configure: fix --meson=/path/to/meson
[qemu.git] / hw / mips / malta.c
1 /*
2 * QEMU Malta board support
3 *
4 * Copyright (c) 2006 Aurelien Jarno
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "hw/southbridge/piix.h"
30 #include "hw/isa/superio.h"
31 #include "hw/char/serial.h"
32 #include "net/net.h"
33 #include "hw/boards.h"
34 #include "hw/i2c/smbus_eeprom.h"
35 #include "hw/block/flash.h"
36 #include "hw/mips/mips.h"
37 #include "hw/mips/cpudevs.h"
38 #include "hw/pci/pci.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/arch_init.h"
41 #include "qemu/log.h"
42 #include "hw/mips/bios.h"
43 #include "hw/ide.h"
44 #include "hw/irq.h"
45 #include "hw/loader.h"
46 #include "elf.h"
47 #include "exec/address-spaces.h"
48 #include "qom/object.h"
49 #include "hw/sysbus.h" /* SysBusDevice */
50 #include "qemu/host-utils.h"
51 #include "sysemu/qtest.h"
52 #include "sysemu/reset.h"
53 #include "sysemu/runstate.h"
54 #include "qapi/error.h"
55 #include "qemu/error-report.h"
56 #include "hw/misc/empty_slot.h"
57 #include "sysemu/kvm.h"
58 #include "hw/semihosting/semihost.h"
59 #include "hw/mips/cps.h"
60
61 #define ENVP_ADDR 0x80002000l
62 #define ENVP_NB_ENTRIES 16
63 #define ENVP_ENTRY_SIZE 256
64
65 /* Hardware addresses */
66 #define FLASH_ADDRESS 0x1e000000ULL
67 #define FPGA_ADDRESS 0x1f000000ULL
68 #define RESET_ADDRESS 0x1fc00000ULL
69
70 #define FLASH_SIZE 0x400000
71
72 #define MAX_IDE_BUS 2
73
74 typedef struct {
75 MemoryRegion iomem;
76 MemoryRegion iomem_lo; /* 0 - 0x900 */
77 MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
78 uint32_t leds;
79 uint32_t brk;
80 uint32_t gpout;
81 uint32_t i2cin;
82 uint32_t i2coe;
83 uint32_t i2cout;
84 uint32_t i2csel;
85 CharBackend display;
86 char display_text[9];
87 SerialMM *uart;
88 bool display_inited;
89 } MaltaFPGAState;
90
91 #define TYPE_MIPS_MALTA "mips-malta"
92 OBJECT_DECLARE_SIMPLE_TYPE(MaltaState, MIPS_MALTA)
93
94 struct MaltaState {
95 SysBusDevice parent_obj;
96
97 MIPSCPSState cps;
98 qemu_irq i8259[ISA_NUM_IRQS];
99 };
100
101 static struct _loaderparams {
102 int ram_size, ram_low_size;
103 const char *kernel_filename;
104 const char *kernel_cmdline;
105 const char *initrd_filename;
106 } loaderparams;
107
108 /* Malta FPGA */
109 static void malta_fpga_update_display(void *opaque)
110 {
111 char leds_text[9];
112 int i;
113 MaltaFPGAState *s = opaque;
114
115 for (i = 7 ; i >= 0 ; i--) {
116 if (s->leds & (1 << i)) {
117 leds_text[i] = '#';
118 } else {
119 leds_text[i] = ' ';
120 }
121 }
122 leds_text[8] = '\0';
123
124 qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
125 leds_text);
126 qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
127 s->display_text);
128 }
129
130 /*
131 * EEPROM 24C01 / 24C02 emulation.
132 *
133 * Emulation for serial EEPROMs:
134 * 24C01 - 1024 bit (128 x 8)
135 * 24C02 - 2048 bit (256 x 8)
136 *
137 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
138 */
139
140 #if defined(DEBUG)
141 # define logout(fmt, ...) \
142 fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
143 #else
144 # define logout(fmt, ...) ((void)0)
145 #endif
146
147 struct _eeprom24c0x_t {
148 uint8_t tick;
149 uint8_t address;
150 uint8_t command;
151 uint8_t ack;
152 uint8_t scl;
153 uint8_t sda;
154 uint8_t data;
155 /* uint16_t size; */
156 uint8_t contents[256];
157 };
158
159 typedef struct _eeprom24c0x_t eeprom24c0x_t;
160
161 static eeprom24c0x_t spd_eeprom = {
162 .contents = {
163 /* 00000000: */
164 0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00,
165 /* 00000008: */
166 0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01,
167 /* 00000010: */
168 0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00,
169 /* 00000018: */
170 0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF,
171 /* 00000020: */
172 0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00,
173 /* 00000028: */
174 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
175 /* 00000030: */
176 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
177 /* 00000038: */
178 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0,
179 /* 00000040: */
180 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
181 /* 00000048: */
182 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
183 /* 00000050: */
184 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
185 /* 00000058: */
186 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
187 /* 00000060: */
188 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
189 /* 00000068: */
190 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
191 /* 00000070: */
192 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
193 /* 00000078: */
194 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4,
195 },
196 };
197
198 static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
199 {
200 enum { SDR = 0x4, DDR2 = 0x8 } type;
201 uint8_t *spd = spd_eeprom.contents;
202 uint8_t nbanks = 0;
203 uint16_t density = 0;
204 int i;
205
206 /* work in terms of MB */
207 ram_size /= MiB;
208
209 while ((ram_size >= 4) && (nbanks <= 2)) {
210 int sz_log2 = MIN(31 - clz32(ram_size), 14);
211 nbanks++;
212 density |= 1 << (sz_log2 - 2);
213 ram_size -= 1 << sz_log2;
