meson: convert hw/9pfs, cleanup
[qemu.git] / hw / i386 / xen / xen-hvm.c
1 /*
2 * Copyright (C) 2010 Citrix Ltd.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 *
7 * Contributions after 2012-01-13 are licensed under the terms of the
8 * GNU GPL, version 2 or (at your option) any later version.
9 */
10
11 #include "qemu/osdep.h"
12 #include "qemu/units.h"
13
14 #include "cpu.h"
15 #include "hw/pci/pci.h"
16 #include "hw/pci/pci_host.h"
17 #include "hw/i386/pc.h"
18 #include "hw/southbridge/piix.h"
19 #include "hw/irq.h"
20 #include "hw/hw.h"
21 #include "hw/i386/apic-msidef.h"
22 #include "hw/xen/xen_common.h"
23 #include "hw/xen/xen-legacy-backend.h"
24 #include "hw/xen/xen-bus.h"
25 #include "qapi/error.h"
26 #include "qapi/qapi-commands-misc.h"
27 #include "qemu/error-report.h"
28 #include "qemu/main-loop.h"
29 #include "qemu/range.h"
30 #include "sysemu/runstate.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/xen.h"
33 #include "sysemu/xen-mapcache.h"
34 #include "trace.h"
35 #include "exec/address-spaces.h"
36
37 #include <xen/hvm/ioreq.h>
38 #include <xen/hvm/e820.h>
39
40 //#define DEBUG_XEN_HVM
41
42 #ifdef DEBUG_XEN_HVM
43 #define DPRINTF(fmt, ...) \
44 do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0)
45 #else
46 #define DPRINTF(fmt, ...) \
47 do { } while (0)
48 #endif
49
50 static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi;
51 static MemoryRegion *framebuffer;
52 static bool xen_in_migration;
53
54 /* Compatibility with older version */
55
56 /* This allows QEMU to build on a system that has Xen 4.5 or earlier
57 * installed. This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h
58 * needs to be included before this block and hw/xen/xen_common.h needs to
59 * be included before xen/hvm/ioreq.h
60 */
61 #ifndef IOREQ_TYPE_VMWARE_PORT
62 #define IOREQ_TYPE_VMWARE_PORT 3
63 struct vmware_regs {
64 uint32_t esi;
65 uint32_t edi;
66 uint32_t ebx;
67 uint32_t ecx;
68 uint32_t edx;
69 };
70 typedef struct vmware_regs vmware_regs_t;
71
72 struct shared_vmport_iopage {
73 struct vmware_regs vcpu_vmport_regs[1];
74 };
75 typedef struct shared_vmport_iopage shared_vmport_iopage_t;
76 #endif
77
78 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i)
79 {
80 return shared_page->vcpu_ioreq[i].vp_eport;
81 }
82 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu)
83 {
84 return &shared_page->vcpu_ioreq[vcpu];
85 }
86
87 #define BUFFER_IO_MAX_DELAY 100
88
89 typedef struct XenPhysmap {
90 hwaddr start_addr;
91 ram_addr_t size;
92 const char *name;
93 hwaddr phys_offset;
94
95 QLIST_ENTRY(XenPhysmap) list;
96 } XenPhysmap;
97
98 static QLIST_HEAD(, XenPhysmap) xen_physmap;
99
100 typedef struct XenPciDevice {
101 PCIDevice *pci_dev;
102 uint32_t sbdf;
103 QLIST_ENTRY(XenPciDevice) entry;
104 } XenPciDevice;
105
106 typedef struct XenIOState {
107 ioservid_t ioservid;
108 shared_iopage_t *shared_page;
109 shared_vmport_iopage_t *shared_vmport_page;
110 buffered_iopage_t *buffered_io_page;
111 QEMUTimer *buffered_io_timer;
112 CPUState **cpu_by_vcpu_id;
113 /* the evtchn port for polling the notification, */
114 evtchn_port_t *ioreq_local_port;
115 /* evtchn remote and local ports for buffered io */
116 evtchn_port_t bufioreq_remote_port;
117 evtchn_port_t bufioreq_local_port;
118 /* the evtchn fd for polling */
119 xenevtchn_handle *xce_handle;
120 /* which vcpu we are serving */
121 int send_vcpu;
122
123 struct xs_handle *xenstore;
124 MemoryListener memory_listener;
125 MemoryListener io_listener;
126 QLIST_HEAD(, XenPciDevice) dev_list;
127 DeviceListener device_listener;
128 hwaddr free_phys_offset;
129 const XenPhysmap *log_for_dirtybit;
130 /* Buffer used by xen_sync_dirty_bitmap */
131 unsigned long *dirty_bitmap;
132
133 Notifier exit;
134 Notifier suspend;
135 Notifier wakeup;
136 } XenIOState;
137
138 /* Xen specific function for piix pci */
139
140 int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num)
141 {
142 return irq_num + ((pci_dev->devfn >> 3) << 2);
143 }
144
145 void xen_piix3_set_irq(void *opaque, int irq_num, int level)
146 {
147 xen_set_pci_intx_level(xen_domid, 0, 0, irq_num >> 2,
148 irq_num & 3, level);
149 }
150
151 void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len)
152 {
153 int i;
154
155 /* Scan for updates to PCI link routes (0x60-0x63). */
156 for (i = 0; i < len; i++) {
157 uint8_t v = (val >> (8 * i)) & 0xff;
158 if (v & 0x80) {
159 v = 0;
160 }
161 v &= 0xf;
162 if (((address + i) >= PIIX_PIRQCA) && ((address + i) <= PIIX_PIRQCD)) {
163 xen_set_pci_link_route(xen_domid, address + i - PIIX_PIRQCA, v);
164 }
165 }
166 }
167
168 int xen_is_pirq_msi(uint32_t msi_data)
169 {
170 /* If vector is 0, the msi is remapped into a pirq, passed as
171 * dest_id.
172 */
173 return ((msi_data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT) == 0;
174 }
175
176 void xen_hvm_inject_msi(uint64_t addr, uint32_t data)
177 {
178 xen_inject_msi(xen_domid, addr, data);
179 }
180
181 static void xen_suspend_notifier(Notifier *notifier, void *data)
182 {
183 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3);
184 }
185
186 /* Xen Interrupt Controller */
187
188 static void xen_set_irq(void *opaque, int irq, int level)
189 {
190 xen_set_isa_irq_level(xen_domid, irq, level);
191 }
192
193 qemu_irq *xen_interrupt_controller_init(void)
194 {
195 return qemu_allocate_irqs(xen_set_irq, NULL, 16);
196 }
197
198 /* Memory Ops */
199
200 static void xen_ram_init(PCMachineState *pcms,
201 ram_addr_t ram_size, MemoryRegion **ram_memory_p)
202 {
203 X86MachineState *x86ms = X86_MACHINE(pcms);
204 MemoryRegion *sysmem = get_system_memory();
205 ram_addr_t block_len;
206 uint64_t user_lowmem =
207 object_property_get_uint(qdev_get_machine(),
208 PC_MACHINE_MAX_RAM_BELOW_4G,
209 &error_abort);
210
211 /* Handle the machine opt max-ram-below-4g. It is basically doing
212 * min(xen limit, user limit).
