sm501: Add missing arbitration control register
[qemu.git] / hw / net / e1000.c
1 /*
2 * QEMU e1000 emulation
3 *
4 * Software developer's manual:
5 * http://download.intel.com/design/network/manuals/8254x_GBe_SDM.pdf
6 *
7 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
8 * Copyright (c) 2008 Qumranet
9 * Based on work done by:
10 * Copyright (c) 2007 Dan Aloni
11 * Copyright (c) 2004 Antony T Curtis
12 *
13 * This library is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU Lesser General Public
15 * License as published by the Free Software Foundation; either
16 * version 2 of the License, or (at your option) any later version.
17 *
18 * This library is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * Lesser General Public License for more details.
22 *
23 * You should have received a copy of the GNU Lesser General Public
24 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
25 */
26
27
28 #include "qemu/osdep.h"
29 #include "hw/hw.h"
30 #include "hw/pci/pci.h"
31 #include "net/net.h"
32 #include "net/checksum.h"
33 #include "hw/loader.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/dma.h"
36 #include "qemu/iov.h"
37 #include "qemu/range.h"
38
39 #include "e1000x_common.h"
40
41 static const uint8_t bcast[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
42
43 /* #define E1000_DEBUG */
44
45 #ifdef E1000_DEBUG
46 enum {
47 DEBUG_GENERAL, DEBUG_IO, DEBUG_MMIO, DEBUG_INTERRUPT,
48 DEBUG_RX, DEBUG_TX, DEBUG_MDIC, DEBUG_EEPROM,
49 DEBUG_UNKNOWN, DEBUG_TXSUM, DEBUG_TXERR, DEBUG_RXERR,
50 DEBUG_RXFILTER, DEBUG_PHY, DEBUG_NOTYET,
51 };
52 #define DBGBIT(x) (1<<DEBUG_##x)
53 static int debugflags = DBGBIT(TXERR) | DBGBIT(GENERAL);
54
55 #define DBGOUT(what, fmt, ...) do { \
56 if (debugflags & DBGBIT(what)) \
57 fprintf(stderr, "e1000: " fmt, ## __VA_ARGS__); \
58 } while (0)
59 #else
60 #define DBGOUT(what, fmt, ...) do {} while (0)
61 #endif
62
63 #define IOPORT_SIZE 0x40
64 #define PNPMMIO_SIZE 0x20000
65 #define MIN_BUF_SIZE 60 /* Min. octets in an ethernet frame sans FCS */
66
67 #define MAXIMUM_ETHERNET_HDR_LEN (14+4)
68
69 /*
70 * HW models:
71 * E1000_DEV_ID_82540EM works with Windows, Linux, and OS X <= 10.8
72 * E1000_DEV_ID_82544GC_COPPER appears to work; not well tested
73 * E1000_DEV_ID_82545EM_COPPER works with Linux and OS X >= 10.6
74 * Others never tested
75 */
76
77 typedef struct E1000State_st {
78 /*< private >*/
79 PCIDevice parent_obj;
80 /*< public >*/
81
82 NICState *nic;
83 NICConf conf;
84 MemoryRegion mmio;
85 MemoryRegion io;
86
87 uint32_t mac_reg[0x8000];
88 uint16_t phy_reg[0x20];
89 uint16_t eeprom_data[64];
90
91 uint32_t rxbuf_size;
92 uint32_t rxbuf_min_shift;
93 struct e1000_tx {
94 unsigned char header[256];
95 unsigned char vlan_header[4];
96 /* Fields vlan and data must not be reordered or separated. */
97 unsigned char vlan[4];
98 unsigned char data[0x10000];
99 uint16_t size;
100 unsigned char vlan_needed;
101 e1000x_txd_props props;
102 uint16_t tso_frames;
103 } tx;
104
105 struct {
106 uint32_t val_in; /* shifted in from guest driver */
107 uint16_t bitnum_in;
108 uint16_t bitnum_out;
109 uint16_t reading;
110 uint32_t old_eecd;
111 } eecd_state;
112
113 QEMUTimer *autoneg_timer;
114
115 QEMUTimer *mit_timer; /* Mitigation timer. */
116 bool mit_timer_on; /* Mitigation timer is running. */
117 bool mit_irq_level; /* Tracks interrupt pin level. */
118 uint32_t mit_ide; /* Tracks E1000_TXD_CMD_IDE bit. */
119
120 /* Compatibility flags for migration to/from qemu 1.3.0 and older */
121 #define E1000_FLAG_AUTONEG_BIT 0
122 #define E1000_FLAG_MIT_BIT 1
123 #define E1000_FLAG_MAC_BIT 2
124 #define E1000_FLAG_AUTONEG (1 << E1000_FLAG_AUTONEG_BIT)
125 #define E1000_FLAG_MIT (1 << E1000_FLAG_MIT_BIT)
126 #define E1000_FLAG_MAC (1 << E1000_FLAG_MAC_BIT)
127 uint32_t compat_flags;
128 } E1000State;
129
130 #define chkflag(x) (s->compat_flags & E1000_FLAG_##x)
131
132 typedef struct E1000BaseClass {
133 PCIDeviceClass parent_class;
134 uint16_t phy_id2;
135 } E1000BaseClass;
136
137 #define TYPE_E1000_BASE "e1000-base"
138
139 #define E1000(obj) \
140 OBJECT_CHECK(E1000State, (obj), TYPE_E1000_BASE)
141
142 #define E1000_DEVICE_CLASS(klass) \
143 OBJECT_CLASS_CHECK(E1000BaseClass, (klass), TYPE_E1000_BASE)
144 #define E1000_DEVICE_GET_CLASS(obj) \
145 OBJECT_GET_CLASS(E1000BaseClass, (obj), TYPE_E1000_BASE)
146
147 static void
148 e1000_link_up(E1000State *s)
149 {
150 e1000x_update_regs_on_link_up(s->mac_reg, s->phy_reg);
151
152 /* E1000_STATUS_LU is tested by e1000_can_receive() */
153 qemu_flush_queued_packets(qemu_get_queue(s->nic));
154 }
155
156 static void
157 e1000_autoneg_done(E1000State *s)
158 {
159 e1000x_update_regs_on_autoneg_done(s->mac_reg, s->phy_reg);
160
161 /* E1000_STATUS_LU is tested by e1000_can_receive() */
162 qemu_flush_queued_packets(qemu_get_queue(s->nic));
163 }
164
165 static bool
166 have_autoneg(E1000State *s)
167 {
168 return chkflag(AUTONEG) && (s->phy_reg[PHY_CTRL] & MII_CR_AUTO_NEG_EN);
169 }
170
171 static void
172 set_phy_ctrl(E1000State *s, int index, uint16_t val)
173 {
174 /* bits 0-5 reserved; MII_CR_[RESTART_AUTO_NEG,RESET] are self clearing */
175 s->phy_reg[PHY_CTRL] = val & ~(0x3f |
176 MII_CR_RESET |
177 MII_CR_RESTART_AUTO_NEG);
178
179 /*
180 * QEMU 1.3 does not support link auto-negotiation emulation, so if we
181 * migrate during auto negotiation, after migration the link will be
182 * down.
