move xen-hvm.c to hw/i386/xen/
[qemu.git] / hw / i386 / xen / xen-hvm.c
1 /*
2 * Copyright (C) 2010 Citrix Ltd.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 *
7 * Contributions after 2012-01-13 are licensed under the terms of the
8 * GNU GPL, version 2 or (at your option) any later version.
9 */
10
11 #include "qemu/osdep.h"
12
13 #include "cpu.h"
14 #include "hw/pci/pci.h"
15 #include "hw/i386/pc.h"
16 #include "hw/i386/apic-msidef.h"
17 #include "hw/xen/xen_common.h"
18 #include "hw/xen/xen_backend.h"
19 #include "qmp-commands.h"
20
21 #include "sysemu/char.h"
22 #include "qemu/error-report.h"
23 #include "qemu/range.h"
24 #include "sysemu/xen-mapcache.h"
25 #include "trace.h"
26 #include "exec/address-spaces.h"
27
28 #include <xen/hvm/ioreq.h>
29 #include <xen/hvm/params.h>
30 #include <xen/hvm/e820.h>
31
32 //#define DEBUG_XEN_HVM
33
34 #ifdef DEBUG_XEN_HVM
35 #define DPRINTF(fmt, ...) \
36 do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define DPRINTF(fmt, ...) \
39 do { } while (0)
40 #endif
41
42 static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi;
43 static MemoryRegion *framebuffer;
44 static bool xen_in_migration;
45
46 /* Compatibility with older version */
47
48 /* This allows QEMU to build on a system that has Xen 4.5 or earlier
49 * installed. This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h
50 * needs to be included before this block and hw/xen/xen_common.h needs to
51 * be included before xen/hvm/ioreq.h
52 */
53 #ifndef IOREQ_TYPE_VMWARE_PORT
54 #define IOREQ_TYPE_VMWARE_PORT 3
55 struct vmware_regs {
56 uint32_t esi;
57 uint32_t edi;
58 uint32_t ebx;
59 uint32_t ecx;
60 uint32_t edx;
61 };
62 typedef struct vmware_regs vmware_regs_t;
63
64 struct shared_vmport_iopage {
65 struct vmware_regs vcpu_vmport_regs[1];
66 };
67 typedef struct shared_vmport_iopage shared_vmport_iopage_t;
68 #endif
69
70 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i)
71 {
72 return shared_page->vcpu_ioreq[i].vp_eport;
73 }
74 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu)
75 {
76 return &shared_page->vcpu_ioreq[vcpu];
77 }
78
79 #define BUFFER_IO_MAX_DELAY 100
80
81 typedef struct XenPhysmap {
82 hwaddr start_addr;
83 ram_addr_t size;
84 const char *name;
85 hwaddr phys_offset;
86
87 QLIST_ENTRY(XenPhysmap) list;
88 } XenPhysmap;
89
90 typedef struct XenIOState {
91 ioservid_t ioservid;
92 shared_iopage_t *shared_page;
93 shared_vmport_iopage_t *shared_vmport_page;
94 buffered_iopage_t *buffered_io_page;
95 QEMUTimer *buffered_io_timer;
96 CPUState **cpu_by_vcpu_id;
97 /* the evtchn port for polling the notification, */
98 evtchn_port_t *ioreq_local_port;
99 /* evtchn local port for buffered io */
100 evtchn_port_t bufioreq_local_port;
101 /* the evtchn fd for polling */
102 xenevtchn_handle *xce_handle;
103 /* which vcpu we are serving */
104 int send_vcpu;
105
106 struct xs_handle *xenstore;
107 MemoryListener memory_listener;
108 MemoryListener io_listener;
109 DeviceListener device_listener;
110 QLIST_HEAD(, XenPhysmap) physmap;
111 hwaddr free_phys_offset;
112 const XenPhysmap *log_for_dirtybit;
113
114 Notifier exit;
115 Notifier suspend;
116 Notifier wakeup;
117 } XenIOState;
118
119 /* Xen specific function for piix pci */
120
121 int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num)
122 {
123 return irq_num + ((pci_dev->devfn >> 3) << 2);
124 }
125
126 void xen_piix3_set_irq(void *opaque, int irq_num, int level)
127 {
128 xen_set_pci_intx_level(xen_domid, 0, 0, irq_num >> 2,
129 irq_num & 3, level);
130 }
131
132 void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len)
133 {
134 int i;
135
136 /* Scan for updates to PCI link routes (0x60-0x63). */
137 for (i = 0; i < len; i++) {
138 uint8_t v = (val >> (8 * i)) & 0xff;
139 if (v & 0x80) {
140 v = 0;
141 }
142 v &= 0xf;
143 if (((address + i) >= 0x60) && ((address + i) <= 0x63)) {
144 xen_set_pci_link_route(xen_domid, address + i - 0x60, v);
145 }
146 }
147 }
148
149 int xen_is_pirq_msi(uint32_t msi_data)
150 {
151 /* If vector is 0, the msi is remapped into a pirq, passed as
152 * dest_id.
153 */
154 return ((msi_data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT) == 0;
155 }
156
157 void xen_hvm_inject_msi(uint64_t addr, uint32_t data)
158 {
159 xen_inject_msi(xen_domid, addr, data);
160 }
161
162 static void xen_suspend_notifier(Notifier *notifier, void *data)
163 {
164 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3);
165 }
166
167 /* Xen Interrupt Controller */
168
169 static void xen_set_irq(void *opaque, int irq, int level)
170 {
171 xen_set_isa_irq_level(xen_domid, irq, level);
172 }
173
174 qemu_irq *xen_interrupt_controller_init(void)
175 {
176 return qemu_allocate_irqs(xen_set_irq, NULL, 16);
177 }
178
179 /* Memory Ops */
180
181 static void xen_ram_init(PCMachineState *pcms,
182 ram_addr_t ram_size, MemoryRegion **ram_memory_p)
183 {
184 MemoryRegion *sysmem = get_system_memory();
185 ram_addr_t block_len;
186 uint64_t user_lowmem = object_property_get_int(qdev_get_machine(),
187 PC_MACHINE_MAX_RAM_BELOW_4G,
188 &error_abort);
189
190 /* Handle the machine opt max-ram-below-4g. It is basically doing
191 * min(xen limit, user limit).
