Merge remote-tracking branch 'remotes/philmd-gitlab/tags/renesas-20201027' into staging
[qemu.git] / hw / mips / malta.c
1 /*
2 * QEMU Malta board support
3 *
4 * Copyright (c) 2006 Aurelien Jarno
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "hw/clock.h"
30 #include "hw/southbridge/piix.h"
31 #include "hw/isa/superio.h"
32 #include "hw/char/serial.h"
33 #include "net/net.h"
34 #include "hw/boards.h"
35 #include "hw/i2c/smbus_eeprom.h"
36 #include "hw/block/flash.h"
37 #include "hw/mips/mips.h"
38 #include "hw/mips/cpudevs.h"
39 #include "hw/pci/pci.h"
40 #include "sysemu/sysemu.h"
41 #include "sysemu/arch_init.h"
42 #include "qemu/log.h"
43 #include "hw/mips/bios.h"
44 #include "hw/ide.h"
45 #include "hw/irq.h"
46 #include "hw/loader.h"
47 #include "elf.h"
48 #include "exec/address-spaces.h"
49 #include "qom/object.h"
50 #include "hw/sysbus.h" /* SysBusDevice */
51 #include "qemu/host-utils.h"
52 #include "sysemu/qtest.h"
53 #include "sysemu/reset.h"
54 #include "sysemu/runstate.h"
55 #include "qapi/error.h"
56 #include "qemu/error-report.h"
57 #include "hw/misc/empty_slot.h"
58 #include "sysemu/kvm.h"
59 #include "hw/semihosting/semihost.h"
60 #include "hw/mips/cps.h"
61 #include "hw/qdev-clock.h"
62
63 #define ENVP_ADDR 0x80002000l
64 #define ENVP_NB_ENTRIES 16
65 #define ENVP_ENTRY_SIZE 256
66
67 /* Hardware addresses */
68 #define FLASH_ADDRESS 0x1e000000ULL
69 #define FPGA_ADDRESS 0x1f000000ULL
70 #define RESET_ADDRESS 0x1fc00000ULL
71
72 #define FLASH_SIZE 0x400000
73
74 #define MAX_IDE_BUS 2
75
76 typedef struct {
77 MemoryRegion iomem;
78 MemoryRegion iomem_lo; /* 0 - 0x900 */
79 MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
80 uint32_t leds;
81 uint32_t brk;
82 uint32_t gpout;
83 uint32_t i2cin;
84 uint32_t i2coe;
85 uint32_t i2cout;
86 uint32_t i2csel;
87 CharBackend display;
88 char display_text[9];
89 SerialMM *uart;
90 bool display_inited;
91 } MaltaFPGAState;
92
93 #define TYPE_MIPS_MALTA "mips-malta"
94 OBJECT_DECLARE_SIMPLE_TYPE(MaltaState, MIPS_MALTA)
95
96 struct MaltaState {
97 SysBusDevice parent_obj;
98
99 Clock *cpuclk;
100 MIPSCPSState cps;
101 qemu_irq i8259[ISA_NUM_IRQS];
102 };
103
104 static struct _loaderparams {
105 int ram_size, ram_low_size;
106 const char *kernel_filename;
107 const char *kernel_cmdline;
108 const char *initrd_filename;
109 } loaderparams;
110
111 /* Malta FPGA */
112 static void malta_fpga_update_display(void *opaque)
113 {
114 char leds_text[9];
115 int i;
116 MaltaFPGAState *s = opaque;
117
118 for (i = 7 ; i >= 0 ; i--) {
119 if (s->leds & (1 << i)) {
120 leds_text[i] = '#';
121 } else {
122 leds_text[i] = ' ';
123 }
124 }
125 leds_text[8] = '\0';
126
127 qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
128 leds_text);
129 qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
130 s->display_text);
131 }
132
133 /*
134 * EEPROM 24C01 / 24C02 emulation.
135 *
136 * Emulation for serial EEPROMs:
137 * 24C01 - 1024 bit (128 x 8)
138 * 24C02 - 2048 bit (256 x 8)
139 *
140 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
141 */
142
143 #if defined(DEBUG)
144 # define logout(fmt, ...) \
145 fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
146 #else
147 # define logout(fmt, ...) ((void)0)
148 #endif
149
150 struct _eeprom24c0x_t {
151 uint8_t tick;
152 uint8_t address;
153 uint8_t command;
154 uint8_t ack;
155 uint8_t scl;
156 uint8_t sda;
157 uint8_t data;
158 /* uint16_t size; */
159 uint8_t contents[256];
160 };
161
162 typedef struct _eeprom24c0x_t eeprom24c0x_t;
163
164 static eeprom24c0x_t spd_eeprom = {
165 .contents = {
166 /* 00000000: */
167 0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00,
168 /* 00000008: */
169 0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01,
170 /* 00000010: */
171 0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00,
172 /* 00000018: */
173 0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF,
174 /* 00000020: */
175 0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00,
176 /* 00000028: */
177 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
178 /* 00000030: */
179 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
180 /* 00000038: */
181 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0,
182 /* 00000040: */
183 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
184 /* 00000048: */
185 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
186 /* 00000050: */
187 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
188 /* 00000058: */
189 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
190 /* 00000060: */
191 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
192 /* 00000068: */
193 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
194 /* 00000070: */
195 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
196 /* 00000078: */
197 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4,
198 },
199 };
200
201 static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
202 {
203 enum { SDR = 0x4, DDR2 = 0x8 } type;
204 uint8_t *spd = spd_eeprom.contents;
205 uint8_t nbanks = 0;
206 uint16_t density = 0;
207 int i;
208
209 /* work in terms of MB */
210 ram_size /= MiB;
211
212 while ((ram_size >= 4) && (nbanks <= 2)) {
213 int sz_log2 = MIN(31 - clz32(ram_size), 14);
214 nbanks++;
215 density |= 1 << (sz_log2 - 2);
