linux-user, arm: add syscall table generation support
[qemu.git] / hw / i386 / amd_iommu.c
1 /*
2 * QEMU emulation of AMD IOMMU (AMD-Vi)
3 *
4 * Copyright (C) 2011 Eduard - Gabriel Munteanu
5 * Copyright (C) 2015, 2016 David Kiarie Kahurani
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, see <http://www.gnu.org/licenses/>.
19 *
20 * Cache implementation inspired by hw/i386/intel_iommu.c
21 */
22
23 #include "qemu/osdep.h"
24 #include "hw/i386/pc.h"
25 #include "hw/pci/msi.h"
26 #include "hw/pci/pci_bus.h"
27 #include "migration/vmstate.h"
28 #include "amd_iommu.h"
29 #include "qapi/error.h"
30 #include "qemu/error-report.h"
31 #include "hw/i386/apic_internal.h"
32 #include "trace.h"
33 #include "hw/i386/apic-msidef.h"
34
35 /* used AMD-Vi MMIO registers */
36 const char *amdvi_mmio_low[] = {
37 "AMDVI_MMIO_DEVTAB_BASE",
38 "AMDVI_MMIO_CMDBUF_BASE",
39 "AMDVI_MMIO_EVTLOG_BASE",
40 "AMDVI_MMIO_CONTROL",
41 "AMDVI_MMIO_EXCL_BASE",
42 "AMDVI_MMIO_EXCL_LIMIT",
43 "AMDVI_MMIO_EXT_FEATURES",
44 "AMDVI_MMIO_PPR_BASE",
45 "UNHANDLED"
46 };
47 const char *amdvi_mmio_high[] = {
48 "AMDVI_MMIO_COMMAND_HEAD",
49 "AMDVI_MMIO_COMMAND_TAIL",
50 "AMDVI_MMIO_EVTLOG_HEAD",
51 "AMDVI_MMIO_EVTLOG_TAIL",
52 "AMDVI_MMIO_STATUS",
53 "AMDVI_MMIO_PPR_HEAD",
54 "AMDVI_MMIO_PPR_TAIL",
55 "UNHANDLED"
56 };
57
58 struct AMDVIAddressSpace {
59 uint8_t bus_num; /* bus number */
60 uint8_t devfn; /* device function */
61 AMDVIState *iommu_state; /* AMDVI - one per machine */
62 MemoryRegion root; /* AMDVI Root memory map region */
63 IOMMUMemoryRegion iommu; /* Device's address translation region */
64 MemoryRegion iommu_ir; /* Device's interrupt remapping region */
65 AddressSpace as; /* device's corresponding address space */
66 };
67
68 /* AMDVI cache entry */
69 typedef struct AMDVIIOTLBEntry {
70 uint16_t domid; /* assigned domain id */
71 uint16_t devid; /* device owning entry */
72 uint64_t perms; /* access permissions */
73 uint64_t translated_addr; /* translated address */
74 uint64_t page_mask; /* physical page size */
75 } AMDVIIOTLBEntry;
76
77 /* configure MMIO registers at startup/reset */
78 static void amdvi_set_quad(AMDVIState *s, hwaddr addr, uint64_t val,
79 uint64_t romask, uint64_t w1cmask)
80 {
81 stq_le_p(&s->mmior[addr], val);
82 stq_le_p(&s->romask[addr], romask);
83 stq_le_p(&s->w1cmask[addr], w1cmask);
84 }
85
86 static uint16_t amdvi_readw(AMDVIState *s, hwaddr addr)
87 {
88 return lduw_le_p(&s->mmior[addr]);
89 }
90
91 static uint32_t amdvi_readl(AMDVIState *s, hwaddr addr)
92 {
93 return ldl_le_p(&s->mmior[addr]);
94 }
95
96 static uint64_t amdvi_readq(AMDVIState *s, hwaddr addr)
97 {
98 return ldq_le_p(&s->mmior[addr]);
99 }
100
101 /* internal write */
102 static void amdvi_writeq_raw(AMDVIState *s, uint64_t val, hwaddr addr)
103 {
104 stq_le_p(&s->mmior[addr], val);
105 }
106
107 /* external write */
108 static void amdvi_writew(AMDVIState *s, hwaddr addr, uint16_t val)
109 {
110 uint16_t romask = lduw_le_p(&s->romask[addr]);
111 uint16_t w1cmask = lduw_le_p(&s->w1cmask[addr]);
112 uint16_t oldval = lduw_le_p(&s->mmior[addr]);
113 stw_le_p(&s->mmior[addr],
114 ((oldval & romask) | (val & ~romask)) & ~(val & w1cmask));
115 }
116
117 static void amdvi_writel(AMDVIState *s, hwaddr addr, uint32_t val)
118 {
119 uint32_t romask = ldl_le_p(&s->romask[addr]);
120 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
121 uint32_t oldval = ldl_le_p(&s->mmior[addr]);
122 stl_le_p(&s->mmior[addr],
123 ((oldval & romask) | (val & ~romask)) & ~(val & w1cmask));
124 }
125
126 static void amdvi_writeq(AMDVIState *s, hwaddr addr, uint64_t val)
127 {
128 uint64_t romask = ldq_le_p(&s->romask[addr]);
129 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
130 uint32_t oldval = ldq_le_p(&s->mmior[addr]);
131 stq_le_p(&s->mmior[addr],
132 ((oldval & romask) | (val & ~romask)) & ~(val & w1cmask));
133 }
134
135 /* OR a 64-bit register with a 64-bit value */
136 static bool amdvi_test_mask(AMDVIState *s, hwaddr addr, uint64_t val)
137 {
138 return amdvi_readq(s, addr) | val;
139 }
140
141 /* OR a 64-bit register with a 64-bit value storing result in the register */
142 static void amdvi_assign_orq(AMDVIState *s, hwaddr addr, uint64_t val)
143 {
144 amdvi_writeq_raw(s, addr, amdvi_readq(s, addr) | val);
145 }
146
147 /* AND a 64-bit register with a 64-bit value storing result in the register */
148 static void amdvi_assign_andq(AMDVIState *s, hwaddr addr, uint64_t val)
149 {
150 amdvi_writeq_raw(s, addr, amdvi_readq(s, addr) & val);
151 }
152
153 static void amdvi_generate_msi_interrupt(AMDVIState *s)
154 {
155 MSIMessage msg = {};
156 MemTxAttrs attrs = {
157 .requester_id = pci_requester_id(&s->pci.dev)
158 };
159
160 if (msi_enabled(&s->pci.dev)) {
161 msg = msi_get_message(&s->pci.dev, 0);
162 address_space_stl_le(&address_space_memory, msg.address, msg.data,
163 attrs, NULL);
164 }
165 }
166
167 static void amdvi_log_event(AMDVIState *s, uint64_t *evt)
168 {
169 /* event logging not enabled */
170 if (!s->evtlog_enabled || amdvi_test_mask(s, AMDVI_MMIO_STATUS,
171 AMDVI_MMIO_STATUS_EVT_OVF)) {
172 return;
173 }
174
175 /* event log buffer full */
176 if (s->evtlog_tail >= s->evtlog_len) {
177 amdvi_assign_orq(s, AMDVI_MMIO_STATUS, AMDVI_MMIO_STATUS_EVT_OVF);
178 /* generate interrupt */
179 amdvi_generate_msi_interrupt(s);
180 return;
181 }
182
183 if (dma_memory_write(&address_space_memory, s->evtlog + s->evtlog_tail,
184 &evt, AMDVI_EVENT_LEN)) {
185 trace_amdvi_evntlog_fail(s->evtlog, s->evtlog_tail);
186 }
187
188 s->evtlog_tail += AMDVI_EVENT_LEN;
189 amdvi_assign_orq(s, AMDVI_MMIO_STATUS, AMDVI_MMIO_STATUS_COMP_INT);
190 amdvi_generate_msi_interrupt(s);
191 }
192
193 static void amdvi_setevent_bits(uint64_t *buffer, uint64_t value, int start,
194 int length)
195 {
196 int index = start / 64, bitpos = start % 64;
197 uint64_t mask = MAKE_64BIT_MASK(start, length);
198 buffer[index] &= ~mask;
199 buffer[index] |= (value << bitpos) & mask;
200 }
201 /*
202 * AMDVi event structure
203 * 0:15 -> DeviceID
204 * 55:63 -> event type + miscellaneous info
205 * 63:127 -> related address
206 */
207 static void amdvi_encode_event(uint64_t *evt, uint16_t devid, uint64_t addr,
208 uint16_t info)
209 {
210 amdvi_setevent_bits(evt, devid, 0, 16);
211 amdvi_setevent_bits(evt, info, 55, 8);
212 amdvi_setevent_bits(evt, addr, 63, 64);
