci_set_long(s->pci.dev.config + s->capab_offset + AMDVI_CAPAB_BAR_HIGH,
1521 (s->mmio.addr & ~(0xffff)) >> 16);
1522 pci_set_long(s->pci.dev.config + s->capab_offset + AMDVI_CAPAB_RANGE,
1523 0xff000000);
1524 pci_set_long(s->pci.dev.config + s->capab_offset + AMDVI_CAPAB_MISC, 0);
1525 pci_set_long(s->pci.dev.config + s->capab_offset + AMDVI_CAPAB_MISC,
1526 AMDVI_MAX_PH_ADDR | AMDVI_MAX_GVA_ADDR | AMDVI_MAX_VA_ADDR);
1527 }
1528
1529 static void amdvi_reset(DeviceState *dev)
1530 {
1531 AMDVIState *s = AMD_IOMMU_DEVICE(dev);
1532
1533 msi_reset(&s->pci.dev);
1534 amdvi_init(s);
1535 }
1536
1537 static void amdvi_realize(DeviceState *dev, Error **errp)
1538 {
1539 int ret = 0;
1540 AMDVIState *s = AMD_IOMMU_DEVICE(dev);
1541 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
1542 MachineState *ms = MACHINE(qdev_get_machine());
1543 PCMachineState *pcms = PC_MACHINE(ms);
1544 X86MachineState *x86ms = X86_MACHINE(ms);
1545 PCIBus *bus = pcms->bus;
1546
1547 s->iotlb = g_hash_table_new_full(amdvi_uint64_hash,
1548 amdvi_uint64_equal, g_free, g_free);
1549
1550 /* This device should take care of IOMMU PCI properties */
1551 x86_iommu->type = TYPE_AMD;
1552 if (!qdev_realize(DEVICE(&s->pci), &bus->qbus, errp)) {
1553 return;
1554 }
1555 ret = pci_add_capability(&s->pci.dev, AMDVI_CAPAB_ID_SEC, 0,
1556 AMDVI_CAPAB_SIZE, errp);
1557 if (ret < 0) {
1558 return;
1559 }
1560 s->capab_offset = ret;
1561
1562 ret = pci_add_capability(&s->pci.dev, PCI_CAP_ID_MSI, 0,
1563 AMDVI_CAPAB_REG_SIZE, errp);
1564 if (ret < 0) {
1565 return;
1566 }
1567 ret = pci_add_capability(&s->pci.dev, PCI_CAP_ID_HT, 0,
1568 AMDVI_CAPAB_REG_SIZE, errp);
1569 if (ret < 0) {
1570 return;
1571 }
1572
1573 /* Pseudo address space under root PCI bus. */
1574 x86ms->ioapic_as = amdvi_host_dma_iommu(bus, s, AMDVI_IOAPIC_SB_DEVID);
1575
1576 /* set up MMIO */
1577 memory_region_init_io(&s->mmio, OBJECT(s), &mmio_mem_ops, s, "amdvi-mmio",
1578 AMDVI_MMIO_SIZE);
1579
1580 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->mmio);
1581 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, AMDVI_BASE_ADDR);
1582 pci_setup_iommu(bus, amdvi_host_dma_iommu, s);
1583 s->devid = object_property_get_int(OBJECT(&s->pci), "addr", &error_abort);
1584 msi_init(&s->pci.dev, 0, 1, true, false, errp);
1585 amdvi_init(s);
1586 }
1587
1588 static const VMStateDescription vmstate_amdvi = {
1589 .name = "amd-iommu",
1590 .unmigratable = 1
1591 };
1592
1593 static void amdvi_instance_init(Object *klass)
1594 {
1595 AMDVIState *s = AMD_IOMMU_DEVICE(klass);
1596
1597 object_initialize(&s->pci, sizeof(s->pci), TYPE_AMD_IOMMU_PCI);
1598 }
1599
1600 static void amdvi_class_init(ObjectClass *klass, void* data)
1601 {
1602 DeviceClass *dc = DEVICE_CLASS(klass);
1603 X86IOMMUClass *dc_class = X86_IOMMU_DEVICE_CLASS(klass);
1604
1605 dc->reset = amdvi_reset;
1606 dc->vmsd = &vmstate_amdvi;
1607 dc->hotpluggable = false;
1608 dc_class->realize = amdvi_realize;
1609 dc_class->int_remap = amdvi_int_remap;
1610 /* Supported by the pc-q35-* machine types */
1611 dc->user_creatable = true;
1612 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
1613 dc->desc = "AMD IOMMU (AMD-Vi) DMA Remapping device";
1614 }
1615
1616 static const TypeInfo amdvi = {
1617 .name = TYPE_AMD_IOMMU_DEVICE,
1618 .parent = TYPE_X86_IOMMU_DEVICE,
1619 .instance_size = sizeof(AMDVIState),
1620 .instance_init = amdvi_instance_init,
1621 .class_init = amdvi_class_init
1622 };
1623
1624 static const TypeInfo amdviPCI = {
1625 .name = TYPE_AMD_IOMMU_PCI,
1626 .parent = TYPE_PCI_DEVICE,
1627 .instance_size = sizeof(AMDVIPCIState),
1628 .interfaces = (InterfaceInfo[]) {
1629 { INTERFACE_CONVENTIONAL_PCI_DEVICE },
1630 { },
1631 },
1632 };
1633
1634 static void amdvi_iommu_memory_region_class_init(ObjectClass *klass, void *data)
1635 {
1636 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
1637
1638 imrc->translate = amdvi_translate;
1639 imrc->notify_flag_changed = amdvi_iommu_notify_flag_changed;
1640 }
1641
1642 static const TypeInfo amdvi_iommu_memory_region_info = {
1643 .parent = TYPE_IOMMU_MEMORY_REGION,
1644 .name = TYPE_AMD_IOMMU_MEMORY_REGION,
1645 .class_init = amdvi_iommu_memory_region_class_init,
1646 };
1647
1648 static void amdviPCI_register_types(void)
1649 {
1650 type_register_static(&amdviPCI);
1651 type_register_static(&amdvi);
1652 type_register_static(&amdvi_iommu_memory_region_info);
1653 }
1654
1655 type_init(amdviPCI_register_types);