183 */
184 if (have_autoneg(s) && (val & MII_CR_RESTART_AUTO_NEG)) {
185 e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer);
186 }
187 }
188
189 static void (*phyreg_writeops[])(E1000State *, int, uint16_t) = {
190 [PHY_CTRL] = set_phy_ctrl,
191 };
192
193 enum { NPHYWRITEOPS = ARRAY_SIZE(phyreg_writeops) };
194
195 enum { PHY_R = 1, PHY_W = 2, PHY_RW = PHY_R | PHY_W };
196 static const char phy_regcap[0x20] = {
197 [PHY_STATUS] = PHY_R, [M88E1000_EXT_PHY_SPEC_CTRL] = PHY_RW,
198 [PHY_ID1] = PHY_R, [M88E1000_PHY_SPEC_CTRL] = PHY_RW,
199 [PHY_CTRL] = PHY_RW, [PHY_1000T_CTRL] = PHY_RW,
200 [PHY_LP_ABILITY] = PHY_R, [PHY_1000T_STATUS] = PHY_R,
201 [PHY_AUTONEG_ADV] = PHY_RW, [M88E1000_RX_ERR_CNTR] = PHY_R,
202 [PHY_ID2] = PHY_R, [M88E1000_PHY_SPEC_STATUS] = PHY_R,
203 [PHY_AUTONEG_EXP] = PHY_R,
204 };
205
206 /* PHY_ID2 documented in 8254x_GBe_SDM.pdf, pp. 250 */
207 static const uint16_t phy_reg_init[] = {
208 [PHY_CTRL] = MII_CR_SPEED_SELECT_MSB |
209 MII_CR_FULL_DUPLEX |
210 MII_CR_AUTO_NEG_EN,
211
212 [PHY_STATUS] = MII_SR_EXTENDED_CAPS |
213 MII_SR_LINK_STATUS | /* link initially up */
214 MII_SR_AUTONEG_CAPS |
215 /* MII_SR_AUTONEG_COMPLETE: initially NOT completed */
216 MII_SR_PREAMBLE_SUPPRESS |
217 MII_SR_EXTENDED_STATUS |
218 MII_SR_10T_HD_CAPS |
219 MII_SR_10T_FD_CAPS |
220 MII_SR_100X_HD_CAPS |
221 MII_SR_100X_FD_CAPS,
222
223 [PHY_ID1] = 0x141,
224 /* [PHY_ID2] configured per DevId, from e1000_reset() */
225 [PHY_AUTONEG_ADV] = 0xde1,
226 [PHY_LP_ABILITY] = 0x1e0,
227 [PHY_1000T_CTRL] = 0x0e00,
228 [PHY_1000T_STATUS] = 0x3c00,
229 [M88E1000_PHY_SPEC_CTRL] = 0x360,
230 [M88E1000_PHY_SPEC_STATUS] = 0xac00,
231 [M88E1000_EXT_PHY_SPEC_CTRL] = 0x0d60,
232 };
233
234 static const uint32_t mac_reg_init[] = {
235 [PBA] = 0x00100030,
236 [LEDCTL] = 0x602,
237 [CTRL] = E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
238 E1000_CTRL_SPD_1000 | E1000_CTRL_SLU,
239 [STATUS] = 0x80000000 | E1000_STATUS_GIO_MASTER_ENABLE |
240 E1000_STATUS_ASDV | E1000_STATUS_MTXCKOK |
241 E1000_STATUS_SPEED_1000 | E1000_STATUS_FD |
242 E1000_STATUS_LU,
243 [MANC] = E1000_MANC_EN_MNG2HOST | E1000_MANC_RCV_TCO_EN |
244 E1000_MANC_ARP_EN | E1000_MANC_0298_EN |
245 E1000_MANC_RMCP_EN,
246 };
247
248 /* Helper function, *curr == 0 means the value is not set */
249 static inline void
250 mit_update_delay(uint32_t *curr, uint32_t value)
251 {
252 if (value && (*curr == 0 || value < *curr)) {
253 *curr = value;
254 }
255 }
256
257 static void
258 set_interrupt_cause(E1000State *s, int index, uint32_t val)
259 {
260 PCIDevice *d = PCI_DEVICE(s);
261 uint32_t pending_ints;
262 uint32_t mit_delay;
263
264 s->mac_reg[ICR] = val;
265
266 /*
267 * Make sure ICR and ICS registers have the same value.
268 * The spec says that the ICS register is write-only. However in practice,
269 * on real hardware ICS is readable, and for reads it has the same value as
270 * ICR (except that ICS does not have the clear on read behaviour of ICR).
271 *
272 * The VxWorks PRO/1000 driver uses this behaviour.
273 */
274 s->mac_reg[ICS] = val;
275
276 pending_ints = (s->mac_reg[IMS] & s->mac_reg[ICR]);
277 if (!s->mit_irq_level && pending_ints) {
278 /*
279 * Here we detect a potential raising edge. We postpone raising the
280 * interrupt line if we are inside the mitigation delay window
281 * (s->mit_timer_on == 1).
282 * We provide a partial implementation of interrupt mitigation,
283 * emulating only RADV, TADV and ITR (lower 16 bits, 1024ns units for
284 * RADV and TADV, 256ns units for ITR). RDTR is only used to enable
285 * RADV; relative timers based on TIDV and RDTR are not implemented.
286 */
287 if (s->mit_timer_on) {
288 return;
289 }
290 if (chkflag(MIT)) {
291 /* Compute the next mitigation delay according to pending
292 * interrupts and the current values of RADV (provided
293 * RDTR!=0), TADV and ITR.
294 * Then rearm the timer.
295 */
296 mit_delay = 0;
297 if (s->mit_ide &&
298 (pending_ints & (E1000_ICR_TXQE | E1000_ICR_TXDW))) {
299 mit_update_delay(&mit_delay, s->mac_reg[TADV] * 4);
300 }
301 if (s->mac_reg[RDTR] && (pending_ints & E1000_ICS_RXT0)) {
302 mit_update_delay(&mit_delay, s->mac_reg[RADV] * 4);
303 }
304 mit_update_delay(&mit_delay, s->mac_reg[ITR]);
305
306 /*
307 * According to e1000 SPEC, the Ethernet controller guarantees
308 * a maximum observable interrupt rate of 7813 interrupts/sec.
309 * Thus if mit_delay < 500 then the delay should be set to the
310 * minimum delay possible which is 500.
311 */
312 mit_delay = (mit_delay < 500) ? 500 : mit_delay;
313
314 s->mit_timer_on = 1;
315 timer_mod(s->mit_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
316 mit_delay * 256);
317 s->mit_ide = 0;
318 }
319 }
320
321 s->mit_irq_level = (pending_ints != 0);
322 pci_set_irq(d, s->mit_irq_level);
323 }
324
325 static void
326 e1000_mit_timer(void *opaque)
327 {
328 E1000State *s = opaque;
329
330 s->mit_timer_on = 0;
331 /* Call set_interrupt_cause to update the irq level (if necessary). */
332 set_interrupt_cause(s, 0, s->mac_reg[ICR]);
333 }
334
335 static void
336 set_ics(E1000State *s, int index, uint32_t val)
337 {
338 DBGOUT(INTERRUPT, "set_ics %x, ICR %x, IMR %x\n", val, s->mac_reg[ICR],
339 s->mac_reg[IMS]);
340 set_interrupt_cause(s, 0, val | s->mac_reg[ICR]);
341 }
342
343 static void
344 e1000_autoneg_timer(void *opaque)
345 {
346 E1000State *s = opaque;
347 if (!qemu_get_queue(s->nic)->link_down) {
348 e1000_autoneg_done(s);
349 set_ics(s, 0, E1000_ICS_LSC); /* signal link status change to guest */
350 }
351 }
352
353 static void e1000_reset(void *opaque)
354 {
355 E1000State *d = opaque;
356 E1000BaseClass *edc = E1000_DEVICE_GET_CLASS(d);
357 uint8_t *macaddr = d->conf.macaddr.a;
358
359 timer_del(d->autoneg_timer);
360 timer_del(d->mit_timer);
361 d->mit_timer_on = 0;
362 d->mit_irq_level = 0;
363 d->mit_ide = 0;
364 memset(d->phy_reg, 0, sizeof d->phy_reg);
365 memmove(d->phy_reg, phy_reg_init, sizeof phy_reg_init);
366 d->phy_reg[PHY_ID2] = edc->phy_id2;
367 memset(d->mac_reg, 0, sizeof d->mac_reg);
368 memmove(d->mac_reg, mac_reg_init, sizeof mac_reg_init);
369 d->rxbuf_min_shift = 1;
370 memset(&d->tx, 0, sizeof d->tx);
371
372 if (qemu_get_queue(d->nic)->link_down) {
373 e1000x_update_regs_on_link_down(d->mac_reg, d->phy_reg);
374 }
375
376 e1000x_reset_mac_addr(d->nic, d->mac_reg, macaddr);
377 }
378
379 static void
380 set_ctrl(E1000State *s, int index, uint32_t val)
381 {
382 /* RST is self clearing */
