hw/xen: Split x86-specific declaration from generic hardware ones
[qemu.git] / hw / i386 / xen / xen-hvm.c
1 /*
2 * Copyright (C) 2010 Citrix Ltd.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 *
7 * Contributions after 2012-01-13 are licensed under the terms of the
8 * GNU GPL, version 2 or (at your option) any later version.
9 */
10
11 #include "qemu/osdep.h"
12 #include "qemu/units.h"
13
14 #include "cpu.h"
15 #include "hw/pci/pci.h"
16 #include "hw/pci/pci_host.h"
17 #include "hw/i386/pc.h"
18 #include "hw/southbridge/piix.h"
19 #include "hw/irq.h"
20 #include "hw/hw.h"
21 #include "hw/i386/apic-msidef.h"
22 #include "hw/xen/xen_common.h"
23 #include "hw/xen/xen-legacy-backend.h"
24 #include "hw/xen/xen-bus.h"
25 #include "hw/xen/xen-x86.h"
26 #include "qapi/error.h"
27 #include "qapi/qapi-commands-misc.h"
28 #include "qemu/error-report.h"
29 #include "qemu/main-loop.h"
30 #include "qemu/range.h"
31 #include "sysemu/runstate.h"
32 #include "sysemu/sysemu.h"
33 #include "sysemu/xen.h"
34 #include "sysemu/xen-mapcache.h"
35 #include "trace.h"
36 #include "exec/address-spaces.h"
37
38 #include <xen/hvm/ioreq.h>
39 #include <xen/hvm/e820.h>
40
41 //#define DEBUG_XEN_HVM
42
43 #ifdef DEBUG_XEN_HVM
44 #define DPRINTF(fmt, ...) \
45 do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0)
46 #else
47 #define DPRINTF(fmt, ...) \
48 do { } while (0)
49 #endif
50
51 static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi;
52 static MemoryRegion *framebuffer;
53 static bool xen_in_migration;
54
55 /* Compatibility with older version */
56
57 /* This allows QEMU to build on a system that has Xen 4.5 or earlier
58 * installed. This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h
59 * needs to be included before this block and hw/xen/xen_common.h needs to
60 * be included before xen/hvm/ioreq.h
61 */
62 #ifndef IOREQ_TYPE_VMWARE_PORT
63 #define IOREQ_TYPE_VMWARE_PORT 3
64 struct vmware_regs {
65 uint32_t esi;
66 uint32_t edi;
67 uint32_t ebx;
68 uint32_t ecx;
69 uint32_t edx;
70 };
71 typedef struct vmware_regs vmware_regs_t;
72
73 struct shared_vmport_iopage {
74 struct vmware_regs vcpu_vmport_regs[1];
75 };
76 typedef struct shared_vmport_iopage shared_vmport_iopage_t;
77 #endif
78
79 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i)
80 {
81 return shared_page->vcpu_ioreq[i].vp_eport;
82 }
83 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu)
84 {
85 return &shared_page->vcpu_ioreq[vcpu];
86 }
87
88 #define BUFFER_IO_MAX_DELAY 100
89
90 typedef struct XenPhysmap {
91 hwaddr start_addr;
92 ram_addr_t size;
93 const char *name;
94 hwaddr phys_offset;
95
96 QLIST_ENTRY(XenPhysmap) list;
97 } XenPhysmap;
98
99 static QLIST_HEAD(, XenPhysmap) xen_physmap;
100
101 typedef struct XenPciDevice {
102 PCIDevice *pci_dev;
103 uint32_t sbdf;
104 QLIST_ENTRY(XenPciDevice) entry;
105 } XenPciDevice;
106
107 typedef struct XenIOState {
108 ioservid_t ioservid;
109 shared_iopage_t *shared_page;
110 shared_vmport_iopage_t *shared_vmport_page;
111 buffered_iopage_t *buffered_io_page;
112 QEMUTimer *buffered_io_timer;
113 CPUState **cpu_by_vcpu_id;
114 /* the evtchn port for polling the notification, */
115 evtchn_port_t *ioreq_local_port;
116 /* evtchn remote and local ports for buffered io */
117 evtchn_port_t bufioreq_remote_port;
118 evtchn_port_t bufioreq_local_port;
119 /* the evtchn fd for polling */
120 xenevtchn_handle *xce_handle;
121 /* which vcpu we are serving */
122 int send_vcpu;
123
124 struct xs_handle *xenstore;
125 MemoryListener memory_listener;
126 MemoryListener io_listener;
127 QLIST_HEAD(, XenPciDevice) dev_list;
128 DeviceListener device_listener;
129 hwaddr free_phys_offset;
130 const XenPhysmap *log_for_dirtybit;
131 /* Buffer used by xen_sync_dirty_bitmap */
132 unsigned long *dirty_bitmap;
133
134 Notifier exit;
135 Notifier suspend;
136 Notifier wakeup;
137 } XenIOState;
138
139 /* Xen specific function for piix pci */
140
141 int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num)
142 {
143 return irq_num + ((pci_dev->devfn >> 3) << 2);
144 }
145
146 void xen_piix3_set_irq(void *opaque, int irq_num, int level)
147 {
148 xen_set_pci_intx_level(xen_domid, 0, 0, irq_num >> 2,
149 irq_num & 3, level);
150 }
151
152 void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len)
153 {
154 int i;
155
156 /* Scan for updates to PCI link routes (0x60-0x63). */
157 for (i = 0; i < len; i++) {
158 uint8_t v = (val >> (8 * i)) & 0xff;
159 if (v & 0x80) {
160 v = 0;
161 }
162 v &= 0xf;
163 if (((address + i) >= PIIX_PIRQCA) && ((address + i) <= PIIX_PIRQCD)) {
164 xen_set_pci_link_route(xen_domid, address + i - PIIX_PIRQCA, v);
165 }
166 }
167 }
168
169 int xen_is_pirq_msi(uint32_t msi_data)
170 {
171 /* If vector is 0, the msi is remapped into a pirq, passed as
172 * dest_id.
173 */
174 return ((msi_data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT) == 0;
175 }
176
177 void xen_hvm_inject_msi(uint64_t addr, uint32_t data)
178 {
179 xen_inject_msi(xen_domid, addr, data);
180 }
181
182 static void xen_suspend_notifier(Notifier *notifier, void *data)
183 {
184 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3);
185 }
186
187 /* Xen Interrupt Controller */
188
189 static void xen_set_irq(void *opaque, int irq, int level)
190 {
191 xen_set_isa_irq_level(xen_domid, irq, level);
192 }
193
194 qemu_irq *xen_interrupt_controller_init(void)
195 {
196 return qemu_allocate_irqs(xen_set_irq, NULL, 16);
197 }
198
199 /* Memory Ops */
200
201 static void xen_ram_init(PCMachineState *pcms,
202 ram_addr_t ram_size, MemoryRegion **ram_memory_p)
203 {
204 X86MachineState *x86ms = X86_MACHINE(pcms);
205 MemoryRegion *sysmem = get_system_memory();
206 ram_addr_t block_len;
207 uint64_t user_lowmem =
208 object_property_get_uint(qdev_get_machine(),
209 PC_MACHINE_MAX_RAM_BELOW_4G,
210 &error_abort);
211
212 /* Handle the machine opt max-ram-below-4g. It is basically doing
213 * min(xen limit, user limit).
