hw/arm/raspi: fix CPRMAN base address
[qemu.git] / hw / mem / memory-device.c
1 /*
2 * Memory Device Interface
3 *
4 * Copyright ProfitBricks GmbH 2012
5 * Copyright (C) 2014 Red Hat Inc
6 * Copyright (c) 2018 Red Hat Inc
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2 or later.
9 * See the COPYING file in the top-level directory.
10 */
11
12 #include "qemu/osdep.h"
13 #include "hw/mem/memory-device.h"
14 #include "qapi/error.h"
15 #include "hw/boards.h"
16 #include "qemu/range.h"
17 #include "hw/virtio/vhost.h"
18 #include "sysemu/kvm.h"
19 #include "trace.h"
20
21 static gint memory_device_addr_sort(gconstpointer a, gconstpointer b)
22 {
23 const MemoryDeviceState *md_a = MEMORY_DEVICE(a);
24 const MemoryDeviceState *md_b = MEMORY_DEVICE(b);
25 const MemoryDeviceClass *mdc_a = MEMORY_DEVICE_GET_CLASS(a);
26 const MemoryDeviceClass *mdc_b = MEMORY_DEVICE_GET_CLASS(b);
27 const uint64_t addr_a = mdc_a->get_addr(md_a);
28 const uint64_t addr_b = mdc_b->get_addr(md_b);
29
30 if (addr_a > addr_b) {
31 return 1;
32 } else if (addr_a < addr_b) {
33 return -1;
34 }
35 return 0;
36 }
37
38 static int memory_device_build_list(Object *obj, void *opaque)
39 {
40 GSList **list = opaque;
41
42 if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) {
43 DeviceState *dev = DEVICE(obj);
44 if (dev->realized) { /* only realized memory devices matter */
45 *list = g_slist_insert_sorted(*list, dev, memory_device_addr_sort);
46 }
47 }
48
49 object_child_foreach(obj, memory_device_build_list, opaque);
50 return 0;
51 }
52
53 static int memory_device_used_region_size(Object *obj, void *opaque)
54 {
55 uint64_t *size = opaque;
56
57 if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) {
58 const DeviceState *dev = DEVICE(obj);
59 const MemoryDeviceState *md = MEMORY_DEVICE(obj);
60
61 if (dev->realized) {
62 *size += memory_device_get_region_size(md, &error_abort);
63 }
64 }
65
66 object_child_foreach(obj, memory_device_used_region_size, opaque);
67 return 0;
68 }
69
70 static void memory_device_check_addable(MachineState *ms, uint64_t size,
71 Error **errp)
72 {
73 uint64_t used_region_size = 0;
74
75 /* we will need a new memory slot for kvm and vhost */
76 if (kvm_enabled() && !kvm_has_free_slot(ms)) {
77 error_setg(errp, "hypervisor has no free memory slots left");
78 return;
79 }
80 if (!vhost_has_free_slot()) {
81 error_setg(errp, "a used vhost backend has no free memory slots left");
82 return;
83 }
84
85 /* will we exceed the total amount of memory specified */
86 memory_device_used_region_size(OBJECT(ms), &used_region_size);
87 if (used_region_size + size < used_region_size ||
88 used_region_size + size > ms->maxram_size - ms->ram_size) {
89 error_setg(errp, "not enough space, currently 0x%" PRIx64
90 " in use of total space for memory devices 0x" RAM_ADDR_FMT,
91 used_region_size, ms->maxram_size - ms->ram_size);
92 return;
93 }
94
95 }
96
97 static uint64_t memory_device_get_free_addr(MachineState *ms,
98 const uint64_t *hint,
99 uint64_t align, uint64_t size,
100 Error **errp)
101 {
102 Error *err = NULL;
103 GSList *list = NULL, *item;
104 Range as, new = range_empty;
105
106 if (!ms->device_memory) {
107 error_setg(errp, "memory devices (e.g. for memory hotplug) are not "
108 "supported by the machine");
109 return 0;
110 }
111
112 if (!memory_region_size(&ms->device_memory->mr)) {
113 error_setg(errp, "memory devices (e.g. for memory hotplug) are not "