383 s->mac_reg[CTRL] = val & ~E1000_CTRL_RST;
384 }
385
386 static void
387 set_rx_control(E1000State *s, int index, uint32_t val)
388 {
389 s->mac_reg[RCTL] = val;
390 s->rxbuf_size = e1000x_rxbufsize(val);
391 s->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1;
392 DBGOUT(RX, "RCTL: %d, mac_reg[RCTL] = 0x%x\n", s->mac_reg[RDT],
393 s->mac_reg[RCTL]);
394 qemu_flush_queued_packets(qemu_get_queue(s->nic));
395 }
396
397 static void
398 set_mdic(E1000State *s, int index, uint32_t val)
399 {
400 uint32_t data = val & E1000_MDIC_DATA_MASK;
401 uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
402
403 if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) // phy #
404 val = s->mac_reg[MDIC] | E1000_MDIC_ERROR;
405 else if (val & E1000_MDIC_OP_READ) {
406 DBGOUT(MDIC, "MDIC read reg 0x%x\n", addr);
407 if (!(phy_regcap[addr] & PHY_R)) {
408 DBGOUT(MDIC, "MDIC read reg %x unhandled\n", addr);
409 val |= E1000_MDIC_ERROR;
410 } else
411 val = (val ^ data) | s->phy_reg[addr];
412 } else if (val & E1000_MDIC_OP_WRITE) {
413 DBGOUT(MDIC, "MDIC write reg 0x%x, value 0x%x\n", addr, data);
414 if (!(phy_regcap[addr] & PHY_W)) {
415 DBGOUT(MDIC, "MDIC write reg %x unhandled\n", addr);
416 val |= E1000_MDIC_ERROR;
417 } else {
418 if (addr < NPHYWRITEOPS && phyreg_writeops[addr]) {
419 phyreg_writeops[addr](s, index, data);
420 } else {
421 s->phy_reg[addr] = data;
422 }
423 }
424 }
425 s->mac_reg[MDIC] = val | E1000_MDIC_READY;
426
427 if (val & E1000_MDIC_INT_EN) {
428 set_ics(s, 0, E1000_ICR_MDAC);
429 }
430 }
431
432 static uint32_t
433 get_eecd(E1000State *s, int index)
434 {
435 uint32_t ret = E1000_EECD_PRES|E1000_EECD_GNT | s->eecd_state.old_eecd;
436
437 DBGOUT(EEPROM, "reading eeprom bit %d (reading %d)\n",
438 s->eecd_state.bitnum_out, s->eecd_state.reading);
439 if (!s->eecd_state.reading ||
440 ((s->eeprom_data[(s->eecd_state.bitnum_out >> 4) & 0x3f] >>
441 ((s->eecd_state.bitnum_out & 0xf) ^ 0xf))) & 1)
442 ret |= E1000_EECD_DO;
443 return ret;
444 }
445
446 static void
447 set_eecd(E1000State *s, int index, uint32_t val)
448 {
449 uint32_t oldval = s->eecd_state.old_eecd;
450
451 s->eecd_state.old_eecd = val & (E1000_EECD_SK | E1000_EECD_CS |
452 E1000_EECD_DI|E1000_EECD_FWE_MASK|E1000_EECD_REQ);
453 if (!(E1000_EECD_CS & val)) { /* CS inactive; nothing to do */
454 return;
455 }
456 if (E1000_EECD_CS & (val ^ oldval)) { /* CS rise edge; reset state */
457 s->eecd_state.val_in = 0;
458 s->eecd_state.bitnum_in = 0;
459 s->eecd_state.bitnum_out = 0;
460 s->eecd_state.reading = 0;
461 }
462 if (!(E1000_EECD_SK & (val ^ oldval))) { /* no clock edge */
463 return;
464 }
465 if (!(E1000_EECD_SK & val)) { /* falling edge */
466 s->eecd_state.bitnum_out++;
467 return;
468 }
469 s->eecd_state.val_in <<= 1;
470 if (val & E1000_EECD_DI)
471 s->eecd_state.val_in |= 1;
472 if (++s->eecd_state.bitnum_in == 9 && !s->eecd_state.reading) {
473 s->eecd_state.bitnum_out = ((s->eecd_state.val_in & 0x3f)<<4)-1;
474 s->eecd_state.reading = (((s->eecd_state.val_in >> 6) & 7) ==
475 EEPROM_READ_OPCODE_MICROWIRE);
476 }
477 DBGOUT(EEPROM, "eeprom bitnum in %d out %d, reading %d\n",
478 s->eecd_state.bitnum_in, s->eecd_state.bitnum_out,
479 s->eecd_state.reading);
480 }
481
482 static uint32_t
483 flash_eerd_read(E1000State *s, int x)
484 {
485 unsigned int index, r = s->mac_reg[EERD] & ~E1000_EEPROM_RW_REG_START;
486
487 if ((s->mac_reg[EERD] & E1000_EEPROM_RW_REG_START) == 0)
488 return (s->mac_reg[EERD]);
489
490 if ((index = r >> E1000_EEPROM_RW_ADDR_SHIFT) > EEPROM_CHECKSUM_REG)
491 return (E1000_EEPROM_RW_REG_DONE | r);
492
493 return ((s->eeprom_data[index] << E1000_EEPROM_RW_REG_DATA) |
494 E1000_EEPROM_RW_REG_DONE | r);
495 }
496
497 static void
498 putsum(uint8_t *data, uint32_t n, uint32_t sloc, uint32_t css, uint32_t cse)
499 {
500 uint32_t sum;
501
502 if (cse && cse < n)
503 n = cse + 1;
504 if (sloc < n-1) {
505 sum = net_checksum_add(n-css, data+css);
506 stw_be_p(data + sloc, net_checksum_finish(sum));
507 }
508 }
509
510 static inline void
511 inc_tx_bcast_or_mcast_count(E1000State *s, const unsigned char *arr)
512 {
513 if (!memcmp(arr, bcast, sizeof bcast)) {
514 e1000x_inc_reg_if_not_full(s->mac_reg, BPTC);
515 } else if (arr[0] & 1) {
516 e1000x_inc_reg_if_not_full(s->mac_reg, MPTC);
517 }
518 }
519
520 static void
521 e1000_send_packet(E1000State *s, const uint8_t *buf, int size)
522 {
523 static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
524 PTC1023, PTC1522 };
525
526 NetClientState *nc = qemu_get_queue(s->nic);
527 if (s->phy_reg[PHY_CTRL] & MII_CR_LOOPBACK) {
528 nc->info->receive(nc, buf, size);
529 } else {
530 qemu_send_packet(nc, buf, size);
531 }
532 inc_tx_bcast_or_mcast_count(s, buf);
533 e1000x_increase_size_stats(s->mac_reg, PTCregs, size);
534 }
535
536 static void
537 xmit_seg(E1000State *s)
538 {
539 uint16_t len;
540 unsigned int frames = s->tx.tso_frames, css, sofar;
541 struct e1000_tx *tp = &s->tx;
542
543 if (tp->props.tse && tp->props.cptse) {
544 css = tp->props.ipcss;
545 DBGOUT(TXSUM, "frames %d size %d ipcss %d\n",
546 frames, tp->size, css);
547 if (tp->props.ip) { /* IPv4 */
548 stw_be_p(tp->data+css+2, tp->size - css);
549 stw_be_p(tp->data+css+4,
550 lduw_be_p(tp->data + css + 4) + frames);
551 } else { /* IPv6 */
552 stw_be_p(tp->data+css+4, tp->size - css);
553 }
554 css = tp->props.tucss;
555 len = tp->size - css;
556 DBGOUT(TXSUM, "tcp %d tucss %d len %d\n", tp->props.tcp, css, len);
557 if (tp->props.tcp) {
558 sofar = frames * tp->props.mss;
559 stl_be_p(tp->data+css+4, ldl_be_p(tp->data+css+4)+sofar); /* seq */
560 if (tp->props.paylen - sofar > tp->props.mss) {
561 tp->data[css + 13] &= ~9; /* PSH, FIN */
562 } else if (frames) {
563 e1000x_inc_reg_if_not_full(s->mac_reg, TSCTC);
564 }
565 } else /* UDP */
566 stw_be_p(tp->data+css+4, len);
567 if (tp->props.sum_needed & E1000_TXD_POPTS_TXSM) {
568 unsigned int phsum;
569 // add pseudo-header length before checksum calculation
570 void *sp = tp->data + tp->props.tucso;
571
572 phsum = lduw_be_p(sp) + len;
573 phsum = (phsum >> 16) + (phsum & 0xffff);
574 stw_be_p(sp, phsum);
575 }
576 tp->tso_frames++;
577 }
578
579 if (tp->props.sum_needed & E1000_TXD_POPTS_TXSM) {
580 putsum(tp->data, tp->size, tp->props.tucso,
581 tp->props.tucss, tp->props.tucse);
582 }
583 if (tp->props.sum_needed & E1000_TXD_POPTS_IXSM) {
584 putsum(tp->data, tp->size, tp->props.ipcso,