192 */
193 if (!user_lowmem) {
194 user_lowmem = HVM_BELOW_4G_RAM_END; /* default */
195 }
196 if (HVM_BELOW_4G_RAM_END <= user_lowmem) {
197 user_lowmem = HVM_BELOW_4G_RAM_END;
198 }
199
200 if (ram_size >= user_lowmem) {
201 pcms->above_4g_mem_size = ram_size - user_lowmem;
202 pcms->below_4g_mem_size = user_lowmem;
203 } else {
204 pcms->above_4g_mem_size = 0;
205 pcms->below_4g_mem_size = ram_size;
206 }
207 if (!pcms->above_4g_mem_size) {
208 block_len = ram_size;
209 } else {
210 /*
211 * Xen does not allocate the memory continuously, it keeps a
212 * hole of the size computed above or passed in.
213 */
214 block_len = (1ULL << 32) + pcms->above_4g_mem_size;
215 }
216 memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len,
217 &error_fatal);
218 *ram_memory_p = &ram_memory;
219 vmstate_register_ram_global(&ram_memory);
220
221 memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k",
222 &ram_memory, 0, 0xa0000);
223 memory_region_add_subregion(sysmem, 0, &ram_640k);
224 /* Skip of the VGA IO memory space, it will be registered later by the VGA
225 * emulated device.
226 *
227 * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load
228 * the Options ROM, so it is registered here as RAM.
229 */
230 memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo",
231 &ram_memory, 0xc0000,
232 pcms->below_4g_mem_size - 0xc0000);
233 memory_region_add_subregion(sysmem, 0xc0000, &ram_lo);
234 if (pcms->above_4g_mem_size > 0) {
235 memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi",
236 &ram_memory, 0x100000000ULL,
237 pcms->above_4g_mem_size);
238 memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi);
239 }
240 }
241
242 void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr,
243 Error **errp)
244 {
245 unsigned long nr_pfn;
246 xen_pfn_t *pfn_list;
247 int i;
248
249 if (runstate_check(RUN_STATE_INMIGRATE)) {
250 /* RAM already populated in Xen */
251 fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT
252 " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n",
253 __func__, size, ram_addr);
254 return;
255 }
256
257 if (mr == &ram_memory) {
258 return;
259 }
260
261 trace_xen_ram_alloc(ram_addr, size);
262
263 nr_pfn = size >> TARGET_PAGE_BITS;
264 pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn);
265
266 for (i = 0; i < nr_pfn; i++) {
267 pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i;
268 }
269
270 if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) {
271 error_setg(errp, "xen: failed to populate ram at " RAM_ADDR_FMT,
272 ram_addr);
273 }
274
275 g_free(pfn_list);
276 }
277
278 static XenPhysmap *get_physmapping(XenIOState *state,
279 hwaddr start_addr, ram_addr_t size)
280 {
281 XenPhysmap *physmap = NULL;
282
283 start_addr &= TARGET_PAGE_MASK;
284
285 QLIST_FOREACH(physmap, &state->physmap, list) {
286 if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) {
287 return physmap;
288 }
289 }
290 return NULL;
291 }
292
293 static hwaddr xen_phys_offset_to_gaddr(hwaddr start_addr,
294 ram_addr_t size, void *opaque)
295 {
296 hwaddr addr = start_addr & TARGET_PAGE_MASK;
297 XenIOState *xen_io_state = opaque;
298 XenPhysmap *physmap = NULL;
299
300 QLIST_FOREACH(physmap, &xen_io_state->physmap, list) {
301 if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) {
302 return physmap->start_addr;
303 }
304 }
305
306 return start_addr;
307 }
308
309 static int xen_add_to_physmap(XenIOState *state,
310 hwaddr start_addr,
311 ram_addr_t size,
312 MemoryRegion *mr,
313 hwaddr offset_within_region)
314 {
315 unsigned long i = 0;
316 int rc = 0;
317 XenPhysmap *physmap = NULL;
318 hwaddr pfn, start_gpfn;
319 hwaddr phys_offset = memory_region_get_ram_addr(mr);
320 char path[80], value[17];
321 const char *mr_name;
322
323 if (get_physmapping(state, start_addr, size)) {
324 return 0;
325 }
326 if (size <= 0) {
327 return -1;
328 }
329
330 /* Xen can only handle a single dirty log region for now and we want
331 * the linear framebuffer to be that region.