216 ram_size -= 1 << sz_log2;
217 }
218
219 /* split to 2 banks if possible */
220 if ((nbanks == 1) && (density > 1)) {
221 nbanks++;
222 density >>= 1;
223 }
224
225 if (density & 0xff00) {
226 density = (density & 0xe0) | ((density >> 8) & 0x1f);
227 type = DDR2;
228 } else if (!(density & 0x1f)) {
229 type = DDR2;
230 } else {
231 type = SDR;
232 }
233
234 if (ram_size) {
235 warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB"
236 " of SDRAM", ram_size);
237 }
238
239 /* fill in SPD memory information */
240 spd[2] = type;
241 spd[5] = nbanks;
242 spd[31] = density;
243
244 /* checksum */
245 spd[63] = 0;
246 for (i = 0; i < 63; i++) {
247 spd[63] += spd[i];
248 }
249
250 /* copy for SMBUS */
251 memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
252 }
253
254 static void generate_eeprom_serial(uint8_t *eeprom)
255 {
256 int i, pos = 0;
257 uint8_t mac[6] = { 0x00 };
258 uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
259
260 /* version */
261 eeprom[pos++] = 0x01;
262
263 /* count */
264 eeprom[pos++] = 0x02;
265
266 /* MAC address */
267 eeprom[pos++] = 0x01; /* MAC */
268 eeprom[pos++] = 0x06; /* length */
269 memcpy(&eeprom[pos], mac, sizeof(mac));
270 pos += sizeof(mac);
271
272 /* serial number */
273 eeprom[pos++] = 0x02; /* serial */
274 eeprom[pos++] = 0x05; /* length */
275 memcpy(&eeprom[pos], sn, sizeof(sn));
276 pos += sizeof(sn);
277
278 /* checksum */
279 eeprom[pos] = 0;
280 for (i = 0; i < pos; i++) {
281 eeprom[pos] += eeprom[i];
282 }
283 }
284
285 static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
286 {
287 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
288 eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
289 return eeprom->sda;
290 }
291
292 static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
293 {
294 if (eeprom->scl && scl && (eeprom->sda != sda)) {
295 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
296 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
297 sda ? "stop" : "start");
298 if (!sda) {
299 eeprom->tick = 1;
300 eeprom->command = 0;
301 }
302 } else if (eeprom->tick == 0 && !eeprom->ack) {
303 /* Waiting for start. */
304 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
305 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
306 } else if (!eeprom->scl && scl) {
307 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
308 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
309 if (eeprom->ack) {
310 logout("\ti2c ack bit = 0\n");
311 sda = 0;
312 eeprom->ack = 0;
313 } else if (eeprom->sda == sda) {
314 uint8_t bit = (sda != 0);
315 logout("\ti2c bit = %d\n", bit);
316 if (eeprom->tick < 9) {
317 eeprom->command <<= 1;
318 eeprom->command += bit;
319 eeprom->tick++;
320 if (eeprom->tick == 9) {
321 logout("\tcommand 0x%04x, %s\n", eeprom->command,
322 bit ? "read" : "write");
323 eeprom->ack = 1;
324 }
325 } else if (eeprom->tick < 17) {
326 if (eeprom->command & 1) {
327 sda = ((eeprom->data & 0x80) != 0);
328 }
329 eeprom->address <<= 1;
330 eeprom->address += bit;
331 eeprom->tick++;
332 eeprom->data <<= 1;
333 if (eeprom->tick == 17) {
334 eeprom->data = eeprom->contents[eeprom->address];
335 logout("\taddress 0x%04x, data 0x%02x\n",
336 eeprom->address, eeprom->data);
337 eeprom->ack = 1;
338 eeprom->tick = 0;
339 }
340 } else if (eeprom->tick >= 17) {
341 sda = 0;
342 }
343 } else {
344 logout("\tsda changed with raising scl\n");
345 }
346 } else {
347 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
348 scl, eeprom->sda, sda);
349 }
350 eeprom->scl = scl;
351 eeprom->sda = sda;
352 }
353
354 static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
355 unsigned size)
356 {
357 MaltaFPGAState *s = opaque;
358 uint32_t val = 0;
359 uint32_t saddr;
360
361 saddr = (addr & 0xfffff);
362
363 switch (saddr) {
364
365 /* SWITCH Register */
366 case 0x00200:
367 val = 0x00000000;
368 break;
369
370 /* STATUS Register */
371 case 0x00208:
372 #ifdef TARGET_WORDS_BIGENDIAN
373 val = 0x00000012;
374 #else
375 val = 0x00000010;
376 #endif
377 break;
378
379 /* JMPRS Register */
380 case 0x00210:
381 val = 0x00;
382 break;
383
384 /* LEDBAR Register */
385 case 0x00408:
386 val = s->leds;
387 break;
388
389 /* BRKRES Register */
390 case 0x00508:
391 val = s->brk;
392 break;
393
394 /* UART Registers are handled directly by the serial device */
395
396 /* GPOUT Register */
397 case 0x00a00:
398 val = s->gpout;
399 break;
400
401 /* XXX: implement a real I2C controller */
402
403 /* GPINP Register */
404 case 0x00a08:
405 /* IN = OUT until a real I2C control is implemented */
406 if (s->i2csel) {
407 val = s->i2cout;
408 } else {
409 val = 0x00;
410 }
411 break;
412
413 /* I2CINP Register */
414 case 0x00b00:
415 val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
416 break;
417
418 /* I2COE Register */
419 case 0x00b08:
420 val = s->i2coe;
421 break;
422
423 /* I2COUT Register */
424 case 0x00b10:
425 val = s->i2cout;
426 break;
427
428 /* I2CSEL Register */
429 case 0x00b18:
430 val = s->i2csel;
431 break;
432
433 default:
434 qemu_log_mask(LOG_GUEST_ERROR,
435 "malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX"\n",
436 addr);
437 break;
438 }
439 return val;
440 }
441
442 static void malta_fpga_write(void *opaque, hwaddr addr,
443 uint64_t val, unsigned size)
444 {