585 tp->props.ipcss, tp->props.ipcse);
586 }
587 if (tp->vlan_needed) {
588 memmove(tp->vlan, tp->data, 4);
589 memmove(tp->data, tp->data + 4, 8);
590 memcpy(tp->data + 8, tp->vlan_header, 4);
591 e1000_send_packet(s, tp->vlan, tp->size + 4);
592 } else {
593 e1000_send_packet(s, tp->data, tp->size);
594 }
595
596 e1000x_inc_reg_if_not_full(s->mac_reg, TPT);
597 e1000x_grow_8reg_if_not_full(s->mac_reg, TOTL, s->tx.size);
598 s->mac_reg[GPTC] = s->mac_reg[TPT];
599 s->mac_reg[GOTCL] = s->mac_reg[TOTL];
600 s->mac_reg[GOTCH] = s->mac_reg[TOTH];
601 }
602
603 static void
604 process_tx_desc(E1000State *s, struct e1000_tx_desc *dp)
605 {
606 PCIDevice *d = PCI_DEVICE(s);
607 uint32_t txd_lower = le32_to_cpu(dp->lower.data);
608 uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
609 unsigned int split_size = txd_lower & 0xffff, bytes, sz;
610 unsigned int msh = 0xfffff;
611 uint64_t addr;
612 struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
613 struct e1000_tx *tp = &s->tx;
614
615 s->mit_ide |= (txd_lower & E1000_TXD_CMD_IDE);
616 if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */
617 e1000x_read_tx_ctx_descr(xp, &tp->props);
618 tp->tso_frames = 0;
619 if (tp->props.tucso == 0) { /* this is probably wrong */
620 DBGOUT(TXSUM, "TCP/UDP: cso 0!\n");
621 tp->props.tucso = tp->props.tucss + (tp->props.tcp ? 16 : 6);
622 }
623 return;
624 } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
625 // data descriptor
626 if (tp->size == 0) {
627 tp->props.sum_needed = le32_to_cpu(dp->upper.data) >> 8;
628 }
629 tp->props.cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0;
630 } else {
631 // legacy descriptor
632 tp->props.cptse = 0;
633 }
634
635 if (e1000x_vlan_enabled(s->mac_reg) &&
636 e1000x_is_vlan_txd(txd_lower) &&
637 (tp->props.cptse || txd_lower & E1000_TXD_CMD_EOP)) {
638 tp->vlan_needed = 1;
639 stw_be_p(tp->vlan_header,
640 le16_to_cpu(s->mac_reg[VET]));
641 stw_be_p(tp->vlan_header + 2,
642 le16_to_cpu(dp->upper.fields.special));
643 }
644
645 addr = le64_to_cpu(dp->buffer_addr);
646 if (tp->props.tse && tp->props.cptse) {
647 msh = tp->props.hdr_len + tp->props.mss;
648 do {
649 bytes = split_size;
650 if (tp->size + bytes > msh)
651 bytes = msh - tp->size;
652
653 bytes = MIN(sizeof(tp->data) - tp->size, bytes);
654 pci_dma_read(d, addr, tp->data + tp->size, bytes);
655 sz = tp->size + bytes;
656 if (sz >= tp->props.hdr_len && tp->size < tp->props.hdr_len) {
657 memmove(tp->header, tp->data, tp->props.hdr_len);
658 }
659 tp->size = sz;
660 addr += bytes;
661 if (sz == msh) {
662 xmit_seg(s);
663 memmove(tp->data, tp->header, tp->props.hdr_len);
664 tp->size = tp->props.hdr_len;
665 }
666 split_size -= bytes;
667 } while (bytes && split_size);
668 } else if (!tp->props.tse && tp->props.cptse) {
669 // context descriptor TSE is not set, while data descriptor TSE is set
670 DBGOUT(TXERR, "TCP segmentation error\n");
671 } else {
672 split_size = MIN(sizeof(tp->data) - tp->size, split_size);
673 pci_dma_read(d, addr, tp->data + tp->size, split_size);
674 tp->size += split_size;
675 }
676
677 if (!(txd_lower & E1000_TXD_CMD_EOP))
678 return;
679 if (!(tp->props.tse && tp->props.cptse && tp->size < tp->props.hdr_len)) {
680 xmit_seg(s);
681 }
682 tp->tso_frames = 0;
683 tp->props.sum_needed = 0;
684 tp->vlan_needed = 0;
685 tp->size = 0;
686 tp->props.cptse = 0;
687 }
688
689 static uint32_t
690 txdesc_writeback(E1000State *s, dma_addr_t base, struct e1000_tx_desc *dp)
691 {
692 PCIDevice *d = PCI_DEVICE(s);
693 uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
694
695 if (!(txd_lower & (E1000_TXD_CMD_RS|E1000_TXD_CMD_RPS)))
696 return 0;
697 txd_upper = (le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD) &
698 ~(E1000_TXD_STAT_EC | E1000_TXD_STAT_LC | E1000_TXD_STAT_TU);
699 dp->upper.data = cpu_to_le32(txd_upper);
700 pci_dma_write(d, base + ((char *)&dp->upper - (char *)dp),
701 &dp->upper, sizeof(dp->upper));
702 return E1000_ICR_TXDW;
703 }
704
705 static uint64_t tx_desc_base(E1000State *s)
706 {
707 uint64_t bah = s->mac_reg[TDBAH];
708 uint64_t bal = s->mac_reg[TDBAL] & ~0xf;
709
710 return (bah << 32) + bal;
711 }
712
713 static void
714 start_xmit(E1000State *s)
715 {
716 PCIDevice *d = PCI_DEVICE(s);
717 dma_addr_t base;
718 struct e1000_tx_desc desc;
719 uint32_t tdh_start = s->mac_reg[TDH], cause = E1000_ICS_TXQE;
720
721 if (!(s->mac_reg[TCTL] & E1000_TCTL_EN)) {
722 DBGOUT(TX, "tx disabled\n");
723 return;
724 }
725
726 while (s->mac_reg[TDH] != s->mac_reg[TDT]) {
727 base = tx_desc_base(s) +
728 sizeof(struct e1000_tx_desc) * s->mac_reg[TDH];
729 pci_dma_read(d, base, &desc, sizeof(desc));
730
731 DBGOUT(TX, "index %d: %p : %x %x\n", s->mac_reg[TDH],
732 (void *)(intptr_t)desc.buffer_addr, desc.lower.data,
733 desc.upper.data);
734
735 process_tx_desc(s, &desc);
736 cause |= txdesc_writeback(s, base, &desc);
737
738 if (++s->mac_reg[TDH] * sizeof(desc) >= s->mac_reg[TDLEN])
739 s->mac_reg[TDH] = 0;
740 /*
741 * the following could happen only if guest sw assigns
742 * bogus values to TDT/TDLEN.
743 * there's nothing too intelligent we could do about this.
744 */
745 if (s->mac_reg[TDH] == tdh_start ||
746 tdh_start >= s->mac_reg[TDLEN] / sizeof(desc)) {
747 DBGOUT(TXERR, "TDH wraparound @%x, TDT %x, TDLEN %x\n",
748 tdh_start, s->mac_reg[TDT], s->mac_reg[TDLEN]);
749 break;
750 }
751 }
752 set_ics(s, 0, cause);
753 }
754
755 static int
756 receive_filter(E1000State *s, const uint8_t *buf, int size)
757 {
758 uint32_t rctl = s->mac_reg[RCTL];
759 int isbcast = !memcmp(buf, bcast, sizeof bcast), ismcast = (buf[0] & 1);
760
761 if (e1000x_is_vlan_packet(buf, le16_to_cpu(s->mac_reg[VET])) &&
762 e1000x_vlan_rx_filter_enabled(s->mac_reg)) {
763 uint16_t vid = lduw_be_p(buf + 14);
764 uint32_t vfta = ldl_le_p((uint32_t*)(s->mac_reg + VFTA) +
765 ((vid >> 5) & 0x7f));
766 if ((vfta & (1 << (vid & 0x1f))) == 0)
767 return 0;
768 }
769
770 if (!isbcast && !ismcast && (rctl & E1000_RCTL_UPE)) { /* promiscuous ucast */
771 return 1;
772 }
773
774 if (ismcast && (rctl & E1000_RCTL_MPE)) { /* promiscuous mcast */
775 e1000x_inc_reg_if_not_full(s->mac_reg, MPRC);
776 return 1;
777 }
778
779 if (isbcast && (rctl & E1000_RCTL_BAM)) { /* broadcast enabled */
780 e1000x_inc_reg_if_not_full(s->mac_reg, BPRC);
781 return 1;
782 }
783
784 return e1000x_rx_group_filter(s->mac_reg, buf);
785 }
786
787 static void
788 e1000_set_link_status(NetClientState *nc)
789 {