213 }
214 /* log an error encountered during a page walk
215 *
216 * @addr: virtual address in translation request
217 */
218 static void amdvi_page_fault(AMDVIState *s, uint16_t devid,
219 hwaddr addr, uint16_t info)
220 {
221 uint64_t evt[4];
222
223 info |= AMDVI_EVENT_IOPF_I | AMDVI_EVENT_IOPF;
224 amdvi_encode_event(evt, devid, addr, info);
225 amdvi_log_event(s, evt);
226 pci_word_test_and_set_mask(s->pci.dev.config + PCI_STATUS,
227 PCI_STATUS_SIG_TARGET_ABORT);
228 }
229 /*
230 * log a master abort accessing device table
231 * @devtab : address of device table entry
232 * @info : error flags
233 */
234 static void amdvi_log_devtab_error(AMDVIState *s, uint16_t devid,
235 hwaddr devtab, uint16_t info)
236 {
237 uint64_t evt[4];
238
239 info |= AMDVI_EVENT_DEV_TAB_HW_ERROR;
240
241 amdvi_encode_event(evt, devid, devtab, info);
242 amdvi_log_event(s, evt);
243 pci_word_test_and_set_mask(s->pci.dev.config + PCI_STATUS,
244 PCI_STATUS_SIG_TARGET_ABORT);
245 }
246 /* log an event trying to access command buffer
247 * @addr : address that couldn't be accessed
248 */
249 static void amdvi_log_command_error(AMDVIState *s, hwaddr addr)
250 {
251 uint64_t evt[4], info = AMDVI_EVENT_COMMAND_HW_ERROR;
252
253 amdvi_encode_event(evt, 0, addr, info);
254 amdvi_log_event(s, evt);
255 pci_word_test_and_set_mask(s->pci.dev.config + PCI_STATUS,
256 PCI_STATUS_SIG_TARGET_ABORT);
257 }
258 /* log an illegal comand event
259 * @addr : address of illegal command
260 */
261 static void amdvi_log_illegalcom_error(AMDVIState *s, uint16_t info,
262 hwaddr addr)
263 {
264 uint64_t evt[4];
265
266 info |= AMDVI_EVENT_ILLEGAL_COMMAND_ERROR;
267 amdvi_encode_event(evt, 0, addr, info);
268 amdvi_log_event(s, evt);
269 }
270 /* log an error accessing device table
271 *
272 * @devid : device owning the table entry
273 * @devtab : address of device table entry
274 * @info : error flags
275 */
276 static void amdvi_log_illegaldevtab_error(AMDVIState *s, uint16_t devid,
277 hwaddr addr, uint16_t info)
278 {
279 uint64_t evt[4];
280
281 info |= AMDVI_EVENT_ILLEGAL_DEVTAB_ENTRY;
282 amdvi_encode_event(evt, devid, addr, info);
283 amdvi_log_event(s, evt);
284 }
285 /* log an error accessing a PTE entry
286 * @addr : address that couldn't be accessed
287 */
288 static void amdvi_log_pagetab_error(AMDVIState *s, uint16_t devid,
289 hwaddr addr, uint16_t info)
290 {
291 uint64_t evt[4];
292
293 info |= AMDVI_EVENT_PAGE_TAB_HW_ERROR;
294 amdvi_encode_event(evt, devid, addr, info);
295 amdvi_log_event(s, evt);
296 pci_word_test_and_set_mask(s->pci.dev.config + PCI_STATUS,
297 PCI_STATUS_SIG_TARGET_ABORT);
298 }
299
300 static gboolean amdvi_uint64_equal(gconstpointer v1, gconstpointer v2)
301 {
302 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
303 }
304
305 static guint amdvi_uint64_hash(gconstpointer v)
306 {
307 return (guint)*(const uint64_t *)v;
308 }
309
310 static AMDVIIOTLBEntry *amdvi_iotlb_lookup(AMDVIState *s, hwaddr addr,
311 uint64_t devid)
312 {
313 uint64_t key = (addr >> AMDVI_PAGE_SHIFT_4K) |
314 ((uint64_t)(devid) << AMDVI_DEVID_SHIFT);
315 return g_hash_table_lookup(s->iotlb, &key);
316 }
317
318 static void amdvi_iotlb_reset(AMDVIState *s)
319 {
320 assert(s->iotlb);
321 trace_amdvi_iotlb_reset();
322 g_hash_table_remove_all(s->iotlb);
323 }
324
325 static gboolean amdvi_iotlb_remove_by_devid(gpointer key, gpointer value,
326 gpointer user_data)
327 {
328 AMDVIIOTLBEntry *entry = (AMDVIIOTLBEntry *)value;
329 uint16_t devid = *(uint16_t *)user_data;
330 return entry->devid == devid;
331 }
332
333 static void amdvi_iotlb_remove_page(AMDVIState *s, hwaddr addr,
334 uint64_t devid)
335 {
336 uint64_t key = (addr >> AMDVI_PAGE_SHIFT_4K) |
337 ((uint64_t)(devid) << AMDVI_DEVID_SHIFT);
338 g_hash_table_remove(s->iotlb, &key);
339 }
340
341 static void amdvi_update_iotlb(AMDVIState *s, uint16_t devid,
342 uint64_t gpa, IOMMUTLBEntry to_cache,
343 uint16_t domid)
344 {
345 AMDVIIOTLBEntry *entry = g_new(AMDVIIOTLBEntry, 1);
346 uint64_t *key = g_new(uint64_t, 1);
347 uint64_t gfn = gpa >> AMDVI_PAGE_SHIFT_4K;
348
349 /* don't cache erroneous translations */
350 if (to_cache.perm != IOMMU_NONE) {
351 trace_amdvi_cache_update(domid, PCI_BUS_NUM(devid), PCI_SLOT(devid),
352 PCI_FUNC(devid), gpa, to_cache.translated_addr);
353
354 if (g_hash_table_size(s->iotlb) >= AMDVI_IOTLB_MAX_SIZE) {
355 amdvi_iotlb_reset(s);
356 }
357
358 entry->domid = domid;
359 entry->perms = to_cache.perm;
360 entry->translated_addr = to_cache.translated_addr;
361 entry->page_mask = to_cache.addr_mask;
362 *key = gfn | ((uint64_t)(devid) << AMDVI_DEVID_SHIFT);
363 g_hash_table_replace(s->iotlb, key, entry);
364 }
365 }
366
367 static void amdvi_completion_wait(AMDVIState *s, uint64_t *cmd)
368 {
369 /* pad the last 3 bits */
370 hwaddr addr = cpu_to_le64(extract64(cmd[0], 3, 49)) << 3;
371 uint64_t data = cpu_to_le64(cmd[1]);
372
373 if (extract64(cmd[0], 51, 8)) {
374 amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4),
375 s->cmdbuf + s->cmdbuf_head);
376 }
377 if (extract64(cmd[0], 0, 1)) {
378 if (dma_memory_write(&address_space_memory, addr, &data,
379 AMDVI_COMPLETION_DATA_SIZE)) {
380 trace_amdvi_completion_wait_fail(addr);
381 }
382 }
383 /* set completion interrupt */
384 if (extract64(cmd[0], 1, 1)) {
385 amdvi_test_mask(s, AMDVI_MMIO_STATUS, AMDVI_MMIO_STATUS_COMP_INT);
386 /* generate interrupt */
387 amdvi_generate_msi_interrupt(s);
388 }
389 trace_amdvi_completion_wait(addr, data);
390 }
391
392 /* log error without aborting since linux seems to be using reserved bits */
393 static void amdvi_inval_devtab_entry(AMDVIState *s, uint64_t *cmd)
394 {
395 uint16_t devid = cpu_to_le16((uint16_t)extract64(cmd[0], 0, 16));
396
397 /* This command should invalidate internal caches of which there isn't */
398 if (extract64(cmd[0], 15, 16) || cmd[1]) {
399 amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4),
400 s->cmdbuf + s->cmdbuf_head);
401 }
402 trace_amdvi_devtab_inval(PCI_BUS_NUM(devid), PCI_SLOT(devid),
403 PCI_FUNC(devid));
404 }
405
406 static void amdvi_complete_ppr(AMDVIState *s, uint64_t *cmd)
407 {
408 if (extract64(cmd[0], 15, 16) || extract64(cmd[0], 19, 8) ||
409 extract64(cmd[1], 0, 2) || extract64(cmd[1], 3, 29)
410 || extract64(cmd[1], 47, 16)) {
411 amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4),