332 * Avoid tracking any regions that is not videoram and avoid tracking
333 * the legacy vga region. */
334 if (mr == framebuffer && start_addr > 0xbffff) {
335 goto go_physmap;
336 }
337 return -1;
338
339 go_physmap:
340 DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n",
341 start_addr, start_addr + size);
342
343 pfn = phys_offset >> TARGET_PAGE_BITS;
344 start_gpfn = start_addr >> TARGET_PAGE_BITS;
345 for (i = 0; i < size >> TARGET_PAGE_BITS; i++) {
346 unsigned long idx = pfn + i;
347 xen_pfn_t gpfn = start_gpfn + i;
348
349 rc = xen_xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn);
350 if (rc) {
351 DPRINTF("add_to_physmap MFN %"PRI_xen_pfn" to PFN %"
352 PRI_xen_pfn" failed: %d (errno: %d)\n", idx, gpfn, rc, errno);
353 return -rc;
354 }
355 }
356
357 mr_name = memory_region_name(mr);
358
359 physmap = g_malloc(sizeof (XenPhysmap));
360
361 physmap->start_addr = start_addr;
362 physmap->size = size;
363 physmap->name = mr_name;
364 physmap->phys_offset = phys_offset;
365
366 QLIST_INSERT_HEAD(&state->physmap, physmap, list);
367
368 xc_domain_pin_memory_cacheattr(xen_xc, xen_domid,
369 start_addr >> TARGET_PAGE_BITS,
370 (start_addr + size - 1) >> TARGET_PAGE_BITS,
371 XEN_DOMCTL_MEM_CACHEATTR_WB);
372
373 snprintf(path, sizeof(path),
374 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr",
375 xen_domid, (uint64_t)phys_offset);
376 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)start_addr);
377 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
378 return -1;
379 }
380 snprintf(path, sizeof(path),
381 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size",
382 xen_domid, (uint64_t)phys_offset);
383 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)size);
384 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
385 return -1;
386 }
387 if (mr_name) {
388 snprintf(path, sizeof(path),
389 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name",
390 xen_domid, (uint64_t)phys_offset);
391 if (!xs_write(state->xenstore, 0, path, mr_name, strlen(mr_name))) {
392 return -1;
393 }
394 }
395
396 return 0;
397 }
398
399 static int xen_remove_from_physmap(XenIOState *state,
400 hwaddr start_addr,
401 ram_addr_t size)
402 {
403 unsigned long i = 0;
404 int rc = 0;
405 XenPhysmap *physmap = NULL;
406 hwaddr phys_offset = 0;
407
408 physmap = get_physmapping(state, start_addr, size);
409 if (physmap == NULL) {
410 return -1;
411 }
412
413 phys_offset = physmap->phys_offset;
414 size = physmap->size;
415
416 DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at "
417 "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset);
418
419 size >>= TARGET_PAGE_BITS;
420 start_addr >>= TARGET_PAGE_BITS;
421 phys_offset >>= TARGET_PAGE_BITS;
422 for (i = 0; i < size; i++) {
423 xen_pfn_t idx = start_addr + i;
424 xen_pfn_t gpfn = phys_offset + i;
425
426 rc = xen_xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn);
427 if (rc) {
428 fprintf(stderr, "add_to_physmap MFN %"PRI_xen_pfn" to PFN %"
429 PRI_xen_pfn" failed: %d (errno: %d)\n", idx, gpfn, rc, errno);
430 return -rc;
431 }
432 }
433
434 QLIST_REMOVE(physmap, list);
435 if (state->log_for_dirtybit == physmap) {
436 state->log_for_dirtybit = NULL;
437 }
438 g_free(physmap);
439
440 return 0;
441 }
442
443 static void xen_set_memory(struct MemoryListener *listener,
444 MemoryRegionSection *section,
445 bool add)
446 {
447 XenIOState *state = container_of(listener, XenIOState, memory_listener);
448 hwaddr start_addr = section->offset_within_address_space;
449 ram_addr_t size = int128_get64(section->size);
450 bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA);
451 hvmmem_type_t mem_type;
452
453 if (section->mr == &ram_memory) {
454 return;
455 } else {
456 if (add) {
457 xen_map_memory_section(xen_domid, state->ioservid,
458 section);
459 } else {
460 xen_unmap_memory_section(xen_domid, state->ioservid,
461 section);
462 }
463 }
464
465 if (!memory_region_is_ram(section->mr)) {
466 return;
467 }
468
469 if (log_dirty != add) {
470 return;
471 }
472
473 trace_xen_client_set_memory(start_addr, size, log_dirty);
474
475 start_addr &= TARGET_PAGE_MASK;
476 size = TARGET_PAGE_ALIGN(size);
477
478 if (add) {
479 if (!memory_region_is_rom(section->mr)) {
480 xen_add_to_physmap(state, start_addr, size,
481 section->mr, section->offset_within_region);
482 } else {
483 mem_type = HVMMEM_ram_ro;
484 if (xen_set_mem_type(xen_domid, mem_type,
485 start_addr >> TARGET_PAGE_BITS,
486 size >> TARGET_PAGE_BITS)) {
487 DPRINTF("xen_set_mem_type error, addr: "TARGET_FMT_plx"\n",
488 start_addr);
489 }
490 }
491 } else {
492 if (xen_remove_from_physmap(state, start_addr, size) < 0) {
493 DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr);
494 }
495 }
496 }
497
498 static void xen_region_add(MemoryListener *listener,
499 MemoryRegionSection *section)
500 {
501 memory_region_ref(section->mr);
502 xen_set_memory(listener, section, true);
503 }
504
505 static void xen_region_del(MemoryListener *listener,
506 MemoryRegionSection *section)
507 {
508 xen_set_memory(listener, section, false);
509 memory_region_unref(section->mr);
510 }
511
512 static void xen_io_add(MemoryListener *listener,
513 MemoryRegionSection *section)
514 {
515 XenIOState *state = container_of(listener, XenIOState, io_listener);
516 MemoryRegion *mr = section->mr;
517
518 if (mr->ops == &unassigned_io_ops) {
519 return;
520 }
521
522 memory_region_ref(mr);
523
524 xen_map_io_section(xen_domid, state->ioservid, section);
525 }
526
527 static void xen_io_del(MemoryListener *listener,
528 MemoryRegionSection *section)
529 {
530 XenIOState *state = container_of(listener, XenIOState, io_listener);
531 MemoryRegion *mr = section->mr;
532
533 if (mr->ops == &unassigned_io_ops) {
534 return;
535 }
536
537 xen_unmap_io_section(xen_domid, state->ioservid, section);
538
539 memory_region_unref(mr);
540 }
541
542 static void xen_device_realize(DeviceListener *listener,
543 DeviceState *dev)
544 {
545 XenIOState *state = container_of(listener, XenIOState, device_listener);
546