790 E1000State *s = qemu_get_nic_opaque(nc);
791 uint32_t old_status = s->mac_reg[STATUS];
792
793 if (nc->link_down) {
794 e1000x_update_regs_on_link_down(s->mac_reg, s->phy_reg);
795 } else {
796 if (have_autoneg(s) &&
797 !(s->phy_reg[PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
798 e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer);
799 } else {
800 e1000_link_up(s);
801 }
802 }
803
804 if (s->mac_reg[STATUS] != old_status)
805 set_ics(s, 0, E1000_ICR_LSC);
806 }
807
808 static bool e1000_has_rxbufs(E1000State *s, size_t total_size)
809 {
810 int bufs;
811 /* Fast-path short packets */
812 if (total_size <= s->rxbuf_size) {
813 return s->mac_reg[RDH] != s->mac_reg[RDT];
814 }
815 if (s->mac_reg[RDH] < s->mac_reg[RDT]) {
816 bufs = s->mac_reg[RDT] - s->mac_reg[RDH];
817 } else if (s->mac_reg[RDH] > s->mac_reg[RDT]) {
818 bufs = s->mac_reg[RDLEN] / sizeof(struct e1000_rx_desc) +
819 s->mac_reg[RDT] - s->mac_reg[RDH];
820 } else {
821 return false;
822 }
823 return total_size <= bufs * s->rxbuf_size;
824 }
825
826 static int
827 e1000_can_receive(NetClientState *nc)
828 {
829 E1000State *s = qemu_get_nic_opaque(nc);
830
831 return e1000x_rx_ready(&s->parent_obj, s->mac_reg) &&
832 e1000_has_rxbufs(s, 1);
833 }
834
835 static uint64_t rx_desc_base(E1000State *s)
836 {
837 uint64_t bah = s->mac_reg[RDBAH];
838 uint64_t bal = s->mac_reg[RDBAL] & ~0xf;
839
840 return (bah << 32) + bal;
841 }
842
843 static ssize_t
844 e1000_receive_iov(NetClientState *nc, const struct iovec *iov, int iovcnt)
845 {
846 E1000State *s = qemu_get_nic_opaque(nc);
847 PCIDevice *d = PCI_DEVICE(s);
848 struct e1000_rx_desc desc;
849 dma_addr_t base;
850 unsigned int n, rdt;
851 uint32_t rdh_start;
852 uint16_t vlan_special = 0;
853 uint8_t vlan_status = 0;
854 uint8_t min_buf[MIN_BUF_SIZE];
855 struct iovec min_iov;
856 uint8_t *filter_buf = iov->iov_base;
857 size_t size = iov_size(iov, iovcnt);
858 size_t iov_ofs = 0;
859 size_t desc_offset;
860 size_t desc_size;
861 size_t total_size;
862
863 if (!e1000x_hw_rx_enabled(s->mac_reg)) {
864 return -1;
865 }
866
867 /* Pad to minimum Ethernet frame length */
868 if (size < sizeof(min_buf)) {
869 iov_to_buf(iov, iovcnt, 0, min_buf, size);
870 memset(&min_buf[size], 0, sizeof(min_buf) - size);
871 e1000x_inc_reg_if_not_full(s->mac_reg, RUC);
872 min_iov.iov_base = filter_buf = min_buf;
873 min_iov.iov_len = size = sizeof(min_buf);
874 iovcnt = 1;
875 iov = &min_iov;
876 } else if (iov->iov_len < MAXIMUM_ETHERNET_HDR_LEN) {
877 /* This is very unlikely, but may happen. */
878 iov_to_buf(iov, iovcnt, 0, min_buf, MAXIMUM_ETHERNET_HDR_LEN);
879 filter_buf = min_buf;
880 }
881
882 /* Discard oversized packets if !LPE and !SBP. */
883 if (e1000x_is_oversized(s->mac_reg, size)) {
884 return size;
885 }
886
887 if (!receive_filter(s, filter_buf, size)) {
888 return size;
889 }
890
891 if (e1000x_vlan_enabled(s->mac_reg) &&
892 e1000x_is_vlan_packet(filter_buf, le16_to_cpu(s->mac_reg[VET]))) {
893 vlan_special = cpu_to_le16(lduw_be_p(filter_buf + 14));
894 iov_ofs = 4;
895 if (filter_buf == iov->iov_base) {
896 memmove(filter_buf + 4, filter_buf, 12);
897 } else {
898 iov_from_buf(iov, iovcnt, 4, filter_buf, 12);
899 while (iov->iov_len <= iov_ofs) {
900 iov_ofs -= iov->iov_len;
901 iov++;
902 }
903 }
904 vlan_status = E1000_RXD_STAT_VP;
905 size -= 4;
906 }
907
908 rdh_start = s->mac_reg[RDH];
909 desc_offset = 0;
910 total_size = size + e1000x_fcs_len(s->mac_reg);
911 if (!e1000_has_rxbufs(s, total_size)) {
912 set_ics(s, 0, E1000_ICS_RXO);
913 return -1;
914 }
915 do {
916 desc_size = total_size - desc_offset;
917 if (desc_size > s->rxbuf_size) {
918 desc_size = s->rxbuf_size;
919 }
920 base = rx_desc_base(s) + sizeof(desc) * s->mac_reg[RDH];
921 pci_dma_read(d, base, &desc, sizeof(desc));
922 desc.special = vlan_special;
923 desc.status |= (vlan_status | E1000_RXD_STAT_DD);
924 if (desc.buffer_addr) {
925 if (desc_offset < size) {
926 size_t iov_copy;
927 hwaddr ba = le64_to_cpu(desc.buffer_addr);
928 size_t copy_size = size - desc_offset;
929 if (copy_size > s->rxbuf_size) {
930 copy_size = s->rxbuf_size;
931 }
932 do {
933 iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
934 pci_dma_write(d, ba, iov->iov_base + iov_ofs, iov_copy);
935 copy_size -= iov_copy;
936 ba += iov_copy;
937 iov_ofs += iov_copy;
938 if (iov_ofs == iov->iov_len) {
939 iov++;
940 iov_ofs = 0;
941 }
942 } while (copy_size);
943 }
944 desc_offset += desc_size;
945 desc.length = cpu_to_le16(desc_size);
946 if (desc_offset >= total_size) {
947 desc.status |= E1000_RXD_STAT_EOP | E1000_RXD_STAT_IXSM;
948 } else {
949 /* Guest zeroing out status is not a hardware requirement.
950 Clear EOP in case guest didn't do it. */
951 desc.status &= ~E1000_RXD_STAT_EOP;
952 }
953 } else { // as per intel docs; skip descriptors with null buf addr
954 DBGOUT(RX, "Null RX descriptor!!\n");
955 }
956 pci_dma_write(d, base, &desc, sizeof(desc));
957
958 if (++s->mac_reg[RDH] * sizeof(desc) >= s->mac_reg[RDLEN])
959 s->mac_reg[RDH] = 0;
960 /* see comment in start_xmit; same here */
961 if (s->mac_reg[RDH] == rdh_start ||
962 rdh_start >= s->mac_reg[RDLEN] / sizeof(desc)) {
963 DBGOUT(RXERR, "RDH wraparound @%x, RDT %x, RDLEN %x\n",
964 rdh_start, s->mac_reg[RDT], s->mac_reg[RDLEN]);
965 set_ics(s, 0, E1000_ICS_RXO);
966 return -1;
967 }
968 } while (desc_offset < total_size);
969
970 e1000x_update_rx_total_stats(s->mac_reg, size, total_size);
971
972 n = E1000_ICS_RXT0;
973 if ((rdt = s->mac_reg[RDT]) < s->mac_reg[RDH])
974 rdt += s->mac_reg[RDLEN] / sizeof(desc);
975 if (((rdt - s->mac_reg[RDH]) * sizeof(desc)) <= s->mac_reg[RDLEN] >>
976 s->rxbuf_min_shift)
977 n |= E1000_ICS_RXDMT0;
978
979 set_ics(s, 0, n);
980
981 return size;
982 }
983
984 static ssize_t
985 e1000_receive(NetClientState *nc, const uint8_t *buf, size_t size)
986 {
987 const struct iovec iov = {
988 .iov_base = (uint8_t *)buf,
989 .iov_len = size
990 };
991
992 return e1000_receive_iov(nc, &iov, 1);
993 }
994
995 static uint32_t
996 mac_readreg(E1000State *s, int index)
997 {
998 return s->mac_reg[index];
999 }
1000
1001 static uint32_t
1002 mac_low4_read(E1000State *s, int index)
1003 {
1004 return s->mac_reg[index] & 0xf;
1005 }
1006
1007 static uint32_t
1008 mac_low11_read(E1000State *s, int index)
1009 {
1010 return s->mac_reg[index] & 0x7ff;
1011 }
1012
1013 static uint32_t
1014 mac_low13_read(E1000State *s, int index)
1015 {
1016 return s->mac_reg[index] & 0x1fff;