412 s->cmdbuf + s->cmdbuf_head);
413 }
414 trace_amdvi_ppr_exec();
415 }
416
417 static void amdvi_inval_all(AMDVIState *s, uint64_t *cmd)
418 {
419 if (extract64(cmd[0], 0, 60) || cmd[1]) {
420 amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4),
421 s->cmdbuf + s->cmdbuf_head);
422 }
423
424 amdvi_iotlb_reset(s);
425 trace_amdvi_all_inval();
426 }
427
428 static gboolean amdvi_iotlb_remove_by_domid(gpointer key, gpointer value,
429 gpointer user_data)
430 {
431 AMDVIIOTLBEntry *entry = (AMDVIIOTLBEntry *)value;
432 uint16_t domid = *(uint16_t *)user_data;
433 return entry->domid == domid;
434 }
435
436 /* we don't have devid - we can't remove pages by address */
437 static void amdvi_inval_pages(AMDVIState *s, uint64_t *cmd)
438 {
439 uint16_t domid = cpu_to_le16((uint16_t)extract64(cmd[0], 32, 16));
440
441 if (extract64(cmd[0], 20, 12) || extract64(cmd[0], 16, 12) ||
442 extract64(cmd[0], 3, 10)) {
443 amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4),
444 s->cmdbuf + s->cmdbuf_head);
445 }
446
447 g_hash_table_foreach_remove(s->iotlb, amdvi_iotlb_remove_by_domid,
448 &domid);
449 trace_amdvi_pages_inval(domid);
450 }
451
452 static void amdvi_prefetch_pages(AMDVIState *s, uint64_t *cmd)
453 {
454 if (extract64(cmd[0], 16, 8) || extract64(cmd[0], 20, 8) ||
455 extract64(cmd[1], 1, 1) || extract64(cmd[1], 3, 1) ||
456 extract64(cmd[1], 5, 7)) {
457 amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4),
458 s->cmdbuf + s->cmdbuf_head);
459 }
460
461 trace_amdvi_prefetch_pages();
462 }
463
464 static void amdvi_inval_inttable(AMDVIState *s, uint64_t *cmd)
465 {
466 if (extract64(cmd[0], 16, 16) || cmd[1]) {
467 amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4),
468 s->cmdbuf + s->cmdbuf_head);
469 return;
470 }
471
472 trace_amdvi_intr_inval();
473 }
474
475 /* FIXME: Try to work with the specified size instead of all the pages
476 * when the S bit is on
477 */
478 static void iommu_inval_iotlb(AMDVIState *s, uint64_t *cmd)
479 {
480
481 uint16_t devid = extract64(cmd[0], 0, 16);
482 if (extract64(cmd[1], 1, 1) || extract64(cmd[1], 3, 9)) {
483 amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4),
484 s->cmdbuf + s->cmdbuf_head);
485 return;
486 }
487
488 if (extract64(cmd[1], 0, 1)) {
489 g_hash_table_foreach_remove(s->iotlb, amdvi_iotlb_remove_by_devid,
490 &devid);
491 } else {
492 amdvi_iotlb_remove_page(s, cpu_to_le64(extract64(cmd[1], 12, 52)) << 12,
493 cpu_to_le16(extract64(cmd[1], 0, 16)));
494 }
495 trace_amdvi_iotlb_inval();
496 }
497
498 /* not honouring reserved bits is regarded as an illegal command */
499 static void amdvi_cmdbuf_exec(AMDVIState *s)
500 {
501 uint64_t cmd[2];
502
503 if (dma_memory_read(&address_space_memory, s->cmdbuf + s->cmdbuf_head,
504 cmd, AMDVI_COMMAND_SIZE)) {
505 trace_amdvi_command_read_fail(s->cmdbuf, s->cmdbuf_head);
506 amdvi_log_command_error(s, s->cmdbuf + s->cmdbuf_head);
507 return;
508 }
509
510 switch (extract64(cmd[0], 60, 4)) {
511 case AMDVI_CMD_COMPLETION_WAIT:
512 amdvi_completion_wait(s, cmd);
513 break;
514 case AMDVI_CMD_INVAL_DEVTAB_ENTRY:
515 amdvi_inval_devtab_entry(s, cmd);
516 break;
517 case AMDVI_CMD_INVAL_AMDVI_PAGES:
518 amdvi_inval_pages(s, cmd);
519 break;
520 case AMDVI_CMD_INVAL_IOTLB_PAGES:
521 iommu_inval_iotlb(s, cmd);
522 break;
523 case AMDVI_CMD_INVAL_INTR_TABLE:
524 amdvi_inval_inttable(s, cmd);
525 break;
526 case AMDVI_CMD_PREFETCH_AMDVI_PAGES:
527 amdvi_prefetch_pages(s, cmd);
528 break;
529 case AMDVI_CMD_COMPLETE_PPR_REQUEST:
530 amdvi_complete_ppr(s, cmd);
531 break;
532 case AMDVI_CMD_INVAL_AMDVI_ALL:
533 amdvi_inval_all(s, cmd);
534 break;
535 default:
536 trace_amdvi_unhandled_command(extract64(cmd[1], 60, 4));
537 /* log illegal command */
538 amdvi_log_illegalcom_error(s, extract64(cmd[1], 60, 4),
539 s->cmdbuf + s->cmdbuf_head);
540 }
541 }
542
543 static void amdvi_cmdbuf_run(AMDVIState *s)
544 {
545 if (!s->cmdbuf_enabled) {
546 trace_amdvi_command_error(amdvi_readq(s, AMDVI_MMIO_CONTROL));
547 return;
548 }
549
550 /* check if there is work to do. */
551 while (s->cmdbuf_head != s->cmdbuf_tail) {
552 trace_amdvi_command_exec(s->cmdbuf_head, s->cmdbuf_tail, s->cmdbuf);
553 amdvi_cmdbuf_exec(s);
554 s->cmdbuf_head += AMDVI_COMMAND_SIZE;
555 amdvi_writeq_raw(s, s->cmdbuf_head, AMDVI_MMIO_COMMAND_HEAD);
556
557 /* wrap head pointer */
558 if (s->cmdbuf_head >= s->cmdbuf_len * AMDVI_COMMAND_SIZE) {
559 s->cmdbuf_head = 0;
560 }
561 }
562 }
563
564 static void amdvi_mmio_trace(hwaddr addr, unsigned size)
565 {
566 uint8_t index = (addr & ~0x2000) / 8;
567
568 if ((addr & 0x2000)) {
569 /* high table */
570 index = index >= AMDVI_MMIO_REGS_HIGH ? AMDVI_MMIO_REGS_HIGH : index;
571 trace_amdvi_mmio_read(amdvi_mmio_high[index], addr, size, addr & ~0x07);
572 } else {
573 index = index >= AMDVI_MMIO_REGS_LOW ? AMDVI_MMIO_REGS_LOW : index;
574 trace_amdvi_mmio_read(amdvi_mmio_low[index], addr, size, addr & ~0x07);
575 }
576 }
577
578 static uint64_t amdvi_mmio_read(void *opaque, hwaddr addr, unsigned size)
579 {
580 AMDVIState *s = opaque;
581
582 uint64_t val = -1;
583 if (addr + size > AMDVI_MMIO_SIZE) {
584 trace_amdvi_mmio_read_invalid(AMDVI_MMIO_SIZE, addr, size);
585 return (uint64_t)-1;
586 }
587
588 if (size == 2) {
589 val = amdvi_readw(s, addr);
590 } else if (size == 4) {
591 val = amdvi_readl(s, addr);
592 } else if (size == 8) {
593 val = amdvi_readq(s, addr);
594 }
595 amdvi_mmio_trace(addr, size);
596
597 return val;
598 }
599
600 static void amdvi_handle_control_write(AMDVIState *s)
601 {
602 unsigned long control = amdvi_readq(s, AMDVI_MMIO_CONTROL);
603 s->enabled = !!(control & AMDVI_MMIO_CONTROL_AMDVIEN);
604
605 s->ats_enabled = !!(control & AMDVI_MMIO_CONTROL_HTTUNEN);
606 s->evtlog_enabled = s->enabled && !!(control &
607 AMDVI_MMIO_CONTROL_EVENTLOGEN);
608
609 s->evtlog_intr = !!(control & AMDVI_MMIO_CONTROL_EVENTINTEN);
610 s->completion_wait_intr = !!(control & AMDVI_MMIO_CONTROL_COMWAITINTEN);
611 s->cmdbuf_enabled = s->enabled && !!(control &
612 AMDVI_MMIO_CONTROL_CMDBUFLEN);
613 s->ga_enabled = !!(control & AMDVI_MMIO_CONTROL_GAEN);
614
615 /* update the flags depending on the control register */
616 if (s->cmdbuf_enabled) {
617 amdvi_assign_orq(s, AMDVI_MMIO_STATUS, AMDVI_MMIO_STATUS_CMDBUF_RUN);
618 } else {
