trace: switch position of headers to what Meson requires
[qemu.git] / hw / mips / malta.c
1 /*
2 * QEMU Malta board support
3 *
4 * Copyright (c) 2006 Aurelien Jarno
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "hw/southbridge/piix.h"
30 #include "hw/isa/superio.h"
31 #include "hw/char/serial.h"
32 #include "net/net.h"
33 #include "hw/boards.h"
34 #include "hw/i2c/smbus_eeprom.h"
35 #include "hw/block/flash.h"
36 #include "hw/mips/mips.h"
37 #include "hw/mips/cpudevs.h"
38 #include "hw/pci/pci.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/arch_init.h"
41 #include "qemu/log.h"
42 #include "hw/mips/bios.h"
43 #include "hw/ide.h"
44 #include "hw/irq.h"
45 #include "hw/loader.h"
46 #include "elf.h"
47 #include "exec/address-spaces.h"
48 #include "hw/sysbus.h" /* SysBusDevice */
49 #include "qemu/host-utils.h"
50 #include "sysemu/qtest.h"
51 #include "sysemu/reset.h"
52 #include "sysemu/runstate.h"
53 #include "qapi/error.h"
54 #include "qemu/error-report.h"
55 #include "hw/misc/empty_slot.h"
56 #include "sysemu/kvm.h"
57 #include "hw/semihosting/semihost.h"
58 #include "hw/mips/cps.h"
59
60 #define ENVP_ADDR 0x80002000l
61 #define ENVP_NB_ENTRIES 16
62 #define ENVP_ENTRY_SIZE 256
63
64 /* Hardware addresses */
65 #define FLASH_ADDRESS 0x1e000000ULL
66 #define FPGA_ADDRESS 0x1f000000ULL
67 #define RESET_ADDRESS 0x1fc00000ULL
68
69 #define FLASH_SIZE 0x400000
70
71 #define MAX_IDE_BUS 2
72
73 typedef struct {
74 MemoryRegion iomem;
75 MemoryRegion iomem_lo; /* 0 - 0x900 */
76 MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
77 uint32_t leds;
78 uint32_t brk;
79 uint32_t gpout;
80 uint32_t i2cin;
81 uint32_t i2coe;
82 uint32_t i2cout;
83 uint32_t i2csel;
84 CharBackend display;
85 char display_text[9];
86 SerialMM *uart;
87 bool display_inited;
88 } MaltaFPGAState;
89
90 #define TYPE_MIPS_MALTA "mips-malta"
91 #define MIPS_MALTA(obj) OBJECT_CHECK(MaltaState, (obj), TYPE_MIPS_MALTA)
92
93 typedef struct {
94 SysBusDevice parent_obj;
95
96 MIPSCPSState cps;
97 qemu_irq i8259[ISA_NUM_IRQS];
98 } MaltaState;
99
100 static struct _loaderparams {
101 int ram_size, ram_low_size;
102 const char *kernel_filename;
103 const char *kernel_cmdline;
104 const char *initrd_filename;
105 } loaderparams;
106
107 /* Malta FPGA */
108 static void malta_fpga_update_display(void *opaque)
109 {
110 char leds_text[9];
111 int i;
112 MaltaFPGAState *s = opaque;
113
114 for (i = 7 ; i >= 0 ; i--) {
115 if (s->leds & (1 << i)) {
116 leds_text[i] = '#';
117 } else {
118 leds_text[i] = ' ';
119 }
120 }
121 leds_text[8] = '\0';
122
123 qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
124 leds_text);
125 qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
126 s->display_text);
127 }
128
129 /*
130 * EEPROM 24C01 / 24C02 emulation.
131 *
132 * Emulation for serial EEPROMs:
133 * 24C01 - 1024 bit (128 x 8)
134 * 24C02 - 2048 bit (256 x 8)
135 *
136 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
137 */
138
139 #if defined(DEBUG)
140 # define logout(fmt, ...) \
141 fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
142 #else
143 # define logout(fmt, ...) ((void)0)
144 #endif
145
146 struct _eeprom24c0x_t {
147 uint8_t tick;
148 uint8_t address;
149 uint8_t command;
150 uint8_t ack;
151 uint8_t scl;
152 uint8_t sda;
153 uint8_t data;
154 /* uint16_t size; */
155 uint8_t contents[256];
156 };
157
158 typedef struct _eeprom24c0x_t eeprom24c0x_t;
159
160 static eeprom24c0x_t spd_eeprom = {
161 .contents = {
162 /* 00000000: */
163 0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00,
164 /* 00000008: */
165 0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01,
166 /* 00000010: */
167 0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00,
168 /* 00000018: */
169 0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF,
170 /* 00000020: */
171 0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00,
172 /* 00000028: */
173 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
174 /* 00000030: */
175 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
176 /* 00000038: */
177 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0,
178 /* 00000040: */
179 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
180 /* 00000048: */
181 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
182 /* 00000050: */
183 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
184 /* 00000058: */
185 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
186 /* 00000060: */
187 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
188 /* 00000068: */
189 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
190 /* 00000070: */
191 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
192 /* 00000078: */
193 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4,
194 },
195 };
196
197 static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
198 {
199 enum { SDR = 0x4, DDR2 = 0x8 } type;
200 uint8_t *spd = spd_eeprom.contents;
201 uint8_t nbanks = 0;
202 uint16_t density = 0;
203 int i;
204
205 /* work in terms of MB */
206 ram_size /= MiB;
207
208 while ((ram_size >= 4) && (nbanks <= 2)) {
209 int sz_log2 = MIN(31 - clz32(ram_size), 14);
210 nbanks++;
211 density |= 1 << (sz_log2 - 2);
212 ram_size -= 1 << sz_log2;