1017 }
1018
1019 static uint32_t
1020 mac_low16_read(E1000State *s, int index)
1021 {
1022 return s->mac_reg[index] & 0xffff;
1023 }
1024
1025 static uint32_t
1026 mac_icr_read(E1000State *s, int index)
1027 {
1028 uint32_t ret = s->mac_reg[ICR];
1029
1030 DBGOUT(INTERRUPT, "ICR read: %x\n", ret);
1031 set_interrupt_cause(s, 0, 0);
1032 return ret;
1033 }
1034
1035 static uint32_t
1036 mac_read_clr4(E1000State *s, int index)
1037 {
1038 uint32_t ret = s->mac_reg[index];
1039
1040 s->mac_reg[index] = 0;
1041 return ret;
1042 }
1043
1044 static uint32_t
1045 mac_read_clr8(E1000State *s, int index)
1046 {
1047 uint32_t ret = s->mac_reg[index];
1048
1049 s->mac_reg[index] = 0;
1050 s->mac_reg[index-1] = 0;
1051 return ret;
1052 }
1053
1054 static void
1055 mac_writereg(E1000State *s, int index, uint32_t val)
1056 {
1057 uint32_t macaddr[2];
1058
1059 s->mac_reg[index] = val;
1060
1061 if (index == RA + 1) {
1062 macaddr[0] = cpu_to_le32(s->mac_reg[RA]);
1063 macaddr[1] = cpu_to_le32(s->mac_reg[RA + 1]);
1064 qemu_format_nic_info_str(qemu_get_queue(s->nic), (uint8_t *)macaddr);
1065 }
1066 }
1067
1068 static void
1069 set_rdt(E1000State *s, int index, uint32_t val)
1070 {
1071 s->mac_reg[index] = val & 0xffff;
1072 if (e1000_has_rxbufs(s, 1)) {
1073 qemu_flush_queued_packets(qemu_get_queue(s->nic));
1074 }
1075 }
1076
1077 static void
1078 set_16bit(E1000State *s, int index, uint32_t val)
1079 {
1080 s->mac_reg[index] = val & 0xffff;
1081 }
1082
1083 static void
1084 set_dlen(E1000State *s, int index, uint32_t val)
1085 {
1086 s->mac_reg[index] = val & 0xfff80;
1087 }
1088
1089 static void
1090 set_tctl(E1000State *s, int index, uint32_t val)
1091 {
1092 s->mac_reg[index] = val;
1093 s->mac_reg[TDT] &= 0xffff;
1094 start_xmit(s);
1095 }
1096
1097 static void
1098 set_icr(E1000State *s, int index, uint32_t val)
1099 {
1100 DBGOUT(INTERRUPT, "set_icr %x\n", val);
1101 set_interrupt_cause(s, 0, s->mac_reg[ICR] & ~val);
1102 }
1103
1104 static void
1105 set_imc(E1000State *s, int index, uint32_t val)
1106 {
1107 s->mac_reg[IMS] &= ~val;
1108 set_ics(s, 0, 0);
1109 }
1110
1111 static void
1112 set_ims(E1000State *s, int index, uint32_t val)
1113 {
1114 s->mac_reg[IMS] |= val;
1115 set_ics(s, 0, 0);
1116 }
1117
1118 #define getreg(x) [x] = mac_readreg
1119 static uint32_t (*macreg_readops[])(E1000State *, int) = {
1120 getreg(PBA), getreg(RCTL), getreg(TDH), getreg(TXDCTL),
1121 getreg(WUFC), getreg(TDT), getreg(CTRL), getreg(LEDCTL),
1122 getreg(MANC), getreg(MDIC), getreg(SWSM), getreg(STATUS),
1123 getreg(TORL), getreg(TOTL), getreg(IMS), getreg(TCTL),
1124 getreg(RDH), getreg(RDT), getreg(VET), getreg(ICS),
1125 getreg(TDBAL), getreg(TDBAH), getreg(RDBAH), getreg(RDBAL),
1126 getreg(TDLEN), getreg(RDLEN), getreg(RDTR), getreg(RADV),
1127 getreg(TADV), getreg(ITR), getreg(FCRUC), getreg(IPAV),
1128 getreg(WUC), getreg(WUS), getreg(SCC), getreg(ECOL),
1129 getreg(MCC), getreg(LATECOL), getreg(COLC), getreg(DC),
1130 getreg(TNCRS), getreg(SEC), getreg(CEXTERR), getreg(RLEC),
1131 getreg(XONRXC), getreg(XONTXC), getreg(XOFFRXC), getreg(XOFFTXC),
1132 getreg(RFC), getreg(RJC), getreg(RNBC), getreg(TSCTFC),
1133 getreg(MGTPRC), getreg(MGTPDC), getreg(MGTPTC), getreg(GORCL),
1134 getreg(GOTCL),
1135
1136 [TOTH] = mac_read_clr8, [TORH] = mac_read_clr8,
1137 [GOTCH] = mac_read_clr8, [GORCH] = mac_read_clr8,
1138 [PRC64] = mac_read_clr4, [PRC127] = mac_read_clr4,
1139 [PRC255] = mac_read_clr4, [PRC511] = mac_read_clr4,
1140 [PRC1023] = mac_read_clr4, [PRC1522] = mac_read_clr4,
1141 [PTC64] = mac_read_clr4, [PTC127] = mac_read_clr4,
1142 [PTC255] = mac_read_clr4, [PTC511] = mac_read_clr4,
1143 [PTC1023] = mac_read_clr4, [PTC1522] = mac_read_clr4,
1144 [GPRC] = mac_read_clr4, [GPTC] = mac_read_clr4,
1145 [TPT] = mac_read_clr4, [TPR] = mac_read_clr4,
1146 [RUC] = mac_read_clr4, [ROC] = mac_read_clr4,
1147 [BPRC] = mac_read_clr4, [MPRC] = mac_read_clr4,
1148 [TSCTC] = mac_read_clr4, [BPTC] = mac_read_clr4,
1149 [MPTC] = mac_read_clr4,
1150 [ICR] = mac_icr_read, [EECD] = get_eecd,
1151 [EERD] = flash_eerd_read,
1152 [RDFH] = mac_low13_read, [RDFT] = mac_low13_read,
1153 [RDFHS] = mac_low13_read, [RDFTS] = mac_low13_read,
1154 [RDFPC] = mac_low13_read,
1155 [TDFH] = mac_low11_read, [TDFT] = mac_low11_read,
1156 [TDFHS] = mac_low13_read, [TDFTS] = mac_low13_read,
1157 [TDFPC] = mac_low13_read,
1158 [AIT] = mac_low16_read,
1159
1160 [CRCERRS ... MPC] = &mac_readreg,
1161 [IP6AT ... IP6AT+3] = &mac_readreg, [IP4AT ... IP4AT+6] = &mac_readreg,
1162 [FFLT ... FFLT+6] = &mac_low11_read,
1163 [RA ... RA+31] = &mac_readreg,
1164 [WUPM ... WUPM+31] = &mac_readreg,
1165 [MTA ... MTA+127] = &mac_readreg,
1166 [VFTA ... VFTA+127] = &mac_readreg,
1167 [FFMT ... FFMT+254] = &mac_low4_read,
1168 [FFVT ... FFVT+254] = &mac_readreg,
1169 [PBM ... PBM+16383] = &mac_readreg,
1170 };
1171 enum { NREADOPS = ARRAY_SIZE(macreg_readops) };
1172
1173 #define putreg(x) [x] = mac_writereg
1174 static void (*macreg_writeops[])(E1000State *, int, uint32_t) = {
1175 putreg(PBA), putreg(EERD), putreg(SWSM), putreg(WUFC),
1176 putreg(TDBAL), putreg(TDBAH), putreg(TXDCTL), putreg(RDBAH),
1177 putreg(RDBAL), putreg(LEDCTL), putreg(VET), putreg(FCRUC),
1178 putreg(TDFH), putreg(TDFT), putreg(TDFHS), putreg(TDFTS),
1179 putreg(TDFPC), putreg(RDFH), putreg(RDFT), putreg(RDFHS),
1180 putreg(RDFTS), putreg(RDFPC), putreg(IPAV), putreg(WUC),
1181 putreg(WUS), putreg(AIT),
1182
1183 [TDLEN] = set_dlen, [RDLEN] = set_dlen, [TCTL] = set_tctl,
1184 [TDT] = set_tctl, [MDIC] = set_mdic, [ICS] = set_ics,
1185 [TDH] = set_16bit, [RDH] = set_16bit, [RDT] = set_rdt,
1186 [IMC] = set_imc, [IMS] = set_ims, [ICR] = set_icr,
1187 [EECD] = set_eecd, [RCTL] = set_rx_control, [CTRL] = set_ctrl,
1188 [RDTR] = set_16bit, [RADV] = set_16bit, [TADV] = set_16bit,
1189 [ITR] = set_16bit,
1190
1191 [IP6AT ... IP6AT+3] = &mac_writereg, [IP4AT ... IP4AT+6] = &mac_writereg,
1192 [FFLT ... FFLT+6] = &mac_writereg,
1193 [RA ... RA+31] = &mac_writereg,
1194 [WUPM ... WUPM+31] = &mac_writereg,
1195 [MTA ... MTA+127] = &mac_writereg,
1196 [VFTA ... VFTA+127] = &mac_writereg,
1197 [FFMT ... FFMT+254] = &mac_writereg, [FFVT ... FFVT+254] = &mac_writereg,
1198 [PBM ... PBM+16383] = &mac_writereg,
1199 };
1200
1201 enum { NWRITEOPS = ARRAY_SIZE(macreg_writeops) };
1202
1203 enum { MAC_ACCESS_PARTIAL = 1, MAC_ACCESS_FLAG_NEEDED = 2 };
1204
1205 #define markflag(x) ((E1000_FLAG_##x << 2) | MAC_ACCESS_FLAG_NEEDED)