619 amdvi_assign_andq(s, AMDVI_MMIO_STATUS, ~AMDVI_MMIO_STATUS_CMDBUF_RUN);
620 }
621 if (s->evtlog_enabled) {
622 amdvi_assign_orq(s, AMDVI_MMIO_STATUS, AMDVI_MMIO_STATUS_EVT_RUN);
623 } else {
624 amdvi_assign_andq(s, AMDVI_MMIO_STATUS, ~AMDVI_MMIO_STATUS_EVT_RUN);
625 }
626
627 trace_amdvi_control_status(control);
628 amdvi_cmdbuf_run(s);
629 }
630
631 static inline void amdvi_handle_devtab_write(AMDVIState *s)
632
633 {
634 uint64_t val = amdvi_readq(s, AMDVI_MMIO_DEVICE_TABLE);
635 s->devtab = (val & AMDVI_MMIO_DEVTAB_BASE_MASK);
636
637 /* set device table length */
638 s->devtab_len = ((val & AMDVI_MMIO_DEVTAB_SIZE_MASK) + 1 *
639 (AMDVI_MMIO_DEVTAB_SIZE_UNIT /
640 AMDVI_MMIO_DEVTAB_ENTRY_SIZE));
641 }
642
643 static inline void amdvi_handle_cmdhead_write(AMDVIState *s)
644 {
645 s->cmdbuf_head = amdvi_readq(s, AMDVI_MMIO_COMMAND_HEAD)
646 & AMDVI_MMIO_CMDBUF_HEAD_MASK;
647 amdvi_cmdbuf_run(s);
648 }
649
650 static inline void amdvi_handle_cmdbase_write(AMDVIState *s)
651 {
652 s->cmdbuf = amdvi_readq(s, AMDVI_MMIO_COMMAND_BASE)
653 & AMDVI_MMIO_CMDBUF_BASE_MASK;
654 s->cmdbuf_len = 1UL << (amdvi_readq(s, AMDVI_MMIO_CMDBUF_SIZE_BYTE)
655 & AMDVI_MMIO_CMDBUF_SIZE_MASK);
656 s->cmdbuf_head = s->cmdbuf_tail = 0;
657 }
658
659 static inline void amdvi_handle_cmdtail_write(AMDVIState *s)
660 {
661 s->cmdbuf_tail = amdvi_readq(s, AMDVI_MMIO_COMMAND_TAIL)
662 & AMDVI_MMIO_CMDBUF_TAIL_MASK;
663 amdvi_cmdbuf_run(s);
664 }
665
666 static inline void amdvi_handle_excllim_write(AMDVIState *s)
667 {
668 uint64_t val = amdvi_readq(s, AMDVI_MMIO_EXCL_LIMIT);
669 s->excl_limit = (val & AMDVI_MMIO_EXCL_LIMIT_MASK) |
670 AMDVI_MMIO_EXCL_LIMIT_LOW;
671 }
672
673 static inline void amdvi_handle_evtbase_write(AMDVIState *s)
674 {
675 uint64_t val = amdvi_readq(s, AMDVI_MMIO_EVENT_BASE);
676 s->evtlog = val & AMDVI_MMIO_EVTLOG_BASE_MASK;
677 s->evtlog_len = 1UL << (amdvi_readq(s, AMDVI_MMIO_EVTLOG_SIZE_BYTE)
678 & AMDVI_MMIO_EVTLOG_SIZE_MASK);
679 }
680
681 static inline void amdvi_handle_evttail_write(AMDVIState *s)
682 {
683 uint64_t val = amdvi_readq(s, AMDVI_MMIO_EVENT_TAIL);
684 s->evtlog_tail = val & AMDVI_MMIO_EVTLOG_TAIL_MASK;
685 }
686
687 static inline void amdvi_handle_evthead_write(AMDVIState *s)
688 {
689 uint64_t val = amdvi_readq(s, AMDVI_MMIO_EVENT_HEAD);
690 s->evtlog_head = val & AMDVI_MMIO_EVTLOG_HEAD_MASK;
691 }
692
693 static inline void amdvi_handle_pprbase_write(AMDVIState *s)
694 {
695 uint64_t val = amdvi_readq(s, AMDVI_MMIO_PPR_BASE);
696 s->ppr_log = val & AMDVI_MMIO_PPRLOG_BASE_MASK;
697 s->pprlog_len = 1UL << (amdvi_readq(s, AMDVI_MMIO_PPRLOG_SIZE_BYTE)
698 & AMDVI_MMIO_PPRLOG_SIZE_MASK);
699 }
700
701 static inline void amdvi_handle_pprhead_write(AMDVIState *s)
702 {
703 uint64_t val = amdvi_readq(s, AMDVI_MMIO_PPR_HEAD);
704 s->pprlog_head = val & AMDVI_MMIO_PPRLOG_HEAD_MASK;
705 }
706
707 static inline void amdvi_handle_pprtail_write(AMDVIState *s)
708 {
709 uint64_t val = amdvi_readq(s, AMDVI_MMIO_PPR_TAIL);
710 s->pprlog_tail = val & AMDVI_MMIO_PPRLOG_TAIL_MASK;
711 }
712
713 /* FIXME: something might go wrong if System Software writes in chunks
714 * of one byte but linux writes in chunks of 4 bytes so currently it
715 * works correctly with linux but will definitely be busted if software
716 * reads/writes 8 bytes
717 */
718 static void amdvi_mmio_reg_write(AMDVIState *s, unsigned size, uint64_t val,
719 hwaddr addr)
720 {
721 if (size == 2) {
722 amdvi_writew(s, addr, val);
723 } else if (size == 4) {
724 amdvi_writel(s, addr, val);
725 } else if (size == 8) {
726 amdvi_writeq(s, addr, val);
727 }
728 }
729
730 static void amdvi_mmio_write(void *opaque, hwaddr addr, uint64_t val,
731 unsigned size)
732 {
733 AMDVIState *s = opaque;
734 unsigned long offset = addr & 0x07;
735
736 if (addr + size > AMDVI_MMIO_SIZE) {
737 trace_amdvi_mmio_write("error: addr outside region: max ",
738 (uint64_t)AMDVI_MMIO_SIZE, size, val, offset);
739 return;
740 }
741
742 amdvi_mmio_trace(addr, size);
743 switch (addr & ~0x07) {
744 case AMDVI_MMIO_CONTROL:
745 amdvi_mmio_reg_write(s, size, val, addr);
746 amdvi_handle_control_write(s);
747 break;
748 case AMDVI_MMIO_DEVICE_TABLE:
749 amdvi_mmio_reg_write(s, size, val, addr);
750 /* set device table address
751 * This also suffers from inability to tell whether software
752 * is done writing
753 */
754 if (offset || (size == 8)) {
755 amdvi_handle_devtab_write(s);
756 }
757 break;
758 case AMDVI_MMIO_COMMAND_HEAD:
759 amdvi_mmio_reg_write(s, size, val, addr);
760 amdvi_handle_cmdhead_write(s);
761 break;
762 case AMDVI_MMIO_COMMAND_BASE:
763 amdvi_mmio_reg_write(s, size, val, addr);
764 /* FIXME - make sure System Software has finished writing incase
765 * it writes in chucks less than 8 bytes in a robust way.As for
766 * now, this hacks works for the linux driver
767 */
768 if (offset || (size == 8)) {
769 amdvi_handle_cmdbase_write(s);
770 }
771 break;
772 case AMDVI_MMIO_COMMAND_TAIL:
773 amdvi_mmio_reg_write(s, size, val, addr);
774 amdvi_handle_cmdtail_write(s);
775 break;
776 case AMDVI_MMIO_EVENT_BASE:
777 amdvi_mmio_reg_write(s, size, val, addr);
778 amdvi_handle_evtbase_write(s);
779 break;
780 case AMDVI_MMIO_EVENT_HEAD:
781 amdvi_mmio_reg_write(s, size, val, addr);
782 amdvi_handle_evthead_write(s);
783 break;
784 case AMDVI_MMIO_EVENT_TAIL:
785 amdvi_mmio_reg_write(s, size, val, addr);
786 amdvi_handle_evttail_write(s);
787 break;
788 case AMDVI_MMIO_EXCL_LIMIT:
789 amdvi_mmio_reg_write(s, size, val, addr);
790 amdvi_handle_excllim_write(s);
791 break;
792 /* PPR log base - unused for now */
793 case AMDVI_MMIO_PPR_BASE:
794 amdvi_mmio_reg_write(s, size, val, addr);
795 amdvi_handle_pprbase_write(s);
796 break;
797 /* PPR log head - also unused for now */
798 case AMDVI_MMIO_PPR_HEAD:
799 amdvi_mmio_reg_write(s, size, val, addr);
800 amdvi_handle_pprhead_write(s);
801 break;
802 /* PPR log tail - unused for now */
803 case AMDVI_MMIO_PPR_TAIL:
804 amdvi_mmio_reg_write(s, size, val, addr);
805 amdvi_handle_pprtail_write(s);
806 break;
807 }
808 }
809
810 static inline uint64_t amdvi_get_perms(uint64_t entry)
811 {
812 return (entry & (AMDVI_DEV_PERM_READ | AMDVI_DEV_PERM_WRITE)) >>
813 AMDVI_DEV_PERM_SHIFT;
814 }
815
816 /* validate that reserved bits are honoured */
817 static bool amdvi_validate_dte(AMDVIState *s, uint16_t devid,
818 uint64_t *dte)
819 {