114 "enabled, please specify the maxmem option");
115 return 0;
116 }
117 range_init_nofail(&as, ms->device_memory->base,
118 memory_region_size(&ms->device_memory->mr));
119
120 /* start of address space indicates the maximum alignment we expect */
121 if (!QEMU_IS_ALIGNED(range_lob(&as), align)) {
122 error_setg(errp, "the alignment (0x%" PRIx64 ") is not supported",
123 align);
124 return 0;
125 }
126
127 memory_device_check_addable(ms, size, &err);
128 if (err) {
129 error_propagate(errp, err);
130 return 0;
131 }
132
133 if (hint && !QEMU_IS_ALIGNED(*hint, align)) {
134 error_setg(errp, "address must be aligned to 0x%" PRIx64 " bytes",
135 align);
136 return 0;
137 }
138
139 if (!QEMU_IS_ALIGNED(size, align)) {
140 error_setg(errp, "backend memory size must be multiple of 0x%"
141 PRIx64, align);
142 return 0;
143 }
144
145 if (hint) {
146 if (range_init(&new, *hint, size) || !range_contains_range(&as, &new)) {
147 error_setg(errp, "can't add memory device [0x%" PRIx64 ":0x%" PRIx64
148 "], usable range for memory devices [0x%" PRIx64 ":0x%"
149 PRIx64 "]", *hint, size, range_lob(&as),
150 range_size(&as));
151 return 0;
152 }
153 } else {
154 if (range_init(&new, range_lob(&as), size)) {
155 error_setg(errp, "can't add memory device, device too big");
156 return 0;
157 }
158 }
159
160 /* find address range that will fit new memory device */
161 object_child_foreach(OBJECT(ms), memory_device_build_list, &list);
162 for (item = list; item; item = g_slist_next(item)) {
163 const MemoryDeviceState *md = item->data;
164 const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(OBJECT(md));
165 uint64_t next_addr;
166 Range tmp;
167
168 range_init_nofail(&tmp, mdc->get_addr(md),
169 memory_device_get_region_size(md, &error_abort));
170
171 if (range_overlaps_range(&tmp, &new)) {
172 if (hint) {
173 const DeviceState *d = DEVICE(md);
174 error_setg(errp, "address range conflicts with memory device"
175 " id='%s'", d->id ? d->id : "(unnamed)");
176 goto out;
177 }
178
179 next_addr = QEMU_ALIGN_UP(range_upb(&tmp) + 1, align);
180 if (!next_addr || range_init(&new, next_addr, range_size(&new))) {
181 range_make_empty(&new);
182 break;
183 }
184 } else if (range_lob(&tmp) > range_upb(&new)) {
185 break;
186 }
187 }
188
189 if (!range_contains_range(&as, &new)) {
190 error_setg(errp, "could not find position in guest address space for "
191 "memory device - memory fragmented due to alignments");
192 }
193 out:
194 g_slist_free(list);
195 return range_lob(&new);
196 }
197
198 MemoryDeviceInfoList *qmp_memory_device_list(void)
199 {
200 GSList *devices = NULL, *item;
201 MemoryDeviceInfoList *list = NULL, *prev = NULL;
202
203 object_child_foreach(qdev_get_machine(), memory_device_build_list,
204 &devices);
205
206 for (item = devices; item; item = g_slist_next(item)) {
207 const MemoryDeviceState *md = MEMORY_DEVICE(item->data);
208 const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(item->data);
209 MemoryDeviceInfoList *elem = g_new0(MemoryDeviceInfoList, 1);
210 MemoryDeviceInfo *info = g_new0(MemoryDeviceInfo, 1);
211
212 mdc->fill_device_info(md, info);
213
214 elem->value = info;
215 elem->next = NULL;
216 if (prev) {
217 prev->next = elem;
218 } else {
219 list = elem;
220 }
221 prev = elem;
222 }
223
224 g_slist_free(devices);
225
226 return list;
227 }
228