214 }
215
216 /* split to 2 banks if possible */
217 if ((nbanks == 1) && (density > 1)) {
218 nbanks++;
219 density >>= 1;
220 }
221
222 if (density & 0xff00) {
223 density = (density & 0xe0) | ((density >> 8) & 0x1f);
224 type = DDR2;
225 } else if (!(density & 0x1f)) {
226 type = DDR2;
227 } else {
228 type = SDR;
229 }
230
231 if (ram_size) {
232 warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB"
233 " of SDRAM", ram_size);
234 }
235
236 /* fill in SPD memory information */
237 spd[2] = type;
238 spd[5] = nbanks;
239 spd[31] = density;
240
241 /* checksum */
242 spd[63] = 0;
243 for (i = 0; i < 63; i++) {
244 spd[63] += spd[i];
245 }
246
247 /* copy for SMBUS */
248 memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
249 }
250
251 static void generate_eeprom_serial(uint8_t *eeprom)
252 {
253 int i, pos = 0;
254 uint8_t mac[6] = { 0x00 };
255 uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
256
257 /* version */
258 eeprom[pos++] = 0x01;
259
260 /* count */
261 eeprom[pos++] = 0x02;
262
263 /* MAC address */
264 eeprom[pos++] = 0x01; /* MAC */
265 eeprom[pos++] = 0x06; /* length */
266 memcpy(&eeprom[pos], mac, sizeof(mac));
267 pos += sizeof(mac);
268
269 /* serial number */
270 eeprom[pos++] = 0x02; /* serial */
271 eeprom[pos++] = 0x05; /* length */
272 memcpy(&eeprom[pos], sn, sizeof(sn));
273 pos += sizeof(sn);
274
275 /* checksum */
276 eeprom[pos] = 0;
277 for (i = 0; i < pos; i++) {
278 eeprom[pos] += eeprom[i];
279 }
280 }
281
282 static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
283 {
284 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
285 eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
286 return eeprom->sda;
287 }
288
289 static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
290 {
291 if (eeprom->scl && scl && (eeprom->sda != sda)) {
292 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
293 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
294 sda ? "stop" : "start");
295 if (!sda) {
296 eeprom->tick = 1;
297 eeprom->command = 0;
298 }
299 } else if (eeprom->tick == 0 && !eeprom->ack) {
300 /* Waiting for start. */
301 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
302 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
303 } else if (!eeprom->scl && scl) {
304 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
305 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
306 if (eeprom->ack) {
307 logout("\ti2c ack bit = 0\n");
308 sda = 0;
309 eeprom->ack = 0;
310 } else if (eeprom->sda == sda) {
311 uint8_t bit = (sda != 0);
312 logout("\ti2c bit = %d\n", bit);
313 if (eeprom->tick < 9) {
314 eeprom->command <<= 1;
315 eeprom->command += bit;
316 eeprom->tick++;
317 if (eeprom->tick == 9) {
318 logout("\tcommand 0x%04x, %s\n", eeprom->command,
319 bit ? "read" : "write");
320 eeprom->ack = 1;
321 }
322 } else if (eeprom->tick < 17) {
323 if (eeprom->command & 1) {
324 sda = ((eeprom->data & 0x80) != 0);
325 }
326 eeprom->address <<= 1;
327 eeprom->address += bit;
328 eeprom->tick++;
329 eeprom->data <<= 1;
330 if (eeprom->tick == 17) {
331 eeprom->data = eeprom->contents[eeprom->address];
332 logout("\taddress 0x%04x, data 0x%02x\n",
333 eeprom->address, eeprom->data);
334 eeprom->ack = 1;
335 eeprom->tick = 0;
336 }
337 } else if (eeprom->tick >= 17) {
338 sda = 0;
339 }
340 } else {
341 logout("\tsda changed with raising scl\n");
342 }
343 } else {
344 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
345 scl, eeprom->sda, sda);
346 }
347 eeprom->scl = scl;
348 eeprom->sda = sda;
349 }
350
351 static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
352 unsigned size)
353 {
354 MaltaFPGAState *s = opaque;
355 uint32_t val = 0;
356 uint32_t saddr;
357
358 saddr = (addr & 0xfffff);
359
360 switch (saddr) {
361
362 /* SWITCH Register */
363 case 0x00200:
364 val = 0x00000000;
365 break;
366
367 /* STATUS Register */
368 case 0x00208:
369 #ifdef TARGET_WORDS_BIGENDIAN
370 val = 0x00000012;
371 #else
372 val = 0x00000010;
373 #endif
374 break;
375
376 /* JMPRS Register */
377 case 0x00210:
378 val = 0x00;
379 break;
380
381 /* LEDBAR Register */
382 case 0x00408:
383 val = s->leds;
384 break;
385
386 /* BRKRES Register */
387 case 0x00508:
388 val = s->brk;
389 break;
390
391 /* UART Registers are handled directly by the serial device */
392
393 /* GPOUT Register */
394 case 0x00a00:
395 val = s->gpout;
396 break;
397
398 /* XXX: implement a real I2C controller */
399
400 /* GPINP Register */
401 case 0x00a08:
402 /* IN = OUT until a real I2C control is implemented */
403 if (s->i2csel) {
404 val = s->i2cout;
405 } else {
406 val = 0x00;
407 }
408 break;
409
410 /* I2CINP Register */
411 case 0x00b00:
412 val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
413 break;
414
415 /* I2COE Register */
416 case 0x00b08:
417 val = s->i2coe;
418 break;
419
420 /* I2COUT Register */
421 case 0x00b10:
422 val = s->i2cout;
423 break;
424
425 /* I2CSEL Register */
426 case 0x00b18:
427 val = s->i2csel;
428 break;
429
430 default:
431 qemu_log_mask(LOG_GUEST_ERROR,
432 "malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX"\n",
433 addr);
434 break;
435 }
436 return val;
437 }
438