820 if ((dte[0] & AMDVI_DTE_LOWER_QUAD_RESERVED)
821 || (dte[1] & AMDVI_DTE_MIDDLE_QUAD_RESERVED)
822 || (dte[2] & AMDVI_DTE_UPPER_QUAD_RESERVED) || dte[3]) {
823 amdvi_log_illegaldevtab_error(s, devid,
824 s->devtab +
825 devid * AMDVI_DEVTAB_ENTRY_SIZE, 0);
826 return false;
827 }
828
829 return true;
830 }
831
832 /* get a device table entry given the devid */
833 static bool amdvi_get_dte(AMDVIState *s, int devid, uint64_t *entry)
834 {
835 uint32_t offset = devid * AMDVI_DEVTAB_ENTRY_SIZE;
836
837 if (dma_memory_read(&address_space_memory, s->devtab + offset, entry,
838 AMDVI_DEVTAB_ENTRY_SIZE)) {
839 trace_amdvi_dte_get_fail(s->devtab, offset);
840 /* log error accessing dte */
841 amdvi_log_devtab_error(s, devid, s->devtab + offset, 0);
842 return false;
843 }
844
845 *entry = le64_to_cpu(*entry);
846 if (!amdvi_validate_dte(s, devid, entry)) {
847 trace_amdvi_invalid_dte(entry[0]);
848 return false;
849 }
850
851 return true;
852 }
853
854 /* get pte translation mode */
855 static inline uint8_t get_pte_translation_mode(uint64_t pte)
856 {
857 return (pte >> AMDVI_DEV_MODE_RSHIFT) & AMDVI_DEV_MODE_MASK;
858 }
859
860 static inline uint64_t pte_override_page_mask(uint64_t pte)
861 {
862 uint8_t page_mask = 12;
863 uint64_t addr = (pte & AMDVI_DEV_PT_ROOT_MASK) ^ AMDVI_DEV_PT_ROOT_MASK;
864 /* find the first zero bit */
865 while (addr & 1) {
866 page_mask++;
867 addr = addr >> 1;
868 }
869
870 return ~((1ULL << page_mask) - 1);
871 }
872
873 static inline uint64_t pte_get_page_mask(uint64_t oldlevel)
874 {
875 return ~((1UL << ((oldlevel * 9) + 3)) - 1);
876 }
877
878 static inline uint64_t amdvi_get_pte_entry(AMDVIState *s, uint64_t pte_addr,
879 uint16_t devid)
880 {
881 uint64_t pte;
882
883 if (dma_memory_read(&address_space_memory, pte_addr, &pte, sizeof(pte))) {
884 trace_amdvi_get_pte_hwerror(pte_addr);
885 amdvi_log_pagetab_error(s, devid, pte_addr, 0);
886 pte = 0;
887 return pte;
888 }
889
890 pte = le64_to_cpu(pte);
891 return pte;
892 }
893
894 static void amdvi_page_walk(AMDVIAddressSpace *as, uint64_t *dte,
895 IOMMUTLBEntry *ret, unsigned perms,
896 hwaddr addr)
897 {
898 unsigned level, present, pte_perms, oldlevel;
899 uint64_t pte = dte[0], pte_addr, page_mask;
900
901 /* make sure the DTE has TV = 1 */
902 if (pte & AMDVI_DEV_TRANSLATION_VALID) {
903 level = get_pte_translation_mode(pte);
904 if (level >= 7) {
905 trace_amdvi_mode_invalid(level, addr);
906 return;
907 }
908 if (level == 0) {
909 goto no_remap;
910 }
911
912 /* we are at the leaf page table or page table encodes a huge page */
913 while (level > 0) {
914 pte_perms = amdvi_get_perms(pte);
915 present = pte & 1;
916 if (!present || perms != (perms & pte_perms)) {
917 amdvi_page_fault(as->iommu_state, as->devfn, addr, perms);
918 trace_amdvi_page_fault(addr);
919 return;
920 }
921
922 /* go to the next lower level */
923 pte_addr = pte & AMDVI_DEV_PT_ROOT_MASK;
924 /* add offset and load pte */
925 pte_addr += ((addr >> (3 + 9 * level)) & 0x1FF) << 3;
926 pte = amdvi_get_pte_entry(as->iommu_state, pte_addr, as->devfn);
927 if (!pte) {
928 return;
929 }
930 oldlevel = level;
931 level = get_pte_translation_mode(pte);
932 if (level == 0x7) {
933 break;
934 }
935 }
936
937 if (level == 0x7) {
938 page_mask = pte_override_page_mask(pte);
939 } else {
940 page_mask = pte_get_page_mask(oldlevel);
941 }
942
943 /* get access permissions from pte */
944 ret->iova = addr & page_mask;
945 ret->translated_addr = (pte & AMDVI_DEV_PT_ROOT_MASK) & page_mask;
946 ret->addr_mask = ~page_mask;
947 ret->perm = amdvi_get_perms(pte);
948 return;
949 }
950 no_remap:
951 ret->iova = addr & AMDVI_PAGE_MASK_4K;
952 ret->translated_addr = addr & AMDVI_PAGE_MASK_4K;
953 ret->addr_mask = ~AMDVI_PAGE_MASK_4K;
954 ret->perm = amdvi_get_perms(pte);
955 }
956
957 static void amdvi_do_translate(AMDVIAddressSpace *as, hwaddr addr,
958 bool is_write, IOMMUTLBEntry *ret)
959 {
960 AMDVIState *s = as->iommu_state;
961 uint16_t devid = PCI_BUILD_BDF(as->bus_num, as->devfn);
962 AMDVIIOTLBEntry *iotlb_entry = amdvi_iotlb_lookup(s, addr, devid);
963 uint64_t entry[4];
964
965 if (iotlb_entry) {
966 trace_amdvi_iotlb_hit(PCI_BUS_NUM(devid), PCI_SLOT(devid),
967 PCI_FUNC(devid), addr, iotlb_entry->translated_addr);
968 ret->iova = addr & ~iotlb_entry->page_mask;
969 ret->translated_addr = iotlb_entry->translated_addr;
970 ret->addr_mask = iotlb_entry->page_mask;
971 ret->perm = iotlb_entry->perms;
972 return;
973 }
974
975 if (!amdvi_get_dte(s, devid, entry)) {
976 return;
977 }
978
979 /* devices with V = 0 are not translated */
980 if (!(entry[0] & AMDVI_DEV_VALID)) {
981 goto out;
982 }
983
984 amdvi_page_walk(as, entry, ret,
985 is_write ? AMDVI_PERM_WRITE : AMDVI_PERM_READ, addr);
986
987 amdvi_update_iotlb(s, devid, addr, *ret,
988 entry[1] & AMDVI_DEV_DOMID_ID_MASK);
989 return;
990
991 out:
992 ret->iova = addr & AMDVI_PAGE_MASK_4K;
993 ret->translated_addr = addr & AMDVI_PAGE_MASK_4K;
994 ret->addr_mask = ~AMDVI_PAGE_MASK_4K;
995 ret->perm = IOMMU_RW;
996 }
997
998 static inline bool amdvi_is_interrupt_addr(hwaddr addr)
999 {
1000 return addr >= AMDVI_INT_ADDR_FIRST && addr <= AMDVI_INT_ADDR_LAST;
1001 }
1002
1003 static IOMMUTLBEntry amdvi_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
1004 IOMMUAccessFlags flag, int iommu_idx)
1005 {
1006 AMDVIAddressSpace *as = container_of(iommu, AMDVIAddressSpace, iommu);
1007 AMDVIState *s = as->iommu_state;
1008 IOMMUTLBEntry ret = {
1009 .target_as = &address_space_memory,
1010 .iova = addr,
1011 .translated_addr = 0,
1012 .addr_mask = ~(hwaddr)0,
1013 .perm = IOMMU_NONE
1014 };
1015
1016 if (!s->enabled) {
1017 /* AMDVI disabled - corresponds to iommu=off not
1018 * failure to provide any parameter
1019 */
1020 ret.iova = addr & AMDVI_PAGE_MASK_4K;
1021 ret.translated_addr = addr & AMDVI_PAGE_MASK_4K;
1022 ret.addr_mask = ~AMDVI_PAGE_MASK_4K;
1023 ret.perm = IOMMU_RW;
1024 return ret;
1025 } else if (amdvi_is_interrupt_addr(addr)) {
1026 ret.iova = addr & AMDVI_PAGE_MASK_4K;
1027 ret.translated_addr = addr & AMDVI_PAGE_MASK_4K;
1028 ret.addr_mask = ~AMDVI_PAGE_MASK_4K;
1029 ret.perm = IOMMU_WO;
1030 return ret;
1031 }
1032
1033 amdvi_do_translate(as, addr, flag & IOMMU_WO, &ret);
1034 trace_amdvi_translation_result(as->bus_num, PCI_SLOT(as->devfn),
1035 PCI_FUNC(as->devfn), addr, ret.translated_addr);