213 */
214 if (!user_lowmem) {
215 user_lowmem = HVM_BELOW_4G_RAM_END; /* default */
216 }
217 if (HVM_BELOW_4G_RAM_END <= user_lowmem) {
218 user_lowmem = HVM_BELOW_4G_RAM_END;
219 }
220
221 if (ram_size >= user_lowmem) {
222 x86ms->above_4g_mem_size = ram_size - user_lowmem;
223 x86ms->below_4g_mem_size = user_lowmem;
224 } else {
225 x86ms->above_4g_mem_size = 0;
226 x86ms->below_4g_mem_size = ram_size;
227 }
228 if (!x86ms->above_4g_mem_size) {
229 block_len = ram_size;
230 } else {
231 /*
232 * Xen does not allocate the memory continuously, it keeps a
233 * hole of the size computed above or passed in.
234 */
235 block_len = (4 * GiB) + x86ms->above_4g_mem_size;
236 }
237 memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len,
238 &error_fatal);
239 *ram_memory_p = &ram_memory;
240
241 memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k",
242 &ram_memory, 0, 0xa0000);
243 memory_region_add_subregion(sysmem, 0, &ram_640k);
244 /* Skip of the VGA IO memory space, it will be registered later by the VGA
245 * emulated device.
246 *
247 * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load
248 * the Options ROM, so it is registered here as RAM.
249 */
250 memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo",
251 &ram_memory, 0xc0000,
252 x86ms->below_4g_mem_size - 0xc0000);
253 memory_region_add_subregion(sysmem, 0xc0000, &ram_lo);
254 if (x86ms->above_4g_mem_size > 0) {
255 memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi",
256 &ram_memory, 0x100000000ULL,
257 x86ms->above_4g_mem_size);
258 memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi);
259 }
260 }
261
262 void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr,
263 Error **errp)
264 {
265 unsigned long nr_pfn;
266 xen_pfn_t *pfn_list;
267 int i;
268
269 if (runstate_check(RUN_STATE_INMIGRATE)) {
270 /* RAM already populated in Xen */
271 fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT
272 " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n",
273 __func__, size, ram_addr);
274 return;
275 }
276
277 if (mr == &ram_memory) {
278 return;
279 }
280
281 trace_xen_ram_alloc(ram_addr, size);
282
283 nr_pfn = size >> TARGET_PAGE_BITS;
284 pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn);
285
286 for (i = 0; i < nr_pfn; i++) {
287 pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i;
288 }
289
290 if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) {
291 error_setg(errp, "xen: failed to populate ram at " RAM_ADDR_FMT,
292 ram_addr);
293 }
294
295 g_free(pfn_list);
296 }
297
298 static XenPhysmap *get_physmapping(hwaddr start_addr, ram_addr_t size)
299 {
300 XenPhysmap *physmap = NULL;
301
302 start_addr &= TARGET_PAGE_MASK;
303
304 QLIST_FOREACH(physmap, &xen_physmap, list) {
305 if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) {
306 return physmap;
307 }
308 }
309 return NULL;
310 }
311
312 static hwaddr xen_phys_offset_to_gaddr(hwaddr phys_offset, ram_addr_t size)
313 {
314 hwaddr addr = phys_offset & TARGET_PAGE_MASK;
315 XenPhysmap *physmap = NULL;
316
317 QLIST_FOREACH(physmap, &xen_physmap, list) {
318 if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) {
319 return physmap->start_addr + (phys_offset - physmap->phys_offset);
320 }
321 }
322
323 return phys_offset;
324 }
325
326 #ifdef XEN_COMPAT_PHYSMAP
327 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap)
328 {
329 char path[80], value[17];
330
331 snprintf(path, sizeof(path),
332 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr",
333 xen_domid, (uint64_t)physmap->phys_offset);
334 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->start_addr);
335 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
336 return -1;
337 }
338 snprintf(path, sizeof(path),
339 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size",
340 xen_domid, (uint64_t)physmap->phys_offset);
341 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->size);
342 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
343 return -1;
344 }
345 if (physmap->name) {
346 snprintf(path, sizeof(path),
347 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name",
348 xen_domid, (uint64_t)physmap->phys_offset);
349 if (!xs_write(state->xenstore, 0, path,
350 physmap->name, strlen(physmap->name))) {
351 return -1;
352 }
353 }
354 return 0;
355 }
356 #else
357 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap)
358 {
359 return 0;
360 }
361 #endif
362
363 static int xen_add_to_physmap(XenIOState *state,
364 hwaddr start_addr,
365 ram_addr_t size,
366 MemoryRegion *mr,
367 hwaddr offset_within_region)
368 {
369 unsigned long nr_pages;
370 int rc = 0;
371 XenPhysmap *physmap = NULL;
372 hwaddr pfn, start_gpfn;
373 hwaddr phys_offset = memory_region_get_ram_addr(mr);
374 const char *mr_name;
375
376 if (get_physmapping(start_addr, size)) {
377 return 0;
378 }
379 if (size <= 0) {
380 return -1;
381 }
382
383 /* Xen can only handle a single dirty log region for now and we want
384 * the linear framebuffer to be that region.