445 MaltaFPGAState *s = opaque;
446 uint32_t saddr;
447
448 saddr = (addr & 0xfffff);
449
450 switch (saddr) {
451
452 /* SWITCH Register */
453 case 0x00200:
454 break;
455
456 /* JMPRS Register */
457 case 0x00210:
458 break;
459
460 /* LEDBAR Register */
461 case 0x00408:
462 s->leds = val & 0xff;
463 malta_fpga_update_display(s);
464 break;
465
466 /* ASCIIWORD Register */
467 case 0x00410:
468 snprintf(s->display_text, 9, "%08X", (uint32_t)val);
469 malta_fpga_update_display(s);
470 break;
471
472 /* ASCIIPOS0 to ASCIIPOS7 Registers */
473 case 0x00418:
474 case 0x00420:
475 case 0x00428:
476 case 0x00430:
477 case 0x00438:
478 case 0x00440:
479 case 0x00448:
480 case 0x00450:
481 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
482 malta_fpga_update_display(s);
483 break;
484
485 /* SOFTRES Register */
486 case 0x00500:
487 if (val == 0x42) {
488 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
489 }
490 break;
491
492 /* BRKRES Register */
493 case 0x00508:
494 s->brk = val & 0xff;
495 break;
496
497 /* UART Registers are handled directly by the serial device */
498
499 /* GPOUT Register */
500 case 0x00a00:
501 s->gpout = val & 0xff;
502 break;
503
504 /* I2COE Register */
505 case 0x00b08:
506 s->i2coe = val & 0x03;
507 break;
508
509 /* I2COUT Register */
510 case 0x00b10:
511 eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
512 s->i2cout = val;
513 break;
514
515 /* I2CSEL Register */
516 case 0x00b18:
517 s->i2csel = val & 0x01;
518 break;
519
520 default:
521 qemu_log_mask(LOG_GUEST_ERROR,
522 "malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX"\n",
523 addr);
524 break;
525 }
526 }
527
528 static const MemoryRegionOps malta_fpga_ops = {
529 .read = malta_fpga_read,
530 .write = malta_fpga_write,
531 .endianness = DEVICE_NATIVE_ENDIAN,
532 };
533
534 static void malta_fpga_reset(void *opaque)
535 {
536 MaltaFPGAState *s = opaque;
537
538 s->leds = 0x00;
539 s->brk = 0x0a;
540 s->gpout = 0x00;
541 s->i2cin = 0x3;
542 s->i2coe = 0x0;
543 s->i2cout = 0x3;
544 s->i2csel = 0x1;
545
546 s->display_text[8] = '\0';
547 snprintf(s->display_text, 9, " ");
548 }
549
550 static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event)
551 {
552 MaltaFPGAState *s = opaque;
553
554 if (event == CHR_EVENT_OPENED && !s->display_inited) {
555 qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n");
556 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
557 qemu_chr_fe_printf(&s->display, "+ +\r\n");
558 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
559 qemu_chr_fe_printf(&s->display, "\n");
560 qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n");
561 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
562 qemu_chr_fe_printf(&s->display, "+ +\r\n");
563 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
564 s->display_inited = true;
565 }
566 }
567
568 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
569 hwaddr base, qemu_irq uart_irq, Chardev *uart_chr)
570 {
571 MaltaFPGAState *s;
572 Chardev *chr;
573
574 s = g_new0(MaltaFPGAState, 1);
575
576 memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
577 "malta-fpga", 0x100000);
578 memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
579 &s->iomem, 0, 0x900);
580 memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
581 &s->iomem, 0xa00, 0x100000 - 0xa00);
582
583 memory_region_add_subregion(address_space, base, &s->iomem_lo);
584 memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
585
586 chr = qemu_chr_new("fpga", "vc:320x200", NULL);
587 qemu_chr_fe_init(&s->display, chr, NULL);
588 qemu_chr_fe_set_handlers(&s->display, NULL, NULL,
589 malta_fgpa_display_event, NULL, s, NULL, true);
590
591 s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
592 230400, uart_chr, DEVICE_NATIVE_ENDIAN);
593
594 malta_fpga_reset(s);
595 qemu_register_reset(malta_fpga_reset, s);
596
597 return s;
598 }
599
600 /* Network support */
601 static void network_init(PCIBus *pci_bus)
602 {
603 int i;
604
605 for (i = 0; i < nb_nics; i++) {
606 NICInfo *nd = &nd_table[i];
607 const char *default_devaddr = NULL;
608
609 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
610 /* The malta board has a PCNet card using PCI SLOT 11 */
611 default_devaddr = "0b";
612
613 pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
614 }
615 }
616
617 static void write_bootloader_nanomips(uint8_t *base, int64_t run_addr,
618 int64_t kernel_entry)
619 {
620 uint16_t *p;
621
622 /* Small bootloader */
623 p = (uint16_t *)base;
624
625 #define NM_HI1(VAL) (((VAL) >> 16) & 0x1f)
626 #define NM_HI2(VAL) \
627 (((VAL) & 0xf000) | (((VAL) >> 19) & 0xffc) | (((VAL) >> 31) & 0x1))
628 #define NM_LO(VAL) ((VAL) & 0xfff)
629
630 stw_p(p++, 0x2800); stw_p(p++, 0x001c);
631 /* bc to_here */
632 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
633 /* nop */
634 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
635 /* nop */
636 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
637 /* nop */
638 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
639 /* nop */
640 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
641 /* nop */
642 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
643 /* nop */
644 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
645 /* nop */
646
647 /* to_here: */