1206 /* In the array below the meaning of the bits is: [f|f|f|f|f|f|n|p]
1207 * f - flag bits (up to 6 possible flags)
1208 * n - flag needed
1209 * p - partially implenented */
1210 static const uint8_t mac_reg_access[0x8000] = {
1211 [RDTR] = markflag(MIT), [TADV] = markflag(MIT),
1212 [RADV] = markflag(MIT), [ITR] = markflag(MIT),
1213
1214 [IPAV] = markflag(MAC), [WUC] = markflag(MAC),
1215 [IP6AT] = markflag(MAC), [IP4AT] = markflag(MAC),
1216 [FFVT] = markflag(MAC), [WUPM] = markflag(MAC),
1217 [ECOL] = markflag(MAC), [MCC] = markflag(MAC),
1218 [DC] = markflag(MAC), [TNCRS] = markflag(MAC),
1219 [RLEC] = markflag(MAC), [XONRXC] = markflag(MAC),
1220 [XOFFTXC] = markflag(MAC), [RFC] = markflag(MAC),
1221 [TSCTFC] = markflag(MAC), [MGTPRC] = markflag(MAC),
1222 [WUS] = markflag(MAC), [AIT] = markflag(MAC),
1223 [FFLT] = markflag(MAC), [FFMT] = markflag(MAC),
1224 [SCC] = markflag(MAC), [FCRUC] = markflag(MAC),
1225 [LATECOL] = markflag(MAC), [COLC] = markflag(MAC),
1226 [SEC] = markflag(MAC), [CEXTERR] = markflag(MAC),
1227 [XONTXC] = markflag(MAC), [XOFFRXC] = markflag(MAC),
1228 [RJC] = markflag(MAC), [RNBC] = markflag(MAC),
1229 [MGTPDC] = markflag(MAC), [MGTPTC] = markflag(MAC),
1230 [RUC] = markflag(MAC), [ROC] = markflag(MAC),
1231 [GORCL] = markflag(MAC), [GORCH] = markflag(MAC),
1232 [GOTCL] = markflag(MAC), [GOTCH] = markflag(MAC),
1233 [BPRC] = markflag(MAC), [MPRC] = markflag(MAC),
1234 [TSCTC] = markflag(MAC), [PRC64] = markflag(MAC),
1235 [PRC127] = markflag(MAC), [PRC255] = markflag(MAC),
1236 [PRC511] = markflag(MAC), [PRC1023] = markflag(MAC),
1237 [PRC1522] = markflag(MAC), [PTC64] = markflag(MAC),
1238 [PTC127] = markflag(MAC), [PTC255] = markflag(MAC),
1239 [PTC511] = markflag(MAC), [PTC1023] = markflag(MAC),
1240 [PTC1522] = markflag(MAC), [MPTC] = markflag(MAC),
1241 [BPTC] = markflag(MAC),
1242
1243 [TDFH] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1244 [TDFT] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1245 [TDFHS] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1246 [TDFTS] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1247 [TDFPC] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1248 [RDFH] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1249 [RDFT] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1250 [RDFHS] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1251 [RDFTS] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1252 [RDFPC] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1253 [PBM] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1254 };
1255
1256 static void
1257 e1000_mmio_write(void *opaque, hwaddr addr, uint64_t val,
1258 unsigned size)
1259 {
1260 E1000State *s = opaque;
1261 unsigned int index = (addr & 0x1ffff) >> 2;
1262
1263 if (index < NWRITEOPS && macreg_writeops[index]) {
1264 if (!(mac_reg_access[index] & MAC_ACCESS_FLAG_NEEDED)
1265 || (s->compat_flags & (mac_reg_access[index] >> 2))) {
1266 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
1267 DBGOUT(GENERAL, "Writing to register at offset: 0x%08x. "
1268 "It is not fully implemented.\n", index<<2);
1269 }
1270 macreg_writeops[index](s, index, val);
1271 } else { /* "flag needed" bit is set, but the flag is not active */
1272 DBGOUT(MMIO, "MMIO write attempt to disabled reg. addr=0x%08x\n",
1273 index<<2);
1274 }
1275 } else if (index < NREADOPS && macreg_readops[index]) {
1276 DBGOUT(MMIO, "e1000_mmio_writel RO %x: 0x%04"PRIx64"\n",
1277 index<<2, val);
1278 } else {
1279 DBGOUT(UNKNOWN, "MMIO unknown write addr=0x%08x,val=0x%08"PRIx64"\n",
1280 index<<2, val);
1281 }
1282 }
1283
1284 static uint64_t
1285 e1000_mmio_read(void *opaque, hwaddr addr, unsigned size)
1286 {
1287 E1000State *s = opaque;
1288 unsigned int index = (addr & 0x1ffff) >> 2;
1289
1290 if (index < NREADOPS && macreg_readops[index]) {
1291 if (!(mac_reg_access[index] & MAC_ACCESS_FLAG_NEEDED)
1292 || (s->compat_flags & (mac_reg_access[index] >> 2))) {
1293 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
1294 DBGOUT(GENERAL, "Reading register at offset: 0x%08x. "
1295 "It is not fully implemented.\n", index<<2);
1296 }
1297 return macreg_readops[index](s, index);
1298 } else { /* "flag needed" bit is set, but the flag is not active */
1299 DBGOUT(MMIO, "MMIO read attempt of disabled reg. addr=0x%08x\n",
1300 index<<2);
1301 }
1302 } else {
1303 DBGOUT(UNKNOWN, "MMIO unknown read addr=0x%08x\n", index<<2);
1304 }
1305 return 0;
1306 }
1307
1308 static const MemoryRegionOps e1000_mmio_ops = {
1309 .read = e1000_mmio_read,
1310 .write = e1000_mmio_write,
1311 .endianness = DEVICE_LITTLE_ENDIAN,
1312 .impl = {
1313 .min_access_size = 4,
1314 .max_access_size = 4,
1315 },
1316 };
1317
1318 static uint64_t e1000_io_read(void *opaque, hwaddr addr,
1319 unsigned size)
1320 {
1321 E1000State *s = opaque;
1322
1323 (void)s;
1324 return 0;
1325 }
1326
1327 static void e1000_io_write(void *opaque, hwaddr addr,
1328 uint64_t val, unsigned size)
1329 {
1330 E1000State *s = opaque;
1331
1332 (void)s;
1333 }
1334
1335 static const MemoryRegionOps e1000_io_ops = {
1336 .read = e1000_io_read,
1337 .write = e1000_io_write,
1338 .endianness = DEVICE_LITTLE_ENDIAN,
1339 };
1340
1341 static bool is_version_1(void *opaque, int version_id)
1342 {
1343 return version_id == 1;
1344 }
1345
1346 static void e1000_pre_save(void *opaque)
1347 {
1348 E1000State *s = opaque;
1349 NetClientState *nc = qemu_get_queue(s->nic);
1350
1351 /* If the mitigation timer is active, emulate a timeout now. */
1352 if (s->mit_timer_on) {
1353 e1000_mit_timer(s);
1354 }
1355
1356 /*
1357 * If link is down and auto-negotiation is supported and ongoing,
1358 * complete auto-negotiation immediately. This allows us to look
1359 * at MII_SR_AUTONEG_COMPLETE to infer link status on load.
1360 */
1361 if (nc->link_down && have_autoneg(s)) {
1362 s->phy_reg[PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE;
1363 }
1364 }
1365
1366 static int e1000_post_load(void *opaque, int version_id)
1367 {
1368 E1000State *s = opaque;
1369 NetClientState *nc = qemu_get_queue(s->nic);
1370
1371 if (!chkflag(MIT)) {
1372 s->mac_reg[ITR] = s->mac_reg[RDTR] = s->mac_reg[RADV] =
1373 s->mac_reg[TADV] = 0;
1374 s->mit_irq_level = false;
1375 }
1376 s->mit_ide = 0;
1377 s->mit_timer_on = false;
1378
1379 /* nc.link_down can't be migrated, so infer link_down according
1380 * to link status bit in mac_reg[STATUS].