385 * Avoid tracking any regions that is not videoram and avoid tracking
386 * the legacy vga region. */
387 if (mr == framebuffer && start_addr > 0xbffff) {
388 goto go_physmap;
389 }
390 return -1;
391
392 go_physmap:
393 DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n",
394 start_addr, start_addr + size);
395
396 mr_name = memory_region_name(mr);
397
398 physmap = g_malloc(sizeof(XenPhysmap));
399
400 physmap->start_addr = start_addr;
401 physmap->size = size;
402 physmap->name = mr_name;
403 physmap->phys_offset = phys_offset;
404
405 QLIST_INSERT_HEAD(&xen_physmap, physmap, list);
406
407 if (runstate_check(RUN_STATE_INMIGRATE)) {
408 /* Now when we have a physmap entry we can replace a dummy mapping with
409 * a real one of guest foreign memory. */
410 uint8_t *p = xen_replace_cache_entry(phys_offset, start_addr, size);
411 assert(p && p == memory_region_get_ram_ptr(mr));
412
413 return 0;
414 }
415
416 pfn = phys_offset >> TARGET_PAGE_BITS;
417 start_gpfn = start_addr >> TARGET_PAGE_BITS;
418 nr_pages = size >> TARGET_PAGE_BITS;
419 rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, nr_pages, pfn,
420 start_gpfn);
421 if (rc) {
422 int saved_errno = errno;
423
424 error_report("relocate_memory %lu pages from GFN %"HWADDR_PRIx
425 " to GFN %"HWADDR_PRIx" failed: %s",
426 nr_pages, pfn, start_gpfn, strerror(saved_errno));
427 errno = saved_errno;
428 return -1;
429 }
430
431 rc = xendevicemodel_pin_memory_cacheattr(xen_dmod, xen_domid,
432 start_addr >> TARGET_PAGE_BITS,
433 (start_addr + size - 1) >> TARGET_PAGE_BITS,
434 XEN_DOMCTL_MEM_CACHEATTR_WB);
435 if (rc) {
436 error_report("pin_memory_cacheattr failed: %s", strerror(errno));
437 }
438 return xen_save_physmap(state, physmap);
439 }
440
441 static int xen_remove_from_physmap(XenIOState *state,
442 hwaddr start_addr,
443 ram_addr_t size)
444 {
445 int rc = 0;
446 XenPhysmap *physmap = NULL;
447 hwaddr phys_offset = 0;
448
449 physmap = get_physmapping(start_addr, size);
450 if (physmap == NULL) {
451 return -1;
452 }
453
454 phys_offset = physmap->phys_offset;
455 size = physmap->size;
456
457 DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at "
458 "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset);
459
460 size >>= TARGET_PAGE_BITS;
461 start_addr >>= TARGET_PAGE_BITS;
462 phys_offset >>= TARGET_PAGE_BITS;
463 rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, size, start_addr,
464 phys_offset);
465 if (rc) {
466 int saved_errno = errno;
467
468 error_report("relocate_memory "RAM_ADDR_FMT" pages"
469 " from GFN %"HWADDR_PRIx
470 " to GFN %"HWADDR_PRIx" failed: %s",
471 size, start_addr, phys_offset, strerror(saved_errno));
472 errno = saved_errno;
473 return -1;
474 }
475
476 QLIST_REMOVE(physmap, list);
477 if (state->log_for_dirtybit == physmap) {
478 state->log_for_dirtybit = NULL;
479 g_free(state->dirty_bitmap);
480 state->dirty_bitmap = NULL;
481 }
482 g_free(physmap);
483
484 return 0;
485 }
486
487 static void xen_set_memory(struct MemoryListener *listener,
488 MemoryRegionSection *section,
489 bool add)
490 {
491 XenIOState *state = container_of(listener, XenIOState, memory_listener);
492 hwaddr start_addr = section->offset_within_address_space;
493 ram_addr_t size = int128_get64(section->size);
494 bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA);
495 hvmmem_type_t mem_type;
496
497 if (section->mr == &ram_memory) {
498 return;
499 } else {
500 if (add) {
501 xen_map_memory_section(xen_domid, state->ioservid,
502 section);
503 } else {
504 xen_unmap_memory_section(xen_domid, state->ioservid,
505 section);
506 }
507 }
508
509 if (!memory_region_is_ram(section->mr)) {
510 return;
511 }
512
513 if (log_dirty != add) {
514 return;
515 }
516
517 trace_xen_client_set_memory(start_addr, size, log_dirty);
518
519 start_addr &= TARGET_PAGE_MASK;
520 size = TARGET_PAGE_ALIGN(size);
521
522 if (add) {
523 if (!memory_region_is_rom(section->mr)) {
524 xen_add_to_physmap(state, start_addr, size,
525 section->mr, section->offset_within_region);
526 } else {
527 mem_type = HVMMEM_ram_ro;
528 if (xen_set_mem_type(xen_domid, mem_type,
529 start_addr >> TARGET_PAGE_BITS,
530 size >> TARGET_PAGE_BITS)) {
531 DPRINTF("xen_set_mem_type error, addr: "TARGET_FMT_plx"\n",
532 start_addr);
533 }
534 }
535 } else {
536 if (xen_remove_from_physmap(state, start_addr, size) < 0) {
537 DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr);
538 }
539 }
540 }
541
542 static void xen_region_add(MemoryListener *listener,
543 MemoryRegionSection *section)
544 {
545 memory_region_ref(section->mr);
546 xen_set_memory(listener, section, true);
547 }
548
549 static void xen_region_del(MemoryListener *listener,
550 MemoryRegionSection *section)
551 {
552 xen_set_memory(listener, section, false);
553 memory_region_unref(section->mr);
554 }
555
556 static void xen_io_add(MemoryListener *listener,
557 MemoryRegionSection *section)
558 {
559 XenIOState *state = container_of(listener, XenIOState, io_listener);
560 MemoryRegion *mr = section->mr;
561
562 if (mr->ops == &unassigned_io_ops) {
563 return;
564 }
565
566 memory_region_ref(mr);
567
568 xen_map_io_section(xen_domid, state->ioservid, section);
569 }
570
571 static void xen_io_del(MemoryListener *listener,
572 MemoryRegionSection *section)
573 {
574 XenIOState *state = container_of(listener, XenIOState, io_listener);
575 MemoryRegion *mr = section->mr;
576
577 if (mr->ops == &unassigned_io_ops) {
578 return;
579 }
580
581 xen_unmap_io_section(xen_domid, state->ioservid, section);
582
583 memory_region_unref(mr);
584 }
585
586 static void xen_device_realize(DeviceListener *listener,
587 DeviceState *dev)
588 {
589 XenIOState *state = container_of(listener, XenIOState, device_listener);
590
591 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
592 PCIDevice *pci_dev = PCI_DEVICE(dev);
593 XenPciDevice *xendev = g_new(XenPciDevice, 1);
594
595 xendev->pci_dev = pci_dev;
596 xendev->sbdf = PCI_BUILD_BDF(pci_dev_bus_num(pci_dev),
597 pci_dev->devfn);
598 QLIST_INSERT_HEAD(&state->dev_list, xendev, entry);
599
600 xen_map_pcidev(xen_domid, state->ioservid, pci_dev);
601 }
602 }
603
604 static void xen_device_unrealize(DeviceListener *listener,
605 DeviceState *dev)
606 {