648 if (semihosting_get_argc()) {
649 /* Preserve a0 content as arguments have been passed */
650 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
651 /* nop */
652 } else {
653 stw_p(p++, 0x0080); stw_p(p++, 0x0002);
654 /* li a0,2 */
655 }
656
657 stw_p(p++, 0xe3a0 | NM_HI1(ENVP_ADDR - 64));
658
659 stw_p(p++, NM_HI2(ENVP_ADDR - 64));
660 /* lui sp,%hi(ENVP_ADDR - 64) */
661
662 stw_p(p++, 0x83bd); stw_p(p++, NM_LO(ENVP_ADDR - 64));
663 /* ori sp,sp,%lo(ENVP_ADDR - 64) */
664
665 stw_p(p++, 0xe0a0 | NM_HI1(ENVP_ADDR));
666
667 stw_p(p++, NM_HI2(ENVP_ADDR));
668 /* lui a1,%hi(ENVP_ADDR) */
669
670 stw_p(p++, 0x80a5); stw_p(p++, NM_LO(ENVP_ADDR));
671 /* ori a1,a1,%lo(ENVP_ADDR) */
672
673 stw_p(p++, 0xe0c0 | NM_HI1(ENVP_ADDR + 8));
674
675 stw_p(p++, NM_HI2(ENVP_ADDR + 8));
676 /* lui a2,%hi(ENVP_ADDR + 8) */
677
678 stw_p(p++, 0x80c6); stw_p(p++, NM_LO(ENVP_ADDR + 8));
679 /* ori a2,a2,%lo(ENVP_ADDR + 8) */
680
681 stw_p(p++, 0xe0e0 | NM_HI1(loaderparams.ram_low_size));
682
683 stw_p(p++, NM_HI2(loaderparams.ram_low_size));
684 /* lui a3,%hi(loaderparams.ram_low_size) */
685
686 stw_p(p++, 0x80e7); stw_p(p++, NM_LO(loaderparams.ram_low_size));
687 /* ori a3,a3,%lo(loaderparams.ram_low_size) */
688
689 /*
690 * Load BAR registers as done by YAMON:
691 *
692 * - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
693 * - set up PCI0 MEM0 at 0x10000000, size 0x8000000
694 * - set up PCI0 MEM1 at 0x18200000, size 0xbe00000
695 *
696 */
697 stw_p(p++, 0xe040); stw_p(p++, 0x0681);
698 /* lui t1, %hi(0xb4000000) */
699
700 #ifdef TARGET_WORDS_BIGENDIAN
701
702 stw_p(p++, 0xe020); stw_p(p++, 0x0be1);
703 /* lui t0, %hi(0xdf000000) */
704
705 /* 0x68 corresponds to GT_ISD (from hw/mips/gt64xxx_pci.c) */
706 stw_p(p++, 0x8422); stw_p(p++, 0x9068);
707 /* sw t0, 0x68(t1) */
708
709 stw_p(p++, 0xe040); stw_p(p++, 0x077d);
710 /* lui t1, %hi(0xbbe00000) */
711
712 stw_p(p++, 0xe020); stw_p(p++, 0x0801);
713 /* lui t0, %hi(0xc0000000) */
714
715 /* 0x48 corresponds to GT_PCI0IOLD */
716 stw_p(p++, 0x8422); stw_p(p++, 0x9048);
717 /* sw t0, 0x48(t1) */
718
719 stw_p(p++, 0xe020); stw_p(p++, 0x0800);
720 /* lui t0, %hi(0x40000000) */
721
722 /* 0x50 corresponds to GT_PCI0IOHD */
723 stw_p(p++, 0x8422); stw_p(p++, 0x9050);
724 /* sw t0, 0x50(t1) */
725
726 stw_p(p++, 0xe020); stw_p(p++, 0x0001);
727 /* lui t0, %hi(0x80000000) */
728
729 /* 0x58 corresponds to GT_PCI0M0LD */
730 stw_p(p++, 0x8422); stw_p(p++, 0x9058);
731 /* sw t0, 0x58(t1) */
732
733 stw_p(p++, 0xe020); stw_p(p++, 0x07e0);
734 /* lui t0, %hi(0x3f000000) */
735
736 /* 0x60 corresponds to GT_PCI0M0HD */
737 stw_p(p++, 0x8422); stw_p(p++, 0x9060);
738 /* sw t0, 0x60(t1) */
739
740 stw_p(p++, 0xe020); stw_p(p++, 0x0821);
741 /* lui t0, %hi(0xc1000000) */
742
743 /* 0x80 corresponds to GT_PCI0M1LD */
744 stw_p(p++, 0x8422); stw_p(p++, 0x9080);
745 /* sw t0, 0x80(t1) */
746
747 stw_p(p++, 0xe020); stw_p(p++, 0x0bc0);
748 /* lui t0, %hi(0x5e000000) */
749
750 #else
751
752 stw_p(p++, 0x0020); stw_p(p++, 0x00df);
753 /* addiu[32] t0, $0, 0xdf */
754
755 /* 0x68 corresponds to GT_ISD */
756 stw_p(p++, 0x8422); stw_p(p++, 0x9068);
757 /* sw t0, 0x68(t1) */
758
759 /* Use kseg2 remapped address 0x1be00000 */
760 stw_p(p++, 0xe040); stw_p(p++, 0x077d);
761 /* lui t1, %hi(0xbbe00000) */
762
763 stw_p(p++, 0x0020); stw_p(p++, 0x00c0);
764 /* addiu[32] t0, $0, 0xc0 */
765
766 /* 0x48 corresponds to GT_PCI0IOLD */
767 stw_p(p++, 0x8422); stw_p(p++, 0x9048);
768 /* sw t0, 0x48(t1) */
769
770 stw_p(p++, 0x0020); stw_p(p++, 0x0040);
771 /* addiu[32] t0, $0, 0x40 */
772
773 /* 0x50 corresponds to GT_PCI0IOHD */
774 stw_p(p++, 0x8422); stw_p(p++, 0x9050);
775 /* sw t0, 0x50(t1) */
776
777 stw_p(p++, 0x0020); stw_p(p++, 0x0080);
778 /* addiu[32] t0, $0, 0x80 */
779
780 /* 0x58 corresponds to GT_PCI0M0LD */
781 stw_p(p++, 0x8422); stw_p(p++, 0x9058);
782 /* sw t0, 0x58(t1) */
783
784 stw_p(p++, 0x0020); stw_p(p++, 0x003f);
785 /* addiu[32] t0, $0, 0x3f */
786
787 /* 0x60 corresponds to GT_PCI0M0HD */
788 stw_p(p++, 0x8422); stw_p(p++, 0x9060);
789 /* sw t0, 0x60(t1) */
790
791 stw_p(p++, 0x0020); stw_p(p++, 0x00c1);
792 /* addiu[32] t0, $0, 0xc1 */
793
794 /* 0x80 corresponds to GT_PCI0M1LD */
795 stw_p(p++, 0x8422); stw_p(p++, 0x9080);
796 /* sw t0, 0x80(t1) */
797
798 stw_p(p++, 0x0020); stw_p(p++, 0x005e);
799 /* addiu[32] t0, $0, 0x5e */
800
801 #endif
802
803 /* 0x88 corresponds to GT_PCI0M1HD */
804 stw_p(p++, 0x8422); stw_p(p++, 0x9088);
805 /* sw t0, 0x88(t1) */
806
807 stw_p(p++, 0xe320 | NM_HI1(kernel_entry));
808
809 stw_p(p++, NM_HI2(kernel_entry));
810 /* lui t9,%hi(kernel_entry) */
811
812 stw_p(p++, 0x8339); stw_p(p++, NM_LO(kernel_entry));
813 /* ori t9,t9,%lo(kernel_entry) */
814
815 stw_p(p++, 0x4bf9); stw_p(p++, 0x0000);
816 /* jalrc t8 */
817 }
818
819 /*
820 * ROM and pseudo bootloader
821 *
822 * The following code implements a very very simple bootloader. It first
823 * loads the registers a0 to a3 to the values expected by the OS, and
824 * then jump at the kernel address.
825 *
826 * The bootloader should pass the locations of the kernel arguments and
827 * environment variables tables. Those tables contain the 32-bit address
828 * of NULL terminated strings. The environment variables table should be
829 * terminated by a NULL address.