439 static void malta_fpga_write(void *opaque, hwaddr addr,
440 uint64_t val, unsigned size)
441 {
442 MaltaFPGAState *s = opaque;
443 uint32_t saddr;
444
445 saddr = (addr & 0xfffff);
446
447 switch (saddr) {
448
449 /* SWITCH Register */
450 case 0x00200:
451 break;
452
453 /* JMPRS Register */
454 case 0x00210:
455 break;
456
457 /* LEDBAR Register */
458 case 0x00408:
459 s->leds = val & 0xff;
460 malta_fpga_update_display(s);
461 break;
462
463 /* ASCIIWORD Register */
464 case 0x00410:
465 snprintf(s->display_text, 9, "%08X", (uint32_t)val);
466 malta_fpga_update_display(s);
467 break;
468
469 /* ASCIIPOS0 to ASCIIPOS7 Registers */
470 case 0x00418:
471 case 0x00420:
472 case 0x00428:
473 case 0x00430:
474 case 0x00438:
475 case 0x00440:
476 case 0x00448:
477 case 0x00450:
478 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
479 malta_fpga_update_display(s);
480 break;
481
482 /* SOFTRES Register */
483 case 0x00500:
484 if (val == 0x42) {
485 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
486 }
487 break;
488
489 /* BRKRES Register */
490 case 0x00508:
491 s->brk = val & 0xff;
492 break;
493
494 /* UART Registers are handled directly by the serial device */
495
496 /* GPOUT Register */
497 case 0x00a00:
498 s->gpout = val & 0xff;
499 break;
500
501 /* I2COE Register */
502 case 0x00b08:
503 s->i2coe = val & 0x03;
504 break;
505
506 /* I2COUT Register */
507 case 0x00b10:
508 eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
509 s->i2cout = val;
510 break;
511
512 /* I2CSEL Register */
513 case 0x00b18:
514 s->i2csel = val & 0x01;
515 break;
516
517 default:
518 qemu_log_mask(LOG_GUEST_ERROR,
519 "malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX"\n",
520 addr);
521 break;
522 }
523 }
524
525 static const MemoryRegionOps malta_fpga_ops = {
526 .read = malta_fpga_read,
527 .write = malta_fpga_write,
528 .endianness = DEVICE_NATIVE_ENDIAN,
529 };
530
531 static void malta_fpga_reset(void *opaque)
532 {
533 MaltaFPGAState *s = opaque;
534
535 s->leds = 0x00;
536 s->brk = 0x0a;
537 s->gpout = 0x00;
538 s->i2cin = 0x3;
539 s->i2coe = 0x0;
540 s->i2cout = 0x3;
541 s->i2csel = 0x1;
542
543 s->display_text[8] = '\0';
544 snprintf(s->display_text, 9, " ");
545 }
546
547 static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event)
548 {
549 MaltaFPGAState *s = opaque;
550
551 if (event == CHR_EVENT_OPENED && !s->display_inited) {
552 qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n");
553 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
554 qemu_chr_fe_printf(&s->display, "+ +\r\n");
555 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
556 qemu_chr_fe_printf(&s->display, "\n");
557 qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n");
558 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
559 qemu_chr_fe_printf(&s->display, "+ +\r\n");
560 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
561 s->display_inited = true;
562 }
563 }
564
565 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
566 hwaddr base, qemu_irq uart_irq, Chardev *uart_chr)
567 {
568 MaltaFPGAState *s;
569 Chardev *chr;
570
571 s = g_new0(MaltaFPGAState, 1);
572
573 memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
574 "malta-fpga", 0x100000);
575 memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
576 &s->iomem, 0, 0x900);
577 memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
578 &s->iomem, 0xa00, 0x10000 - 0xa00);
579
580 memory_region_add_subregion(address_space, base, &s->iomem_lo);
581 memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
582
583 chr = qemu_chr_new("fpga", "vc:320x200", NULL);
584 qemu_chr_fe_init(&s->display, chr, NULL);
585 qemu_chr_fe_set_handlers(&s->display, NULL, NULL,
586 malta_fgpa_display_event, NULL, s, NULL, true);
587
588 s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
589 230400, uart_chr, DEVICE_NATIVE_ENDIAN);
590
591 malta_fpga_reset(s);
592 qemu_register_reset(malta_fpga_reset, s);
593
594 return s;
595 }
596
597 /* Network support */
598 static void network_init(PCIBus *pci_bus)
599 {
600 int i;
601
602 for (i = 0; i < nb_nics; i++) {
603 NICInfo *nd = &nd_table[i];
604 const char *default_devaddr = NULL;
605
606 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
607 /* The malta board has a PCNet card using PCI SLOT 11 */
608 default_devaddr = "0b";
609
610 pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
611 }
612 }
613
614 static void write_bootloader_nanomips(uint8_t *base, int64_t run_addr,
615 int64_t kernel_entry)
616 {
617 uint16_t *p;
618
619 /* Small bootloader */
620 p = (uint16_t *)base;
621
622 #define NM_HI1(VAL) (((VAL) >> 16) & 0x1f)
623 #define NM_HI2(VAL) \
624 (((VAL) & 0xf000) | (((VAL) >> 19) & 0xffc) | (((VAL) >> 31) & 0x1))
625 #define NM_LO(VAL) ((VAL) & 0xfff)
626
627 stw_p(p++, 0x2800); stw_p(p++, 0x001c);
628 /* bc to_here */
629 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
630 /* nop */
631 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
632 /* nop */
633 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
634 /* nop */
635 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
636 /* nop */
637 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
638 /* nop */