214 */
215 if (!user_lowmem) {
216 user_lowmem = HVM_BELOW_4G_RAM_END; /* default */
217 }
218 if (HVM_BELOW_4G_RAM_END <= user_lowmem) {
219 user_lowmem = HVM_BELOW_4G_RAM_END;
220 }
221
222 if (ram_size >= user_lowmem) {
223 x86ms->above_4g_mem_size = ram_size - user_lowmem;
224 x86ms->below_4g_mem_size = user_lowmem;
225 } else {
226 x86ms->above_4g_mem_size = 0;
227 x86ms->below_4g_mem_size = ram_size;
228 }
229 if (!x86ms->above_4g_mem_size) {
230 block_len = ram_size;
231 } else {
232 /*
233 * Xen does not allocate the memory continuously, it keeps a
234 * hole of the size computed above or passed in.
235 */
236 block_len = (4 * GiB) + x86ms->above_4g_mem_size;
237 }
238 memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len,
239 &error_fatal);
240 *ram_memory_p = &ram_memory;
241
242 memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k",
243 &ram_memory, 0, 0xa0000);
244 memory_region_add_subregion(sysmem, 0, &ram_640k);
245 /* Skip of the VGA IO memory space, it will be registered later by the VGA
246 * emulated device.
247 *
248 * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load
249 * the Options ROM, so it is registered here as RAM.
250 */
251 memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo",
252 &ram_memory, 0xc0000,
253 x86ms->below_4g_mem_size - 0xc0000);
254 memory_region_add_subregion(sysmem, 0xc0000, &ram_lo);
255 if (x86ms->above_4g_mem_size > 0) {
256 memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi",
257 &ram_memory, 0x100000000ULL,
258 x86ms->above_4g_mem_size);
259 memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi);
260 }
261 }
262
263 void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr,
264 Error **errp)
265 {
266 unsigned long nr_pfn;
267 xen_pfn_t *pfn_list;
268 int i;
269
270 if (runstate_check(RUN_STATE_INMIGRATE)) {
271 /* RAM already populated in Xen */
272 fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT
273 " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n",
274 __func__, size, ram_addr);
275 return;
276 }
277
278 if (mr == &ram_memory) {
279 return;
280 }
281
282 trace_xen_ram_alloc(ram_addr, size);
283
284 nr_pfn = size >> TARGET_PAGE_BITS;
285 pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn);
286
287 for (i = 0; i < nr_pfn; i++) {
288 pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i;
289 }
290
291 if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) {
292 error_setg(errp, "xen: failed to populate ram at " RAM_ADDR_FMT,
293 ram_addr);
294 }
295
296 g_free(pfn_list);
297 }
298
299 static XenPhysmap *get_physmapping(hwaddr start_addr, ram_addr_t size)
300 {
301 XenPhysmap *physmap = NULL;
302
303 start_addr &= TARGET_PAGE_MASK;
304
305 QLIST_FOREACH(physmap, &xen_physmap, list) {
306 if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) {
307 return physmap;
308 }
309 }
310 return NULL;
311 }
312
313 static hwaddr xen_phys_offset_to_gaddr(hwaddr phys_offset, ram_addr_t size)
314 {
315 hwaddr addr = phys_offset & TARGET_PAGE_MASK;
316 XenPhysmap *physmap = NULL;
317
318 QLIST_FOREACH(physmap, &xen_physmap, list) {
319 if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) {
320 return physmap->start_addr + (phys_offset - physmap->phys_offset);
321 }
322 }
323
324 return phys_offset;
325 }
326
327 #ifdef XEN_COMPAT_PHYSMAP
328 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap)
329 {
330 char path[80], value[17];
331
332 snprintf(path, sizeof(path),
333 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr",
334 xen_domid, (uint64_t)physmap->phys_offset);
335 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->start_addr);
336 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
337 return -1;
338 }
339 snprintf(path, sizeof(path),
340 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size",
341 xen_domid, (uint64_t)physmap->phys_offset);
342 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->size);
343 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
344 return -1;
345 }
346 if (physmap->name) {
347 snprintf(path, sizeof(path),
348 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name",
349 xen_domid, (uint64_t)physmap->phys_offset);
350 if (!xs_write(state->xenstore, 0, path,
351 physmap->name, strlen(physmap->name))) {
352 return -1;
353 }
354 }
355 return 0;
356 }
357 #else
358 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap)
359 {
360 return 0;
361 }
362 #endif
363
364 static int xen_add_to_physmap(XenIOState *state,
365 hwaddr start_addr,
366 ram_addr_t size,
367 MemoryRegion *mr,
368 hwaddr offset_within_region)
369 {
370 unsigned long nr_pages;
371 int rc = 0;
372 XenPhysmap *physmap = NULL;
373 hwaddr pfn, start_gpfn;
374 hwaddr phys_offset = memory_region_get_ram_addr(mr);
375 const char *mr_name;
376
377 if (get_physmapping(start_addr, size)) {
378 return 0;
379 }
380 if (size <= 0) {
381 return -1;
382 }
383
384 /* Xen can only handle a single dirty log region for now and we want
385 * the linear framebuffer to be that region.