547 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
548 PCIDevice *pci_dev = PCI_DEVICE(dev);
549
550 xen_map_pcidev(xen_domid, state->ioservid, pci_dev);
551 }
552 }
553
554 static void xen_device_unrealize(DeviceListener *listener,
555 DeviceState *dev)
556 {
557 XenIOState *state = container_of(listener, XenIOState, device_listener);
558
559 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
560 PCIDevice *pci_dev = PCI_DEVICE(dev);
561
562 xen_unmap_pcidev(xen_domid, state->ioservid, pci_dev);
563 }
564 }
565
566 static void xen_sync_dirty_bitmap(XenIOState *state,
567 hwaddr start_addr,
568 ram_addr_t size)
569 {
570 hwaddr npages = size >> TARGET_PAGE_BITS;
571 const int width = sizeof(unsigned long) * 8;
572 unsigned long bitmap[DIV_ROUND_UP(npages, width)];
573 int rc, i, j;
574 const XenPhysmap *physmap = NULL;
575
576 physmap = get_physmapping(state, start_addr, size);
577 if (physmap == NULL) {
578 /* not handled */
579 return;
580 }
581
582 if (state->log_for_dirtybit == NULL) {
583 state->log_for_dirtybit = physmap;
584 } else if (state->log_for_dirtybit != physmap) {
585 /* Only one range for dirty bitmap can be tracked. */
586 return;
587 }
588
589 rc = xen_track_dirty_vram(xen_domid, start_addr >> TARGET_PAGE_BITS,
590 npages, bitmap);
591 if (rc < 0) {
592 #ifndef ENODATA
593 #define ENODATA ENOENT
594 #endif
595 if (errno == ENODATA) {
596 memory_region_set_dirty(framebuffer, 0, size);
597 DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx
598 ", 0x" TARGET_FMT_plx "): %s\n",
599 start_addr, start_addr + size, strerror(errno));
600 }
601 return;
602 }
603
604 for (i = 0; i < ARRAY_SIZE(bitmap); i++) {
605 unsigned long map = bitmap[i];
606 while (map != 0) {
607 j = ctzl(map);
608 map &= ~(1ul << j);
609 memory_region_set_dirty(framebuffer,
610 (i * width + j) * TARGET_PAGE_SIZE,
611 TARGET_PAGE_SIZE);
612 };
613 }
614 }
615
616 static void xen_log_start(MemoryListener *listener,
617 MemoryRegionSection *section,
618 int old, int new)
619 {
620 XenIOState *state = container_of(listener, XenIOState, memory_listener);
621
622 if (new & ~old & (1 << DIRTY_MEMORY_VGA)) {
623 xen_sync_dirty_bitmap(state, section->offset_within_address_space,
624 int128_get64(section->size));
625 }
626 }
627
628 static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section,
629 int old, int new)
630 {
631 XenIOState *state = container_of(listener, XenIOState, memory_listener);
632
633 if (old & ~new & (1 << DIRTY_MEMORY_VGA)) {
634 state->log_for_dirtybit = NULL;
635 /* Disable dirty bit tracking */
636 xen_track_dirty_vram(xen_domid, 0, 0, NULL);
637 }
638 }
639
640 static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section)
641 {
642 XenIOState *state = container_of(listener, XenIOState, memory_listener);
643
644 xen_sync_dirty_bitmap(state, section->offset_within_address_space,
645 int128_get64(section->size));
646 }
647
648 static void xen_log_global_start(MemoryListener *listener)
649 {
650 if (xen_enabled()) {
651 xen_in_migration = true;
652 }
653 }
654
655 static void xen_log_global_stop(MemoryListener *listener)
656 {
657 xen_in_migration = false;
658 }
659
660 static MemoryListener xen_memory_listener = {
661 .region_add = xen_region_add,
662 .region_del = xen_region_del,
663 .log_start = xen_log_start,
664 .log_stop = xen_log_stop,
665 .log_sync = xen_log_sync,
666 .log_global_start = xen_log_global_start,
667 .log_global_stop = xen_log_global_stop,
668 .priority = 10,
669 };
670
671 static MemoryListener xen_io_listener = {
672 .region_add = xen_io_add,
673 .region_del = xen_io_del,
674 .priority = 10,
675 };
676
677 static DeviceListener xen_device_listener = {
678 .realize = xen_device_realize,
679 .unrealize = xen_device_unrealize,
680 };
681
682 /* get the ioreq packets from share mem */
683 static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu)
684 {
685 ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu);
686
687 if (req->state != STATE_IOREQ_READY) {
688 DPRINTF("I/O request not ready: "
689 "%x, ptr: %x, port: %"PRIx64", "
690 "data: %"PRIx64", count: %u, size: %u\n",
691 req->state, req->data_is_ptr, req->addr,
692 req->data, req->count, req->size);
693 return NULL;
694 }
695
696 xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */
697
698 req->state = STATE_IOREQ_INPROCESS;
699 return req;
700 }
701
702 /* use poll to get the port notification */
703 /* ioreq_vec--out,the */
704 /* retval--the number of ioreq packet */
705 static ioreq_t *cpu_get_ioreq(XenIOState *state)
706 {
707 int i;
708 evtchn_port_t port;
709
710 port = xenevtchn_pending(state->xce_handle);
711 if (port == state->bufioreq_local_port) {
712 timer_mod(state->buffered_io_timer,
713 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
714 return NULL;
715 }
716
717 if (port != -1) {
718 for (i = 0; i < max_cpus; i++) {
719 if (state->ioreq_local_port[i] == port) {
720 break;
721 }
722 }
723
724 if (i == max_cpus) {
725 hw_error("Fatal error while trying to get io event!\n");
726 }
727
728 /* unmask the wanted port again */
729 xenevtchn_unmask(state->xce_handle, port);
730
731 /* get the io packet from shared memory */
732 state->send_vcpu = i;
733 return cpu_get_ioreq_from_shared_memory(state, i);
734 }
735
736 /* read error or read nothing */
737 return NULL;
738 }
739
740 static uint32_t do_inp(uint32_t addr, unsigned long size)
741 {
742 switch (size) {
743 case 1:
744 return cpu_inb(addr);
745 case 2:
746 return cpu_inw(addr);
747 case 4:
748 return cpu_inl(addr);
749 default:
750 hw_error("inp: bad size: %04x %lx", addr, size);
751 }
752 }
753
754 static void do_outp(uint32_t addr,
755 unsigned long size, uint32_t val)
756 {
757 switch (size) {
758 case 1:
759 return cpu_outb(addr, val);
760 case 2:
761 return cpu_outw(addr, val);
762 case 4:
763 return cpu_outl(addr, val);
764 default:
765 hw_error("outp: bad size: %04x %lx", addr, size);
766 }
767 }
768
769 /*
770 * Helper functions which read/write an object from/to physical guest
771 * memory, as part of the implementation of an ioreq.