639 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
640 /* nop */
641 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
642 /* nop */
643
644 /* to_here: */
645 if (semihosting_get_argc()) {
646 /* Preserve a0 content as arguments have been passed */
647 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
648 /* nop */
649 } else {
650 stw_p(p++, 0x0080); stw_p(p++, 0x0002);
651 /* li a0,2 */
652 }
653
654 stw_p(p++, 0xe3a0 | NM_HI1(ENVP_ADDR - 64));
655
656 stw_p(p++, NM_HI2(ENVP_ADDR - 64));
657 /* lui sp,%hi(ENVP_ADDR - 64) */
658
659 stw_p(p++, 0x83bd); stw_p(p++, NM_LO(ENVP_ADDR - 64));
660 /* ori sp,sp,%lo(ENVP_ADDR - 64) */
661
662 stw_p(p++, 0xe0a0 | NM_HI1(ENVP_ADDR));
663
664 stw_p(p++, NM_HI2(ENVP_ADDR));
665 /* lui a1,%hi(ENVP_ADDR) */
666
667 stw_p(p++, 0x80a5); stw_p(p++, NM_LO(ENVP_ADDR));
668 /* ori a1,a1,%lo(ENVP_ADDR) */
669
670 stw_p(p++, 0xe0c0 | NM_HI1(ENVP_ADDR + 8));
671
672 stw_p(p++, NM_HI2(ENVP_ADDR + 8));
673 /* lui a2,%hi(ENVP_ADDR + 8) */
674
675 stw_p(p++, 0x80c6); stw_p(p++, NM_LO(ENVP_ADDR + 8));
676 /* ori a2,a2,%lo(ENVP_ADDR + 8) */
677
678 stw_p(p++, 0xe0e0 | NM_HI1(loaderparams.ram_low_size));
679
680 stw_p(p++, NM_HI2(loaderparams.ram_low_size));
681 /* lui a3,%hi(loaderparams.ram_low_size) */
682
683 stw_p(p++, 0x80e7); stw_p(p++, NM_LO(loaderparams.ram_low_size));
684 /* ori a3,a3,%lo(loaderparams.ram_low_size) */
685
686 /*
687 * Load BAR registers as done by YAMON:
688 *
689 * - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
690 * - set up PCI0 MEM0 at 0x10000000, size 0x8000000
691 * - set up PCI0 MEM1 at 0x18200000, size 0xbe00000
692 *
693 */
694 stw_p(p++, 0xe040); stw_p(p++, 0x0681);
695 /* lui t1, %hi(0xb4000000) */
696
697 #ifdef TARGET_WORDS_BIGENDIAN
698
699 stw_p(p++, 0xe020); stw_p(p++, 0x0be1);
700 /* lui t0, %hi(0xdf000000) */
701
702 /* 0x68 corresponds to GT_ISD (from hw/mips/gt64xxx_pci.c) */
703 stw_p(p++, 0x8422); stw_p(p++, 0x9068);
704 /* sw t0, 0x68(t1) */
705
706 stw_p(p++, 0xe040); stw_p(p++, 0x077d);
707 /* lui t1, %hi(0xbbe00000) */
708
709 stw_p(p++, 0xe020); stw_p(p++, 0x0801);
710 /* lui t0, %hi(0xc0000000) */
711
712 /* 0x48 corresponds to GT_PCI0IOLD */
713 stw_p(p++, 0x8422); stw_p(p++, 0x9048);
714 /* sw t0, 0x48(t1) */
715
716 stw_p(p++, 0xe020); stw_p(p++, 0x0800);
717 /* lui t0, %hi(0x40000000) */
718
719 /* 0x50 corresponds to GT_PCI0IOHD */
720 stw_p(p++, 0x8422); stw_p(p++, 0x9050);
721 /* sw t0, 0x50(t1) */
722
723 stw_p(p++, 0xe020); stw_p(p++, 0x0001);
724 /* lui t0, %hi(0x80000000) */
725
726 /* 0x58 corresponds to GT_PCI0M0LD */
727 stw_p(p++, 0x8422); stw_p(p++, 0x9058);
728 /* sw t0, 0x58(t1) */
729
730 stw_p(p++, 0xe020); stw_p(p++, 0x07e0);
731 /* lui t0, %hi(0x3f000000) */
732
733 /* 0x60 corresponds to GT_PCI0M0HD */
734 stw_p(p++, 0x8422); stw_p(p++, 0x9060);
735 /* sw t0, 0x60(t1) */
736
737 stw_p(p++, 0xe020); stw_p(p++, 0x0821);
738 /* lui t0, %hi(0xc1000000) */
739
740 /* 0x80 corresponds to GT_PCI0M1LD */
741 stw_p(p++, 0x8422); stw_p(p++, 0x9080);
742 /* sw t0, 0x80(t1) */
743
744 stw_p(p++, 0xe020); stw_p(p++, 0x0bc0);
745 /* lui t0, %hi(0x5e000000) */
746
747 #else
748
749 stw_p(p++, 0x0020); stw_p(p++, 0x00df);
750 /* addiu[32] t0, $0, 0xdf */
751
752 /* 0x68 corresponds to GT_ISD */
753 stw_p(p++, 0x8422); stw_p(p++, 0x9068);
754 /* sw t0, 0x68(t1) */
755
756 /* Use kseg2 remapped address 0x1be00000 */
757 stw_p(p++, 0xe040); stw_p(p++, 0x077d);
758 /* lui t1, %hi(0xbbe00000) */
759
760 stw_p(p++, 0x0020); stw_p(p++, 0x00c0);
761 /* addiu[32] t0, $0, 0xc0 */
762
763 /* 0x48 corresponds to GT_PCI0IOLD */
764 stw_p(p++, 0x8422); stw_p(p++, 0x9048);
765 /* sw t0, 0x48(t1) */
766
767 stw_p(p++, 0x0020); stw_p(p++, 0x0040);
768 /* addiu[32] t0, $0, 0x40 */
769
770 /* 0x50 corresponds to GT_PCI0IOHD */
771 stw_p(p++, 0x8422); stw_p(p++, 0x9050);
772 /* sw t0, 0x50(t1) */
773
774 stw_p(p++, 0x0020); stw_p(p++, 0x0080);
775 /* addiu[32] t0, $0, 0x80 */
776
777 /* 0x58 corresponds to GT_PCI0M0LD */
778 stw_p(p++, 0x8422); stw_p(p++, 0x9058);
779 /* sw t0, 0x58(t1) */
780
781 stw_p(p++, 0x0020); stw_p(p++, 0x003f);
782 /* addiu[32] t0, $0, 0x3f */
783
784 /* 0x60 corresponds to GT_PCI0M0HD */
785 stw_p(p++, 0x8422); stw_p(p++, 0x9060);
786 /* sw t0, 0x60(t1) */
787
788 stw_p(p++, 0x0020); stw_p(p++, 0x00c1);
789 /* addiu[32] t0, $0, 0xc1 */
790
791 /* 0x80 corresponds to GT_PCI0M1LD */
792 stw_p(p++, 0x8422); stw_p(p++, 0x9080);
793 /* sw t0, 0x80(t1) */
794
795 stw_p(p++, 0x0020); stw_p(p++, 0x005e);
796 /* addiu[32] t0, $0, 0x5e */
797
798 #endif
799
800 /* 0x88 corresponds to GT_PCI0M1HD */
801 stw_p(p++, 0x8422); stw_p(p++, 0x9088);
802 /* sw t0, 0x88(t1) */
803
804 stw_p(p++, 0xe320 | NM_HI1(kernel_entry));
805
806 stw_p(p++, NM_HI2(kernel_entry));
807 /* lui t9,%hi(kernel_entry) */
808
809 stw_p(p++, 0x8339); stw_p(p++, NM_LO(kernel_entry));
810 /* ori t9,t9,%lo(kernel_entry) */
811
812 stw_p(p++, 0x4bf9); stw_p(p++, 0x0000);
813 /* jalrc t8 */
814 }
815
816 /*
817 * ROM and pseudo bootloader
818 *
819 * The following code implements a very very simple bootloader. It first
820 * loads the registers a0 to a3 to the values expected by the OS, and
821 * then jump at the kernel address.