386 * Avoid tracking any regions that is not videoram and avoid tracking
387 * the legacy vga region. */
388 if (mr == framebuffer && start_addr > 0xbffff) {
389 goto go_physmap;
390 }
391 return -1;
392
393 go_physmap:
394 DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n",
395 start_addr, start_addr + size);
396
397 mr_name = memory_region_name(mr);
398
399 physmap = g_malloc(sizeof(XenPhysmap));
400
401 physmap->start_addr = start_addr;
402 physmap->size = size;
403 physmap->name = mr_name;
404 physmap->phys_offset = phys_offset;
405
406 QLIST_INSERT_HEAD(&xen_physmap, physmap, list);
407
408 if (runstate_check(RUN_STATE_INMIGRATE)) {
409 /* Now when we have a physmap entry we can replace a dummy mapping with
410 * a real one of guest foreign memory. */
411 uint8_t *p = xen_replace_cache_entry(phys_offset, start_addr, size);
412 assert(p && p == memory_region_get_ram_ptr(mr));
413
414 return 0;
415 }
416
417 pfn = phys_offset >> TARGET_PAGE_BITS;
418 start_gpfn = start_addr >> TARGET_PAGE_BITS;
419 nr_pages = size >> TARGET_PAGE_BITS;
420 rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, nr_pages, pfn,
421 start_gpfn);
422 if (rc) {
423 int saved_errno = errno;
424
425 error_report("relocate_memory %lu pages from GFN %"HWADDR_PRIx
426 " to GFN %"HWADDR_PRIx" failed: %s",
427 nr_pages, pfn, start_gpfn, strerror(saved_errno));
428 errno = saved_errno;
429 return -1;
430 }
431
432 rc = xendevicemodel_pin_memory_cacheattr(xen_dmod, xen_domid,
433 start_addr >> TARGET_PAGE_BITS,
434 (start_addr + size - 1) >> TARGET_PAGE_BITS,
435 XEN_DOMCTL_MEM_CACHEATTR_WB);
436 if (rc) {
437 error_report("pin_memory_cacheattr failed: %s", strerror(errno));
438 }
439 return xen_save_physmap(state, physmap);
440 }
441
442 static int xen_remove_from_physmap(XenIOState *state,
443 hwaddr start_addr,
444 ram_addr_t size)
445 {
446 int rc = 0;
447 XenPhysmap *physmap = NULL;
448 hwaddr phys_offset = 0;
449
450 physmap = get_physmapping(start_addr, size);
451 if (physmap == NULL) {
452 return -1;
453 }
454
455 phys_offset = physmap->phys_offset;
456 size = physmap->size;
457
458 DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at "
459 "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset);
460
461 size >>= TARGET_PAGE_BITS;
462 start_addr >>= TARGET_PAGE_BITS;
463 phys_offset >>= TARGET_PAGE_BITS;
464 rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, size, start_addr,
465 phys_offset);
466 if (rc) {
467 int saved_errno = errno;
468
469 error_report("relocate_memory "RAM_ADDR_FMT" pages"
470 " from GFN %"HWADDR_PRIx
471 " to GFN %"HWADDR_PRIx" failed: %s",
472 size, start_addr, phys_offset, strerror(saved_errno));
473 errno = saved_errno;
474 return -1;
475 }
476
477 QLIST_REMOVE(physmap, list);
478 if (state->log_for_dirtybit == physmap) {
479 state->log_for_dirtybit = NULL;
480 g_free(state->dirty_bitmap);
481 state->dirty_bitmap = NULL;
482 }
483 g_free(physmap);
484
485 return 0;
486 }
487
488 static void xen_set_memory(struct MemoryListener *listener,
489 MemoryRegionSection *section,
490 bool add)
491 {
492 XenIOState *state = container_of(listener, XenIOState, memory_listener);
493 hwaddr start_addr = section->offset_within_address_space;
494 ram_addr_t size = int128_get64(section->size);
495 bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA);
496 hvmmem_type_t mem_type;
497
498 if (section->mr == &ram_memory) {
499 return;
500 } else {
501 if (add) {
502 xen_map_memory_section(xen_domid, state->ioservid,
503 section);
504 } else {
505 xen_unmap_memory_section(xen_domid, state->ioservid,
506 section);
507 }
508 }
509
510 if (!memory_region_is_ram(section->mr)) {
511 return;
512 }
513
514 if (log_dirty != add) {
515 return;
516 }
517
518 trace_xen_client_set_memory(start_addr, size, log_dirty);
519
520 start_addr &= TARGET_PAGE_MASK;
521 size = TARGET_PAGE_ALIGN(size);
522
523 if (add) {
524 if (!memory_region_is_rom(section->mr)) {
525 xen_add_to_physmap(state, start_addr, size,
526 section->mr, section->offset_within_region);
527 } else {
528 mem_type = HVMMEM_ram_ro;
529 if (xen_set_mem_type(xen_domid, mem_type,
530 start_addr >> TARGET_PAGE_BITS,
531 size >> TARGET_PAGE_BITS)) {
532 DPRINTF("xen_set_mem_type error, addr: "TARGET_FMT_plx"\n",
533 start_addr);
534 }
535 }
536 } else {
537 if (xen_remove_from_physmap(state, start_addr, size) < 0) {
538 DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr);
539 }
540 }
541 }
542
543 static void xen_region_add(MemoryListener *listener,
544 MemoryRegionSection *section)
545 {
546 memory_region_ref(section->mr);
547 xen_set_memory(listener, section, true);
548 }
549
550 static void xen_region_del(MemoryListener *listener,
551 MemoryRegionSection *section)
552 {
553 xen_set_memory(listener, section, false);
554 memory_region_unref(section->mr);
555 }
556
557 static void xen_io_add(MemoryListener *listener,
558 MemoryRegionSection *section)
559 {
560 XenIOState *state = container_of(listener, XenIOState, io_listener);
561 MemoryRegion *mr = section->mr;
562
563 if (mr->ops == &unassigned_io_ops) {
564 return;
565 }
566
567 memory_region_ref(mr);
568
569 xen_map_io_section(xen_domid, state->ioservid, section);
570 }
571
572 static void xen_io_del(MemoryListener *listener,
573 MemoryRegionSection *section)
574 {
575 XenIOState *state = container_of(listener, XenIOState, io_listener);
576 MemoryRegion *mr = section->mr;
577
578 if (mr->ops == &unassigned_io_ops) {
579 return;
580 }
581
582 xen_unmap_io_section(xen_domid, state->ioservid, section);
583
584 memory_region_unref(mr);
585 }
586
587 static void xen_device_realize(DeviceListener *listener,
588 DeviceState *dev)
589 {
590 XenIOState *state = container_of(listener, XenIOState, device_listener);
591
592 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
593 PCIDevice *pci_dev = PCI_DEVICE(dev);
594 XenPciDevice *xendev = g_new(XenPciDevice, 1);
595
596 xendev->pci_dev = pci_dev;
597 xendev->sbdf = PCI_BUILD_BDF(pci_dev_bus_num(pci_dev),
598 pci_dev->devfn);
599 QLIST_INSERT_HEAD(&state->dev_list, xendev, entry);
600
601 xen_map_pcidev(xen_domid, state->ioservid, pci_dev);
602 }
603 }
604
605 static void xen_device_unrealize(DeviceListener *listener,
606 DeviceState *dev)
607 {