772 *
773 * Equivalent to
774 * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i,
775 * val, req->size, 0/1)
776 * except without the integer overflow problems.
777 */
778 static void rw_phys_req_item(hwaddr addr,
779 ioreq_t *req, uint32_t i, void *val, int rw)
780 {
781 /* Do everything unsigned so overflow just results in a truncated result
782 * and accesses to undesired parts of guest memory, which is up
783 * to the guest */
784 hwaddr offset = (hwaddr)req->size * i;
785 if (req->df) {
786 addr -= offset;
787 } else {
788 addr += offset;
789 }
790 cpu_physical_memory_rw(addr, val, req->size, rw);
791 }
792
793 static inline void read_phys_req_item(hwaddr addr,
794 ioreq_t *req, uint32_t i, void *val)
795 {
796 rw_phys_req_item(addr, req, i, val, 0);
797 }
798 static inline void write_phys_req_item(hwaddr addr,
799 ioreq_t *req, uint32_t i, void *val)
800 {
801 rw_phys_req_item(addr, req, i, val, 1);
802 }
803
804
805 static void cpu_ioreq_pio(ioreq_t *req)
806 {
807 uint32_t i;
808
809 trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr,
810 req->data, req->count, req->size);
811
812 if (req->size > sizeof(uint32_t)) {
813 hw_error("PIO: bad size (%u)", req->size);
814 }
815
816 if (req->dir == IOREQ_READ) {
817 if (!req->data_is_ptr) {
818 req->data = do_inp(req->addr, req->size);
819 trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr,
820 req->size);
821 } else {
822 uint32_t tmp;
823
824 for (i = 0; i < req->count; i++) {
825 tmp = do_inp(req->addr, req->size);
826 write_phys_req_item(req->data, req, i, &tmp);
827 }
828 }
829 } else if (req->dir == IOREQ_WRITE) {
830 if (!req->data_is_ptr) {
831 trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr,
832 req->size);
833 do_outp(req->addr, req->size, req->data);
834 } else {
835 for (i = 0; i < req->count; i++) {
836 uint32_t tmp = 0;
837
838 read_phys_req_item(req->data, req, i, &tmp);
839 do_outp(req->addr, req->size, tmp);
840 }
841 }
842 }
843 }
844
845 static void cpu_ioreq_move(ioreq_t *req)
846 {
847 uint32_t i;
848
849 trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr,
850 req->data, req->count, req->size);
851
852 if (req->size > sizeof(req->data)) {
853 hw_error("MMIO: bad size (%u)", req->size);
854 }
855
856 if (!req->data_is_ptr) {
857 if (req->dir == IOREQ_READ) {
858 for (i = 0; i < req->count; i++) {
859 read_phys_req_item(req->addr, req, i, &req->data);
860 }
861 } else if (req->dir == IOREQ_WRITE) {
862 for (i = 0; i < req->count; i++) {
863 write_phys_req_item(req->addr, req, i, &req->data);
864 }
865 }
866 } else {
867 uint64_t tmp;
868
869 if (req->dir == IOREQ_READ) {
870 for (i = 0; i < req->count; i++) {
871 read_phys_req_item(req->addr, req, i, &tmp);
872 write_phys_req_item(req->data, req, i, &tmp);
873 }
874 } else if (req->dir == IOREQ_WRITE) {
875 for (i = 0; i < req->count; i++) {
876 read_phys_req_item(req->data, req, i, &tmp);
877 write_phys_req_item(req->addr, req, i, &tmp);
878 }
879 }
880 }
881 }
882
883 static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req)
884 {
885 X86CPU *cpu;
886 CPUX86State *env;
887
888 cpu = X86_CPU(current_cpu);
889 env = &cpu->env;
890 env->regs[R_EAX] = req->data;
891 env->regs[R_EBX] = vmport_regs->ebx;
892 env->regs[R_ECX] = vmport_regs->ecx;
893 env->regs[R_EDX] = vmport_regs->edx;
894 env->regs[R_ESI] = vmport_regs->esi;
895 env->regs[R_EDI] = vmport_regs->edi;
896 }
897
898 static void regs_from_cpu(vmware_regs_t *vmport_regs)
899 {
900 X86CPU *cpu = X86_CPU(current_cpu);
901 CPUX86State *env = &cpu->env;
902
903 vmport_regs->ebx = env->regs[R_EBX];
904 vmport_regs->ecx = env->regs[R_ECX];
905 vmport_regs->edx = env->regs[R_EDX];
906 vmport_regs->esi = env->regs[R_ESI];
907 vmport_regs->edi = env->regs[R_EDI];
908 }
909
910 static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req)
911 {
912 vmware_regs_t *vmport_regs;
913
914 assert(state->shared_vmport_page);
915 vmport_regs =
916 &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu];
917 QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs));
918
919 current_cpu = state->cpu_by_vcpu_id[state->send_vcpu];
920 regs_to_cpu(vmport_regs, req);
921 cpu_ioreq_pio(req);
922 regs_from_cpu(vmport_regs);
923 current_cpu = NULL;
924 }
925
926 static void handle_ioreq(XenIOState *state, ioreq_t *req)
927 {
928 trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr,
929 req->addr, req->data, req->count, req->size);
930
931 if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) &&
932 (req->size < sizeof (target_ulong))) {
933 req->data &= ((target_ulong) 1 << (8 * req->size)) - 1;
934 }
935
936 if (req->dir == IOREQ_WRITE)
937 trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr,
938 req->addr, req->data, req->count, req->size);
939
940 switch (req->type) {
941 case IOREQ_TYPE_PIO:
942 cpu_ioreq_pio(req);
943 break;
944 case IOREQ_TYPE_COPY:
945 cpu_ioreq_move(req);
946 break;
947 case IOREQ_TYPE_VMWARE_PORT:
948 handle_vmport_ioreq(state, req);
949 break;
950 case IOREQ_TYPE_TIMEOFFSET:
951 break;
952 case IOREQ_TYPE_INVALIDATE:
953 xen_invalidate_map_cache();
954 break;
955 case IOREQ_TYPE_PCI_CONFIG: {
956 uint32_t sbdf = req->addr >> 32;
957 uint32_t val;
958
959 /* Fake a write to port 0xCF8 so that
960 * the config space access will target the
961 * correct device model.