229 static int memory_device_plugged_size(Object *obj, void *opaque)
230 {
231 uint64_t *size = opaque;
232
233 if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) {
234 const DeviceState *dev = DEVICE(obj);
235 const MemoryDeviceState *md = MEMORY_DEVICE(obj);
236 const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(obj);
237
238 if (dev->realized) {
239 *size += mdc->get_plugged_size(md, &error_abort);
240 }
241 }
242
243 object_child_foreach(obj, memory_device_plugged_size, opaque);
244 return 0;
245 }
246
247 uint64_t get_plugged_memory_size(void)
248 {
249 uint64_t size = 0;
250
251 memory_device_plugged_size(qdev_get_machine(), &size);
252
253 return size;
254 }
255
256 void memory_device_pre_plug(MemoryDeviceState *md, MachineState *ms,
257 const uint64_t *legacy_align, Error **errp)
258 {
259 const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
260 Error *local_err = NULL;
261 uint64_t addr, align;
262 MemoryRegion *mr;
263
264 mr = mdc->get_memory_region(md, &local_err);
265 if (local_err) {
266 goto out;
267 }
268
269 align = legacy_align ? *legacy_align : memory_region_get_alignment(mr);
270 addr = mdc->get_addr(md);
271 addr = memory_device_get_free_addr(ms, !addr ? NULL : &addr, align,
272 memory_region_size(mr), &local_err);
273 if (local_err) {
274 goto out;
275 }
276 mdc->set_addr(md, addr, &local_err);
277 if (!local_err) {
278 trace_memory_device_pre_plug(DEVICE(md)->id ? DEVICE(md)->id : "",
279 addr);
280 }
281 out:
282 error_propagate(errp, local_err);
283 }
284
285 void memory_device_plug(MemoryDeviceState *md, MachineState *ms)
286 {
287 const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
288 const uint64_t addr = mdc->get_addr(md);
289 MemoryRegion *mr;
290
291 /*
292 * We expect that a previous call to memory_device_pre_plug() succeeded, so
293 * it can't fail at this point.
294 */
295 mr = mdc->get_memory_region(md, &error_abort);
296 g_assert(ms->device_memory);
297
298 memory_region_add_subregion(&ms->device_memory->mr,
299 addr - ms->device_memory->base, mr);
300 trace_memory_device_plug(DEVICE(md)->id ? DEVICE(md)->id : "", addr);
301 }
302
303 void memory_device_unplug(MemoryDeviceState *md, MachineState *ms)
304 {
305 const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
306 MemoryRegion *mr;
307
308 /*
309 * We expect that a previous call to memory_device_pre_plug() succeeded, so
310 * it can't fail at this point.
311 */
312 mr = mdc->get_memory_region(md, &error_abort);
313 g_assert(ms->device_memory);
314
315 memory_region_del_subregion(&ms->device_memory->mr, mr);
316 trace_memory_device_unplug(DEVICE(md)->id ? DEVICE(md)->id : "",
317 mdc->get_addr(md));
318 }
319
320 uint64_t memory_device_get_region_size(const MemoryDeviceState *md,
321 Error **errp)
322 {
323 const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
324 MemoryRegion *mr;
325
326 /* dropping const here is fine as we don't touch the memory region */
327 mr = mdc->get_memory_region((MemoryDeviceState *)md, errp);
328 if (!mr) {
329 return 0;
330 }
331
332 return memory_region_size(mr);
333 }
334
335 static const TypeInfo memory_device_info = {
336 .name = TYPE_MEMORY_DEVICE,
337 .parent = TYPE_INTERFACE,
338 .class_size = sizeof(MemoryDeviceClass),
339 };
340
341 static void memory_device_register_types(void)
342 {
343 type_register_static(&memory_device_info);
344 }
345
346 type_init(memory_device_register_types)