213 }
214
215 /* split to 2 banks if possible */
216 if ((nbanks == 1) && (density > 1)) {
217 nbanks++;
218 density >>= 1;
219 }
220
221 if (density & 0xff00) {
222 density = (density & 0xe0) | ((density >> 8) & 0x1f);
223 type = DDR2;
224 } else if (!(density & 0x1f)) {
225 type = DDR2;
226 } else {
227 type = SDR;
228 }
229
230 if (ram_size) {
231 warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB"
232 " of SDRAM", ram_size);
233 }
234
235 /* fill in SPD memory information */
236 spd[2] = type;
237 spd[5] = nbanks;
238 spd[31] = density;
239
240 /* checksum */
241 spd[63] = 0;
242 for (i = 0; i < 63; i++) {
243 spd[63] += spd[i];
244 }
245
246 /* copy for SMBUS */
247 memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
248 }
249
250 static void generate_eeprom_serial(uint8_t *eeprom)
251 {
252 int i, pos = 0;
253 uint8_t mac[6] = { 0x00 };
254 uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
255
256 /* version */
257 eeprom[pos++] = 0x01;
258
259 /* count */
260 eeprom[pos++] = 0x02;
261
262 /* MAC address */
263 eeprom[pos++] = 0x01; /* MAC */
264 eeprom[pos++] = 0x06; /* length */
265 memcpy(&eeprom[pos], mac, sizeof(mac));
266 pos += sizeof(mac);
267
268 /* serial number */
269 eeprom[pos++] = 0x02; /* serial */
270 eeprom[pos++] = 0x05; /* length */
271 memcpy(&eeprom[pos], sn, sizeof(sn));
272 pos += sizeof(sn);
273
274 /* checksum */
275 eeprom[pos] = 0;
276 for (i = 0; i < pos; i++) {
277 eeprom[pos] += eeprom[i];
278 }
279 }
280
281 static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
282 {
283 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
284 eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
285 return eeprom->sda;
286 }
287
288 static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
289 {
290 if (eeprom->scl && scl && (eeprom->sda != sda)) {
291 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
292 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
293 sda ? "stop" : "start");
294 if (!sda) {
295 eeprom->tick = 1;
296 eeprom->command = 0;
297 }
298 } else if (eeprom->tick == 0 && !eeprom->ack) {
299 /* Waiting for start. */
300 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
301 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
302 } else if (!eeprom->scl && scl) {
303 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
304 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
305 if (eeprom->ack) {
306 logout("\ti2c ack bit = 0\n");
307 sda = 0;
308 eeprom->ack = 0;
309 } else if (eeprom->sda == sda) {
310 uint8_t bit = (sda != 0);
311 logout("\ti2c bit = %d\n", bit);
312 if (eeprom->tick < 9) {
313 eeprom->command <<= 1;
314 eeprom->command += bit;
315 eeprom->tick++;
316 if (eeprom->tick == 9) {
317 logout("\tcommand 0x%04x, %s\n", eeprom->command,
318 bit ? "read" : "write");
319 eeprom->ack = 1;
320 }
321 } else if (eeprom->tick < 17) {
322 if (eeprom->command & 1) {
323 sda = ((eeprom->data & 0x80) != 0);
324 }
325 eeprom->address <<= 1;
326 eeprom->address += bit;
327 eeprom->tick++;
328 eeprom->data <<= 1;
329 if (eeprom->tick == 17) {
330 eeprom->data = eeprom->contents[eeprom->address];
331 logout("\taddress 0x%04x, data 0x%02x\n",
332 eeprom->address, eeprom->data);
333 eeprom->ack = 1;
334 eeprom->tick = 0;
335 }
336 } else if (eeprom->tick >= 17) {
337 sda = 0;
338 }
339 } else {
340 logout("\tsda changed with raising scl\n");
341 }
342 } else {
343 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
344 scl, eeprom->sda, sda);
345 }
346 eeprom->scl = scl;
347 eeprom->sda = sda;
348 }
349
350 static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
351 unsigned size)
352 {
353 MaltaFPGAState *s = opaque;
354 uint32_t val = 0;
355 uint32_t saddr;
356
357 saddr = (addr & 0xfffff);
358
359 switch (saddr) {
360
361 /* SWITCH Register */
362 case 0x00200:
363 val = 0x00000000;
364 break;
365
366 /* STATUS Register */
367 case 0x00208:
368 #ifdef TARGET_WORDS_BIGENDIAN
369 val = 0x00000012;
370 #else
371 val = 0x00000010;
372 #endif
373 break;
374
375 /* JMPRS Register */
376 case 0x00210:
377 val = 0x00;
378 break;
379
380 /* LEDBAR Register */
381 case 0x00408:
382 val = s->leds;
383 break;
384
385 /* BRKRES Register */
386 case 0x00508:
387 val = s->brk;
388 break;
389
390 /* UART Registers are handled directly by the serial device */
391
392 /* GPOUT Register */
393 case 0x00a00:
394 val = s->gpout;
395 break;
396
397 /* XXX: implement a real I2C controller */
398
399 /* GPINP Register */
400 case 0x00a08:
401 /* IN = OUT until a real I2C control is implemented */
402 if (s->i2csel) {
403 val = s->i2cout;
404 } else {
405 val = 0x00;
406 }
407 break;
408
409 /* I2CINP Register */
410 case 0x00b00:
411 val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
412 break;
413
414 /* I2COE Register */
415 case 0x00b08:
416 val = s->i2coe;
417 break;
418
419 /* I2COUT Register */
420 case 0x00b10:
421 val = s->i2cout;
422 break;
423
424 /* I2CSEL Register */
425 case 0x00b18:
426 val = s->i2csel;
427 break;
428
429 default:
430 qemu_log_mask(LOG_GUEST_ERROR,
431 "malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX"\n",
432 addr);
433 break;
434 }
435 return val;
436 }
437