830 *
831 * For a simpler implementation, the number of kernel arguments is fixed
832 * to two (the name of the kernel and the command line), and the two
833 * tables are actually the same one.
834 *
835 * The registers a0 to a3 should contain the following values:
836 * a0 - number of kernel arguments
837 * a1 - 32-bit address of the kernel arguments table
838 * a2 - 32-bit address of the environment variables table
839 * a3 - RAM size in bytes
840 */
841 static void write_bootloader(uint8_t *base, int64_t run_addr,
842 int64_t kernel_entry)
843 {
844 uint32_t *p;
845
846 /* Small bootloader */
847 p = (uint32_t *)base;
848
849 stl_p(p++, 0x08000000 | /* j 0x1fc00580 */
850 ((run_addr + 0x580) & 0x0fffffff) >> 2);
851 stl_p(p++, 0x00000000); /* nop */
852
853 /* YAMON service vector */
854 stl_p(base + 0x500, run_addr + 0x0580); /* start: */
855 stl_p(base + 0x504, run_addr + 0x083c); /* print_count: */
856 stl_p(base + 0x520, run_addr + 0x0580); /* start: */
857 stl_p(base + 0x52c, run_addr + 0x0800); /* flush_cache: */
858 stl_p(base + 0x534, run_addr + 0x0808); /* print: */
859 stl_p(base + 0x538, run_addr + 0x0800); /* reg_cpu_isr: */
860 stl_p(base + 0x53c, run_addr + 0x0800); /* unred_cpu_isr: */
861 stl_p(base + 0x540, run_addr + 0x0800); /* reg_ic_isr: */
862 stl_p(base + 0x544, run_addr + 0x0800); /* unred_ic_isr: */
863 stl_p(base + 0x548, run_addr + 0x0800); /* reg_esr: */
864 stl_p(base + 0x54c, run_addr + 0x0800); /* unreg_esr: */
865 stl_p(base + 0x550, run_addr + 0x0800); /* getchar: */
866 stl_p(base + 0x554, run_addr + 0x0800); /* syscon_read: */
867
868
869 /* Second part of the bootloader */
870 p = (uint32_t *) (base + 0x580);
871
872 if (semihosting_get_argc()) {
873 /* Preserve a0 content as arguments have been passed */
874 stl_p(p++, 0x00000000); /* nop */
875 } else {
876 stl_p(p++, 0x24040002); /* addiu a0, zero, 2 */
877 }
878
879 /* lui sp, high(ENVP_ADDR) */
880 stl_p(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff));
881 /* ori sp, sp, low(ENVP_ADDR) */
882 stl_p(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff));
883 /* lui a1, high(ENVP_ADDR) */
884 stl_p(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff));
885 /* ori a1, a1, low(ENVP_ADDR) */
886 stl_p(p++, 0x34a50000 | (ENVP_ADDR & 0xffff));
887 /* lui a2, high(ENVP_ADDR + 8) */
888 stl_p(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff));
889 /* ori a2, a2, low(ENVP_ADDR + 8) */
890 stl_p(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff));
891 /* lui a3, high(ram_low_size) */
892 stl_p(p++, 0x3c070000 | (loaderparams.ram_low_size >> 16));
893 /* ori a3, a3, low(ram_low_size) */
894 stl_p(p++, 0x34e70000 | (loaderparams.ram_low_size & 0xffff));
895
896 /* Load BAR registers as done by YAMON */
897 stl_p(p++, 0x3c09b400); /* lui t1, 0xb400 */
898
899 #ifdef TARGET_WORDS_BIGENDIAN
900 stl_p(p++, 0x3c08df00); /* lui t0, 0xdf00 */
901 #else
902 stl_p(p++, 0x340800df); /* ori t0, r0, 0x00df */
903 #endif
904 stl_p(p++, 0xad280068); /* sw t0, 0x0068(t1) */
905
906 stl_p(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
907
908 #ifdef TARGET_WORDS_BIGENDIAN
909 stl_p(p++, 0x3c08c000); /* lui t0, 0xc000 */
910 #else
911 stl_p(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
912 #endif
913 stl_p(p++, 0xad280048); /* sw t0, 0x0048(t1) */
914 #ifdef TARGET_WORDS_BIGENDIAN
915 stl_p(p++, 0x3c084000); /* lui t0, 0x4000 */
916 #else
917 stl_p(p++, 0x34080040); /* ori t0, r0, 0x0040 */
918 #endif
919 stl_p(p++, 0xad280050); /* sw t0, 0x0050(t1) */
920
921 #ifdef TARGET_WORDS_BIGENDIAN
922 stl_p(p++, 0x3c088000); /* lui t0, 0x8000 */
923 #else
924 stl_p(p++, 0x34080080); /* ori t0, r0, 0x0080 */
925 #endif
926 stl_p(p++, 0xad280058); /* sw t0, 0x0058(t1) */
927 #ifdef TARGET_WORDS_BIGENDIAN
928 stl_p(p++, 0x3c083f00); /* lui t0, 0x3f00 */
929 #else
930 stl_p(p++, 0x3408003f); /* ori t0, r0, 0x003f */
931 #endif
932 stl_p(p++, 0xad280060); /* sw t0, 0x0060(t1) */
933
934 #ifdef TARGET_WORDS_BIGENDIAN
935 stl_p(p++, 0x3c08c100); /* lui t0, 0xc100 */
936 #else
937 stl_p(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
938 #endif
939 stl_p(p++, 0xad280080); /* sw t0, 0x0080(t1) */
940 #ifdef TARGET_WORDS_BIGENDIAN
941 stl_p(p++, 0x3c085e00); /* lui t0, 0x5e00 */
942 #else
943 stl_p(p++, 0x3408005e); /* ori t0, r0, 0x005e */
944 #endif
945 stl_p(p++, 0xad280088); /* sw t0, 0x0088(t1) */
946
947 /* Jump to kernel code */
948 stl_p(p++, 0x3c1f0000 |
949 ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
950 stl_p(p++, 0x37ff0000 |
951 (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
952 stl_p(p++, 0x03e00009); /* jalr ra */
953 stl_p(p++, 0x00000000); /* nop */
954
955 /* YAMON subroutines */
956 p = (uint32_t *) (base + 0x800);
957 stl_p(p++, 0x03e00009); /* jalr ra */
958 stl_p(p++, 0x24020000); /* li v0,0 */
959 /* 808 YAMON print */
960 stl_p(p++, 0x03e06821); /* move t5,ra */
961 stl_p(p++, 0x00805821); /* move t3,a0 */
962 stl_p(p++, 0x00a05021); /* move t2,a1 */
963 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
964 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
965 stl_p(p++, 0x10800005); /* beqz a0,834 */
966 stl_p(p++, 0x00000000); /* nop */
967 stl_p(p++, 0x0ff0021c); /* jal 870 */
968 stl_p(p++, 0x00000000); /* nop */
969 stl_p(p++, 0x1000fff9); /* b 814 */
970 stl_p(p++, 0x00000000); /* nop */
971 stl_p(p++, 0x01a00009); /* jalr t5 */
972 stl_p(p++, 0x01602021); /* move a0,t3 */
973 /* 0x83c YAMON print_count */
974 stl_p(p++, 0x03e06821); /* move t5,ra */
975 stl_p(p++, 0x00805821); /* move t3,a0 */