608 XenIOState *state = container_of(listener, XenIOState, device_listener);
609
610 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
611 PCIDevice *pci_dev = PCI_DEVICE(dev);
612 XenPciDevice *xendev, *next;
613
614 xen_unmap_pcidev(xen_domid, state->ioservid, pci_dev);
615
616 QLIST_FOREACH_SAFE(xendev, &state->dev_list, entry, next) {
617 if (xendev->pci_dev == pci_dev) {
618 QLIST_REMOVE(xendev, entry);
619 g_free(xendev);
620 break;
621 }
622 }
623 }
624 }
625
626 static void xen_sync_dirty_bitmap(XenIOState *state,
627 hwaddr start_addr,
628 ram_addr_t size)
629 {
630 hwaddr npages = size >> TARGET_PAGE_BITS;
631 const int width = sizeof(unsigned long) * 8;
632 size_t bitmap_size = DIV_ROUND_UP(npages, width);
633 int rc, i, j;
634 const XenPhysmap *physmap = NULL;
635
636 physmap = get_physmapping(start_addr, size);
637 if (physmap == NULL) {
638 /* not handled */
639 return;
640 }
641
642 if (state->log_for_dirtybit == NULL) {
643 state->log_for_dirtybit = physmap;
644 state->dirty_bitmap = g_new(unsigned long, bitmap_size);
645 } else if (state->log_for_dirtybit != physmap) {
646 /* Only one range for dirty bitmap can be tracked. */
647 return;
648 }
649
650 rc = xen_track_dirty_vram(xen_domid, start_addr >> TARGET_PAGE_BITS,
651 npages, state->dirty_bitmap);
652 if (rc < 0) {
653 #ifndef ENODATA
654 #define ENODATA ENOENT
655 #endif
656 if (errno == ENODATA) {
657 memory_region_set_dirty(framebuffer, 0, size);
658 DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx
659 ", 0x" TARGET_FMT_plx "): %s\n",
660 start_addr, start_addr + size, strerror(errno));
661 }
662 return;
663 }
664
665 for (i = 0; i < bitmap_size; i++) {
666 unsigned long map = state->dirty_bitmap[i];
667 while (map != 0) {
668 j = ctzl(map);
669 map &= ~(1ul << j);
670 memory_region_set_dirty(framebuffer,
671 (i * width + j) * TARGET_PAGE_SIZE,
672 TARGET_PAGE_SIZE);
673 };
674 }
675 }
676
677 static void xen_log_start(MemoryListener *listener,
678 MemoryRegionSection *section,
679 int old, int new)
680 {
681 XenIOState *state = container_of(listener, XenIOState, memory_listener);
682
683 if (new & ~old & (1 << DIRTY_MEMORY_VGA)) {
684 xen_sync_dirty_bitmap(state, section->offset_within_address_space,
685 int128_get64(section->size));
686 }
687 }
688
689 static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section,
690 int old, int new)
691 {
692 XenIOState *state = container_of(listener, XenIOState, memory_listener);
693
694 if (old & ~new & (1 << DIRTY_MEMORY_VGA)) {
695 state->log_for_dirtybit = NULL;
696 g_free(state->dirty_bitmap);
697 state->dirty_bitmap = NULL;
698 /* Disable dirty bit tracking */
699 xen_track_dirty_vram(xen_domid, 0, 0, NULL);
700 }
701 }
702
703 static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section)
704 {
705 XenIOState *state = container_of(listener, XenIOState, memory_listener);
706
707 xen_sync_dirty_bitmap(state, section->offset_within_address_space,
708 int128_get64(section->size));
709 }
710
711 static void xen_log_global_start(MemoryListener *listener)
712 {
713 if (xen_enabled()) {
714 xen_in_migration = true;
715 }
716 }
717
718 static void xen_log_global_stop(MemoryListener *listener)
719 {
720 xen_in_migration = false;
721 }
722
723 static MemoryListener xen_memory_listener = {
724 .region_add = xen_region_add,
725 .region_del = xen_region_del,
726 .log_start = xen_log_start,
727 .log_stop = xen_log_stop,
728 .log_sync = xen_log_sync,
729 .log_global_start = xen_log_global_start,
730 .log_global_stop = xen_log_global_stop,
731 .priority = 10,
732 };
733
734 static MemoryListener xen_io_listener = {
735 .region_add = xen_io_add,
736 .region_del = xen_io_del,
737 .priority = 10,
738 };
739
740 static DeviceListener xen_device_listener = {
741 .realize = xen_device_realize,
742 .unrealize = xen_device_unrealize,
743 };
744
745 /* get the ioreq packets from share mem */
746 static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu)
747 {
748 ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu);
749
750 if (req->state != STATE_IOREQ_READY) {
751 DPRINTF("I/O request not ready: "
752 "%x, ptr: %x, port: %"PRIx64", "
753 "data: %"PRIx64", count: %u, size: %u\n",
754 req->state, req->data_is_ptr, req->addr,
755 req->data, req->count, req->size);
756 return NULL;
757 }
758
759 xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */
760
761 req->state = STATE_IOREQ_INPROCESS;
762 return req;
763 }
764
765 /* use poll to get the port notification */
766 /* ioreq_vec--out,the */
767 /* retval--the number of ioreq packet */
768 static ioreq_t *cpu_get_ioreq(XenIOState *state)
769 {
770 MachineState *ms = MACHINE(qdev_get_machine());
771 unsigned int max_cpus = ms->smp.max_cpus;
772 int i;
773 evtchn_port_t port;
774
775 port = xenevtchn_pending(state->xce_handle);
776 if (port == state->bufioreq_local_port) {
777 timer_mod(state->buffered_io_timer,
778 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
779 return NULL;
780 }
781
782 if (port != -1) {
783 for (i = 0; i < max_cpus; i++) {
784 if (state->ioreq_local_port[i] == port) {
785 break;
786 }
787 }
788
789 if (i == max_cpus) {
790 hw_error("Fatal error while trying to get io event!\n");
791 }
792
793 /* unmask the wanted port again */
794 xenevtchn_unmask(state->xce_handle, port);
795
796 /* get the io packet from shared memory */
797 state->send_vcpu = i;
798 return cpu_get_ioreq_from_shared_memory(state, i);
799 }
800
801 /* read error or read nothing */
802 return NULL;
803 }
804
805 static uint32_t do_inp(uint32_t addr, unsigned long size)
806 {
807 switch (size) {
808 case 1:
809 return cpu_inb(addr);
810 case 2:
811 return cpu_inw(addr);
812 case 4:
813 return cpu_inl(addr);
814 default:
815 hw_error("inp: bad size: %04x %lx", addr, size);
816 }
817 }
818
819 static void do_outp(uint32_t addr,
820 unsigned long size, uint32_t val)
821 {
822 switch (size) {
823 case 1:
824 return cpu_outb(addr, val);
825 case 2:
826 return cpu_outw(addr, val);
827 case 4:
828 return cpu_outl(addr, val);
829 default:
830 hw_error("outp: bad size: %04x %lx", addr, size);
831 }
832 }
833
834 /*
835 * Helper functions which read/write an object from/to physical guest
836 * memory, as part of the implementation of an ioreq.