822 *
823 * The bootloader should pass the locations of the kernel arguments and
824 * environment variables tables. Those tables contain the 32-bit address
825 * of NULL terminated strings. The environment variables table should be
826 * terminated by a NULL address.
827 *
828 * For a simpler implementation, the number of kernel arguments is fixed
829 * to two (the name of the kernel and the command line), and the two
830 * tables are actually the same one.
831 *
832 * The registers a0 to a3 should contain the following values:
833 * a0 - number of kernel arguments
834 * a1 - 32-bit address of the kernel arguments table
835 * a2 - 32-bit address of the environment variables table
836 * a3 - RAM size in bytes
837 */
838 static void write_bootloader(uint8_t *base, int64_t run_addr,
839 int64_t kernel_entry)
840 {
841 uint32_t *p;
842
843 /* Small bootloader */
844 p = (uint32_t *)base;
845
846 stl_p(p++, 0x08000000 | /* j 0x1fc00580 */
847 ((run_addr + 0x580) & 0x0fffffff) >> 2);
848 stl_p(p++, 0x00000000); /* nop */
849
850 /* YAMON service vector */
851 stl_p(base + 0x500, run_addr + 0x0580); /* start: */
852 stl_p(base + 0x504, run_addr + 0x083c); /* print_count: */
853 stl_p(base + 0x520, run_addr + 0x0580); /* start: */
854 stl_p(base + 0x52c, run_addr + 0x0800); /* flush_cache: */
855 stl_p(base + 0x534, run_addr + 0x0808); /* print: */
856 stl_p(base + 0x538, run_addr + 0x0800); /* reg_cpu_isr: */
857 stl_p(base + 0x53c, run_addr + 0x0800); /* unred_cpu_isr: */
858 stl_p(base + 0x540, run_addr + 0x0800); /* reg_ic_isr: */
859 stl_p(base + 0x544, run_addr + 0x0800); /* unred_ic_isr: */
860 stl_p(base + 0x548, run_addr + 0x0800); /* reg_esr: */
861 stl_p(base + 0x54c, run_addr + 0x0800); /* unreg_esr: */
862 stl_p(base + 0x550, run_addr + 0x0800); /* getchar: */
863 stl_p(base + 0x554, run_addr + 0x0800); /* syscon_read: */
864
865
866 /* Second part of the bootloader */
867 p = (uint32_t *) (base + 0x580);
868
869 if (semihosting_get_argc()) {
870 /* Preserve a0 content as arguments have been passed */
871 stl_p(p++, 0x00000000); /* nop */
872 } else {
873 stl_p(p++, 0x24040002); /* addiu a0, zero, 2 */
874 }
875
876 /* lui sp, high(ENVP_ADDR) */
877 stl_p(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff));
878 /* ori sp, sp, low(ENVP_ADDR) */
879 stl_p(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff));
880 /* lui a1, high(ENVP_ADDR) */
881 stl_p(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff));
882 /* ori a1, a1, low(ENVP_ADDR) */
883 stl_p(p++, 0x34a50000 | (ENVP_ADDR & 0xffff));
884 /* lui a2, high(ENVP_ADDR + 8) */
885 stl_p(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff));
886 /* ori a2, a2, low(ENVP_ADDR + 8) */
887 stl_p(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff));
888 /* lui a3, high(ram_low_size) */
889 stl_p(p++, 0x3c070000 | (loaderparams.ram_low_size >> 16));
890 /* ori a3, a3, low(ram_low_size) */
891 stl_p(p++, 0x34e70000 | (loaderparams.ram_low_size & 0xffff));
892
893 /* Load BAR registers as done by YAMON */
894 stl_p(p++, 0x3c09b400); /* lui t1, 0xb400 */
895
896 #ifdef TARGET_WORDS_BIGENDIAN
897 stl_p(p++, 0x3c08df00); /* lui t0, 0xdf00 */
898 #else
899 stl_p(p++, 0x340800df); /* ori t0, r0, 0x00df */
900 #endif
901 stl_p(p++, 0xad280068); /* sw t0, 0x0068(t1) */
902
903 stl_p(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
904
905 #ifdef TARGET_WORDS_BIGENDIAN
906 stl_p(p++, 0x3c08c000); /* lui t0, 0xc000 */
907 #else
908 stl_p(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
909 #endif
910 stl_p(p++, 0xad280048); /* sw t0, 0x0048(t1) */
911 #ifdef TARGET_WORDS_BIGENDIAN
912 stl_p(p++, 0x3c084000); /* lui t0, 0x4000 */
913 #else
914 stl_p(p++, 0x34080040); /* ori t0, r0, 0x0040 */
915 #endif
916 stl_p(p++, 0xad280050); /* sw t0, 0x0050(t1) */
917
918 #ifdef TARGET_WORDS_BIGENDIAN
919 stl_p(p++, 0x3c088000); /* lui t0, 0x8000 */
920 #else
921 stl_p(p++, 0x34080080); /* ori t0, r0, 0x0080 */
922 #endif
923 stl_p(p++, 0xad280058); /* sw t0, 0x0058(t1) */
924 #ifdef TARGET_WORDS_BIGENDIAN
925 stl_p(p++, 0x3c083f00); /* lui t0, 0x3f00 */
926 #else
927 stl_p(p++, 0x3408003f); /* ori t0, r0, 0x003f */
928 #endif
929 stl_p(p++, 0xad280060); /* sw t0, 0x0060(t1) */
930
931 #ifdef TARGET_WORDS_BIGENDIAN
932 stl_p(p++, 0x3c08c100); /* lui t0, 0xc100 */
933 #else
934 stl_p(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
935 #endif
936 stl_p(p++, 0xad280080); /* sw t0, 0x0080(t1) */
937 #ifdef TARGET_WORDS_BIGENDIAN
938 stl_p(p++, 0x3c085e00); /* lui t0, 0x5e00 */