976 stl_p(p++, 0x00a05021); /* move t2,a1 */
977 stl_p(p++, 0x00c06021); /* move t4,a2 */
978 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
979 stl_p(p++, 0x0ff0021c); /* jal 870 */
980 stl_p(p++, 0x00000000); /* nop */
981 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
982 stl_p(p++, 0x258cffff); /* addiu t4,t4,-1 */
983 stl_p(p++, 0x1580fffa); /* bnez t4,84c */
984 stl_p(p++, 0x00000000); /* nop */
985 stl_p(p++, 0x01a00009); /* jalr t5 */
986 stl_p(p++, 0x01602021); /* move a0,t3 */
987 /* 0x870 */
988 stl_p(p++, 0x3c08b800); /* lui t0,0xb400 */
989 stl_p(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
990 stl_p(p++, 0x91090005); /* lbu t1,5(t0) */
991 stl_p(p++, 0x00000000); /* nop */
992 stl_p(p++, 0x31290040); /* andi t1,t1,0x40 */
993 stl_p(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
994 stl_p(p++, 0x00000000); /* nop */
995 stl_p(p++, 0x03e00009); /* jalr ra */
996 stl_p(p++, 0xa1040000); /* sb a0,0(t0) */
997
998 }
999
1000 static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t *prom_buf, int index,
1001 const char *string, ...)
1002 {
1003 va_list ap;
1004 int32_t table_addr;
1005
1006 if (index >= ENVP_NB_ENTRIES) {
1007 return;
1008 }
1009
1010 if (string == NULL) {
1011 prom_buf[index] = 0;
1012 return;
1013 }
1014
1015 table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
1016 prom_buf[index] = tswap32(ENVP_ADDR + table_addr);
1017
1018 va_start(ap, string);
1019 vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
1020 va_end(ap);
1021 }
1022
1023 /* Kernel */
1024 static int64_t load_kernel(void)
1025 {
1026 int64_t kernel_entry, kernel_high, initrd_size;
1027 long kernel_size;
1028 ram_addr_t initrd_offset;
1029 int big_endian;
1030 uint32_t *prom_buf;
1031 long prom_size;
1032 int prom_index = 0;
1033 uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr);
1034
1035 #ifdef TARGET_WORDS_BIGENDIAN
1036 big_endian = 1;
1037 #else
1038 big_endian = 0;
1039 #endif
1040
1041 kernel_size = load_elf(loaderparams.kernel_filename, NULL,
1042 cpu_mips_kseg0_to_phys, NULL,
1043 (uint64_t *)&kernel_entry, NULL,
1044 (uint64_t *)&kernel_high, NULL, big_endian, EM_MIPS,
1045 1, 0);
1046 if (kernel_size < 0) {
1047 error_report("could not load kernel '%s': %s",
1048 loaderparams.kernel_filename,
1049 load_elf_strerror(kernel_size));
1050 exit(1);
1051 }
1052
1053 /* Check where the kernel has been linked */
1054 if (kernel_entry & 0x80000000ll) {
1055 if (kvm_enabled()) {
1056 error_report("KVM guest kernels must be linked in useg. "
1057 "Did you forget to enable CONFIG_KVM_GUEST?");
1058 exit(1);
1059 }
1060
1061 xlate_to_kseg0 = cpu_mips_phys_to_kseg0;
1062 } else {
1063 /* if kernel entry is in useg it is probably a KVM T&E kernel */
1064 mips_um_ksegs_enable();
1065
1066 xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0;
1067 }
1068
1069 /* load initrd */
1070 initrd_size = 0;
1071 initrd_offset = 0;
1072 if (loaderparams.initrd_filename) {
1073 initrd_size = get_image_size(loaderparams.initrd_filename);
1074 if (initrd_size > 0) {
1075 /*
1076 * The kernel allocates the bootmap memory in the low memory after
1077 * the initrd. It takes at most 128kiB for 2GB RAM and 4kiB
1078 * pages.
1079 */
1080 initrd_offset = ROUND_UP(loaderparams.ram_low_size
1081 - (initrd_size + 128 * KiB),
1082 INITRD_PAGE_SIZE);
1083 if (kernel_high >= initrd_offset) {
1084 error_report("memory too small for initial ram disk '%s'",
1085 loaderparams.initrd_filename);
1086 exit(1);
1087 }
1088 initrd_size = load_image_targphys(loaderparams.initrd_filename,
1089 initrd_offset,
1090 ram_size - initrd_offset);
1091 }
1092 if (initrd_size == (target_ulong) -1) {
1093 error_report("could not load initial ram disk '%s'",
1094 loaderparams.initrd_filename);
1095 exit(1);
1096 }
1097 }
1098
1099 /* Setup prom parameters. */
1100 prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
1101 prom_buf = g_malloc(prom_size);
1102
1103 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
1104 if (initrd_size > 0) {
1105 prom_set(prom_buf, prom_index++,
1106 "rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s",
1107 xlate_to_kseg0(NULL, initrd_offset),
1108 initrd_size, loaderparams.kernel_cmdline);
1109 } else {
1110 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
1111 }
1112
1113 prom_set(prom_buf, prom_index++, "memsize");
1114 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
1115
1116 prom_set(prom_buf, prom_index++, "ememsize");
1117 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
1118
1119 prom_set(prom_buf, prom_index++, "modetty0");
1120 prom_set(prom_buf, prom_index++, "38400n8r");
1121 prom_set(prom_buf, prom_index++, NULL);
1122
1123 rom_add_blob_fixed("prom", prom_buf, prom_size,
1124 cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR));
1125
1126 g_free(prom_buf);
1127 return kernel_entry;
1128 }
1129
1130 static void malta_mips_config(MIPSCPU *cpu)
1131 {
1132 MachineState *ms = MACHINE(qdev_get_machine());
1133 unsigned int smp_cpus = ms->smp.cpus;
1134 CPUMIPSState *env = &cpu->env;
1135 CPUState *cs = CPU(cpu);
1136
1137 env->mvp->CP0_MVPConf0 |= ((smp_cpus - 1) << CP0MVPC0_PVPE) |
1138 ((smp_cpus * cs->nr_threads - 1) << CP0MVPC0_PTC);
1139 }
1140
1141 static void main_cpu_reset(void *opaque)
1142 {
1143 MIPSCPU *cpu = opaque;
1144 CPUMIPSState *env = &cpu->env;
1145
1146 cpu_reset(CPU(cpu));
1147
1148 /*
1149 * The bootloader does not need to be rewritten as it is located in a
1150 * read only location. The kernel location and the arguments table
1151 * location does not change.