837 *
838 * Equivalent to
839 * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i,
840 * val, req->size, 0/1)
841 * except without the integer overflow problems.
842 */
843 static void rw_phys_req_item(hwaddr addr,
844 ioreq_t *req, uint32_t i, void *val, int rw)
845 {
846 /* Do everything unsigned so overflow just results in a truncated result
847 * and accesses to undesired parts of guest memory, which is up
848 * to the guest */
849 hwaddr offset = (hwaddr)req->size * i;
850 if (req->df) {
851 addr -= offset;
852 } else {
853 addr += offset;
854 }
855 cpu_physical_memory_rw(addr, val, req->size, rw);
856 }
857
858 static inline void read_phys_req_item(hwaddr addr,
859 ioreq_t *req, uint32_t i, void *val)
860 {
861 rw_phys_req_item(addr, req, i, val, 0);
862 }
863 static inline void write_phys_req_item(hwaddr addr,
864 ioreq_t *req, uint32_t i, void *val)
865 {
866 rw_phys_req_item(addr, req, i, val, 1);
867 }
868
869
870 static void cpu_ioreq_pio(ioreq_t *req)
871 {
872 uint32_t i;
873
874 trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr,
875 req->data, req->count, req->size);
876
877 if (req->size > sizeof(uint32_t)) {
878 hw_error("PIO: bad size (%u)", req->size);
879 }
880
881 if (req->dir == IOREQ_READ) {
882 if (!req->data_is_ptr) {
883 req->data = do_inp(req->addr, req->size);
884 trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr,
885 req->size);
886 } else {
887 uint32_t tmp;
888
889 for (i = 0; i < req->count; i++) {
890 tmp = do_inp(req->addr, req->size);
891 write_phys_req_item(req->data, req, i, &tmp);
892 }
893 }
894 } else if (req->dir == IOREQ_WRITE) {
895 if (!req->data_is_ptr) {
896 trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr,
897 req->size);
898 do_outp(req->addr, req->size, req->data);
899 } else {
900 for (i = 0; i < req->count; i++) {
901 uint32_t tmp = 0;
902
903 read_phys_req_item(req->data, req, i, &tmp);
904 do_outp(req->addr, req->size, tmp);
905 }
906 }
907 }
908 }
909
910 static void cpu_ioreq_move(ioreq_t *req)
911 {
912 uint32_t i;
913
914 trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr,
915 req->data, req->count, req->size);
916
917 if (req->size > sizeof(req->data)) {
918 hw_error("MMIO: bad size (%u)", req->size);
919 }
920
921 if (!req->data_is_ptr) {
922 if (req->dir == IOREQ_READ) {
923 for (i = 0; i < req->count; i++) {
924 read_phys_req_item(req->addr, req, i, &req->data);
925 }
926 } else if (req->dir == IOREQ_WRITE) {
927 for (i = 0; i < req->count; i++) {
928 write_phys_req_item(req->addr, req, i, &req->data);
929 }
930 }
931 } else {
932 uint64_t tmp;
933
934 if (req->dir == IOREQ_READ) {
935 for (i = 0; i < req->count; i++) {
936 read_phys_req_item(req->addr, req, i, &tmp);
937 write_phys_req_item(req->data, req, i, &tmp);
938 }
939 } else if (req->dir == IOREQ_WRITE) {
940 for (i = 0; i < req->count; i++) {
941 read_phys_req_item(req->data, req, i, &tmp);
942 write_phys_req_item(req->addr, req, i, &tmp);
943 }
944 }
945 }
946 }
947
948 static void cpu_ioreq_config(XenIOState *state, ioreq_t *req)
949 {
950 uint32_t sbdf = req->addr >> 32;
951 uint32_t reg = req->addr;
952 XenPciDevice *xendev;
953
954 if (req->size != sizeof(uint8_t) && req->size != sizeof(uint16_t) &&
955 req->size != sizeof(uint32_t)) {
956 hw_error("PCI config access: bad size (%u)", req->size);
957 }
958
959 if (req->count != 1) {
960 hw_error("PCI config access: bad count (%u)", req->count);
961 }
962
963 QLIST_FOREACH(xendev, &state->dev_list, entry) {
964 if (xendev->sbdf != sbdf) {
965 continue;
966 }
967
968 if (!req->data_is_ptr) {
969 if (req->dir == IOREQ_READ) {
970 req->data = pci_host_config_read_common(
971 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
972 req->size);
973 trace_cpu_ioreq_config_read(req, xendev->sbdf, reg,
974 req->size, req->data);
975 } else if (req->dir == IOREQ_WRITE) {
976 trace_cpu_ioreq_config_write(req, xendev->sbdf, reg,
977 req->size, req->data);
978 pci_host_config_write_common(
979 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
980 req->data, req->size);
981 }
982 } else {
983 uint32_t tmp;
984
985 if (req->dir == IOREQ_READ) {
986 tmp = pci_host_config_read_common(
987 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
988 req->size);
989 trace_cpu_ioreq_config_read(req, xendev->sbdf, reg,
990 req->size, tmp);
991 write_phys_req_item(req->data, req, 0, &tmp);
992 } else if (req->dir == IOREQ_WRITE) {
993 read_phys_req_item(req->data, req, 0, &tmp);
994 trace_cpu_ioreq_config_write(req, xendev->sbdf, reg,
995 req->size, tmp);
996 pci_host_config_write_common(
997 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
998 tmp, req->size);
999 }
1000 }
1001 }
1002 }
1003
1004 static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req)
1005 {
1006 X86CPU *cpu;
1007 CPUX86State *env;
1008
1009 cpu = X86_CPU(current_cpu);
1010 env = &cpu->env;
1011 env->regs[R_EAX] = req->data;
1012 env->regs[R_EBX] = vmport_regs->ebx;
1013 env->regs[R_ECX] = vmport_regs->ecx;
1014 env->regs[R_EDX] = vmport_regs->edx;
1015 env->regs[R_ESI] = vmport_regs->esi;
1016 env->regs[R_EDI] = vmport_regs->edi;