607 XenIOState *state = container_of(listener, XenIOState, device_listener);
608
609 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
610 PCIDevice *pci_dev = PCI_DEVICE(dev);
611 XenPciDevice *xendev, *next;
612
613 xen_unmap_pcidev(xen_domid, state->ioservid, pci_dev);
614
615 QLIST_FOREACH_SAFE(xendev, &state->dev_list, entry, next) {
616 if (xendev->pci_dev == pci_dev) {
617 QLIST_REMOVE(xendev, entry);
618 g_free(xendev);
619 break;
620 }
621 }
622 }
623 }
624
625 static void xen_sync_dirty_bitmap(XenIOState *state,
626 hwaddr start_addr,
627 ram_addr_t size)
628 {
629 hwaddr npages = size >> TARGET_PAGE_BITS;
630 const int width = sizeof(unsigned long) * 8;
631 size_t bitmap_size = DIV_ROUND_UP(npages, width);
632 int rc, i, j;
633 const XenPhysmap *physmap = NULL;
634
635 physmap = get_physmapping(start_addr, size);
636 if (physmap == NULL) {
637 /* not handled */
638 return;
639 }
640
641 if (state->log_for_dirtybit == NULL) {
642 state->log_for_dirtybit = physmap;
643 state->dirty_bitmap = g_new(unsigned long, bitmap_size);
644 } else if (state->log_for_dirtybit != physmap) {
645 /* Only one range for dirty bitmap can be tracked. */
646 return;
647 }
648
649 rc = xen_track_dirty_vram(xen_domid, start_addr >> TARGET_PAGE_BITS,
650 npages, state->dirty_bitmap);
651 if (rc < 0) {
652 #ifndef ENODATA
653 #define ENODATA ENOENT
654 #endif
655 if (errno == ENODATA) {
656 memory_region_set_dirty(framebuffer, 0, size);
657 DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx
658 ", 0x" TARGET_FMT_plx "): %s\n",
659 start_addr, start_addr + size, strerror(errno));
660 }
661 return;
662 }
663
664 for (i = 0; i < bitmap_size; i++) {
665 unsigned long map = state->dirty_bitmap[i];
666 while (map != 0) {
667 j = ctzl(map);
668 map &= ~(1ul << j);
669 memory_region_set_dirty(framebuffer,
670 (i * width + j) * TARGET_PAGE_SIZE,
671 TARGET_PAGE_SIZE);
672 };
673 }
674 }
675
676 static void xen_log_start(MemoryListener *listener,
677 MemoryRegionSection *section,
678 int old, int new)
679 {
680 XenIOState *state = container_of(listener, XenIOState, memory_listener);
681
682 if (new & ~old & (1 << DIRTY_MEMORY_VGA)) {
683 xen_sync_dirty_bitmap(state, section->offset_within_address_space,
684 int128_get64(section->size));
685 }
686 }
687
688 static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section,
689 int old, int new)
690 {
691 XenIOState *state = container_of(listener, XenIOState, memory_listener);
692
693 if (old & ~new & (1 << DIRTY_MEMORY_VGA)) {
694 state->log_for_dirtybit = NULL;
695 g_free(state->dirty_bitmap);
696 state->dirty_bitmap = NULL;
697 /* Disable dirty bit tracking */
698 xen_track_dirty_vram(xen_domid, 0, 0, NULL);
699 }
700 }
701
702 static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section)
703 {
704 XenIOState *state = container_of(listener, XenIOState, memory_listener);
705
706 xen_sync_dirty_bitmap(state, section->offset_within_address_space,
707 int128_get64(section->size));
708 }
709
710 static void xen_log_global_start(MemoryListener *listener)
711 {
712 if (xen_enabled()) {
713 xen_in_migration = true;
714 }
715 }
716
717 static void xen_log_global_stop(MemoryListener *listener)
718 {
719 xen_in_migration = false;
720 }
721
722 static MemoryListener xen_memory_listener = {
723 .region_add = xen_region_add,
724 .region_del = xen_region_del,
725 .log_start = xen_log_start,
726 .log_stop = xen_log_stop,
727 .log_sync = xen_log_sync,
728 .log_global_start = xen_log_global_start,
729 .log_global_stop = xen_log_global_stop,
730 .priority = 10,
731 };
732
733 static MemoryListener xen_io_listener = {
734 .region_add = xen_io_add,
735 .region_del = xen_io_del,
736 .priority = 10,
737 };
738
739 static DeviceListener xen_device_listener = {
740 .realize = xen_device_realize,
741 .unrealize = xen_device_unrealize,
742 };
743
744 /* get the ioreq packets from share mem */
745 static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu)
746 {
747 ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu);
748
749 if (req->state != STATE_IOREQ_READY) {
750 DPRINTF("I/O request not ready: "
751 "%x, ptr: %x, port: %"PRIx64", "
752 "data: %"PRIx64", count: %u, size: %u\n",
753 req->state, req->data_is_ptr, req->addr,
754 req->data, req->count, req->size);
755 return NULL;
756 }
757
758 xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */
759
760 req->state = STATE_IOREQ_INPROCESS;
761 return req;
762 }
763
764 /* use poll to get the port notification */
765 /* ioreq_vec--out,the */
766 /* retval--the number of ioreq packet */
767 static ioreq_t *cpu_get_ioreq(XenIOState *state)
768 {
769 MachineState *ms = MACHINE(qdev_get_machine());
770 unsigned int max_cpus = ms->smp.max_cpus;
771 int i;
772 evtchn_port_t port;
773
774 port = xenevtchn_pending(state->xce_handle);
775 if (port == state->bufioreq_local_port) {
776 timer_mod(state->buffered_io_timer,
777 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
778 return NULL;
779 }
780
781 if (port != -1) {
782 for (i = 0; i < max_cpus; i++) {
783 if (state->ioreq_local_port[i] == port) {
784 break;
785 }
786 }
787
788 if (i == max_cpus) {
789 hw_error("Fatal error while trying to get io event!\n");
790 }
791
792 /* unmask the wanted port again */
793 xenevtchn_unmask(state->xce_handle, port);
794
795 /* get the io packet from shared memory */
796 state->send_vcpu = i;
797 return cpu_get_ioreq_from_shared_memory(state, i);
798 }
799
800 /* read error or read nothing */
801 return NULL;
802 }
803
804 static uint32_t do_inp(uint32_t addr, unsigned long size)
805 {
806 switch (size) {
807 case 1:
808 return cpu_inb(addr);
809 case 2:
810 return cpu_inw(addr);
811 case 4:
812 return cpu_inl(addr);
813 default:
814 hw_error("inp: bad size: %04x %lx", addr, size);
815 }
816 }
817
818 static void do_outp(uint32_t addr,
819 unsigned long size, uint32_t val)
820 {
821 switch (size) {
822 case 1:
823 return cpu_outb(addr, val);
824 case 2:
825 return cpu_outw(addr, val);
826 case 4:
827 return cpu_outl(addr, val);
828 default:
829 hw_error("outp: bad size: %04x %lx", addr, size);
830 }
831 }
832
833 /*
834 * Helper functions which read/write an object from/to physical guest
835 * memory, as part of the implementation of an ioreq.