1152 */
1153 if (loaderparams.kernel_filename) {
1154 env->CP0_Status &= ~(1 << CP0St_ERL);
1155 }
1156
1157 malta_mips_config(cpu);
1158
1159 if (kvm_enabled()) {
1160 /* Start running from the bootloader we wrote to end of RAM */
1161 env->active_tc.PC = 0x40000000 + loaderparams.ram_low_size;
1162 }
1163 }
1164
1165 static void create_cpu_without_cps(MachineState *ms, MaltaState *s,
1166 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1167 {
1168 CPUMIPSState *env;
1169 MIPSCPU *cpu;
1170 int i;
1171
1172 for (i = 0; i < ms->smp.cpus; i++) {
1173 cpu = mips_cpu_create_with_clock(ms->cpu_type, s->cpuclk);
1174
1175 /* Init internal devices */
1176 cpu_mips_irq_init_cpu(cpu);
1177 cpu_mips_clock_init(cpu);
1178 qemu_register_reset(main_cpu_reset, cpu);
1179 }
1180
1181 cpu = MIPS_CPU(first_cpu);
1182 env = &cpu->env;
1183 *i8259_irq = env->irq[2];
1184 *cbus_irq = env->irq[4];
1185 }
1186
1187 static void create_cps(MachineState *ms, MaltaState *s,
1188 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1189 {
1190 object_initialize_child(OBJECT(s), "cps", &s->cps, TYPE_MIPS_CPS);
1191 object_property_set_str(OBJECT(&s->cps), "cpu-type", ms->cpu_type,
1192 &error_fatal);
1193 object_property_set_int(OBJECT(&s->cps), "num-vp", ms->smp.cpus,
1194 &error_fatal);
1195 qdev_connect_clock_in(DEVICE(&s->cps), "clk-in", s->cpuclk);
1196 sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
1197
1198 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
1199
1200 *i8259_irq = get_cps_irq(&s->cps, 3);
1201 *cbus_irq = NULL;
1202 }
1203
1204 static void mips_create_cpu(MachineState *ms, MaltaState *s,
1205 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1206 {
1207 if ((ms->smp.cpus > 1) && cpu_supports_cps_smp(ms->cpu_type)) {
1208 create_cps(ms, s, cbus_irq, i8259_irq);
1209 } else {
1210 create_cpu_without_cps(ms, s, cbus_irq, i8259_irq);
1211 }
1212 }
1213
1214 static
1215 void mips_malta_init(MachineState *machine)
1216 {
1217 ram_addr_t ram_size = machine->ram_size;
1218 ram_addr_t ram_low_size;
1219 const char *kernel_filename = machine->kernel_filename;
1220 const char *kernel_cmdline = machine->kernel_cmdline;
1221 const char *initrd_filename = machine->initrd_filename;
1222 char *filename;
1223 PFlashCFI01 *fl;
1224 MemoryRegion *system_memory = get_system_memory();
1225 MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
1226 MemoryRegion *ram_low_postio;
1227 MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
1228 const size_t smbus_eeprom_size = 8 * 256;
1229 uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
1230 int64_t kernel_entry, bootloader_run_addr;
1231 PCIBus *pci_bus;
1232 ISABus *isa_bus;
1233 qemu_irq cbus_irq, i8259_irq;
1234 I2CBus *smbus;
1235 DriveInfo *dinfo;
1236 int fl_idx = 0;
1237 int be;
1238 MaltaState *s;
1239 DeviceState *dev;
1240
1241 s = MIPS_MALTA(qdev_new(TYPE_MIPS_MALTA));
1242 sysbus_realize_and_unref(SYS_BUS_DEVICE(s), &error_fatal);
1243
1244 /* create CPU */
1245 mips_create_cpu(machine, s, &cbus_irq, &i8259_irq);
1246
1247 /* allocate RAM */
1248 if (ram_size > 2 * GiB) {
1249 error_report("Too much memory for this machine: %" PRId64 "MB,"
1250 " maximum 2048MB", ram_size / MiB);
1251 exit(1);
1252 }
1253
1254 /* register RAM at high address where it is undisturbed by IO */
1255 memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
1256
1257 /* alias for pre IO hole access */
1258 memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
1259 machine->ram, 0, MIN(ram_size, 256 * MiB));
1260 memory_region_add_subregion(system_memory, 0, ram_low_preio);
1261
1262 /* alias for post IO hole access, if there is enough RAM */
1263 if (ram_size > 512 * MiB) {
1264 ram_low_postio = g_new(MemoryRegion, 1);
1265 memory_region_init_alias(ram_low_postio, NULL,
1266 "mips_malta_low_postio.ram",
1267 machine->ram, 512 * MiB,
1268 ram_size - 512 * MiB);
1269 memory_region_add_subregion(system_memory, 512 * MiB,
1270 ram_low_postio);
1271 }
1272
1273 #ifdef TARGET_WORDS_BIGENDIAN
1274 be = 1;
1275 #else
1276 be = 0;
1277 #endif
1278
1279 /* FPGA */
1280
1281 /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
1282 malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2));
1283
1284 /* Load firmware in flash / BIOS. */
1285 dinfo = drive_get(IF_PFLASH, 0, fl_idx);
1286 fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios",
1287 FLASH_SIZE,
1288 dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
1289 65536,
1290 4, 0x0000, 0x0000, 0x0000, 0x0000, be);
1291 bios = pflash_cfi01_get_memory(fl);
1292 fl_idx++;
1293 if (kernel_filename) {
1294 ram_low_size = MIN(ram_size, 256 * MiB);
1295 /* For KVM we reserve 1MB of RAM for running bootloader */
1296 if (kvm_enabled()) {
1297 ram_low_size -= 0x100000;
1298 bootloader_run_addr = 0x40000000 + ram_low_size;
1299 } else {
1300 bootloader_run_addr = 0xbfc00000;
1301 }
1302
1303 /* Write a small bootloader to the flash location. */
1304 loaderparams.ram_size = ram_size;
1305 loaderparams.ram_low_size = ram_low_size;
1306 loaderparams.kernel_filename = kernel_filename;