1017 }
1018
1019 static void regs_from_cpu(vmware_regs_t *vmport_regs)
1020 {
1021 X86CPU *cpu = X86_CPU(current_cpu);
1022 CPUX86State *env = &cpu->env;
1023
1024 vmport_regs->ebx = env->regs[R_EBX];
1025 vmport_regs->ecx = env->regs[R_ECX];
1026 vmport_regs->edx = env->regs[R_EDX];
1027 vmport_regs->esi = env->regs[R_ESI];
1028 vmport_regs->edi = env->regs[R_EDI];
1029 }
1030
1031 static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req)
1032 {
1033 vmware_regs_t *vmport_regs;
1034
1035 assert(state->shared_vmport_page);
1036 vmport_regs =
1037 &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu];
1038 QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs));
1039
1040 current_cpu = state->cpu_by_vcpu_id[state->send_vcpu];
1041 regs_to_cpu(vmport_regs, req);
1042 cpu_ioreq_pio(req);
1043 regs_from_cpu(vmport_regs);
1044 current_cpu = NULL;
1045 }
1046
1047 static void handle_ioreq(XenIOState *state, ioreq_t *req)
1048 {
1049 trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr,
1050 req->addr, req->data, req->count, req->size);
1051
1052 if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) &&
1053 (req->size < sizeof (target_ulong))) {
1054 req->data &= ((target_ulong) 1 << (8 * req->size)) - 1;
1055 }
1056
1057 if (req->dir == IOREQ_WRITE)
1058 trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr,
1059 req->addr, req->data, req->count, req->size);
1060
1061 switch (req->type) {
1062 case IOREQ_TYPE_PIO:
1063 cpu_ioreq_pio(req);
1064 break;
1065 case IOREQ_TYPE_COPY:
1066 cpu_ioreq_move(req);
1067 break;
1068 case IOREQ_TYPE_VMWARE_PORT:
1069 handle_vmport_ioreq(state, req);
1070 break;
1071 case IOREQ_TYPE_TIMEOFFSET:
1072 break;
1073 case IOREQ_TYPE_INVALIDATE:
1074 xen_invalidate_map_cache();
1075 break;
1076 case IOREQ_TYPE_PCI_CONFIG:
1077 cpu_ioreq_config(state, req);
1078 break;
1079 default:
1080 hw_error("Invalid ioreq type 0x%x\n", req->type);
1081 }
1082 if (req->dir == IOREQ_READ) {
1083 trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr,
1084 req->addr, req->data, req->count, req->size);
1085 }
1086 }
1087
1088 static int handle_buffered_iopage(XenIOState *state)
1089 {
1090 buffered_iopage_t *buf_page = state->buffered_io_page;
1091 buf_ioreq_t *buf_req = NULL;
1092 ioreq_t req;
1093 int qw;
1094
1095 if (!buf_page) {
1096 return 0;
1097 }
1098
1099 memset(&req, 0x00, sizeof(req));
1100 req.state = STATE_IOREQ_READY;
1101 req.count = 1;
1102 req.dir = IOREQ_WRITE;
1103
1104 for (;;) {
1105 uint32_t rdptr = buf_page->read_pointer, wrptr;
1106
1107 xen_rmb();
1108 wrptr = buf_page->write_pointer;
1109 xen_rmb();
1110 if (rdptr != buf_page->read_pointer) {
1111 continue;
1112 }
1113 if (rdptr == wrptr) {
1114 break;
1115 }
1116 buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM];
1117 req.size = 1U << buf_req->size;
1118 req.addr = buf_req->addr;
1119 req.data = buf_req->data;
1120 req.type = buf_req->type;
1121 xen_rmb();
1122 qw = (req.size == 8);
1123 if (qw) {
1124 if (rdptr + 1 == wrptr) {
1125 hw_error("Incomplete quad word buffered ioreq");
1126 }
1127 buf_req = &buf_page->buf_ioreq[(rdptr + 1) %
1128 IOREQ_BUFFER_SLOT_NUM];
1129 req.data |= ((uint64_t)buf_req->data) << 32;
1130 xen_rmb();
1131 }
1132
1133 handle_ioreq(state, &req);
1134
1135 /* Only req.data may get updated by handle_ioreq(), albeit even that
1136 * should not happen as such data would never make it to the guest (we
1137 * can only usefully see writes here after all).
1138 */
1139 assert(req.state == STATE_IOREQ_READY);
1140 assert(req.count == 1);
1141 assert(req.dir == IOREQ_WRITE);
1142 assert(!req.data_is_ptr);
1143
1144 qatomic_add(&buf_page->read_pointer, qw + 1);
1145 }
1146
1147 return req.count;
1148 }
1149
1150 static void handle_buffered_io(void *opaque)
1151 {
1152 XenIOState *state = opaque;
1153
1154 if (handle_buffered_iopage(state)) {
1155 timer_mod(state->buffered_io_timer,
1156 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
1157 } else {
1158 timer_del(state->buffered_io_timer);
1159 xenevtchn_unmask(state->xce_handle, state->bufioreq_local_port);
1160 }
1161 }
1162
1163 static void cpu_handle_ioreq(void *opaque)
1164 {
1165 XenIOState *state = opaque;
1166 ioreq_t *req = cpu_get_ioreq(state);
1167
1168 handle_buffered_iopage(state);
1169 if (req) {
1170 ioreq_t copy = *req;
1171
1172 xen_rmb();
1173 handle_ioreq(state, &copy);
1174 req->data = copy.data;
1175
1176 if (req->state != STATE_IOREQ_INPROCESS) {
1177 fprintf(stderr, "Badness in I/O request ... not in service?!: "
1178 "%x, ptr: %x, port: %"PRIx64", "
1179 "data: %"PRIx64", count: %u, size: %u, type: %u\n",
1180 req->state, req->data_is_ptr, req->addr,
1181 req->data, req->count, req->size, req->type);
1182 destroy_hvm_domain(false);
1183 return;
1184 }
1185
1186 xen_wmb(); /* Update ioreq contents /then/ update state. */
1187
1188 /*
1189 * We do this before we send the response so that the tools
1190 * have the opportunity to pick up on the reset before the
1191 * guest resumes and does a hlt with interrupts disabled which
1192 * causes Xen to powerdown the domain.