1036 return ret;
1037 }
1038
1039 static int amdvi_get_irte(AMDVIState *s, MSIMessage *origin, uint64_t *dte,
1040 union irte *irte, uint16_t devid)
1041 {
1042 uint64_t irte_root, offset;
1043
1044 irte_root = dte[2] & AMDVI_IR_PHYS_ADDR_MASK;
1045 offset = (origin->data & AMDVI_IRTE_OFFSET) << 2;
1046
1047 trace_amdvi_ir_irte(irte_root, offset);
1048
1049 if (dma_memory_read(&address_space_memory, irte_root + offset,
1050 irte, sizeof(*irte))) {
1051 trace_amdvi_ir_err("failed to get irte");
1052 return -AMDVI_IR_GET_IRTE;
1053 }
1054
1055 trace_amdvi_ir_irte_val(irte->val);
1056
1057 return 0;
1058 }
1059
1060 static int amdvi_int_remap_legacy(AMDVIState *iommu,
1061 MSIMessage *origin,
1062 MSIMessage *translated,
1063 uint64_t *dte,
1064 X86IOMMUIrq *irq,
1065 uint16_t sid)
1066 {
1067 int ret;
1068 union irte irte;
1069
1070 /* get interrupt remapping table */
1071 ret = amdvi_get_irte(iommu, origin, dte, &irte, sid);
1072 if (ret < 0) {
1073 return ret;
1074 }
1075
1076 if (!irte.fields.valid) {
1077 trace_amdvi_ir_target_abort("RemapEn is disabled");
1078 return -AMDVI_IR_TARGET_ABORT;
1079 }
1080
1081 if (irte.fields.guest_mode) {
1082 error_report_once("guest mode is not zero");
1083 return -AMDVI_IR_ERR;
1084 }
1085
1086 if (irte.fields.int_type > AMDVI_IOAPIC_INT_TYPE_ARBITRATED) {
1087 error_report_once("reserved int_type");
1088 return -AMDVI_IR_ERR;
1089 }
1090
1091 irq->delivery_mode = irte.fields.int_type;
1092 irq->vector = irte.fields.vector;
1093 irq->dest_mode = irte.fields.dm;
1094 irq->redir_hint = irte.fields.rq_eoi;
1095 irq->dest = irte.fields.destination;
1096
1097 return 0;
1098 }
1099
1100 static int amdvi_get_irte_ga(AMDVIState *s, MSIMessage *origin, uint64_t *dte,
1101 struct irte_ga *irte, uint16_t devid)
1102 {
1103 uint64_t irte_root, offset;
1104
1105 irte_root = dte[2] & AMDVI_IR_PHYS_ADDR_MASK;
1106 offset = (origin->data & AMDVI_IRTE_OFFSET) << 4;
1107 trace_amdvi_ir_irte(irte_root, offset);
1108
1109 if (dma_memory_read(&address_space_memory, irte_root + offset,
1110 irte, sizeof(*irte))) {
1111 trace_amdvi_ir_err("failed to get irte_ga");
1112 return -AMDVI_IR_GET_IRTE;
1113 }
1114
1115 trace_amdvi_ir_irte_ga_val(irte->hi.val, irte->lo.val);
1116 return 0;
1117 }
1118
1119 static int amdvi_int_remap_ga(AMDVIState *iommu,
1120 MSIMessage *origin,
1121 MSIMessage *translated,
1122 uint64_t *dte,
1123 X86IOMMUIrq *irq,
1124 uint16_t sid)
1125 {
1126 int ret;
1127 struct irte_ga irte;
1128
1129 /* get interrupt remapping table */
1130 ret = amdvi_get_irte_ga(iommu, origin, dte, &irte, sid);
1131 if (ret < 0) {
1132 return ret;
1133 }
1134
1135 if (!irte.lo.fields_remap.valid) {
1136 trace_amdvi_ir_target_abort("RemapEn is disabled");
1137 return -AMDVI_IR_TARGET_ABORT;
1138 }
1139
1140 if (irte.lo.fields_remap.guest_mode) {
1141 error_report_once("guest mode is not zero");
1142 return -AMDVI_IR_ERR;
1143 }
1144
1145 if (irte.lo.fields_remap.int_type > AMDVI_IOAPIC_INT_TYPE_ARBITRATED) {
1146 error_report_once("reserved int_type is set");
1147 return -AMDVI_IR_ERR;
1148 }
1149
1150 irq->delivery_mode = irte.lo.fields_remap.int_type;
1151 irq->vector = irte.hi.fields.vector;
1152 irq->dest_mode = irte.lo.fields_remap.dm;
1153 irq->redir_hint = irte.lo.fields_remap.rq_eoi;
1154 irq->dest = irte.lo.fields_remap.destination;
1155
1156 return 0;
1157 }
1158
1159 static int __amdvi_int_remap_msi(AMDVIState *iommu,
1160 MSIMessage *origin,
1161 MSIMessage *translated,
1162 uint64_t *dte,
1163 X86IOMMUIrq *irq,
1164 uint16_t sid)
1165 {
1166 int ret;
1167 uint8_t int_ctl;
1168
1169 int_ctl = (dte[2] >> AMDVI_IR_INTCTL_SHIFT) & 3;
1170 trace_amdvi_ir_intctl(int_ctl);
1171
1172 switch (int_ctl) {
1173 case AMDVI_IR_INTCTL_PASS:
1174 memcpy(translated, origin, sizeof(*origin));
1175 return 0;
1176 case AMDVI_IR_INTCTL_REMAP:
1177 break;
1178 case AMDVI_IR_INTCTL_ABORT:
1179 trace_amdvi_ir_target_abort("int_ctl abort");
1180 return -AMDVI_IR_TARGET_ABORT;
1181 default:
1182 trace_amdvi_ir_err("int_ctl reserved");
1183 return -AMDVI_IR_ERR;
1184 }
1185
1186 if (iommu->ga_enabled) {
1187 ret = amdvi_int_remap_ga(iommu, origin, translated, dte, irq, sid);
1188 } else {
1189 ret = amdvi_int_remap_legacy(iommu, origin, translated, dte, irq, sid);
1190 }
1191
1192 return ret;
1193 }
1194
1195 /* Interrupt remapping for MSI/MSI-X entry */
1196 static int amdvi_int_remap_msi(AMDVIState *iommu,
1197 MSIMessage *origin,
1198 MSIMessage *translated,
1199 uint16_t sid)
1200 {
1201 int ret = 0;
1202 uint64_t pass = 0;
1203 uint64_t dte[4] = { 0 };
1204 X86IOMMUIrq irq = { 0 };
1205 uint8_t dest_mode, delivery_mode;
1206
1207 assert(origin && translated);
1208
1209 /*
1210 * When IOMMU is enabled, interrupt remap request will come either from
1211 * IO-APIC or PCI device. If interrupt is from PCI device then it will
1212 * have a valid requester id but if the interrupt is from IO-APIC
1213 * then requester id will be invalid.
1214 */
1215 if (sid == X86_IOMMU_SID_INVALID) {
1216 sid = AMDVI_IOAPIC_SB_DEVID;
1217 }
1218
1219 trace_amdvi_ir_remap_msi_req(origin->address, origin->data, sid);
1220
1221 /* check if device table entry is set before we go further. */
1222 if (!iommu || !iommu->devtab_len) {
1223 memcpy(translated, origin, sizeof(*origin));
1224 goto out;
1225 }
1226
1227 if (!amdvi_get_dte(iommu, sid, dte)) {
1228 return -AMDVI_IR_ERR;
1229 }
1230
1231 /* Check if IR is enabled in DTE */
1232 if (!(dte[2] & AMDVI_IR_REMAP_ENABLE)) {
1233 memcpy(translated, origin, sizeof(*origin));
1234 goto out;
1235 }
1236
1237 /* validate that we are configure with intremap=on */
1238 if (!x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu))) {
1239 trace_amdvi_err("Interrupt remapping is enabled in the guest but "
1240 "not in the host. Use intremap=on to enable interrupt "
1241 "remapping in amd-iommu.");
1242 return -AMDVI_IR_ERR;
1243 }
1244
1245 if (origin->address & AMDVI_MSI_ADDR_HI_MASK) {
1246 trace_amdvi_err("MSI address high 32 bits non-zero when "
1247 "Interrupt Remapping enabled.");
1248 return -AMDVI_IR_ERR;
1249 }
1250
1251 if ((origin->address & AMDVI_MSI_ADDR_LO_MASK) != APIC_DEFAULT_ADDRESS) {
1252 trace_amdvi_err("MSI is not from IOAPIC.");
1253 return -AMDVI_IR_ERR;
1254 }
1255
1256 /*
1257 * The MSI data register [10:8] are used to get the upstream interrupt type.