438 static void malta_fpga_write(void *opaque, hwaddr addr,
439 uint64_t val, unsigned size)
440 {
441 MaltaFPGAState *s = opaque;
442 uint32_t saddr;
443
444 saddr = (addr & 0xfffff);
445
446 switch (saddr) {
447
448 /* SWITCH Register */
449 case 0x00200:
450 break;
451
452 /* JMPRS Register */
453 case 0x00210:
454 break;
455
456 /* LEDBAR Register */
457 case 0x00408:
458 s->leds = val & 0xff;
459 malta_fpga_update_display(s);
460 break;
461
462 /* ASCIIWORD Register */
463 case 0x00410:
464 snprintf(s->display_text, 9, "%08X", (uint32_t)val);
465 malta_fpga_update_display(s);
466 break;
467
468 /* ASCIIPOS0 to ASCIIPOS7 Registers */
469 case 0x00418:
470 case 0x00420:
471 case 0x00428:
472 case 0x00430:
473 case 0x00438:
474 case 0x00440:
475 case 0x00448:
476 case 0x00450:
477 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
478 malta_fpga_update_display(s);
479 break;
480
481 /* SOFTRES Register */
482 case 0x00500:
483 if (val == 0x42) {
484 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
485 }
486 break;
487
488 /* BRKRES Register */
489 case 0x00508:
490 s->brk = val & 0xff;
491 break;
492
493 /* UART Registers are handled directly by the serial device */
494
495 /* GPOUT Register */
496 case 0x00a00:
497 s->gpout = val & 0xff;
498 break;
499
500 /* I2COE Register */
501 case 0x00b08:
502 s->i2coe = val & 0x03;
503 break;
504
505 /* I2COUT Register */
506 case 0x00b10:
507 eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
508 s->i2cout = val;
509 break;
510
511 /* I2CSEL Register */
512 case 0x00b18:
513 s->i2csel = val & 0x01;
514 break;
515
516 default:
517 qemu_log_mask(LOG_GUEST_ERROR,
518 "malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX"\n",
519 addr);
520 break;
521 }
522 }
523
524 static const MemoryRegionOps malta_fpga_ops = {
525 .read = malta_fpga_read,
526 .write = malta_fpga_write,
527 .endianness = DEVICE_NATIVE_ENDIAN,
528 };
529
530 static void malta_fpga_reset(void *opaque)
531 {
532 MaltaFPGAState *s = opaque;
533
534 s->leds = 0x00;
535 s->brk = 0x0a;
536 s->gpout = 0x00;
537 s->i2cin = 0x3;
538 s->i2coe = 0x0;
539 s->i2cout = 0x3;
540 s->i2csel = 0x1;
541
542 s->display_text[8] = '\0';
543 snprintf(s->display_text, 9, " ");
544 }
545
546 static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event)
547 {
548 MaltaFPGAState *s = opaque;
549
550 if (event == CHR_EVENT_OPENED && !s->display_inited) {
551 qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n");
552 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
553 qemu_chr_fe_printf(&s->display, "+ +\r\n");
554 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
555 qemu_chr_fe_printf(&s->display, "\n");
556 qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n");
557 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
558 qemu_chr_fe_printf(&s->display, "+ +\r\n");
559 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
560 s->display_inited = true;
561 }
562 }
563
564 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
565 hwaddr base, qemu_irq uart_irq, Chardev *uart_chr)
566 {
567 MaltaFPGAState *s;
568 Chardev *chr;
569
570 s = g_new0(MaltaFPGAState, 1);
571
572 memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
573 "malta-fpga", 0x100000);
574 memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
575 &s->iomem, 0, 0x900);
576 memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
577 &s->iomem, 0xa00, 0x10000 - 0xa00);
578
579 memory_region_add_subregion(address_space, base, &s->iomem_lo);
580 memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
581
582 chr = qemu_chr_new("fpga", "vc:320x200", NULL);
583 qemu_chr_fe_init(&s->display, chr, NULL);
584 qemu_chr_fe_set_handlers(&s->display, NULL, NULL,
585 malta_fgpa_display_event, NULL, s, NULL, true);
586
587 s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
588 230400, uart_chr, DEVICE_NATIVE_ENDIAN);
589
590 malta_fpga_reset(s);
591 qemu_register_reset(malta_fpga_reset, s);
592
593 return s;
594 }
595
596 /* Network support */
597 static void network_init(PCIBus *pci_bus)
598 {
599 int i;
600
601 for (i = 0; i < nb_nics; i++) {
602 NICInfo *nd = &nd_table[i];
603 const char *default_devaddr = NULL;
604
605 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
606 /* The malta board has a PCNet card using PCI SLOT 11 */
607 default_devaddr = "0b";
608
609 pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
610 }
611 }
612
613 static void write_bootloader_nanomips(uint8_t *base, int64_t run_addr,
614 int64_t kernel_entry)
615 {
616 uint16_t *p;
617
618 /* Small bootloader */
619 p = (uint16_t *)base;
620
621 #define NM_HI1(VAL) (((VAL) >> 16) & 0x1f)
622 #define NM_HI2(VAL) \
623 (((VAL) & 0xf000) | (((VAL) >> 19) & 0xffc) | (((VAL) >> 31) & 0x1))
624 #define NM_LO(VAL) ((VAL) & 0xfff)
625
626 stw_p(p++, 0x2800); stw_p(p++, 0x001c);
627 /* bc to_here */
628 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
629 /* nop */
630 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
631 /* nop */
632 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
633 /* nop */
634 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
635 /* nop */
636 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
637 /* nop */