1193 */
1194 if (runstate_is_running()) {
1195 ShutdownCause request;
1196
1197 if (qemu_shutdown_requested_get()) {
1198 destroy_hvm_domain(false);
1199 }
1200 request = qemu_reset_requested_get();
1201 if (request) {
1202 qemu_system_reset(request);
1203 destroy_hvm_domain(true);
1204 }
1205 }
1206
1207 req->state = STATE_IORESP_READY;
1208 xenevtchn_notify(state->xce_handle,
1209 state->ioreq_local_port[state->send_vcpu]);
1210 }
1211 }
1212
1213 static void xen_main_loop_prepare(XenIOState *state)
1214 {
1215 int evtchn_fd = -1;
1216
1217 if (state->xce_handle != NULL) {
1218 evtchn_fd = xenevtchn_fd(state->xce_handle);
1219 }
1220
1221 state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io,
1222 state);
1223
1224 if (evtchn_fd != -1) {
1225 CPUState *cpu_state;
1226
1227 DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__);
1228 CPU_FOREACH(cpu_state) {
1229 DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n",
1230 __func__, cpu_state->cpu_index, cpu_state);
1231 state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state;
1232 }
1233 qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state);
1234 }
1235 }
1236
1237
1238 static void xen_hvm_change_state_handler(void *opaque, int running,
1239 RunState rstate)
1240 {
1241 XenIOState *state = opaque;
1242
1243 if (running) {
1244 xen_main_loop_prepare(state);
1245 }
1246
1247 xen_set_ioreq_server_state(xen_domid,
1248 state->ioservid,
1249 (rstate == RUN_STATE_RUNNING));
1250 }
1251
1252 static void xen_exit_notifier(Notifier *n, void *data)
1253 {
1254 XenIOState *state = container_of(n, XenIOState, exit);
1255
1256 xen_destroy_ioreq_server(xen_domid, state->ioservid);
1257
1258 xenevtchn_close(state->xce_handle);
1259 xs_daemon_close(state->xenstore);
1260 }
1261
1262 #ifdef XEN_COMPAT_PHYSMAP
1263 static void xen_read_physmap(XenIOState *state)
1264 {
1265 XenPhysmap *physmap = NULL;
1266 unsigned int len, num, i;
1267 char path[80], *value = NULL;
1268 char **entries = NULL;
1269
1270 snprintf(path, sizeof(path),
1271 "/local/domain/0/device-model/%d/physmap", xen_domid);
1272 entries = xs_directory(state->xenstore, 0, path, &num);
1273 if (entries == NULL)
1274 return;
1275
1276 for (i = 0; i < num; i++) {
1277 physmap = g_malloc(sizeof (XenPhysmap));
1278 physmap->phys_offset = strtoull(entries[i], NULL, 16);
1279 snprintf(path, sizeof(path),
1280 "/local/domain/0/device-model/%d/physmap/%s/start_addr",
1281 xen_domid, entries[i]);
1282 value = xs_read(state->xenstore, 0, path, &len);
1283 if (value == NULL) {
1284 g_free(physmap);
1285 continue;
1286 }
1287 physmap->start_addr = strtoull(value, NULL, 16);
1288 free(value);
1289
1290 snprintf(path, sizeof(path),
1291 "/local/domain/0/device-model/%d/physmap/%s/size",
1292 xen_domid, entries[i]);
1293 value = xs_read(state->xenstore, 0, path, &len);
1294 if (value == NULL) {
1295 g_free(physmap);
1296 continue;
1297 }
1298 physmap->size = strtoull(value, NULL, 16);
1299 free(value);
1300
1301 snprintf(path, sizeof(path),
1302 "/local/domain/0/device-model/%d/physmap/%s/name",
1303 xen_domid, entries[i]);
1304 physmap->name = xs_read(state->xenstore, 0, path, &len);
1305
1306 QLIST_INSERT_HEAD(&xen_physmap, physmap, list);
1307 }
1308 free(entries);
1309 }
1310 #else
1311 static void xen_read_physmap(XenIOState *state)
1312 {
1313 }
1314 #endif
1315
1316 static void xen_wakeup_notifier(Notifier *notifier, void *data)
1317 {
1318 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0);
1319 }
1320
1321 static int xen_map_ioreq_server(XenIOState *state)
1322 {
1323 void *addr = NULL;
1324 xenforeignmemory_resource_handle *fres;
1325 xen_pfn_t ioreq_pfn;
1326 xen_pfn_t bufioreq_pfn;
1327 evtchn_port_t bufioreq_evtchn;
1328 int rc;
1329
1330 /*
1331 * Attempt to map using the resource API and fall back to normal
1332 * foreign mapping if this is not supported.
1333 */
1334 QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_bufioreq != 0);
1335 QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_ioreq(0) != 1);
1336 fres = xenforeignmemory_map_resource(xen_fmem, xen_domid,
1337 XENMEM_resource_ioreq_server,
1338 state->ioservid, 0, 2,
1339 &addr,
1340 PROT_READ | PROT_WRITE, 0);
1341 if (fres != NULL) {
1342 trace_xen_map_resource_ioreq(state->ioservid, addr);
1343 state->buffered_io_page = addr;
1344 state->shared_page = addr + TARGET_PAGE_SIZE;
1345 } else if (errno != EOPNOTSUPP) {
1346 error_report("failed to map ioreq server resources: error %d handle=%p",
1347 errno, xen_xc);
1348 return -1;
1349 }
1350
1351 rc = xen_get_ioreq_server_info(xen_domid, state->ioservid,
1352 (state->shared_page == NULL) ?
1353 &ioreq_pfn : NULL,
1354 (state->buffered_io_page == NULL) ?
1355 &bufioreq_pfn : NULL,
1356 &bufioreq_evtchn);
1357 if (rc < 0) {
1358 error_report("failed to get ioreq server info: error %d handle=%p",
1359 errno, xen_xc);
1360 return rc;
1361 }
1362
1363 if (state->shared_page == NULL) {
1364 DPRINTF("shared page at pfn %lx\n", ioreq_pfn);
1365
1366 state->shared_page = xenforeignmemory_map(xen_fmem, xen_domid,
1367 PROT_READ | PROT_WRITE,
1368 1, &ioreq_pfn, NULL);
1369 if (state->shared_page == NULL) {
1370 error_report("map shared IO page returned error %d handle=%p",
1371 errno, xen_xc);
1372 }
1373 }
1374
1375 if (state->buffered_io_page == NULL) {
1376 DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn);
1377
1378 state->buffered_io_page = xenforeignmemory_map(xen_fmem, xen_domid,
1379 PROT_READ | PROT_WRITE,
1380 1, &bufioreq_pfn,
1381 NULL);
1382 if (state->buffered_io_page == NULL) {
1383 error_report("map buffered IO page returned error %d", errno);
1384 return -1;
1385 }
1386 }
1387
1388 if (state->shared_page == NULL || state->buffered_io_page == NULL) {
1389 return -1;
1390 }
1391
1392 DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn);
1393
1394 state->bufioreq_remote_port = bufioreq_evtchn;
1395
1396 return 0;
1397 }
1398
1399 void xen_hvm_init_pc(PCMachineState *pcms, MemoryRegion **ram_memory)
1400 {
1401 MachineState *ms = MACHINE(pcms);
1402 unsigned int max_cpus = ms->smp.max_cpus;
1403 int i, rc;