939 #else
940 stl_p(p++, 0x3408005e); /* ori t0, r0, 0x005e */
941 #endif
942 stl_p(p++, 0xad280088); /* sw t0, 0x0088(t1) */
943
944 /* Jump to kernel code */
945 stl_p(p++, 0x3c1f0000 |
946 ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
947 stl_p(p++, 0x37ff0000 |
948 (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
949 stl_p(p++, 0x03e00009); /* jalr ra */
950 stl_p(p++, 0x00000000); /* nop */
951
952 /* YAMON subroutines */
953 p = (uint32_t *) (base + 0x800);
954 stl_p(p++, 0x03e00009); /* jalr ra */
955 stl_p(p++, 0x24020000); /* li v0,0 */
956 /* 808 YAMON print */
957 stl_p(p++, 0x03e06821); /* move t5,ra */
958 stl_p(p++, 0x00805821); /* move t3,a0 */
959 stl_p(p++, 0x00a05021); /* move t2,a1 */
960 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
961 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
962 stl_p(p++, 0x10800005); /* beqz a0,834 */
963 stl_p(p++, 0x00000000); /* nop */
964 stl_p(p++, 0x0ff0021c); /* jal 870 */
965 stl_p(p++, 0x00000000); /* nop */
966 stl_p(p++, 0x1000fff9); /* b 814 */
967 stl_p(p++, 0x00000000); /* nop */
968 stl_p(p++, 0x01a00009); /* jalr t5 */
969 stl_p(p++, 0x01602021); /* move a0,t3 */
970 /* 0x83c YAMON print_count */
971 stl_p(p++, 0x03e06821); /* move t5,ra */
972 stl_p(p++, 0x00805821); /* move t3,a0 */
973 stl_p(p++, 0x00a05021); /* move t2,a1 */
974 stl_p(p++, 0x00c06021); /* move t4,a2 */
975 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
976 stl_p(p++, 0x0ff0021c); /* jal 870 */
977 stl_p(p++, 0x00000000); /* nop */
978 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
979 stl_p(p++, 0x258cffff); /* addiu t4,t4,-1 */
980 stl_p(p++, 0x1580fffa); /* bnez t4,84c */
981 stl_p(p++, 0x00000000); /* nop */
982 stl_p(p++, 0x01a00009); /* jalr t5 */
983 stl_p(p++, 0x01602021); /* move a0,t3 */
984 /* 0x870 */
985 stl_p(p++, 0x3c08b800); /* lui t0,0xb400 */
986 stl_p(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
987 stl_p(p++, 0x91090005); /* lbu t1,5(t0) */
988 stl_p(p++, 0x00000000); /* nop */
989 stl_p(p++, 0x31290040); /* andi t1,t1,0x40 */
990 stl_p(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
991 stl_p(p++, 0x00000000); /* nop */
992 stl_p(p++, 0x03e00009); /* jalr ra */
993 stl_p(p++, 0xa1040000); /* sb a0,0(t0) */
994
995 }
996
997 static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t *prom_buf, int index,
998 const char *string, ...)
999 {
1000 va_list ap;
1001 int32_t table_addr;
1002
1003 if (index >= ENVP_NB_ENTRIES) {
1004 return;
1005 }
1006
1007 if (string == NULL) {
1008 prom_buf[index] = 0;
1009 return;
1010 }
1011
1012 table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
1013 prom_buf[index] = tswap32(ENVP_ADDR + table_addr);
1014
1015 va_start(ap, string);
1016 vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
1017 va_end(ap);
1018 }
1019
1020 /* Kernel */
1021 static int64_t load_kernel(void)
1022 {
1023 int64_t kernel_entry, kernel_high, initrd_size;
1024 long kernel_size;
1025 ram_addr_t initrd_offset;
1026 int big_endian;
1027 uint32_t *prom_buf;
1028 long prom_size;
1029 int prom_index = 0;
1030 uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr);
1031
1032 #ifdef TARGET_WORDS_BIGENDIAN
1033 big_endian = 1;
1034 #else
1035 big_endian = 0;
1036 #endif
1037
1038 kernel_size = load_elf(loaderparams.kernel_filename, NULL,
1039 cpu_mips_kseg0_to_phys, NULL,
1040 (uint64_t *)&kernel_entry, NULL,
1041 (uint64_t *)&kernel_high, NULL, big_endian, EM_MIPS,
1042 1, 0);
1043 if (kernel_size < 0) {
1044 error_report("could not load kernel '%s': %s",
1045 loaderparams.kernel_filename,
1046 load_elf_strerror(kernel_size));
1047 exit(1);
1048 }
1049
1050 /* Check where the kernel has been linked */
1051 if (kernel_entry & 0x80000000ll) {
1052 if (kvm_enabled()) {
1053 error_report("KVM guest kernels must be linked in useg. "
1054 "Did you forget to enable CONFIG_KVM_GUEST?");
1055 exit(1);
1056 }
1057
1058 xlate_to_kseg0 = cpu_mips_phys_to_kseg0;
1059 } else {
1060 /* if kernel entry is in useg it is probably a KVM T&E kernel */
1061 mips_um_ksegs_enable();
1062
1063 xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0;
1064 }
1065
1066 /* load initrd */
1067 initrd_size = 0;
1068 initrd_offset = 0;
1069 if (loaderparams.initrd_filename) {
1070 initrd_size = get_image_size(loaderparams.initrd_filename);
1071 if (initrd_size > 0) {
1072 /*
1073 * The kernel allocates the bootmap memory in the low memory after
1074 * the initrd. It takes at most 128kiB for 2GB RAM and 4kiB
1075 * pages.