836 *
837 * Equivalent to
838 * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i,
839 * val, req->size, 0/1)
840 * except without the integer overflow problems.
841 */
842 static void rw_phys_req_item(hwaddr addr,
843 ioreq_t *req, uint32_t i, void *val, int rw)
844 {
845 /* Do everything unsigned so overflow just results in a truncated result
846 * and accesses to undesired parts of guest memory, which is up
847 * to the guest */
848 hwaddr offset = (hwaddr)req->size * i;
849 if (req->df) {
850 addr -= offset;
851 } else {
852 addr += offset;
853 }
854 cpu_physical_memory_rw(addr, val, req->size, rw);
855 }
856
857 static inline void read_phys_req_item(hwaddr addr,
858 ioreq_t *req, uint32_t i, void *val)
859 {
860 rw_phys_req_item(addr, req, i, val, 0);
861 }
862 static inline void write_phys_req_item(hwaddr addr,
863 ioreq_t *req, uint32_t i, void *val)
864 {
865 rw_phys_req_item(addr, req, i, val, 1);
866 }
867
868
869 static void cpu_ioreq_pio(ioreq_t *req)
870 {
871 uint32_t i;
872
873 trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr,
874 req->data, req->count, req->size);
875
876 if (req->size > sizeof(uint32_t)) {
877 hw_error("PIO: bad size (%u)", req->size);
878 }
879
880 if (req->dir == IOREQ_READ) {
881 if (!req->data_is_ptr) {
882 req->data = do_inp(req->addr, req->size);
883 trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr,
884 req->size);
885 } else {
886 uint32_t tmp;
887
888 for (i = 0; i < req->count; i++) {
889 tmp = do_inp(req->addr, req->size);
890 write_phys_req_item(req->data, req, i, &tmp);
891 }
892 }
893 } else if (req->dir == IOREQ_WRITE) {
894 if (!req->data_is_ptr) {
895 trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr,
896 req->size);
897 do_outp(req->addr, req->size, req->data);
898 } else {
899 for (i = 0; i < req->count; i++) {
900 uint32_t tmp = 0;
901
902 read_phys_req_item(req->data, req, i, &tmp);
903 do_outp(req->addr, req->size, tmp);
904 }
905 }
906 }
907 }
908
909 static void cpu_ioreq_move(ioreq_t *req)
910 {
911 uint32_t i;
912
913 trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr,
914 req->data, req->count, req->size);
915
916 if (req->size > sizeof(req->data)) {
917 hw_error("MMIO: bad size (%u)", req->size);
918 }
919
920 if (!req->data_is_ptr) {
921 if (req->dir == IOREQ_READ) {
922 for (i = 0; i < req->count; i++) {
923 read_phys_req_item(req->addr, req, i, &req->data);
924 }
925 } else if (req->dir == IOREQ_WRITE) {
926 for (i = 0; i < req->count; i++) {
927 write_phys_req_item(req->addr, req, i, &req->data);
928 }
929 }
930 } else {
931 uint64_t tmp;
932
933 if (req->dir == IOREQ_READ) {
934 for (i = 0; i < req->count; i++) {
935 read_phys_req_item(req->addr, req, i, &tmp);
936 write_phys_req_item(req->data, req, i, &tmp);
937 }
938 } else if (req->dir == IOREQ_WRITE) {
939 for (i = 0; i < req->count; i++) {
940 read_phys_req_item(req->data, req, i, &tmp);
941 write_phys_req_item(req->addr, req, i, &tmp);
942 }
943 }
944 }
945 }
946
947 static void cpu_ioreq_config(XenIOState *state, ioreq_t *req)
948 {
949 uint32_t sbdf = req->addr >> 32;
950 uint32_t reg = req->addr;
951 XenPciDevice *xendev;
952
953 if (req->size != sizeof(uint8_t) && req->size != sizeof(uint16_t) &&
954 req->size != sizeof(uint32_t)) {
955 hw_error("PCI config access: bad size (%u)", req->size);
956 }
957
958 if (req->count != 1) {
959 hw_error("PCI config access: bad count (%u)", req->count);
960 }
961
962 QLIST_FOREACH(xendev, &state->dev_list, entry) {
963 if (xendev->sbdf != sbdf) {
964 continue;
965 }
966
967 if (!req->data_is_ptr) {
968 if (req->dir == IOREQ_READ) {
969 req->data = pci_host_config_read_common(
970 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
971 req->size);
972 trace_cpu_ioreq_config_read(req, xendev->sbdf, reg,
973 req->size, req->data);
974 } else if (req->dir == IOREQ_WRITE) {
975 trace_cpu_ioreq_config_write(req, xendev->sbdf, reg,
976 req->size, req->data);
977 pci_host_config_write_common(
978 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
979 req->data, req->size);
980 }
981 } else {
982 uint32_t tmp;
983
984 if (req->dir == IOREQ_READ) {
985 tmp = pci_host_config_read_common(
986 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
987 req->size);
988 trace_cpu_ioreq_config_read(req, xendev->sbdf, reg,
989 req->size, tmp);
990 write_phys_req_item(req->data, req, 0, &tmp);
991 } else if (req->dir == IOREQ_WRITE) {
992 read_phys_req_item(req->data, req, 0, &tmp);
993 trace_cpu_ioreq_config_write(req, xendev->sbdf, reg,
994 req->size, tmp);
995 pci_host_config_write_common(
996 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
997 tmp, req->size);
998 }
999 }
1000 }
1001 }
1002
1003 static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req)
1004 {
1005 X86CPU *cpu;
1006 CPUX86State *env;
1007
1008 cpu = X86_CPU(current_cpu);
1009 env = &cpu->env;
1010 env->regs[R_EAX] = req->data;
1011 env->regs[R_EBX] = vmport_regs->ebx;
1012 env->regs[R_ECX] = vmport_regs->ecx;
1013 env->regs[R_EDX] = vmport_regs->edx;
1014 env->regs[R_ESI] = vmport_regs->esi;
1015 env->regs[R_EDI] = vmport_regs->edi;