962 */
963 val = (1u << 31) |
964 ((req->addr & 0x0f00) << 16) |
965 ((sbdf & 0xffff) << 8) |
966 (req->addr & 0xfc);
967 do_outp(0xcf8, 4, val);
968
969 /* Now issue the config space access via
970 * port 0xCFC
971 */
972 req->addr = 0xcfc | (req->addr & 0x03);
973 cpu_ioreq_pio(req);
974 break;
975 }
976 default:
977 hw_error("Invalid ioreq type 0x%x\n", req->type);
978 }
979 if (req->dir == IOREQ_READ) {
980 trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr,
981 req->addr, req->data, req->count, req->size);
982 }
983 }
984
985 static int handle_buffered_iopage(XenIOState *state)
986 {
987 buffered_iopage_t *buf_page = state->buffered_io_page;
988 buf_ioreq_t *buf_req = NULL;
989 ioreq_t req;
990 int qw;
991
992 if (!buf_page) {
993 return 0;
994 }
995
996 memset(&req, 0x00, sizeof(req));
997 req.state = STATE_IOREQ_READY;
998 req.count = 1;
999 req.dir = IOREQ_WRITE;
1000
1001 for (;;) {
1002 uint32_t rdptr = buf_page->read_pointer, wrptr;
1003
1004 xen_rmb();
1005 wrptr = buf_page->write_pointer;
1006 xen_rmb();
1007 if (rdptr != buf_page->read_pointer) {
1008 continue;
1009 }
1010 if (rdptr == wrptr) {
1011 break;
1012 }
1013 buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM];
1014 req.size = 1U << buf_req->size;
1015 req.addr = buf_req->addr;
1016 req.data = buf_req->data;
1017 req.type = buf_req->type;
1018 xen_rmb();
1019 qw = (req.size == 8);
1020 if (qw) {
1021 if (rdptr + 1 == wrptr) {
1022 hw_error("Incomplete quad word buffered ioreq");
1023 }
1024 buf_req = &buf_page->buf_ioreq[(rdptr + 1) %
1025 IOREQ_BUFFER_SLOT_NUM];
1026 req.data |= ((uint64_t)buf_req->data) << 32;
1027 xen_rmb();
1028 }
1029
1030 handle_ioreq(state, &req);
1031
1032 /* Only req.data may get updated by handle_ioreq(), albeit even that
1033 * should not happen as such data would never make it to the guest (we
1034 * can only usefully see writes here after all).
1035 */
1036 assert(req.state == STATE_IOREQ_READY);
1037 assert(req.count == 1);
1038 assert(req.dir == IOREQ_WRITE);
1039 assert(!req.data_is_ptr);
1040
1041 atomic_add(&buf_page->read_pointer, qw + 1);
1042 }
1043
1044 return req.count;
1045 }
1046
1047 static void handle_buffered_io(void *opaque)
1048 {
1049 XenIOState *state = opaque;
1050
1051 if (handle_buffered_iopage(state)) {
1052 timer_mod(state->buffered_io_timer,
1053 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
1054 } else {
1055 timer_del(state->buffered_io_timer);
1056 xenevtchn_unmask(state->xce_handle, state->bufioreq_local_port);
1057 }
1058 }
1059
1060 static void cpu_handle_ioreq(void *opaque)
1061 {
1062 XenIOState *state = opaque;
1063 ioreq_t *req = cpu_get_ioreq(state);
1064
1065 handle_buffered_iopage(state);
1066 if (req) {
1067 ioreq_t copy = *req;
1068
1069 xen_rmb();
1070 handle_ioreq(state, &copy);
1071 req->data = copy.data;
1072
1073 if (req->state != STATE_IOREQ_INPROCESS) {
1074 fprintf(stderr, "Badness in I/O request ... not in service?!: "
1075 "%x, ptr: %x, port: %"PRIx64", "
1076 "data: %"PRIx64", count: %u, size: %u, type: %u\n",
1077 req->state, req->data_is_ptr, req->addr,
1078 req->data, req->count, req->size, req->type);
1079 destroy_hvm_domain(false);
1080 return;
1081 }
1082
1083 xen_wmb(); /* Update ioreq contents /then/ update state. */
1084
1085 /*
1086 * We do this before we send the response so that the tools
1087 * have the opportunity to pick up on the reset before the
1088 * guest resumes and does a hlt with interrupts disabled which
1089 * causes Xen to powerdown the domain.