1076 */
1077 initrd_offset = (loaderparams.ram_low_size - initrd_size
1078 - (128 * KiB)
1079 - ~INITRD_PAGE_MASK) & INITRD_PAGE_MASK;
1080 if (kernel_high >= initrd_offset) {
1081 error_report("memory too small for initial ram disk '%s'",
1082 loaderparams.initrd_filename);
1083 exit(1);
1084 }
1085 initrd_size = load_image_targphys(loaderparams.initrd_filename,
1086 initrd_offset,
1087 ram_size - initrd_offset);
1088 }
1089 if (initrd_size == (target_ulong) -1) {
1090 error_report("could not load initial ram disk '%s'",
1091 loaderparams.initrd_filename);
1092 exit(1);
1093 }
1094 }
1095
1096 /* Setup prom parameters. */
1097 prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
1098 prom_buf = g_malloc(prom_size);
1099
1100 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
1101 if (initrd_size > 0) {
1102 prom_set(prom_buf, prom_index++,
1103 "rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s",
1104 xlate_to_kseg0(NULL, initrd_offset),
1105 initrd_size, loaderparams.kernel_cmdline);
1106 } else {
1107 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
1108 }
1109
1110 prom_set(prom_buf, prom_index++, "memsize");
1111 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
1112
1113 prom_set(prom_buf, prom_index++, "ememsize");
1114 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
1115
1116 prom_set(prom_buf, prom_index++, "modetty0");
1117 prom_set(prom_buf, prom_index++, "38400n8r");
1118 prom_set(prom_buf, prom_index++, NULL);
1119
1120 rom_add_blob_fixed("prom", prom_buf, prom_size,
1121 cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR));
1122
1123 g_free(prom_buf);
1124 return kernel_entry;
1125 }
1126
1127 static void malta_mips_config(MIPSCPU *cpu)
1128 {
1129 MachineState *ms = MACHINE(qdev_get_machine());
1130 unsigned int smp_cpus = ms->smp.cpus;
1131 CPUMIPSState *env = &cpu->env;
1132 CPUState *cs = CPU(cpu);
1133
1134 env->mvp->CP0_MVPConf0 |= ((smp_cpus - 1) << CP0MVPC0_PVPE) |
1135 ((smp_cpus * cs->nr_threads - 1) << CP0MVPC0_PTC);
1136 }
1137
1138 static void main_cpu_reset(void *opaque)
1139 {
1140 MIPSCPU *cpu = opaque;
1141 CPUMIPSState *env = &cpu->env;
1142
1143 cpu_reset(CPU(cpu));
1144
1145 /*
1146 * The bootloader does not need to be rewritten as it is located in a
1147 * read only location. The kernel location and the arguments table
1148 * location does not change.
1149 */
1150 if (loaderparams.kernel_filename) {
1151 env->CP0_Status &= ~(1 << CP0St_ERL);
1152 }
1153
1154 malta_mips_config(cpu);
1155
1156 if (kvm_enabled()) {
1157 /* Start running from the bootloader we wrote to end of RAM */
1158 env->active_tc.PC = 0x40000000 + loaderparams.ram_low_size;
1159 }
1160 }
1161
1162 static void create_cpu_without_cps(MachineState *ms,
1163 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1164 {
1165 CPUMIPSState *env;
1166 MIPSCPU *cpu;
1167 int i;
1168
1169 for (i = 0; i < ms->smp.cpus; i++) {
1170 cpu = MIPS_CPU(cpu_create(ms->cpu_type));
1171
1172 /* Init internal devices */
1173 cpu_mips_irq_init_cpu(cpu);
1174 cpu_mips_clock_init(cpu);
1175 qemu_register_reset(main_cpu_reset, cpu);
1176 }
1177
1178 cpu = MIPS_CPU(first_cpu);
1179 env = &cpu->env;
1180 *i8259_irq = env->irq[2];
1181 *cbus_irq = env->irq[4];
1182 }
1183
1184 static void create_cps(MachineState *ms, MaltaState *s,
1185 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1186 {
1187 object_initialize_child(OBJECT(s), "cps", &s->cps, TYPE_MIPS_CPS);
1188 object_property_set_str(OBJECT(&s->cps), "cpu-type", ms->cpu_type,
1189 &error_fatal);
1190 object_property_set_int(OBJECT(&s->cps), "num-vp", ms->smp.cpus,
1191 &error_fatal);
1192 sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
1193
1194 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
1195
1196 *i8259_irq = get_cps_irq(&s->cps, 3);
1197 *cbus_irq = NULL;
1198 }
1199
1200 static void mips_create_cpu(MachineState *ms, MaltaState *s,
1201 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1202 {
1203 if ((ms->smp.cpus > 1) && cpu_supports_cps_smp(ms->cpu_type)) {
1204 create_cps(ms, s, cbus_irq, i8259_irq);
1205 } else {
1206 create_cpu_without_cps(ms, cbus_irq, i8259_irq);
1207 }
1208 }
1209
1210 static
1211 void mips_malta_init(MachineState *machine)
1212 {
1213 ram_addr_t ram_size = machine->ram_size;
1214 ram_addr_t ram_low_size;
1215 const char *kernel_filename = machine->kernel_filename;
1216 const char *kernel_cmdline = machine->kernel_cmdline;
1217 const char *initrd_filename = machine->initrd_filename;
1218 char *filename;
1219 PFlashCFI01 *fl;
1220 MemoryRegion *system_memory = get_system_memory();
1221 MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
1222 MemoryRegion *ram_low_postio;
1223 MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
1224 const size_t smbus_eeprom_size = 8 * 256;
1225 uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
1226 int64_t kernel_entry, bootloader_run_addr;
1227 PCIBus *pci_bus;
1228 ISABus *isa_bus;
1229 qemu_irq cbus_irq, i8259_irq;
1230 I2CBus *smbus;
1231 DriveInfo *dinfo;
1232 int fl_idx = 0;
1233 int be;
1234
1235 DeviceState *dev = qdev_new(TYPE_MIPS_MALTA);
1236 MaltaState *s = MIPS_MALTA(dev);
1237
1238 /*
1239 * The whole address space decoded by the GT-64120A doesn't generate
1240 * exception when accessing invalid memory. Create an empty slot to
1241 * emulate this feature.