638 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
639 /* nop */
640 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
641 /* nop */
642
643 /* to_here: */
644 if (semihosting_get_argc()) {
645 /* Preserve a0 content as arguments have been passed */
646 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
647 /* nop */
648 } else {
649 stw_p(p++, 0x0080); stw_p(p++, 0x0002);
650 /* li a0,2 */
651 }
652
653 stw_p(p++, 0xe3a0 | NM_HI1(ENVP_ADDR - 64));
654
655 stw_p(p++, NM_HI2(ENVP_ADDR - 64));
656 /* lui sp,%hi(ENVP_ADDR - 64) */
657
658 stw_p(p++, 0x83bd); stw_p(p++, NM_LO(ENVP_ADDR - 64));
659 /* ori sp,sp,%lo(ENVP_ADDR - 64) */
660
661 stw_p(p++, 0xe0a0 | NM_HI1(ENVP_ADDR));
662
663 stw_p(p++, NM_HI2(ENVP_ADDR));
664 /* lui a1,%hi(ENVP_ADDR) */
665
666 stw_p(p++, 0x80a5); stw_p(p++, NM_LO(ENVP_ADDR));
667 /* ori a1,a1,%lo(ENVP_ADDR) */
668
669 stw_p(p++, 0xe0c0 | NM_HI1(ENVP_ADDR + 8));
670
671 stw_p(p++, NM_HI2(ENVP_ADDR + 8));
672 /* lui a2,%hi(ENVP_ADDR + 8) */
673
674 stw_p(p++, 0x80c6); stw_p(p++, NM_LO(ENVP_ADDR + 8));
675 /* ori a2,a2,%lo(ENVP_ADDR + 8) */
676
677 stw_p(p++, 0xe0e0 | NM_HI1(loaderparams.ram_low_size));
678
679 stw_p(p++, NM_HI2(loaderparams.ram_low_size));
680 /* lui a3,%hi(loaderparams.ram_low_size) */
681
682 stw_p(p++, 0x80e7); stw_p(p++, NM_LO(loaderparams.ram_low_size));
683 /* ori a3,a3,%lo(loaderparams.ram_low_size) */
684
685 /*
686 * Load BAR registers as done by YAMON:
687 *
688 * - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
689 * - set up PCI0 MEM0 at 0x10000000, size 0x8000000
690 * - set up PCI0 MEM1 at 0x18200000, size 0xbe00000
691 *
692 */
693 stw_p(p++, 0xe040); stw_p(p++, 0x0681);
694 /* lui t1, %hi(0xb4000000) */
695
696 #ifdef TARGET_WORDS_BIGENDIAN
697
698 stw_p(p++, 0xe020); stw_p(p++, 0x0be1);
699 /* lui t0, %hi(0xdf000000) */
700
701 /* 0x68 corresponds to GT_ISD (from hw/mips/gt64xxx_pci.c) */
702 stw_p(p++, 0x8422); stw_p(p++, 0x9068);
703 /* sw t0, 0x68(t1) */
704
705 stw_p(p++, 0xe040); stw_p(p++, 0x077d);
706 /* lui t1, %hi(0xbbe00000) */
707
708 stw_p(p++, 0xe020); stw_p(p++, 0x0801);
709 /* lui t0, %hi(0xc0000000) */
710
711 /* 0x48 corresponds to GT_PCI0IOLD */
712 stw_p(p++, 0x8422); stw_p(p++, 0x9048);
713 /* sw t0, 0x48(t1) */
714
715 stw_p(p++, 0xe020); stw_p(p++, 0x0800);
716 /* lui t0, %hi(0x40000000) */
717
718 /* 0x50 corresponds to GT_PCI0IOHD */
719 stw_p(p++, 0x8422); stw_p(p++, 0x9050);
720 /* sw t0, 0x50(t1) */
721
722 stw_p(p++, 0xe020); stw_p(p++, 0x0001);
723 /* lui t0, %hi(0x80000000) */
724
725 /* 0x58 corresponds to GT_PCI0M0LD */
726 stw_p(p++, 0x8422); stw_p(p++, 0x9058);
727 /* sw t0, 0x58(t1) */
728
729 stw_p(p++, 0xe020); stw_p(p++, 0x07e0);
730 /* lui t0, %hi(0x3f000000) */
731
732 /* 0x60 corresponds to GT_PCI0M0HD */
733 stw_p(p++, 0x8422); stw_p(p++, 0x9060);
734 /* sw t0, 0x60(t1) */
735
736 stw_p(p++, 0xe020); stw_p(p++, 0x0821);
737 /* lui t0, %hi(0xc1000000) */
738
739 /* 0x80 corresponds to GT_PCI0M1LD */
740 stw_p(p++, 0x8422); stw_p(p++, 0x9080);
741 /* sw t0, 0x80(t1) */
742
743 stw_p(p++, 0xe020); stw_p(p++, 0x0bc0);
744 /* lui t0, %hi(0x5e000000) */
745
746 #else
747
748 stw_p(p++, 0x0020); stw_p(p++, 0x00df);
749 /* addiu[32] t0, $0, 0xdf */
750
751 /* 0x68 corresponds to GT_ISD */
752 stw_p(p++, 0x8422); stw_p(p++, 0x9068);
753 /* sw t0, 0x68(t1) */
754
755 /* Use kseg2 remapped address 0x1be00000 */
756 stw_p(p++, 0xe040); stw_p(p++, 0x077d);
757 /* lui t1, %hi(0xbbe00000) */
758
759 stw_p(p++, 0x0020); stw_p(p++, 0x00c0);
760 /* addiu[32] t0, $0, 0xc0 */
761
762 /* 0x48 corresponds to GT_PCI0IOLD */
763 stw_p(p++, 0x8422); stw_p(p++, 0x9048);
764 /* sw t0, 0x48(t1) */
765
766 stw_p(p++, 0x0020); stw_p(p++, 0x0040);
767 /* addiu[32] t0, $0, 0x40 */
768
769 /* 0x50 corresponds to GT_PCI0IOHD */
770 stw_p(p++, 0x8422); stw_p(p++, 0x9050);
771 /* sw t0, 0x50(t1) */
772
773 stw_p(p++, 0x0020); stw_p(p++, 0x0080);
774 /* addiu[32] t0, $0, 0x80 */
775
776 /* 0x58 corresponds to GT_PCI0M0LD */
777 stw_p(p++, 0x8422); stw_p(p++, 0x9058);
778 /* sw t0, 0x58(t1) */
779
780 stw_p(p++, 0x0020); stw_p(p++, 0x003f);
781 /* addiu[32] t0, $0, 0x3f */
782
783 /* 0x60 corresponds to GT_PCI0M0HD */
784 stw_p(p++, 0x8422); stw_p(p++, 0x9060);
785 /* sw t0, 0x60(t1) */
786
787 stw_p(p++, 0x0020); stw_p(p++, 0x00c1);
788 /* addiu[32] t0, $0, 0xc1 */
789
790 /* 0x80 corresponds to GT_PCI0M1LD */
791 stw_p(p++, 0x8422); stw_p(p++, 0x9080);
792 /* sw t0, 0x80(t1) */
793
794 stw_p(p++, 0x0020); stw_p(p++, 0x005e);
795 /* addiu[32] t0, $0, 0x5e */
796
797 #endif
798
799 /* 0x88 corresponds to GT_PCI0M1HD */
800 stw_p(p++, 0x8422); stw_p(p++, 0x9088);
801 /* sw t0, 0x88(t1) */
802
803 stw_p(p++, 0xe320 | NM_HI1(kernel_entry));
804
805 stw_p(p++, NM_HI2(kernel_entry));
806 /* lui t9,%hi(kernel_entry) */
807
808 stw_p(p++, 0x8339); stw_p(p++, NM_LO(kernel_entry));
809 /* ori t9,t9,%lo(kernel_entry) */
810
811 stw_p(p++, 0x4bf9); stw_p(p++, 0x0000);
812 /* jalrc t8 */
813 }
814
815 /*
816 * ROM and pseudo bootloader
817 *
818 * The following code implements a very very simple bootloader. It first
819 * loads the registers a0 to a3 to the values expected by the OS, and
820 * then jump at the kernel address.