1090 */
1091 if (runstate_is_running()) {
1092 if (qemu_shutdown_requested_get()) {
1093 destroy_hvm_domain(false);
1094 }
1095 if (qemu_reset_requested_get()) {
1096 qemu_system_reset(VMRESET_REPORT);
1097 destroy_hvm_domain(true);
1098 }
1099 }
1100
1101 req->state = STATE_IORESP_READY;
1102 xenevtchn_notify(state->xce_handle,
1103 state->ioreq_local_port[state->send_vcpu]);
1104 }
1105 }
1106
1107 static void xen_main_loop_prepare(XenIOState *state)
1108 {
1109 int evtchn_fd = -1;
1110
1111 if (state->xce_handle != NULL) {
1112 evtchn_fd = xenevtchn_fd(state->xce_handle);
1113 }
1114
1115 state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io,
1116 state);
1117
1118 if (evtchn_fd != -1) {
1119 CPUState *cpu_state;
1120
1121 DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__);
1122 CPU_FOREACH(cpu_state) {
1123 DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n",
1124 __func__, cpu_state->cpu_index, cpu_state);
1125 state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state;
1126 }
1127 qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state);
1128 }
1129 }
1130
1131
1132 static void xen_hvm_change_state_handler(void *opaque, int running,
1133 RunState rstate)
1134 {
1135 XenIOState *state = opaque;
1136
1137 if (running) {
1138 xen_main_loop_prepare(state);
1139 }
1140
1141 xen_set_ioreq_server_state(xen_domid,
1142 state->ioservid,
1143 (rstate == RUN_STATE_RUNNING));
1144 }
1145
1146 static void xen_exit_notifier(Notifier *n, void *data)
1147 {
1148 XenIOState *state = container_of(n, XenIOState, exit);
1149
1150 xenevtchn_close(state->xce_handle);
1151 xs_daemon_close(state->xenstore);
1152 }
1153
1154 static void xen_read_physmap(XenIOState *state)
1155 {
1156 XenPhysmap *physmap = NULL;
1157 unsigned int len, num, i;
1158 char path[80], *value = NULL;
1159 char **entries = NULL;
1160
1161 snprintf(path, sizeof(path),
1162 "/local/domain/0/device-model/%d/physmap", xen_domid);
1163 entries = xs_directory(state->xenstore, 0, path, &num);
1164 if (entries == NULL)
1165 return;
1166
1167 for (i = 0; i < num; i++) {
1168 physmap = g_malloc(sizeof (XenPhysmap));
1169 physmap->phys_offset = strtoull(entries[i], NULL, 16);
1170 snprintf(path, sizeof(path),
1171 "/local/domain/0/device-model/%d/physmap/%s/start_addr",
1172 xen_domid, entries[i]);
1173 value = xs_read(state->xenstore, 0, path, &len);
1174 if (value == NULL) {
1175 g_free(physmap);
1176 continue;
1177 }
1178 physmap->start_addr = strtoull(value, NULL, 16);
1179 free(value);
1180
1181 snprintf(path, sizeof(path),
1182 "/local/domain/0/device-model/%d/physmap/%s/size",
1183 xen_domid, entries[i]);
1184 value = xs_read(state->xenstore, 0, path, &len);
1185 if (value == NULL) {
1186 g_free(physmap);
1187 continue;
1188 }
1189 physmap->size = strtoull(value, NULL, 16);
1190 free(value);
1191
1192 snprintf(path, sizeof(path),
1193 "/local/domain/0/device-model/%d/physmap/%s/name",
1194 xen_domid, entries[i]);
1195 physmap->name = xs_read(state->xenstore, 0, path, &len);
1196
1197 QLIST_INSERT_HEAD(&state->physmap, physmap, list);
1198 }
1199 free(entries);
1200 }
1201
1202 static void xen_wakeup_notifier(Notifier *notifier, void *data)
1203 {
1204 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0);
1205 }
1206
1207 void xen_hvm_init(PCMachineState *pcms, MemoryRegion **ram_memory)
1208 {
1209 int i, rc;
1210 xen_pfn_t ioreq_pfn;
1211 xen_pfn_t bufioreq_pfn;
1212 evtchn_port_t bufioreq_evtchn;
1213 XenIOState *state;
1214
1215 state = g_malloc0(sizeof (XenIOState));
1216
1217 state->xce_handle = xenevtchn_open(NULL, 0);
1218 if (state->xce_handle == NULL) {
1219 perror("xen: event channel open");
1220 goto err;
1221 }
1222
1223 state->xenstore = xs_daemon_open();
1224 if (state->xenstore == NULL) {
1225 perror("xen: xenstore open");
1226 goto err;
1227 }
1228
1229 if (xen_domid_restrict) {
1230 rc = xen_restrict(xen_domid);
1231 if (rc < 0) {
1232 error_report("failed to restrict: error %d", errno);
1233 goto err;
1234 }
1235 }
1236
1237 xen_create_ioreq_server(xen_domid, &state->ioservid);
1238
1239 state->exit.notify = xen_exit_notifier;
1240 qemu_add_exit_notifier(&state->exit);
1241
1242 state->suspend.notify = xen_suspend_notifier;
1243 qemu_register_suspend_notifier(&state->suspend);
1244
1245 state->wakeup.notify = xen_wakeup_notifier;
1246 qemu_register_wakeup_notifier(&state->wakeup);
1247
1248 rc = xen_get_ioreq_server_info(xen_domid, state->ioservid,
1249 &ioreq_pfn, &bufioreq_pfn,
1250 &bufioreq_evtchn);
1251 if (rc < 0) {
1252 error_report("failed to get ioreq server info: error %d handle=%p",
1253 errno, xen_xc);
1254 goto err;
1255 }
1256
1257 DPRINTF("shared page at pfn %lx\n", ioreq_pfn);
1258 DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn);
1259 DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn);
1260
1261 state->shared_page = xenforeignmemory_map(xen_fmem, xen_domid,
1262 PROT_READ|PROT_WRITE,
1263 1, &ioreq_pfn, NULL);