1258 *
1259 * See MSI/MSI-X format:
1260 * https://pdfs.semanticscholar.org/presentation/9420/c279e942eca568157711ef5c92b800c40a79.pdf
1261 * (page 5)
1262 */
1263 delivery_mode = (origin->data >> MSI_DATA_DELIVERY_MODE_SHIFT) & 7;
1264
1265 switch (delivery_mode) {
1266 case AMDVI_IOAPIC_INT_TYPE_FIXED:
1267 case AMDVI_IOAPIC_INT_TYPE_ARBITRATED:
1268 trace_amdvi_ir_delivery_mode("fixed/arbitrated");
1269 ret = __amdvi_int_remap_msi(iommu, origin, translated, dte, &irq, sid);
1270 if (ret < 0) {
1271 goto remap_fail;
1272 } else {
1273 /* Translate IRQ to MSI messages */
1274 x86_iommu_irq_to_msi_message(&irq, translated);
1275 goto out;
1276 }
1277 break;
1278 case AMDVI_IOAPIC_INT_TYPE_SMI:
1279 error_report("SMI is not supported!");
1280 ret = -AMDVI_IR_ERR;
1281 break;
1282 case AMDVI_IOAPIC_INT_TYPE_NMI:
1283 pass = dte[3] & AMDVI_DEV_NMI_PASS_MASK;
1284 trace_amdvi_ir_delivery_mode("nmi");
1285 break;
1286 case AMDVI_IOAPIC_INT_TYPE_INIT:
1287 pass = dte[3] & AMDVI_DEV_INT_PASS_MASK;
1288 trace_amdvi_ir_delivery_mode("init");
1289 break;
1290 case AMDVI_IOAPIC_INT_TYPE_EINT:
1291 pass = dte[3] & AMDVI_DEV_EINT_PASS_MASK;
1292 trace_amdvi_ir_delivery_mode("eint");
1293 break;
1294 default:
1295 trace_amdvi_ir_delivery_mode("unsupported delivery_mode");
1296 ret = -AMDVI_IR_ERR;
1297 break;
1298 }
1299
1300 if (ret < 0) {
1301 goto remap_fail;
1302 }
1303
1304 /*
1305 * The MSI address register bit[2] is used to get the destination
1306 * mode. The dest_mode 1 is valid for fixed and arbitrated interrupts
1307 * only.
1308 */
1309 dest_mode = (origin->address >> MSI_ADDR_DEST_MODE_SHIFT) & 1;
1310 if (dest_mode) {
1311 trace_amdvi_ir_err("invalid dest_mode");
1312 ret = -AMDVI_IR_ERR;
1313 goto remap_fail;
1314 }
1315
1316 if (pass) {
1317 memcpy(translated, origin, sizeof(*origin));
1318 } else {
1319 trace_amdvi_ir_err("passthrough is not enabled");
1320 ret = -AMDVI_IR_ERR;
1321 goto remap_fail;
1322 }
1323
1324 out:
1325 trace_amdvi_ir_remap_msi(origin->address, origin->data,
1326 translated->address, translated->data);
1327 return 0;
1328
1329 remap_fail:
1330 return ret;
1331 }
1332
1333 static int amdvi_int_remap(X86IOMMUState *iommu,
1334 MSIMessage *origin,
1335 MSIMessage *translated,
1336 uint16_t sid)
1337 {
1338 return amdvi_int_remap_msi(AMD_IOMMU_DEVICE(iommu), origin,
1339 translated, sid);
1340 }
1341
1342 static MemTxResult amdvi_mem_ir_write(void *opaque, hwaddr addr,
1343 uint64_t value, unsigned size,
1344 MemTxAttrs attrs)
1345 {
1346 int ret;
1347 MSIMessage from = { 0, 0 }, to = { 0, 0 };
1348 uint16_t sid = AMDVI_IOAPIC_SB_DEVID;
1349
1350 from.address = (uint64_t) addr + AMDVI_INT_ADDR_FIRST;
1351 from.data = (uint32_t) value;
1352
1353 trace_amdvi_mem_ir_write_req(addr, value, size);
1354
1355 if (!attrs.unspecified) {
1356 /* We have explicit Source ID */
1357 sid = attrs.requester_id;
1358 }
1359
1360 ret = amdvi_int_remap_msi(opaque, &from, &to, sid);
1361 if (ret < 0) {
1362 /* TODO: log the event using IOMMU log event interface */
1363 error_report_once("failed to remap interrupt from devid 0x%x", sid);
1364 return MEMTX_ERROR;
1365 }
1366
1367 apic_get_class()->send_msi(&to);
1368
1369 trace_amdvi_mem_ir_write(to.address, to.data);
1370 return MEMTX_OK;
1371 }
1372
1373 static MemTxResult amdvi_mem_ir_read(void *opaque, hwaddr addr,
1374 uint64_t *data, unsigned size,
1375 MemTxAttrs attrs)
1376 {
1377 return MEMTX_OK;
1378 }
1379
1380 static const MemoryRegionOps amdvi_ir_ops = {
1381 .read_with_attrs = amdvi_mem_ir_read,
1382 .write_with_attrs = amdvi_mem_ir_write,
1383 .endianness = DEVICE_LITTLE_ENDIAN,
1384 .impl = {
1385 .min_access_size = 4,
1386 .max_access_size = 4,
1387 },
1388 .valid = {
1389 .min_access_size = 4,
1390 .max_access_size = 4,
1391 }
1392 };
1393
1394 static AddressSpace *amdvi_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
1395 {
1396 char name[128];
1397 AMDVIState *s = opaque;
1398 AMDVIAddressSpace **iommu_as, *amdvi_dev_as;
1399 int bus_num = pci_bus_num(bus);
1400
1401 iommu_as = s->address_spaces[bus_num];
1402
1403 /* allocate memory during the first run */
1404 if (!iommu_as) {
1405 iommu_as = g_malloc0(sizeof(AMDVIAddressSpace *) * PCI_DEVFN_MAX);
1406 s->address_spaces[bus_num] = iommu_as;
1407 }
1408
1409 /* set up AMD-Vi region */
1410 if (!iommu_as[devfn]) {
1411 snprintf(name, sizeof(name), "amd_iommu_devfn_%d", devfn);
1412
1413 iommu_as[devfn] = g_malloc0(sizeof(AMDVIAddressSpace));
1414 iommu_as[devfn]->bus_num = (uint8_t)bus_num;
1415 iommu_as[devfn]->devfn = (uint8_t)devfn;
1416 iommu_as[devfn]->iommu_state = s;
1417
1418 amdvi_dev_as = iommu_as[devfn];
1419
1420 /*
1421 * Memory region relationships looks like (Address range shows
1422 * only lower 32 bits to make it short in length...):
1423 *
1424 * |-----------------+-------------------+----------|
1425 * | Name | Address range | Priority |
1426 * |-----------------+-------------------+----------+
1427 * | amdvi_root | 00000000-ffffffff | 0 |
1428 * | amdvi_iommu | 00000000-ffffffff | 1 |
1429 * | amdvi_iommu_ir | fee00000-feefffff | 64 |
1430 * |-----------------+-------------------+----------|
1431 */
1432 memory_region_init_iommu(&amdvi_dev_as->iommu,
1433 sizeof(amdvi_dev_as->iommu),
1434 TYPE_AMD_IOMMU_MEMORY_REGION,
1435 OBJECT(s),
1436 "amd_iommu", UINT64_MAX);
1437 memory_region_init(&amdvi_dev_as->root, OBJECT(s),
1438 "amdvi_root", UINT64_MAX);
1439 address_space_init(&amdvi_dev_as->as, &amdvi_dev_as->root, name);
1440 memory_region_init_io(&amdvi_dev_as->iommu_ir, OBJECT(s),
1441 &amdvi_ir_ops, s, "amd_iommu_ir",
1442 AMDVI_INT_ADDR_SIZE);
1443 memory_region_add_subregion_overlap(&amdvi_dev_as->root,
1444 AMDVI_INT_ADDR_FIRST,
1445 &amdvi_dev_as->iommu_ir,
1446 64);
1447 memory_region_add_subregion_overlap(&amdvi_dev_as->root, 0,
1448 MEMORY_REGION(&amdvi_dev_as->iommu),
1449 1);
1450 }
1451 return &iommu_as[devfn]->as;
1452 }
1453
1454 static const MemoryRegionOps mmio_mem_ops = {
1455 .read = amdvi_mmio_read,
1456 .write = amdvi_mmio_write,
1457 .endianness = DEVICE_LITTLE_ENDIAN,
1458 .impl = {
1459 .min_access_size = 1,
1460 .max_access_size = 8,
1461 .unaligned = false,
1462 },
1463 .valid = {
1464 .min_access_size = 1,