821 *
822 * The bootloader should pass the locations of the kernel arguments and
823 * environment variables tables. Those tables contain the 32-bit address
824 * of NULL terminated strings. The environment variables table should be
825 * terminated by a NULL address.
826 *
827 * For a simpler implementation, the number of kernel arguments is fixed
828 * to two (the name of the kernel and the command line), and the two
829 * tables are actually the same one.
830 *
831 * The registers a0 to a3 should contain the following values:
832 * a0 - number of kernel arguments
833 * a1 - 32-bit address of the kernel arguments table
834 * a2 - 32-bit address of the environment variables table
835 * a3 - RAM size in bytes
836 */
837 static void write_bootloader(uint8_t *base, int64_t run_addr,
838 int64_t kernel_entry)
839 {
840 uint32_t *p;
841
842 /* Small bootloader */
843 p = (uint32_t *)base;
844
845 stl_p(p++, 0x08000000 | /* j 0x1fc00580 */
846 ((run_addr + 0x580) & 0x0fffffff) >> 2);
847 stl_p(p++, 0x00000000); /* nop */
848
849 /* YAMON service vector */
850 stl_p(base + 0x500, run_addr + 0x0580); /* start: */
851 stl_p(base + 0x504, run_addr + 0x083c); /* print_count: */
852 stl_p(base + 0x520, run_addr + 0x0580); /* start: */
853 stl_p(base + 0x52c, run_addr + 0x0800); /* flush_cache: */
854 stl_p(base + 0x534, run_addr + 0x0808); /* print: */
855 stl_p(base + 0x538, run_addr + 0x0800); /* reg_cpu_isr: */
856 stl_p(base + 0x53c, run_addr + 0x0800); /* unred_cpu_isr: */
857 stl_p(base + 0x540, run_addr + 0x0800); /* reg_ic_isr: */
858 stl_p(base + 0x544, run_addr + 0x0800); /* unred_ic_isr: */
859 stl_p(base + 0x548, run_addr + 0x0800); /* reg_esr: */
860 stl_p(base + 0x54c, run_addr + 0x0800); /* unreg_esr: */
861 stl_p(base + 0x550, run_addr + 0x0800); /* getchar: */
862 stl_p(base + 0x554, run_addr + 0x0800); /* syscon_read: */
863
864
865 /* Second part of the bootloader */
866 p = (uint32_t *) (base + 0x580);
867
868 if (semihosting_get_argc()) {
869 /* Preserve a0 content as arguments have been passed */
870 stl_p(p++, 0x00000000); /* nop */
871 } else {
872 stl_p(p++, 0x24040002); /* addiu a0, zero, 2 */
873 }
874
875 /* lui sp, high(ENVP_ADDR) */
876 stl_p(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff));
877 /* ori sp, sp, low(ENVP_ADDR) */
878 stl_p(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff));
879 /* lui a1, high(ENVP_ADDR) */
880 stl_p(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff));
881 /* ori a1, a1, low(ENVP_ADDR) */
882 stl_p(p++, 0x34a50000 | (ENVP_ADDR & 0xffff));
883 /* lui a2, high(ENVP_ADDR + 8) */
884 stl_p(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff));
885 /* ori a2, a2, low(ENVP_ADDR + 8) */
886 stl_p(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff));
887 /* lui a3, high(ram_low_size) */
888 stl_p(p++, 0x3c070000 | (loaderparams.ram_low_size >> 16));
889 /* ori a3, a3, low(ram_low_size) */
890 stl_p(p++, 0x34e70000 | (loaderparams.ram_low_size & 0xffff));
891
892 /* Load BAR registers as done by YAMON */
893 stl_p(p++, 0x3c09b400); /* lui t1, 0xb400 */
894
895 #ifdef TARGET_WORDS_BIGENDIAN
896 stl_p(p++, 0x3c08df00); /* lui t0, 0xdf00 */
897 #else
898 stl_p(p++, 0x340800df); /* ori t0, r0, 0x00df */
899 #endif
900 stl_p(p++, 0xad280068); /* sw t0, 0x0068(t1) */
901
902 stl_p(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
903
904 #ifdef TARGET_WORDS_BIGENDIAN
905 stl_p(p++, 0x3c08c000); /* lui t0, 0xc000 */
906 #else
907 stl_p(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
908 #endif
909 stl_p(p++, 0xad280048); /* sw t0, 0x0048(t1) */
910 #ifdef TARGET_WORDS_BIGENDIAN
911 stl_p(p++, 0x3c084000); /* lui t0, 0x4000 */
912 #else
913 stl_p(p++, 0x34080040); /* ori t0, r0, 0x0040 */
914 #endif
915 stl_p(p++, 0xad280050); /* sw t0, 0x0050(t1) */
916
917 #ifdef TARGET_WORDS_BIGENDIAN
918 stl_p(p++, 0x3c088000); /* lui t0, 0x8000 */
919 #else
920 stl_p(p++, 0x34080080); /* ori t0, r0, 0x0080 */
921 #endif
922 stl_p(p++, 0xad280058); /* sw t0, 0x0058(t1) */
923 #ifdef TARGET_WORDS_BIGENDIAN
924 stl_p(p++, 0x3c083f00); /* lui t0, 0x3f00 */
925 #else
926 stl_p(p++, 0x3408003f); /* ori t0, r0, 0x003f */
927 #endif
928 stl_p(p++, 0xad280060); /* sw t0, 0x0060(t1) */
929
930 #ifdef TARGET_WORDS_BIGENDIAN
931 stl_p(p++, 0x3c08c100); /* lui t0, 0xc100 */
932 #else
933 stl_p(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
934 #endif
935 stl_p(p++, 0xad280080); /* sw t0, 0x0080(t1) */
936 #ifdef TARGET_WORDS_BIGENDIAN
937 stl_p(p++, 0x3c085e00); /* lui t0, 0x5e00 */