1264 if (state->shared_page == NULL) {
1265 error_report("map shared IO page returned error %d handle=%p",
1266 errno, xen_xc);
1267 goto err;
1268 }
1269
1270 rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn);
1271 if (!rc) {
1272 DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn);
1273 state->shared_vmport_page =
1274 xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE,
1275 1, &ioreq_pfn, NULL);
1276 if (state->shared_vmport_page == NULL) {
1277 error_report("map shared vmport IO page returned error %d handle=%p",
1278 errno, xen_xc);
1279 goto err;
1280 }
1281 } else if (rc != -ENOSYS) {
1282 error_report("get vmport regs pfn returned error %d, rc=%d",
1283 errno, rc);
1284 goto err;
1285 }
1286
1287 state->buffered_io_page = xenforeignmemory_map(xen_fmem, xen_domid,
1288 PROT_READ|PROT_WRITE,
1289 1, &bufioreq_pfn, NULL);
1290 if (state->buffered_io_page == NULL) {
1291 error_report("map buffered IO page returned error %d", errno);
1292 goto err;
1293 }
1294
1295 /* Note: cpus is empty at this point in init */
1296 state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *));
1297
1298 rc = xen_set_ioreq_server_state(xen_domid, state->ioservid, true);
1299 if (rc < 0) {
1300 error_report("failed to enable ioreq server info: error %d handle=%p",
1301 errno, xen_xc);
1302 goto err;
1303 }
1304
1305 state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t));
1306
1307 /* FIXME: how about if we overflow the page here? */
1308 for (i = 0; i < max_cpus; i++) {
1309 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
1310 xen_vcpu_eport(state->shared_page, i));
1311 if (rc == -1) {
1312 error_report("shared evtchn %d bind error %d", i, errno);
1313 goto err;
1314 }
1315 state->ioreq_local_port[i] = rc;
1316 }
1317
1318 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
1319 bufioreq_evtchn);
1320 if (rc == -1) {
1321 error_report("buffered evtchn bind error %d", errno);
1322 goto err;
1323 }
1324 state->bufioreq_local_port = rc;
1325
1326 /* Init RAM management */
1327 xen_map_cache_init(xen_phys_offset_to_gaddr, state);
1328 xen_ram_init(pcms, ram_size, ram_memory);
1329
1330 qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state);
1331
1332 state->memory_listener = xen_memory_listener;
1333 QLIST_INIT(&state->physmap);
1334 memory_listener_register(&state->memory_listener, &address_space_memory);
1335 state->log_for_dirtybit = NULL;
1336
1337 state->io_listener = xen_io_listener;
1338 memory_listener_register(&state->io_listener, &address_space_io);
1339
1340 state->device_listener = xen_device_listener;
1341 device_listener_register(&state->device_listener);
1342
1343 /* Initialize backend core & drivers */
1344 if (xen_be_init() != 0) {
1345 error_report("xen backend core setup failed");
1346 goto err;
1347 }
1348 xen_be_register_common();
1349 xen_read_physmap(state);
1350
1351 /* Disable ACPI build because Xen handles it */
1352 pcms->acpi_build_enabled = false;
1353
1354 return;
1355
1356 err:
1357 error_report("xen hardware virtual machine initialisation failed");
1358 exit(1);
1359 }
1360
1361 void destroy_hvm_domain(bool reboot)
1362 {
1363 xc_interface *xc_handle;
1364 int sts;
1365
1366 xc_handle = xc_interface_open(0, 0, 0);
1367 if (xc_handle == NULL) {
1368 fprintf(stderr, "Cannot acquire xenctrl handle\n");
1369 } else {
1370 sts = xc_domain_shutdown(xc_handle, xen_domid,
1371 reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff);
1372 if (sts != 0) {
1373 fprintf(stderr, "xc_domain_shutdown failed to issue %s, "
1374 "sts %d, %s\n", reboot ? "reboot" : "poweroff",
1375 sts, strerror(errno));
1376 } else {
1377 fprintf(stderr, "Issued domain %d %s\n", xen_domid,
1378 reboot ? "reboot" : "poweroff");
1379 }
1380 xc_interface_close(xc_handle);
1381 }
1382 }
1383
1384 void xen_register_framebuffer(MemoryRegion *mr)
1385 {
1386 framebuffer = mr;
1387 }
1388
1389 void xen_shutdown_fatal_error(const char *fmt, ...)
1390 {
1391 va_list ap;
1392
1393 va_start(ap, fmt);
1394 vfprintf(stderr, fmt, ap);
1395 va_end(ap);
1396 fprintf(stderr, "Will destroy the domain.\n");
1397 /* destroy the domain */
1398 qemu_system_shutdown_request();
1399 }
1400
1401 void xen_hvm_modified_memory(ram_addr_t start, ram_addr_t length)
1402 {
1403 if (unlikely(xen_in_migration)) {
1404 int rc;
1405 ram_addr_t start_pfn, nb_pages;
1406
1407 if (length == 0) {
1408 length = TARGET_PAGE_SIZE;
1409 }
1410 start_pfn = start >> TARGET_PAGE_BITS;
1411 nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS)
1412 - start_pfn;
1413 rc = xen_modified_memory(xen_domid, start_pfn, nb_pages);
1414 if (rc) {
1415 fprintf(stderr,
1416 "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n",
1417 __func__, start, nb_pages, rc, strerror(-rc));
1418 }
1419 }
1420 }
1421
1422 void qmp_xen_set_global_dirty_log(bool enable, Error **errp)
1423 {
1424 if (enable) {
1425 memory_global_dirty_log_start();
1426 } else {
1427 memory_global_dirty_log_stop();
1428 }
1429 }