1016 }
1017
1018 static void regs_from_cpu(vmware_regs_t *vmport_regs)
1019 {
1020 X86CPU *cpu = X86_CPU(current_cpu);
1021 CPUX86State *env = &cpu->env;
1022
1023 vmport_regs->ebx = env->regs[R_EBX];
1024 vmport_regs->ecx = env->regs[R_ECX];
1025 vmport_regs->edx = env->regs[R_EDX];
1026 vmport_regs->esi = env->regs[R_ESI];
1027 vmport_regs->edi = env->regs[R_EDI];
1028 }
1029
1030 static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req)
1031 {
1032 vmware_regs_t *vmport_regs;
1033
1034 assert(state->shared_vmport_page);
1035 vmport_regs =
1036 &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu];
1037 QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs));
1038
1039 current_cpu = state->cpu_by_vcpu_id[state->send_vcpu];
1040 regs_to_cpu(vmport_regs, req);
1041 cpu_ioreq_pio(req);
1042 regs_from_cpu(vmport_regs);
1043 current_cpu = NULL;
1044 }
1045
1046 static void handle_ioreq(XenIOState *state, ioreq_t *req)
1047 {
1048 trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr,
1049 req->addr, req->data, req->count, req->size);
1050
1051 if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) &&
1052 (req->size < sizeof (target_ulong))) {
1053 req->data &= ((target_ulong) 1 << (8 * req->size)) - 1;
1054 }
1055
1056 if (req->dir == IOREQ_WRITE)
1057 trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr,
1058 req->addr, req->data, req->count, req->size);
1059
1060 switch (req->type) {
1061 case IOREQ_TYPE_PIO:
1062 cpu_ioreq_pio(req);
1063 break;
1064 case IOREQ_TYPE_COPY:
1065 cpu_ioreq_move(req);
1066 break;
1067 case IOREQ_TYPE_VMWARE_PORT:
1068 handle_vmport_ioreq(state, req);
1069 break;
1070 case IOREQ_TYPE_TIMEOFFSET:
1071 break;
1072 case IOREQ_TYPE_INVALIDATE:
1073 xen_invalidate_map_cache();
1074 break;
1075 case IOREQ_TYPE_PCI_CONFIG:
1076 cpu_ioreq_config(state, req);
1077 break;
1078 default:
1079 hw_error("Invalid ioreq type 0x%x\n", req->type);
1080 }
1081 if (req->dir == IOREQ_READ) {
1082 trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr,
1083 req->addr, req->data, req->count, req->size);
1084 }
1085 }
1086
1087 static int handle_buffered_iopage(XenIOState *state)
1088 {
1089 buffered_iopage_t *buf_page = state->buffered_io_page;
1090 buf_ioreq_t *buf_req = NULL;
1091 ioreq_t req;
1092 int qw;
1093
1094 if (!buf_page) {
1095 return 0;
1096 }
1097
1098 memset(&req, 0x00, sizeof(req));
1099 req.state = STATE_IOREQ_READY;
1100 req.count = 1;
1101 req.dir = IOREQ_WRITE;
1102
1103 for (;;) {
1104 uint32_t rdptr = buf_page->read_pointer, wrptr;
1105
1106 xen_rmb();
1107 wrptr = buf_page->write_pointer;
1108 xen_rmb();
1109 if (rdptr != buf_page->read_pointer) {
1110 continue;
1111 }
1112 if (rdptr == wrptr) {
1113 break;
1114 }
1115 buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM];
1116 req.size = 1U << buf_req->size;
1117 req.addr = buf_req->addr;
1118 req.data = buf_req->data;
1119 req.type = buf_req->type;
1120 xen_rmb();
1121 qw = (req.size == 8);
1122 if (qw) {
1123 if (rdptr + 1 == wrptr) {
1124 hw_error("Incomplete quad word buffered ioreq");
1125 }
1126 buf_req = &buf_page->buf_ioreq[(rdptr + 1) %
1127 IOREQ_BUFFER_SLOT_NUM];
1128 req.data |= ((uint64_t)buf_req->data) << 32;
1129 xen_rmb();
1130 }
1131
1132 handle_ioreq(state, &req);
1133
1134 /* Only req.data may get updated by handle_ioreq(), albeit even that
1135 * should not happen as such data would never make it to the guest (we
1136 * can only usefully see writes here after all).
1137 */
1138 assert(req.state == STATE_IOREQ_READY);
1139 assert(req.count == 1);
1140 assert(req.dir == IOREQ_WRITE);
1141 assert(!req.data_is_ptr);
1142
1143 atomic_add(&buf_page->read_pointer, qw + 1);
1144 }
1145
1146 return req.count;
1147 }
1148
1149 static void handle_buffered_io(void *opaque)
1150 {
1151 XenIOState *state = opaque;
1152
1153 if (handle_buffered_iopage(state)) {
1154 timer_mod(state->buffered_io_timer,
1155 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
1156 } else {
1157 timer_del(state->buffered_io_timer);
1158 xenevtchn_unmask(state->xce_handle, state->bufioreq_local_port);
1159 }
1160 }
1161
1162 static void cpu_handle_ioreq(void *opaque)
1163 {
1164 XenIOState *state = opaque;
1165 ioreq_t *req = cpu_get_ioreq(state);
1166
1167 handle_buffered_iopage(state);
1168 if (req) {
1169 ioreq_t copy = *req;
1170
1171 xen_rmb();
1172 handle_ioreq(state, &copy);
1173 req->data = copy.data;
1174
1175 if (req->state != STATE_IOREQ_INPROCESS) {
1176 fprintf(stderr, "Badness in I/O request ... not in service?!: "
1177 "%x, ptr: %x, port: %"PRIx64", "
1178 "data: %"PRIx64", count: %u, size: %u, type: %u\n",
1179 req->state, req->data_is_ptr, req->addr,
1180 req->data, req->count, req->size, req->type);
1181 destroy_hvm_domain(false);
1182 return;
1183 }
1184
1185 xen_wmb(); /* Update ioreq contents /then/ update state. */
1186
1187 /*
1188 * We do this before we send the response so that the tools
1189 * have the opportunity to pick up on the reset before the
1190 * guest resumes and does a hlt with interrupts disabled which
1191 * causes Xen to powerdown the domain.