938 #else
939 stl_p(p++, 0x3408005e); /* ori t0, r0, 0x005e */
940 #endif
941 stl_p(p++, 0xad280088); /* sw t0, 0x0088(t1) */
942
943 /* Jump to kernel code */
944 stl_p(p++, 0x3c1f0000 |
945 ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
946 stl_p(p++, 0x37ff0000 |
947 (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
948 stl_p(p++, 0x03e00009); /* jalr ra */
949 stl_p(p++, 0x00000000); /* nop */
950
951 /* YAMON subroutines */
952 p = (uint32_t *) (base + 0x800);
953 stl_p(p++, 0x03e00009); /* jalr ra */
954 stl_p(p++, 0x24020000); /* li v0,0 */
955 /* 808 YAMON print */
956 stl_p(p++, 0x03e06821); /* move t5,ra */
957 stl_p(p++, 0x00805821); /* move t3,a0 */
958 stl_p(p++, 0x00a05021); /* move t2,a1 */
959 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
960 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
961 stl_p(p++, 0x10800005); /* beqz a0,834 */
962 stl_p(p++, 0x00000000); /* nop */
963 stl_p(p++, 0x0ff0021c); /* jal 870 */
964 stl_p(p++, 0x00000000); /* nop */
965 stl_p(p++, 0x1000fff9); /* b 814 */
966 stl_p(p++, 0x00000000); /* nop */
967 stl_p(p++, 0x01a00009); /* jalr t5 */
968 stl_p(p++, 0x01602021); /* move a0,t3 */
969 /* 0x83c YAMON print_count */
970 stl_p(p++, 0x03e06821); /* move t5,ra */
971 stl_p(p++, 0x00805821); /* move t3,a0 */
972 stl_p(p++, 0x00a05021); /* move t2,a1 */
973 stl_p(p++, 0x00c06021); /* move t4,a2 */
974 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
975 stl_p(p++, 0x0ff0021c); /* jal 870 */
976 stl_p(p++, 0x00000000); /* nop */
977 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
978 stl_p(p++, 0x258cffff); /* addiu t4,t4,-1 */
979 stl_p(p++, 0x1580fffa); /* bnez t4,84c */
980 stl_p(p++, 0x00000000); /* nop */
981 stl_p(p++, 0x01a00009); /* jalr t5 */
982 stl_p(p++, 0x01602021); /* move a0,t3 */
983 /* 0x870 */
984 stl_p(p++, 0x3c08b800); /* lui t0,0xb400 */
985 stl_p(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
986 stl_p(p++, 0x91090005); /* lbu t1,5(t0) */
987 stl_p(p++, 0x00000000); /* nop */
988 stl_p(p++, 0x31290040); /* andi t1,t1,0x40 */
989 stl_p(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
990 stl_p(p++, 0x00000000); /* nop */
991 stl_p(p++, 0x03e00009); /* jalr ra */
992 stl_p(p++, 0xa1040000); /* sb a0,0(t0) */
993
994 }
995
996 static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t *prom_buf, int index,
997 const char *string, ...)
998 {
999 va_list ap;
1000 int32_t table_addr;
1001
1002 if (index >= ENVP_NB_ENTRIES) {
1003 return;
1004 }
1005
1006 if (string == NULL) {
1007 prom_buf[index] = 0;
1008 return;
1009 }
1010
1011 table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
1012 prom_buf[index] = tswap32(ENVP_ADDR + table_addr);
1013
1014 va_start(ap, string);
1015 vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
1016 va_end(ap);
1017 }
1018
1019 /* Kernel */
1020 static int64_t load_kernel(void)
1021 {
1022 int64_t kernel_entry, kernel_high, initrd_size;
1023 long kernel_size;
1024 ram_addr_t initrd_offset;
1025 int big_endian;
1026 uint32_t *prom_buf;
1027 long prom_size;
1028 int prom_index = 0;
1029 uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr);
1030
1031 #ifdef TARGET_WORDS_BIGENDIAN
1032 big_endian = 1;
1033 #else
1034 big_endian = 0;
1035 #endif
1036
1037 kernel_size = load_elf(loaderparams.kernel_filename, NULL,
1038 cpu_mips_kseg0_to_phys, NULL,
1039 (uint64_t *)&kernel_entry, NULL,
1040 (uint64_t *)&kernel_high, NULL, big_endian, EM_MIPS,
1041 1, 0);
1042 if (kernel_size < 0) {
1043 error_report("could not load kernel '%s': %s",
1044 loaderparams.kernel_filename,
1045 load_elf_strerror(kernel_size));
1046 exit(1);
1047 }
1048
1049 /* Check where the kernel has been linked */
1050 if (kernel_entry & 0x80000000ll) {
1051 if (kvm_enabled()) {
1052 error_report("KVM guest kernels must be linked in useg. "
1053 "Did you forget to enable CONFIG_KVM_GUEST?");
1054 exit(1);
1055 }
1056
1057 xlate_to_kseg0 = cpu_mips_phys_to_kseg0;
1058 } else {
1059 /* if kernel entry is in useg it is probably a KVM T&E kernel */
1060 mips_um_ksegs_enable();
1061
1062 xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0;
1063 }
1064
1065 /* load initrd */
1066 initrd_size = 0;
1067 initrd_offset = 0;
1068 if (loaderparams.initrd_filename) {
1069 initrd_size = get_image_size(loaderparams.initrd_filename);
1070 if (initrd_size > 0) {
1071 /*
1072 * The kernel allocates the bootmap memory in the low memory after
1073 * the initrd. It takes at most 128kiB for 2GB RAM and 4kiB
1074 * pages.