1242 */
1243 empty_slot_init("GT64120", 0, 0x20000000);
1244
1245 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1246
1247 /* create CPU */
1248 mips_create_cpu(machine, s, &cbus_irq, &i8259_irq);
1249
1250 /* allocate RAM */
1251 if (ram_size > 2 * GiB) {
1252 error_report("Too much memory for this machine: %" PRId64 "MB,"
1253 " maximum 2048MB", ram_size / MiB);
1254 exit(1);
1255 }
1256
1257 /* register RAM at high address where it is undisturbed by IO */
1258 memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
1259
1260 /* alias for pre IO hole access */
1261 memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
1262 machine->ram, 0, MIN(ram_size, 256 * MiB));
1263 memory_region_add_subregion(system_memory, 0, ram_low_preio);
1264
1265 /* alias for post IO hole access, if there is enough RAM */
1266 if (ram_size > 512 * MiB) {
1267 ram_low_postio = g_new(MemoryRegion, 1);
1268 memory_region_init_alias(ram_low_postio, NULL,
1269 "mips_malta_low_postio.ram",
1270 machine->ram, 512 * MiB,
1271 ram_size - 512 * MiB);
1272 memory_region_add_subregion(system_memory, 512 * MiB,
1273 ram_low_postio);
1274 }
1275
1276 #ifdef TARGET_WORDS_BIGENDIAN
1277 be = 1;
1278 #else
1279 be = 0;
1280 #endif
1281
1282 /* FPGA */
1283
1284 /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
1285 malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2));
1286
1287 /* Load firmware in flash / BIOS. */
1288 dinfo = drive_get(IF_PFLASH, 0, fl_idx);
1289 fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios",
1290 FLASH_SIZE,
1291 dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
1292 65536,
1293 4, 0x0000, 0x0000, 0x0000, 0x0000, be);
1294 bios = pflash_cfi01_get_memory(fl);
1295 fl_idx++;
1296 if (kernel_filename) {
1297 ram_low_size = MIN(ram_size, 256 * MiB);
1298 /* For KVM we reserve 1MB of RAM for running bootloader */
1299 if (kvm_enabled()) {
1300 ram_low_size -= 0x100000;
1301 bootloader_run_addr = 0x40000000 + ram_low_size;
1302 } else {
1303 bootloader_run_addr = 0xbfc00000;
1304 }
1305
1306 /* Write a small bootloader to the flash location. */
1307 loaderparams.ram_size = ram_size;
1308 loaderparams.ram_low_size = ram_low_size;
1309 loaderparams.kernel_filename = kernel_filename;
1310 loaderparams.kernel_cmdline = kernel_cmdline;
1311 loaderparams.initrd_filename = initrd_filename;
1312 kernel_entry = load_kernel();
1313
1314 if (!cpu_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) {
1315 write_bootloader(memory_region_get_ram_ptr(bios),
1316 bootloader_run_addr, kernel_entry);
1317 } else {
1318 write_bootloader_nanomips(memory_region_get_ram_ptr(bios),
1319 bootloader_run_addr, kernel_entry);
1320 }
1321 if (kvm_enabled()) {
1322 /* Write the bootloader code @ the end of RAM, 1MB reserved */
1323 write_bootloader(memory_region_get_ram_ptr(ram_low_preio) +
1324 ram_low_size,
1325 bootloader_run_addr, kernel_entry);
1326 }
1327 } else {
1328 target_long bios_size = FLASH_SIZE;
1329 /* The flash region isn't executable from a KVM guest */
1330 if (kvm_enabled()) {
1331 error_report("KVM enabled but no -kernel argument was specified. "
1332 "Booting from flash is not supported with KVM.");
1333 exit(1);
1334 }
1335 /* Load firmware from flash. */
1336 if (!dinfo) {
1337 /* Load a BIOS image. */
1338 if (bios_name == NULL) {
1339 bios_name = BIOS_FILENAME;
1340 }
1341 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1342 if (filename) {
1343 bios_size = load_image_targphys(filename, FLASH_ADDRESS,
1344 BIOS_SIZE);
1345 g_free(filename);
1346 } else {
1347 bios_size = -1;
1348 }
1349 if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
1350 !kernel_filename && !qtest_enabled()) {
1351 error_report("Could not load MIPS bios '%s', and no "
1352 "-kernel argument was specified", bios_name);
1353 exit(1);
1354 }
1355 }
1356 /*
1357 * In little endian mode the 32bit words in the bios are swapped,
1358 * a neat trick which allows bi-endian firmware.
1359 */
1360 #ifndef TARGET_WORDS_BIGENDIAN
1361 {
1362 uint32_t *end, *addr;
1363 const size_t swapsize = MIN(bios_size, 0x3e0000);
1364 addr = rom_ptr(FLASH_ADDRESS, swapsize);
1365 if (!addr) {
1366 addr = memory_region_get_ram_ptr(bios);
1367 }
1368 end = (void *)addr + swapsize;
1369 while (addr < end) {
1370 bswap32s(addr);
1371 addr++;
1372 }
1373 }
1374 #endif
1375 }
1376
1377 /*
1378 * Map the BIOS at a 2nd physical location, as on the real board.
1379 * Copy it so that we can patch in the MIPS revision, which cannot be
1380 * handled by an overlapping region as the resulting ROM code subpage
1381 * regions are not executable.
1382 */
1383 memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
1384 &error_fatal);
1385 if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
1386 FLASH_ADDRESS, BIOS_SIZE)) {
1387 memcpy(memory_region_get_ram_ptr(bios_copy),
1388 memory_region_get_ram_ptr(bios), BIOS_SIZE);
1389 }
1390 memory_region_set_readonly(bios_copy, true);
1391 memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
1392
1393 /* Board ID = 0x420 (Malta Board with CoreLV) */
1394 stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
1395
1396 /* Northbridge */
1397 pci_bus = gt64120_register(s->i8259);
1398
1399 /* Southbridge */
1400 dev = piix4_create(pci_bus, &isa_bus, &smbus);
1401
1402 /* Interrupt controller */
1403 qdev_connect_gpio_out_named(dev, "intr", 0, i8259_irq);
1404 for (int i = 0; i < ISA_NUM_IRQS; i++) {
1405 s->i8259[i] = qdev_get_gpio_in_named(dev, "isa", i);
1406 }
1407
1408 /* generate SPD EEPROM data */
1409 generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
1410 generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
1411 smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
1412 g_free(smbus_eeprom_buf);
1413
1414 /* Super I/O: SMS FDC37M817 */
1415 isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO);
1416
1417 /* Network card */
1418 network_init(pci_bus);
1419
1420 /* Optional PCI video card */
1421 pci_vga_init(pci_bus);
1422 }
1423
1424 static const TypeInfo mips_malta_device = {
1425 .name = TYPE_MIPS_MALTA,
1426 .parent = TYPE_SYS_BUS_DEVICE,
1427 .instance_size = sizeof(MaltaState),
1428 };
1429
1430 static void mips_malta_machine_init(MachineClass *mc)
1431 {
1432 mc->desc = "MIPS Malta Core LV";
1433 mc->init = mips_malta_init;
1434 mc->block_default_type = IF_IDE;
1435 mc->max_cpus = 16;
1436 mc->is_default = true;
1437 #ifdef TARGET_MIPS64
1438 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc");
1439 #else
1440 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf");
1441 #endif
1442 mc->default_ram_id = "mips_malta.ram";
1443 }
1444
1445 DEFINE_MACHINE("malta", mips_malta_machine_init)
1446
1447 static void mips_malta_register_types(void)
1448 {
1449 type_register_static(&mips_malta_device);
1450 }
1451
1452 type_init(mips_malta_register_types)