1307 loaderparams.kernel_cmdline = kernel_cmdline;
1308 loaderparams.initrd_filename = initrd_filename;
1309 kernel_entry = load_kernel();
1310
1311 if (!cpu_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) {
1312 write_bootloader(memory_region_get_ram_ptr(bios),
1313 bootloader_run_addr, kernel_entry);
1314 } else {
1315 write_bootloader_nanomips(memory_region_get_ram_ptr(bios),
1316 bootloader_run_addr, kernel_entry);
1317 }
1318 if (kvm_enabled()) {
1319 /* Write the bootloader code @ the end of RAM, 1MB reserved */
1320 write_bootloader(memory_region_get_ram_ptr(ram_low_preio) +
1321 ram_low_size,
1322 bootloader_run_addr, kernel_entry);
1323 }
1324 } else {
1325 target_long bios_size = FLASH_SIZE;
1326 /* The flash region isn't executable from a KVM guest */
1327 if (kvm_enabled()) {
1328 error_report("KVM enabled but no -kernel argument was specified. "
1329 "Booting from flash is not supported with KVM.");
1330 exit(1);
1331 }
1332 /* Load firmware from flash. */
1333 if (!dinfo) {
1334 /* Load a BIOS image. */
1335 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS,
1336 bios_name ?: BIOS_FILENAME);
1337 if (filename) {
1338 bios_size = load_image_targphys(filename, FLASH_ADDRESS,
1339 BIOS_SIZE);
1340 g_free(filename);
1341 } else {
1342 bios_size = -1;
1343 }
1344 if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
1345 bios_name && !qtest_enabled()) {
1346 error_report("Could not load MIPS bios '%s'", bios_name);
1347 exit(1);
1348 }
1349 }
1350 /*
1351 * In little endian mode the 32bit words in the bios are swapped,
1352 * a neat trick which allows bi-endian firmware.
1353 */
1354 #ifndef TARGET_WORDS_BIGENDIAN
1355 {
1356 uint32_t *end, *addr;
1357 const size_t swapsize = MIN(bios_size, 0x3e0000);
1358 addr = rom_ptr(FLASH_ADDRESS, swapsize);
1359 if (!addr) {
1360 addr = memory_region_get_ram_ptr(bios);
1361 }
1362 end = (void *)addr + swapsize;
1363 while (addr < end) {
1364 bswap32s(addr);
1365 addr++;
1366 }
1367 }
1368 #endif
1369 }
1370
1371 /*
1372 * Map the BIOS at a 2nd physical location, as on the real board.
1373 * Copy it so that we can patch in the MIPS revision, which cannot be
1374 * handled by an overlapping region as the resulting ROM code subpage
1375 * regions are not executable.
1376 */
1377 memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
1378 &error_fatal);
1379 if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
1380 FLASH_ADDRESS, BIOS_SIZE)) {
1381 memcpy(memory_region_get_ram_ptr(bios_copy),
1382 memory_region_get_ram_ptr(bios), BIOS_SIZE);
1383 }
1384 memory_region_set_readonly(bios_copy, true);
1385 memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
1386
1387 /* Board ID = 0x420 (Malta Board with CoreLV) */
1388 stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
1389
1390 /* Northbridge */
1391 pci_bus = gt64120_register(s->i8259);
1392 /*
1393 * The whole address space decoded by the GT-64120A doesn't generate
1394 * exception when accessing invalid memory. Create an empty slot to
1395 * emulate this feature.
1396 */
1397 empty_slot_init("GT64120", 0, 0x20000000);
1398
1399 /* Southbridge */
1400 dev = piix4_create(pci_bus, &isa_bus, &smbus);
1401
1402 /* Interrupt controller */
1403 qdev_connect_gpio_out_named(dev, "intr", 0, i8259_irq);
1404 for (int i = 0; i < ISA_NUM_IRQS; i++) {
1405 s->i8259[i] = qdev_get_gpio_in_named(dev, "isa", i);
1406 }
1407
1408 /* generate SPD EEPROM data */
1409 generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
1410 generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
1411 smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
1412 g_free(smbus_eeprom_buf);
1413
1414 /* Super I/O: SMS FDC37M817 */
1415 isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO);
1416
1417 /* Network card */
1418 network_init(pci_bus);
1419
1420 /* Optional PCI video card */
1421 pci_vga_init(pci_bus);
1422 }
1423
1424 static void mips_malta_instance_init(Object *obj)
1425 {
1426 MaltaState *s = MIPS_MALTA(obj);
1427
1428 s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
1429 clock_set_hz(s->cpuclk, 320000000); /* 320 MHz */
1430 }
1431
1432 static const TypeInfo mips_malta_device = {
1433 .name = TYPE_MIPS_MALTA,
1434 .parent = TYPE_SYS_BUS_DEVICE,
1435 .instance_size = sizeof(MaltaState),
1436 .instance_init = mips_malta_instance_init,
1437 };
1438
1439 static void mips_malta_machine_init(MachineClass *mc)
1440 {
1441 mc->desc = "MIPS Malta Core LV";
1442 mc->init = mips_malta_init;
1443 mc->block_default_type = IF_IDE;
1444 mc->max_cpus = 16;
1445 mc->is_default = true;
1446 #ifdef TARGET_MIPS64
1447 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc");
1448 #else
1449 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf");
1450 #endif
1451 mc->default_ram_id = "mips_malta.ram";
1452 }
1453
1454 DEFINE_MACHINE("malta", mips_malta_machine_init)
1455
1456 static void mips_malta_register_types(void)
1457 {
1458 type_register_static(&mips_malta_device);
1459 }
1460
1461 type_init(mips_malta_register_types)