1075 */
1076 initrd_offset = (loaderparams.ram_low_size - initrd_size
1077 - (128 * KiB)
1078 - ~INITRD_PAGE_MASK) & INITRD_PAGE_MASK;
1079 if (kernel_high >= initrd_offset) {
1080 error_report("memory too small for initial ram disk '%s'",
1081 loaderparams.initrd_filename);
1082 exit(1);
1083 }
1084 initrd_size = load_image_targphys(loaderparams.initrd_filename,
1085 initrd_offset,
1086 ram_size - initrd_offset);
1087 }
1088 if (initrd_size == (target_ulong) -1) {
1089 error_report("could not load initial ram disk '%s'",
1090 loaderparams.initrd_filename);
1091 exit(1);
1092 }
1093 }
1094
1095 /* Setup prom parameters. */
1096 prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
1097 prom_buf = g_malloc(prom_size);
1098
1099 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
1100 if (initrd_size > 0) {
1101 prom_set(prom_buf, prom_index++,
1102 "rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s",
1103 xlate_to_kseg0(NULL, initrd_offset),
1104 initrd_size, loaderparams.kernel_cmdline);
1105 } else {
1106 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
1107 }
1108
1109 prom_set(prom_buf, prom_index++, "memsize");
1110 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
1111
1112 prom_set(prom_buf, prom_index++, "ememsize");
1113 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
1114
1115 prom_set(prom_buf, prom_index++, "modetty0");
1116 prom_set(prom_buf, prom_index++, "38400n8r");
1117 prom_set(prom_buf, prom_index++, NULL);
1118
1119 rom_add_blob_fixed("prom", prom_buf, prom_size,
1120 cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR));
1121
1122 g_free(prom_buf);
1123 return kernel_entry;
1124 }
1125
1126 static void malta_mips_config(MIPSCPU *cpu)
1127 {
1128 MachineState *ms = MACHINE(qdev_get_machine());
1129 unsigned int smp_cpus = ms->smp.cpus;
1130 CPUMIPSState *env = &cpu->env;
1131 CPUState *cs = CPU(cpu);
1132
1133 env->mvp->CP0_MVPConf0 |= ((smp_cpus - 1) << CP0MVPC0_PVPE) |
1134 ((smp_cpus * cs->nr_threads - 1) << CP0MVPC0_PTC);
1135 }
1136
1137 static void main_cpu_reset(void *opaque)
1138 {
1139 MIPSCPU *cpu = opaque;
1140 CPUMIPSState *env = &cpu->env;
1141
1142 cpu_reset(CPU(cpu));
1143
1144 /*
1145 * The bootloader does not need to be rewritten as it is located in a
1146 * read only location. The kernel location and the arguments table
1147 * location does not change.
1148 */
1149 if (loaderparams.kernel_filename) {
1150 env->CP0_Status &= ~(1 << CP0St_ERL);
1151 }
1152
1153 malta_mips_config(cpu);
1154
1155 if (kvm_enabled()) {
1156 /* Start running from the bootloader we wrote to end of RAM */
1157 env->active_tc.PC = 0x40000000 + loaderparams.ram_low_size;
1158 }
1159 }
1160
1161 static void create_cpu_without_cps(MachineState *ms,
1162 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1163 {
1164 CPUMIPSState *env;
1165 MIPSCPU *cpu;
1166 int i;
1167
1168 for (i = 0; i < ms->smp.cpus; i++) {
1169 cpu = MIPS_CPU(cpu_create(ms->cpu_type));
1170
1171 /* Init internal devices */
1172 cpu_mips_irq_init_cpu(cpu);
1173 cpu_mips_clock_init(cpu);
1174 qemu_register_reset(main_cpu_reset, cpu);
1175 }
1176
1177 cpu = MIPS_CPU(first_cpu);
1178 env = &cpu->env;
1179 *i8259_irq = env->irq[2];
1180 *cbus_irq = env->irq[4];
1181 }
1182
1183 static void create_cps(MachineState *ms, MaltaState *s,
1184 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1185 {
1186 object_initialize_child(OBJECT(s), "cps", &s->cps, TYPE_MIPS_CPS);
1187 object_property_set_str(OBJECT(&s->cps), "cpu-type", ms->cpu_type,
1188 &error_fatal);
1189 object_property_set_int(OBJECT(&s->cps), "num-vp", ms->smp.cpus,
1190 &error_fatal);
1191 sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
1192
1193 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
1194
1195 *i8259_irq = get_cps_irq(&s->cps, 3);
1196 *cbus_irq = NULL;
1197 }
1198
1199 static void mips_create_cpu(MachineState *ms, MaltaState *s,
1200 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1201 {
1202 if ((ms->smp.cpus > 1) && cpu_supports_cps_smp(ms->cpu_type)) {
1203 create_cps(ms, s, cbus_irq, i8259_irq);
1204 } else {
1205 create_cpu_without_cps(ms, cbus_irq, i8259_irq);
1206 }
1207 }
1208
1209 static
1210 void mips_malta_init(MachineState *machine)
1211 {
1212 ram_addr_t ram_size = machine->ram_size;
1213 ram_addr_t ram_low_size;
1214 const char *kernel_filename = machine->kernel_filename;
1215 const char *kernel_cmdline = machine->kernel_cmdline;
1216 const char *initrd_filename = machine->initrd_filename;
1217 char *filename;
1218 PFlashCFI01 *fl;
1219 MemoryRegion *system_memory = get_system_memory();
1220 MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
1221 MemoryRegion *ram_low_postio;
1222 MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
1223 const size_t smbus_eeprom_size = 8 * 256;
1224 uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
1225 int64_t kernel_entry, bootloader_run_addr;
1226 PCIBus *pci_bus;
1227 ISABus *isa_bus;
1228 qemu_irq cbus_irq, i8259_irq;
1229 I2CBus *smbus;
1230 DriveInfo *dinfo;
1231 int fl_idx = 0;
1232 int be;
1233
1234 DeviceState *dev = qdev_new(TYPE_MIPS_MALTA);
1235 MaltaState *s = MIPS_MALTA(dev);
1236
1237 /*
1238 * The whole address space decoded by the GT-64120A doesn't generate
1239 * exception when accessing invalid memory. Create an empty slot to
1240 * emulate this feature.