1192 */
1193 if (runstate_is_running()) {
1194 ShutdownCause request;
1195
1196 if (qemu_shutdown_requested_get()) {
1197 destroy_hvm_domain(false);
1198 }
1199 request = qemu_reset_requested_get();
1200 if (request) {
1201 qemu_system_reset(request);
1202 destroy_hvm_domain(true);
1203 }
1204 }
1205
1206 req->state = STATE_IORESP_READY;
1207 xenevtchn_notify(state->xce_handle,
1208 state->ioreq_local_port[state->send_vcpu]);
1209 }
1210 }
1211
1212 static void xen_main_loop_prepare(XenIOState *state)
1213 {
1214 int evtchn_fd = -1;
1215
1216 if (state->xce_handle != NULL) {
1217 evtchn_fd = xenevtchn_fd(state->xce_handle);
1218 }
1219
1220 state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io,
1221 state);
1222
1223 if (evtchn_fd != -1) {
1224 CPUState *cpu_state;
1225
1226 DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__);
1227 CPU_FOREACH(cpu_state) {
1228 DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n",
1229 __func__, cpu_state->cpu_index, cpu_state);
1230 state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state;
1231 }
1232 qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state);
1233 }
1234 }
1235
1236
1237 static void xen_hvm_change_state_handler(void *opaque, int running,
1238 RunState rstate)
1239 {
1240 XenIOState *state = opaque;
1241
1242 if (running) {
1243 xen_main_loop_prepare(state);
1244 }
1245
1246 xen_set_ioreq_server_state(xen_domid,
1247 state->ioservid,
1248 (rstate == RUN_STATE_RUNNING));
1249 }
1250
1251 static void xen_exit_notifier(Notifier *n, void *data)
1252 {
1253 XenIOState *state = container_of(n, XenIOState, exit);
1254
1255 xen_destroy_ioreq_server(xen_domid, state->ioservid);
1256
1257 xenevtchn_close(state->xce_handle);
1258 xs_daemon_close(state->xenstore);
1259 }
1260
1261 #ifdef XEN_COMPAT_PHYSMAP
1262 static void xen_read_physmap(XenIOState *state)
1263 {
1264 XenPhysmap *physmap = NULL;
1265 unsigned int len, num, i;
1266 char path[80], *value = NULL;
1267 char **entries = NULL;
1268
1269 snprintf(path, sizeof(path),
1270 "/local/domain/0/device-model/%d/physmap", xen_domid);
1271 entries = xs_directory(state->xenstore, 0, path, &num);
1272 if (entries == NULL)
1273 return;
1274
1275 for (i = 0; i < num; i++) {
1276 physmap = g_malloc(sizeof (XenPhysmap));
1277 physmap->phys_offset = strtoull(entries[i], NULL, 16);
1278 snprintf(path, sizeof(path),
1279 "/local/domain/0/device-model/%d/physmap/%s/start_addr",
1280 xen_domid, entries[i]);
1281 value = xs_read(state->xenstore, 0, path, &len);
1282 if (value == NULL) {
1283 g_free(physmap);
1284 continue;
1285 }
1286 physmap->start_addr = strtoull(value, NULL, 16);
1287 free(value);
1288
1289 snprintf(path, sizeof(path),
1290 "/local/domain/0/device-model/%d/physmap/%s/size",
1291 xen_domid, entries[i]);
1292 value = xs_read(state->xenstore, 0, path, &len);
1293 if (value == NULL) {
1294 g_free(physmap);
1295 continue;
1296 }
1297 physmap->size = strtoull(value, NULL, 16);
1298 free(value);
1299
1300 snprintf(path, sizeof(path),
1301 "/local/domain/0/device-model/%d/physmap/%s/name",
1302 xen_domid, entries[i]);
1303 physmap->name = xs_read(state->xenstore, 0, path, &len);
1304
1305 QLIST_INSERT_HEAD(&xen_physmap, physmap, list);
1306 }
1307 free(entries);
1308 }
1309 #else
1310 static void xen_read_physmap(XenIOState *state)
1311 {
1312 }
1313 #endif
1314
1315 static void xen_wakeup_notifier(Notifier *notifier, void *data)
1316 {
1317 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0);
1318 }
1319
1320 static int xen_map_ioreq_server(XenIOState *state)
1321 {
1322 void *addr = NULL;
1323 xenforeignmemory_resource_handle *fres;
1324 xen_pfn_t ioreq_pfn;
1325 xen_pfn_t bufioreq_pfn;
1326 evtchn_port_t bufioreq_evtchn;
1327 int rc;
1328
1329 /*
1330 * Attempt to map using the resource API and fall back to normal
1331 * foreign mapping if this is not supported.
1332 */
1333 QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_bufioreq != 0);
1334 QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_ioreq(0) != 1);
1335 fres = xenforeignmemory_map_resource(xen_fmem, xen_domid,
1336 XENMEM_resource_ioreq_server,
1337 state->ioservid, 0, 2,
1338 &addr,
1339 PROT_READ | PROT_WRITE, 0);
1340 if (fres != NULL) {
1341 trace_xen_map_resource_ioreq(state->ioservid, addr);
1342 state->buffered_io_page = addr;
1343 state->shared_page = addr + TARGET_PAGE_SIZE;
1344 } else if (errno != EOPNOTSUPP) {
1345 error_report("failed to map ioreq server resources: error %d handle=%p",
1346 errno, xen_xc);
1347 return -1;
1348 }
1349
1350 rc = xen_get_ioreq_server_info(xen_domid, state->ioservid,
1351 (state->shared_page == NULL) ?
1352 &ioreq_pfn : NULL,
1353 (state->buffered_io_page == NULL) ?
1354 &bufioreq_pfn : NULL,
1355 &bufioreq_evtchn);
1356 if (rc < 0) {
1357 error_report("failed to get ioreq server info: error %d handle=%p",
1358 errno, xen_xc);
1359 return rc;
1360 }
1361
1362 if (state->shared_page == NULL) {
1363 DPRINTF("shared page at pfn %lx\n", ioreq_pfn);
1364
1365 state->shared_page = xenforeignmemory_map(xen_fmem, xen_domid,
1366 PROT_READ | PROT_WRITE,
1367 1, &ioreq_pfn, NULL);
1368 if (state->shared_page == NULL) {
1369 error_report("map shared IO page returned error %d handle=%p",
1370 errno, xen_xc);
1371 }
1372 }
1373
1374 if (state->buffered_io_page == NULL) {
1375 DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn);
1376
1377 state->buffered_io_page = xenforeignmemory_map(xen_fmem, xen_domid,
1378 PROT_READ | PROT_WRITE,
1379 1, &bufioreq_pfn,
1380 NULL);
1381 if (state->buffered_io_page == NULL) {
1382 error_report("map buffered IO page returned error %d", errno);
1383 return -1;
1384 }
1385 }
1386
1387 if (state->shared_page == NULL || state->buffered_io_page == NULL) {
1388 return -1;
1389 }
1390
1391 DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn);
1392
1393 state->bufioreq_remote_port = bufioreq_evtchn;
1394
1395 return 0;
1396 }
1397
1398 void xen_hvm_init(PCMachineState *pcms, MemoryRegion **ram_memory)
1399 {
1400 MachineState *ms = MACHINE(pcms);
1401 unsigned int max_cpus = ms->smp.max_cpus;
1402 int i, rc;