1404 xen_pfn_t ioreq_pfn;
1405 XenIOState *state;
1406
1407 state = g_malloc0(sizeof (XenIOState));
1408
1409 state->xce_handle = xenevtchn_open(NULL, 0);
1410 if (state->xce_handle == NULL) {
1411 perror("xen: event channel open");
1412 goto err;
1413 }
1414
1415 state->xenstore = xs_daemon_open();
1416 if (state->xenstore == NULL) {
1417 perror("xen: xenstore open");
1418 goto err;
1419 }
1420
1421 xen_create_ioreq_server(xen_domid, &state->ioservid);
1422
1423 state->exit.notify = xen_exit_notifier;
1424 qemu_add_exit_notifier(&state->exit);
1425
1426 state->suspend.notify = xen_suspend_notifier;
1427 qemu_register_suspend_notifier(&state->suspend);
1428
1429 state->wakeup.notify = xen_wakeup_notifier;
1430 qemu_register_wakeup_notifier(&state->wakeup);
1431
1432 /*
1433 * Register wake-up support in QMP query-current-machine API
1434 */
1435 qemu_register_wakeup_support();
1436
1437 rc = xen_map_ioreq_server(state);
1438 if (rc < 0) {
1439 goto err;
1440 }
1441
1442 rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn);
1443 if (!rc) {
1444 DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn);
1445 state->shared_vmport_page =
1446 xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE,
1447 1, &ioreq_pfn, NULL);
1448 if (state->shared_vmport_page == NULL) {
1449 error_report("map shared vmport IO page returned error %d handle=%p",
1450 errno, xen_xc);
1451 goto err;
1452 }
1453 } else if (rc != -ENOSYS) {
1454 error_report("get vmport regs pfn returned error %d, rc=%d",
1455 errno, rc);
1456 goto err;
1457 }
1458
1459 /* Note: cpus is empty at this point in init */
1460 state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *));
1461
1462 rc = xen_set_ioreq_server_state(xen_domid, state->ioservid, true);
1463 if (rc < 0) {
1464 error_report("failed to enable ioreq server info: error %d handle=%p",
1465 errno, xen_xc);
1466 goto err;
1467 }
1468
1469 state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t));
1470
1471 /* FIXME: how about if we overflow the page here? */
1472 for (i = 0; i < max_cpus; i++) {
1473 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
1474 xen_vcpu_eport(state->shared_page, i));
1475 if (rc == -1) {
1476 error_report("shared evtchn %d bind error %d", i, errno);
1477 goto err;
1478 }
1479 state->ioreq_local_port[i] = rc;
1480 }
1481
1482 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
1483 state->bufioreq_remote_port);
1484 if (rc == -1) {
1485 error_report("buffered evtchn bind error %d", errno);
1486 goto err;
1487 }
1488 state->bufioreq_local_port = rc;
1489
1490 /* Init RAM management */
1491 #ifdef XEN_COMPAT_PHYSMAP
1492 xen_map_cache_init(xen_phys_offset_to_gaddr, state);
1493 #else
1494 xen_map_cache_init(NULL, state);
1495 #endif
1496 xen_ram_init(pcms, ram_size, ram_memory);
1497
1498 qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state);
1499
1500 state->memory_listener = xen_memory_listener;
1501 memory_listener_register(&state->memory_listener, &address_space_memory);
1502 state->log_for_dirtybit = NULL;
1503
1504 state->io_listener = xen_io_listener;
1505 memory_listener_register(&state->io_listener, &address_space_io);
1506
1507 state->device_listener = xen_device_listener;
1508 QLIST_INIT(&state->dev_list);
1509 device_listener_register(&state->device_listener);
1510
1511 xen_bus_init();
1512
1513 /* Initialize backend core & drivers */
1514 if (xen_be_init() != 0) {
1515 error_report("xen backend core setup failed");
1516 goto err;
1517 }
1518 xen_be_register_common();
1519
1520 QLIST_INIT(&xen_physmap);
1521 xen_read_physmap(state);
1522
1523 /* Disable ACPI build because Xen handles it */
1524 pcms->acpi_build_enabled = false;
1525
1526 return;
1527
1528 err:
1529 error_report("xen hardware virtual machine initialisation failed");
1530 exit(1);
1531 }
1532
1533 void destroy_hvm_domain(bool reboot)
1534 {
1535 xc_interface *xc_handle;
1536 int sts;
1537 int rc;
1538
1539 unsigned int reason = reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff;
1540
1541 if (xen_dmod) {
1542 rc = xendevicemodel_shutdown(xen_dmod, xen_domid, reason);
1543 if (!rc) {
1544 return;
1545 }
1546 if (errno != ENOTTY /* old Xen */) {
1547 perror("xendevicemodel_shutdown failed");
1548 }
1549 /* well, try the old thing then */
1550 }
1551
1552 xc_handle = xc_interface_open(0, 0, 0);
1553 if (xc_handle == NULL) {
1554 fprintf(stderr, "Cannot acquire xenctrl handle\n");
1555 } else {
1556 sts = xc_domain_shutdown(xc_handle, xen_domid, reason);
1557 if (sts != 0) {
1558 fprintf(stderr, "xc_domain_shutdown failed to issue %s, "
1559 "sts %d, %s\n", reboot ? "reboot" : "poweroff",
1560 sts, strerror(errno));
1561 } else {
1562 fprintf(stderr, "Issued domain %d %s\n", xen_domid,
1563 reboot ? "reboot" : "poweroff");
1564 }
1565 xc_interface_close(xc_handle);
1566 }
1567 }
1568
1569 void xen_register_framebuffer(MemoryRegion *mr)
1570 {
1571 framebuffer = mr;
1572 }
1573
1574 void xen_shutdown_fatal_error(const char *fmt, ...)
1575 {
1576 va_list ap;
1577
1578 va_start(ap, fmt);
1579 vfprintf(stderr, fmt, ap);
1580 va_end(ap);
1581 fprintf(stderr, "Will destroy the domain.\n");
1582 /* destroy the domain */
1583 qemu_system_shutdown_request(SHUTDOWN_CAUSE_HOST_ERROR);
1584 }
1585
1586 void xen_hvm_modified_memory(ram_addr_t start, ram_addr_t length)
1587 {
1588 if (unlikely(xen_in_migration)) {
1589 int rc;
1590 ram_addr_t start_pfn, nb_pages;
1591
1592 start = xen_phys_offset_to_gaddr(start, length);
1593
1594 if (length == 0) {
1595 length = TARGET_PAGE_SIZE;
1596 }
1597 start_pfn = start >> TARGET_PAGE_BITS;
1598 nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS)
1599 - start_pfn;
1600 rc = xen_modified_memory(xen_domid, start_pfn, nb_pages);
1601 if (rc) {
1602 fprintf(stderr,
1603 "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n",
1604 __func__, start, nb_pages, errno, strerror(errno));
1605 }
1606 }
1607 }
1608
1609 void qmp_xen_set_global_dirty_log(bool enable, Error **errp)
1610 {
1611 if (enable) {
1612 memory_global_dirty_log_start();
1613 } else {
1614 memory_global_dirty_log_stop();
1615 }
1616 }