1241 */
1242 empty_slot_init("GT64120", 0, 0x20000000);
1243
1244 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1245
1246 /* create CPU */
1247 mips_create_cpu(machine, s, &cbus_irq, &i8259_irq);
1248
1249 /* allocate RAM */
1250 if (ram_size > 2 * GiB) {
1251 error_report("Too much memory for this machine: %" PRId64 "MB,"
1252 " maximum 2048MB", ram_size / MiB);
1253 exit(1);
1254 }
1255
1256 /* register RAM at high address where it is undisturbed by IO */
1257 memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
1258
1259 /* alias for pre IO hole access */
1260 memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
1261 machine->ram, 0, MIN(ram_size, 256 * MiB));
1262 memory_region_add_subregion(system_memory, 0, ram_low_preio);
1263
1264 /* alias for post IO hole access, if there is enough RAM */
1265 if (ram_size > 512 * MiB) {
1266 ram_low_postio = g_new(MemoryRegion, 1);
1267 memory_region_init_alias(ram_low_postio, NULL,
1268 "mips_malta_low_postio.ram",
1269 machine->ram, 512 * MiB,
1270 ram_size - 512 * MiB);
1271 memory_region_add_subregion(system_memory, 512 * MiB,
1272 ram_low_postio);
1273 }
1274
1275 #ifdef TARGET_WORDS_BIGENDIAN
1276 be = 1;
1277 #else
1278 be = 0;
1279 #endif
1280
1281 /* FPGA */
1282
1283 /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
1284 malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2));
1285
1286 /* Load firmware in flash / BIOS. */
1287 dinfo = drive_get(IF_PFLASH, 0, fl_idx);
1288 fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios",
1289 FLASH_SIZE,
1290 dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
1291 65536,
1292 4, 0x0000, 0x0000, 0x0000, 0x0000, be);
1293 bios = pflash_cfi01_get_memory(fl);
1294 fl_idx++;
1295 if (kernel_filename) {
1296 ram_low_size = MIN(ram_size, 256 * MiB);
1297 /* For KVM we reserve 1MB of RAM for running bootloader */
1298 if (kvm_enabled()) {
1299 ram_low_size -= 0x100000;
1300 bootloader_run_addr = 0x40000000 + ram_low_size;
1301 } else {
1302 bootloader_run_addr = 0xbfc00000;
1303 }
1304
1305 /* Write a small bootloader to the flash location. */
1306 loaderparams.ram_size = ram_size;
1307 loaderparams.ram_low_size = ram_low_size;
1308 loaderparams.kernel_filename = kernel_filename;
1309 loaderparams.kernel_cmdline = kernel_cmdline;
1310 loaderparams.initrd_filename = initrd_filename;
1311 kernel_entry = load_kernel();
1312
1313 if (!cpu_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) {
1314 write_bootloader(memory_region_get_ram_ptr(bios),
1315 bootloader_run_addr, kernel_entry);
1316 } else {
1317 write_bootloader_nanomips(memory_region_get_ram_ptr(bios),
1318 bootloader_run_addr, kernel_entry);
1319 }
1320 if (kvm_enabled()) {
1321 /* Write the bootloader code @ the end of RAM, 1MB reserved */
1322 write_bootloader(memory_region_get_ram_ptr(ram_low_preio) +
1323 ram_low_size,
1324 bootloader_run_addr, kernel_entry);
1325 }
1326 } else {
1327 target_long bios_size = FLASH_SIZE;
1328 /* The flash region isn't executable from a KVM guest */
1329 if (kvm_enabled()) {
1330 error_report("KVM enabled but no -kernel argument was specified. "
1331 "Booting from flash is not supported with KVM.");
1332 exit(1);
1333 }
1334 /* Load firmware from flash. */
1335 if (!dinfo) {
1336 /* Load a BIOS image. */
1337 if (bios_name == NULL) {
1338 bios_name = BIOS_FILENAME;
1339 }
1340 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1341 if (filename) {
1342 bios_size = load_image_targphys(filename, FLASH_ADDRESS,
1343 BIOS_SIZE);
1344 g_free(filename);
1345 } else {
1346 bios_size = -1;
1347 }
1348 if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
1349 !kernel_filename && !qtest_enabled()) {
1350 error_report("Could not load MIPS bios '%s', and no "
1351 "-kernel argument was specified", bios_name);
1352 exit(1);
1353 }
1354 }
1355 /*
1356 * In little endian mode the 32bit words in the bios are swapped,
1357 * a neat trick which allows bi-endian firmware.
1358 */
1359 #ifndef TARGET_WORDS_BIGENDIAN
1360 {
1361 uint32_t *end, *addr;
1362 const size_t swapsize = MIN(bios_size, 0x3e0000);
1363 addr = rom_ptr(FLASH_ADDRESS, swapsize);
1364 if (!addr) {
1365 addr = memory_region_get_ram_ptr(bios);
1366 }
1367 end = (void *)addr + swapsize;
1368 while (addr < end) {
1369 bswap32s(addr);
1370 addr++;
1371 }
1372 }
1373 #endif
1374 }
1375
1376 /*
1377 * Map the BIOS at a 2nd physical location, as on the real board.
1378 * Copy it so that we can patch in the MIPS revision, which cannot be
1379 * handled by an overlapping region as the resulting ROM code subpage
1380 * regions are not executable.
1381 */
1382 memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
1383 &error_fatal);
1384 if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
1385 FLASH_ADDRESS, BIOS_SIZE)) {
1386 memcpy(memory_region_get_ram_ptr(bios_copy),
1387 memory_region_get_ram_ptr(bios), BIOS_SIZE);
1388 }
1389 memory_region_set_readonly(bios_copy, true);
1390 memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
1391
1392 /* Board ID = 0x420 (Malta Board with CoreLV) */
1393 stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
1394
1395 /* Northbridge */
1396 pci_bus = gt64120_register(s->i8259);
1397
1398 /* Southbridge */
1399 dev = piix4_create(pci_bus, &isa_bus, &smbus);
1400
1401 /* Interrupt controller */
1402 qdev_connect_gpio_out_named(dev, "intr", 0, i8259_irq);
1403 for (int i = 0; i < ISA_NUM_IRQS; i++) {
1404 s->i8259[i] = qdev_get_gpio_in_named(dev, "isa", i);
1405 }
1406
1407 /* generate SPD EEPROM data */
1408 generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
1409 generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
1410 smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
1411 g_free(smbus_eeprom_buf);
1412
1413 /* Super I/O: SMS FDC37M817 */
1414 isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO);
1415
1416 /* Network card */
1417 network_init(pci_bus);
1418
1419 /* Optional PCI video card */
1420 pci_vga_init(pci_bus);
1421 }
1422
1423 static const TypeInfo mips_malta_device = {
1424 .name = TYPE_MIPS_MALTA,
1425 .parent = TYPE_SYS_BUS_DEVICE,
1426 .instance_size = sizeof(MaltaState),
1427 };
1428
1429 static void mips_malta_machine_init(MachineClass *mc)
1430 {
1431 mc->desc = "MIPS Malta Core LV";
1432 mc->init = mips_malta_init;
1433 mc->block_default_type = IF_IDE;
1434 mc->max_cpus = 16;
1435 mc->is_default = true;
1436 #ifdef TARGET_MIPS64
1437 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc");
1438 #else
1439 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf");
1440 #endif
1441 mc->default_ram_id = "mips_malta.ram";
1442 }
1443
1444 DEFINE_MACHINE("malta", mips_malta_machine_init)
1445
1446 static void mips_malta_register_types(void)
1447 {
1448 type_register_static(&mips_malta_device);
1449 }
1450
1451 type_init(mips_malta_register_types)