1465 .max_access_size = 8,
1466 }
1467 };
1468
1469 static int amdvi_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
1470 IOMMUNotifierFlag old,
1471 IOMMUNotifierFlag new,
1472 Error **errp)
1473 {
1474 AMDVIAddressSpace *as = container_of(iommu, AMDVIAddressSpace, iommu);
1475
1476 if (new & IOMMU_NOTIFIER_MAP) {
1477 error_setg(errp,
1478 "device %02x.%02x.%x requires iommu notifier which is not "
1479 "currently supported", as->bus_num, PCI_SLOT(as->devfn),
1480 PCI_FUNC(as->devfn));
1481 return -EINVAL;
1482 }
1483 return 0;
1484 }
1485
1486 static void amdvi_init(AMDVIState *s)
1487 {
1488 amdvi_iotlb_reset(s);
1489
1490 s->devtab_len = 0;
1491 s->cmdbuf_len = 0;
1492 s->cmdbuf_head = 0;
1493 s->cmdbuf_tail = 0;
1494 s->evtlog_head = 0;
1495 s->evtlog_tail = 0;
1496 s->excl_enabled = false;
1497 s->excl_allow = false;
1498 s->mmio_enabled = false;
1499 s->enabled = false;
1500 s->ats_enabled = false;
1501 s->cmdbuf_enabled = false;
1502
1503 /* reset MMIO */
1504 memset(s->mmior, 0, AMDVI_MMIO_SIZE);
1505 amdvi_set_quad(s, AMDVI_MMIO_EXT_FEATURES, AMDVI_EXT_FEATURES,
1506 0xffffffffffffffef, 0);
1507 amdvi_set_quad(s, AMDVI_MMIO_STATUS, 0, 0x98, 0x67);
1508
1509 /* reset device ident */
1510 pci_config_set_vendor_id(s->pci.dev.config, PCI_VENDOR_ID_AMD);
1511 pci_config_set_prog_interface(s->pci.dev.config, 00);
1512 pci_config_set_device_id(s->pci.dev.config, s->devid);
1513 pci_config_set_class(s->pci.dev.config, 0x0806);
1514
1515 /* reset AMDVI specific capabilities, all r/o */
1516 pci_set_long(s->pci.dev.config + s->capab_offset, AMDVI_CAPAB_FEATURES);
1517 pci_set_long(s->pci.dev.config + s->capab_offset + AMDVI_CAPAB_BAR_LOW,
1518 s->mmio.addr & ~(0xffff0000));
1519 pci_set_long(s->pci.dev.config + s->capab_offset + AMDVI_CAPAB_BAR_HIGH,
1520 (s->mmio.addr & ~(0xffff)) >> 16);
1521 pci_set_long(s->pci.dev.config + s->capab_offset + AMDVI_CAPAB_RANGE,
1522 0xff000000);
1523 pci_set_long(s->pci.dev.config + s->capab_offset + AMDVI_CAPAB_MISC, 0);
1524 pci_set_long(s->pci.dev.config + s->capab_offset + AMDVI_CAPAB_MISC,
1525 AMDVI_MAX_PH_ADDR | AMDVI_MAX_GVA_ADDR | AMDVI_MAX_VA_ADDR);
1526 }
1527
1528 static void amdvi_reset(DeviceState *dev)
1529 {
1530 AMDVIState *s = AMD_IOMMU_DEVICE(dev);
1531
1532 msi_reset(&s->pci.dev);
1533 amdvi_init(s);
1534 }
1535
1536 static void amdvi_realize(DeviceState *dev, Error **errp)
1537 {
1538 int ret = 0;
1539 AMDVIState *s = AMD_IOMMU_DEVICE(dev);
1540 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
1541 MachineState *ms = MACHINE(qdev_get_machine());
1542 PCMachineState *pcms = PC_MACHINE(ms);
1543 X86MachineState *x86ms = X86_MACHINE(ms);
1544 PCIBus *bus = pcms->bus;
1545
1546 s->iotlb = g_hash_table_new_full(amdvi_uint64_hash,
1547 amdvi_uint64_equal, g_free, g_free);
1548
1549 /* This device should take care of IOMMU PCI properties */
1550 x86_iommu->type = TYPE_AMD;
1551 qdev_set_parent_bus(DEVICE(&s->pci), &bus->qbus);
1552 object_property_set_bool(OBJECT(&s->pci), true, "realized", errp);
1553 ret = pci_add_capability(&s->pci.dev, AMDVI_CAPAB_ID_SEC, 0,
1554 AMDVI_CAPAB_SIZE, errp);
1555 if (ret < 0) {
1556 return;
1557 }
1558 s->capab_offset = ret;
1559
1560 ret = pci_add_capability(&s->pci.dev, PCI_CAP_ID_MSI, 0,
1561 AMDVI_CAPAB_REG_SIZE, errp);
1562 if (ret < 0) {
1563 return;
1564 }
1565 ret = pci_add_capability(&s->pci.dev, PCI_CAP_ID_HT, 0,
1566 AMDVI_CAPAB_REG_SIZE, errp);
1567 if (ret < 0) {
1568 return;
1569 }
1570
1571 /* Pseudo address space under root PCI bus. */
1572 x86ms->ioapic_as = amdvi_host_dma_iommu(bus, s, AMDVI_IOAPIC_SB_DEVID);
1573
1574 /* set up MMIO */
1575 memory_region_init_io(&s->mmio, OBJECT(s), &mmio_mem_ops, s, "amdvi-mmio",
1576 AMDVI_MMIO_SIZE);
1577
1578 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->mmio);
1579 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, AMDVI_BASE_ADDR);
1580 pci_setup_iommu(bus, amdvi_host_dma_iommu, s);
1581 s->devid = object_property_get_int(OBJECT(&s->pci), "addr", errp);
1582 msi_init(&s->pci.dev, 0, 1, true, false, errp);
1583 amdvi_init(s);
1584 }
1585
1586 static const VMStateDescription vmstate_amdvi = {
1587 .name = "amd-iommu",
1588 .unmigratable = 1
1589 };
1590
1591 static void amdvi_instance_init(Object *klass)
1592 {
1593 AMDVIState *s = AMD_IOMMU_DEVICE(klass);
1594
1595 object_initialize(&s->pci, sizeof(s->pci), TYPE_AMD_IOMMU_PCI);
1596 }
1597
1598 static void amdvi_class_init(ObjectClass *klass, void* data)
1599 {
1600 DeviceClass *dc = DEVICE_CLASS(klass);
1601 X86IOMMUClass *dc_class = X86_IOMMU_CLASS(klass);
1602
1603 dc->reset = amdvi_reset;
1604 dc->vmsd = &vmstate_amdvi;
1605 dc->hotpluggable = false;
1606 dc_class->realize = amdvi_realize;
1607 dc_class->int_remap = amdvi_int_remap;
1608 /* Supported by the pc-q35-* machine types */
1609 dc->user_creatable = true;
1610 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
1611 dc->desc = "AMD IOMMU (AMD-Vi) DMA Remapping device";
1612 }
1613
1614 static const TypeInfo amdvi = {
1615 .name = TYPE_AMD_IOMMU_DEVICE,
1616 .parent = TYPE_X86_IOMMU_DEVICE,
1617 .instance_size = sizeof(AMDVIState),
1618 .instance_init = amdvi_instance_init,
1619 .class_init = amdvi_class_init
1620 };
1621
1622 static const TypeInfo amdviPCI = {
1623 .name = "AMDVI-PCI",
1624 .parent = TYPE_PCI_DEVICE,
1625 .instance_size = sizeof(AMDVIPCIState),
1626 .interfaces = (InterfaceInfo[]) {
1627 { INTERFACE_CONVENTIONAL_PCI_DEVICE },
1628 { },
1629 },
1630 };
1631
1632 static void amdvi_iommu_memory_region_class_init(ObjectClass *klass, void *data)
1633 {
1634 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
1635
1636 imrc->translate = amdvi_translate;
1637 imrc->notify_flag_changed = amdvi_iommu_notify_flag_changed;
1638 }
1639
1640 static const TypeInfo amdvi_iommu_memory_region_info = {
1641 .parent = TYPE_IOMMU_MEMORY_REGION,
1642 .name = TYPE_AMD_IOMMU_MEMORY_REGION,
1643 .class_init = amdvi_iommu_memory_region_class_init,
1644 };
1645
1646 static void amdviPCI_register_types(void)
1647 {
1648 type_register_static(&amdviPCI);
1649 type_register_static(&amdvi);
1650 type_register_static(&amdvi_iommu_memory_region_info);
1651 }
1652
1653 type_init(amdviPCI_register_types);