1403 xen_pfn_t ioreq_pfn;
1404 XenIOState *state;
1405
1406 state = g_malloc0(sizeof (XenIOState));
1407
1408 state->xce_handle = xenevtchn_open(NULL, 0);
1409 if (state->xce_handle == NULL) {
1410 perror("xen: event channel open");
1411 goto err;
1412 }
1413
1414 state->xenstore = xs_daemon_open();
1415 if (state->xenstore == NULL) {
1416 perror("xen: xenstore open");
1417 goto err;
1418 }
1419
1420 xen_create_ioreq_server(xen_domid, &state->ioservid);
1421
1422 state->exit.notify = xen_exit_notifier;
1423 qemu_add_exit_notifier(&state->exit);
1424
1425 state->suspend.notify = xen_suspend_notifier;
1426 qemu_register_suspend_notifier(&state->suspend);
1427
1428 state->wakeup.notify = xen_wakeup_notifier;
1429 qemu_register_wakeup_notifier(&state->wakeup);
1430
1431 /*
1432 * Register wake-up support in QMP query-current-machine API
1433 */
1434 qemu_register_wakeup_support();
1435
1436 rc = xen_map_ioreq_server(state);
1437 if (rc < 0) {
1438 goto err;
1439 }
1440
1441 rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn);
1442 if (!rc) {
1443 DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn);
1444 state->shared_vmport_page =
1445 xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE,
1446 1, &ioreq_pfn, NULL);
1447 if (state->shared_vmport_page == NULL) {
1448 error_report("map shared vmport IO page returned error %d handle=%p",
1449 errno, xen_xc);
1450 goto err;
1451 }
1452 } else if (rc != -ENOSYS) {
1453 error_report("get vmport regs pfn returned error %d, rc=%d",
1454 errno, rc);
1455 goto err;
1456 }
1457
1458 /* Note: cpus is empty at this point in init */
1459 state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *));
1460
1461 rc = xen_set_ioreq_server_state(xen_domid, state->ioservid, true);
1462 if (rc < 0) {
1463 error_report("failed to enable ioreq server info: error %d handle=%p",
1464 errno, xen_xc);
1465 goto err;
1466 }
1467
1468 state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t));
1469
1470 /* FIXME: how about if we overflow the page here? */
1471 for (i = 0; i < max_cpus; i++) {
1472 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
1473 xen_vcpu_eport(state->shared_page, i));
1474 if (rc == -1) {
1475 error_report("shared evtchn %d bind error %d", i, errno);
1476 goto err;
1477 }
1478 state->ioreq_local_port[i] = rc;
1479 }
1480
1481 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
1482 state->bufioreq_remote_port);
1483 if (rc == -1) {
1484 error_report("buffered evtchn bind error %d", errno);
1485 goto err;
1486 }
1487 state->bufioreq_local_port = rc;
1488
1489 /* Init RAM management */
1490 #ifdef XEN_COMPAT_PHYSMAP
1491 xen_map_cache_init(xen_phys_offset_to_gaddr, state);
1492 #else
1493 xen_map_cache_init(NULL, state);
1494 #endif
1495 xen_ram_init(pcms, ram_size, ram_memory);
1496
1497 qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state);
1498
1499 state->memory_listener = xen_memory_listener;
1500 memory_listener_register(&state->memory_listener, &address_space_memory);
1501 state->log_for_dirtybit = NULL;
1502
1503 state->io_listener = xen_io_listener;
1504 memory_listener_register(&state->io_listener, &address_space_io);
1505
1506 state->device_listener = xen_device_listener;
1507 QLIST_INIT(&state->dev_list);
1508 device_listener_register(&state->device_listener);
1509
1510 xen_bus_init();
1511
1512 /* Initialize backend core & drivers */
1513 if (xen_be_init() != 0) {
1514 error_report("xen backend core setup failed");
1515 goto err;
1516 }
1517 xen_be_register_common();
1518
1519 QLIST_INIT(&xen_physmap);
1520 xen_read_physmap(state);
1521
1522 /* Disable ACPI build because Xen handles it */
1523 pcms->acpi_build_enabled = false;
1524
1525 return;
1526
1527 err:
1528 error_report("xen hardware virtual machine initialisation failed");
1529 exit(1);
1530 }
1531
1532 void destroy_hvm_domain(bool reboot)
1533 {
1534 xc_interface *xc_handle;
1535 int sts;
1536 int rc;
1537
1538 unsigned int reason = reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff;
1539
1540 if (xen_dmod) {
1541 rc = xendevicemodel_shutdown(xen_dmod, xen_domid, reason);
1542 if (!rc) {
1543 return;
1544 }
1545 if (errno != ENOTTY /* old Xen */) {
1546 perror("xendevicemodel_shutdown failed");
1547 }
1548 /* well, try the old thing then */
1549 }
1550
1551 xc_handle = xc_interface_open(0, 0, 0);
1552 if (xc_handle == NULL) {
1553 fprintf(stderr, "Cannot acquire xenctrl handle\n");
1554 } else {
1555 sts = xc_domain_shutdown(xc_handle, xen_domid, reason);
1556 if (sts != 0) {
1557 fprintf(stderr, "xc_domain_shutdown failed to issue %s, "
1558 "sts %d, %s\n", reboot ? "reboot" : "poweroff",
1559 sts, strerror(errno));
1560 } else {
1561 fprintf(stderr, "Issued domain %d %s\n", xen_domid,
1562 reboot ? "reboot" : "poweroff");
1563 }
1564 xc_interface_close(xc_handle);
1565 }
1566 }
1567
1568 void xen_register_framebuffer(MemoryRegion *mr)
1569 {
1570 framebuffer = mr;
1571 }
1572
1573 void xen_shutdown_fatal_error(const char *fmt, ...)
1574 {
1575 va_list ap;
1576
1577 va_start(ap, fmt);
1578 vfprintf(stderr, fmt, ap);
1579 va_end(ap);
1580 fprintf(stderr, "Will destroy the domain.\n");
1581 /* destroy the domain */
1582 qemu_system_shutdown_request(SHUTDOWN_CAUSE_HOST_ERROR);
1583 }
1584
1585 void xen_hvm_modified_memory(ram_addr_t start, ram_addr_t length)
1586 {
1587 if (unlikely(xen_in_migration)) {
1588 int rc;
1589 ram_addr_t start_pfn, nb_pages;
1590
1591 start = xen_phys_offset_to_gaddr(start, length);
1592
1593 if (length == 0) {
1594 length = TARGET_PAGE_SIZE;
1595 }
1596 start_pfn = start >> TARGET_PAGE_BITS;
1597 nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS)
1598 - start_pfn;
1599 rc = xen_modified_memory(xen_domid, start_pfn, nb_pages);
1600 if (rc) {
1601 fprintf(stderr,
1602 "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n",
1603 __func__, start, nb_pages, errno, strerror(errno));
1604 }
1605 }
1606 }
1607
1608 void qmp_xen_set_global_dirty_log(bool enable, Error **errp)
1609 {
1610 if (enable) {
1611 memory_global_dirty_log_start();
1612 } else {
1613 memory_global_dirty_log_stop();
1614 }
1615 }