1381 * Alternatively, restart link negotiation if it was in progress. */
1382 nc->link_down = (s->mac_reg[STATUS] & E1000_STATUS_LU) == 0;
1383
1384 if (have_autoneg(s) &&
1385 !(s->phy_reg[PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
1386 nc->link_down = false;
1387 timer_mod(s->autoneg_timer,
1388 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
1389 }
1390
1391 return 0;
1392 }
1393
1394 static bool e1000_mit_state_needed(void *opaque)
1395 {
1396 E1000State *s = opaque;
1397
1398 return chkflag(MIT);
1399 }
1400
1401 static bool e1000_full_mac_needed(void *opaque)
1402 {
1403 E1000State *s = opaque;
1404
1405 return chkflag(MAC);
1406 }
1407
1408 static const VMStateDescription vmstate_e1000_mit_state = {
1409 .name = "e1000/mit_state",
1410 .version_id = 1,
1411 .minimum_version_id = 1,
1412 .needed = e1000_mit_state_needed,
1413 .fields = (VMStateField[]) {
1414 VMSTATE_UINT32(mac_reg[RDTR], E1000State),
1415 VMSTATE_UINT32(mac_reg[RADV], E1000State),
1416 VMSTATE_UINT32(mac_reg[TADV], E1000State),
1417 VMSTATE_UINT32(mac_reg[ITR], E1000State),
1418 VMSTATE_BOOL(mit_irq_level, E1000State),
1419 VMSTATE_END_OF_LIST()
1420 }
1421 };
1422
1423 static const VMStateDescription vmstate_e1000_full_mac_state = {
1424 .name = "e1000/full_mac_state",
1425 .version_id = 1,
1426 .minimum_version_id = 1,
1427 .needed = e1000_full_mac_needed,
1428 .fields = (VMStateField[]) {
1429 VMSTATE_UINT32_ARRAY(mac_reg, E1000State, 0x8000),
1430 VMSTATE_END_OF_LIST()
1431 }
1432 };
1433
1434 static const VMStateDescription vmstate_e1000 = {
1435 .name = "e1000",
1436 .version_id = 2,
1437 .minimum_version_id = 1,
1438 .pre_save = e1000_pre_save,
1439 .post_load = e1000_post_load,
1440 .fields = (VMStateField[]) {
1441 VMSTATE_PCI_DEVICE(parent_obj, E1000State),
1442 VMSTATE_UNUSED_TEST(is_version_1, 4), /* was instance id */
1443 VMSTATE_UNUSED(4), /* Was mmio_base. */
1444 VMSTATE_UINT32(rxbuf_size, E1000State),
1445 VMSTATE_UINT32(rxbuf_min_shift, E1000State),
1446 VMSTATE_UINT32(eecd_state.val_in, E1000State),
1447 VMSTATE_UINT16(eecd_state.bitnum_in, E1000State),
1448 VMSTATE_UINT16(eecd_state.bitnum_out, E1000State),
1449 VMSTATE_UINT16(eecd_state.reading, E1000State),
1450 VMSTATE_UINT32(eecd_state.old_eecd, E1000State),
1451 VMSTATE_UINT8(tx.props.ipcss, E1000State),
1452 VMSTATE_UINT8(tx.props.ipcso, E1000State),
1453 VMSTATE_UINT16(tx.props.ipcse, E1000State),
1454 VMSTATE_UINT8(tx.props.tucss, E1000State),
1455 VMSTATE_UINT8(tx.props.tucso, E1000State),
1456 VMSTATE_UINT16(tx.props.tucse, E1000State),
1457 VMSTATE_UINT32(tx.props.paylen, E1000State),
1458 VMSTATE_UINT8(tx.props.hdr_len, E1000State),
1459 VMSTATE_UINT16(tx.props.mss, E1000State),
1460 VMSTATE_UINT16(tx.size, E1000State),
1461 VMSTATE_UINT16(tx.tso_frames, E1000State),
1462 VMSTATE_UINT8(tx.props.sum_needed, E1000State),
1463 VMSTATE_INT8(tx.props.ip, E1000State),
1464 VMSTATE_INT8(tx.props.tcp, E1000State),
1465 VMSTATE_BUFFER(tx.header, E1000State),
1466 VMSTATE_BUFFER(tx.data, E1000State),
1467 VMSTATE_UINT16_ARRAY(eeprom_data, E1000State, 64),
1468 VMSTATE_UINT16_ARRAY(phy_reg, E1000State, 0x20),
1469 VMSTATE_UINT32(mac_reg[CTRL], E1000State),
1470 VMSTATE_UINT32(mac_reg[EECD], E1000State),
1471 VMSTATE_UINT32(mac_reg[EERD], E1000State),
1472 VMSTATE_UINT32(mac_reg[GPRC], E1000State),
1473 VMSTATE_UINT32(mac_reg[GPTC], E1000State),
1474 VMSTATE_UINT32(mac_reg[ICR], E1000State),
1475 VMSTATE_UINT32(mac_reg[ICS], E1000State),
1476 VMSTATE_UINT32(mac_reg[IMC], E1000State),
1477 VMSTATE_UINT32(mac_reg[IMS], E1000State),
1478 VMSTATE_UINT32(mac_reg[LEDCTL], E1000State),
1479 VMSTATE_UINT32(mac_reg[MANC], E1000State),
1480 VMSTATE_UINT32(mac_reg[MDIC], E1000State),
1481 VMSTATE_UINT32(mac_reg[MPC], E1000State),
1482 VMSTATE_UINT32(mac_reg[PBA], E1000State),
1483 VMSTATE_UINT32(mac_reg[RCTL], E1000State),
1484 VMSTATE_UINT32(mac_reg[RDBAH], E1000State),
1485 VMSTATE_UINT32(mac_reg[RDBAL], E1000State),
1486 VMSTATE_UINT32(mac_reg[RDH], E1000State),
1487 VMSTATE_UINT32(mac_reg[RDLEN], E1000State),
1488 VMSTATE_UINT32(mac_reg[RDT], E1000State),
1489 VMSTATE_UINT32(mac_reg[STATUS], E1000State),
1490 VMSTATE_UINT32(mac_reg[SWSM], E1000State),
1491 VMSTATE_UINT32(mac_reg[TCTL], E1000State),
1492 VMSTATE_UINT32(mac_reg[TDBAH], E1000State),
1493 VMSTATE_UINT32(mac_reg[TDBAL], E1000State),
1494 VMSTATE_UINT32(mac_reg[TDH], E1000State),
1495 VMSTATE_UINT32(mac_reg[TDLEN], E1000State),
1496 VMSTATE_UINT32(mac_reg[TDT], E1000State),
1497 VMSTATE_UINT32(mac_reg[TORH], E1000State),
1498 VMSTATE_UINT32(mac_reg[TORL], E1000State),
1499 VMSTATE_UINT32(mac_reg[TOTH], E1000State),
1500 VMSTATE_UINT32(mac_reg[TOTL], E1000State),
1501 VMSTATE_UINT32(mac_reg[TPR], E1000State),
1502 VMSTATE_UINT32(mac_reg[TPT], E1000State),
1503 VMSTATE_UINT32(mac_reg[TXDCTL], E1000State),
1504 VMSTATE_UINT32(mac_reg[WUFC], E1000State),
1505 VMSTATE_UINT32(mac_reg[VET], E1000State),
1506 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, RA, 32),
1507 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, MTA, 128),
1508 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, VFTA, 128),
1509 VMSTATE_END_OF_LIST()
1510 },
1511 .subsections = (const VMStateDescription*[]) {
1512 &vmstate_e1000_mit_state,
1513 &vmstate_e1000_full_mac_state,
1514 NULL
1515 }
1516 };
1517
1518 /*
1519 * EEPROM contents documented in Tables 5-2 and 5-3, pp. 98-102.
1520 * Note: A valid DevId will be inserted during pci_e1000_init().
1521 */
1522 static const uint16_t e1000_eeprom_template[64] = {
1523 0x0000, 0x0000, 0x0000, 0x0000, 0xffff, 0x0000, 0x0000, 0x0000,
1524 0x3000, 0x1000, 0x6403, 0 /*DevId*/, 0x8086, 0 /*DevId*/, 0x8086, 0x3040,
1525 0x0008, 0x2000, 0x7e14, 0x0048, 0x1000, 0x00d8, 0x0000, 0x2700,
1526 0x6cc9, 0x3150, 0x0722, 0x040b, 0x0984, 0x0000, 0xc000, 0x0706,
1527 0x1008, 0x0000, 0x0f04, 0x7fff, 0x4d01, 0xffff, 0xffff, 0xffff,
1528 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
1529 0x0100, 0x4000, 0x121c, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
1530 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0000,
1531 };
1532
1533 /* PCI interface */
1534
1535 static void
1536 e1000_mmio_setup(E1000State *d)
1537 {
1538 int i;
1539 const uint32_t excluded_regs[] = {
1540 E1000_MDIC, E1000_ICR, E1000_ICS, E1000_IMS,
1541 E1000_IMC, E1000_TCTL, E1000_TDT, PNPMMIO_SIZE
1542 };
1543
1544 memory_region_init_io(&d->mmio, OBJECT(d), &e1000_mmio_ops, d,
1545 "e1000-mmio", PNPMMIO_SIZE);
1546 memory_region_add_coalescing(&d->mmio, 0, excluded_regs[0]);
1547 for (i = 0; excluded_regs[i] != PNPMMIO_SIZE; i++)
1548 memory_region_add_coalescing(&d->mmio, excluded_regs[i] + 4,
1549 excluded_regs[i+1] - excluded_regs[i] - 4);
1550 memory_region_init_io(&d->io, OBJECT(d), &e1000_io_ops, d, "e1000-io", IOPORT_SIZE);
1551 }
1552
1553 static void
1554 pci_e1000_uninit(PCIDevice *dev)
1555 {
1556 E1000State *d = E1000(dev);
1557
1558 timer_del(d->autoneg_timer);
1559 timer_free(d->autoneg_timer);
1560 timer_del(d->mit_timer);
1561 timer_free(d->mit_timer);
1562 qemu_del_nic(d->nic);
1563 }
1564
1565 static NetClientInfo net_e1000_info = {
1566 .type = NET_CLIENT_DRIVER_NIC,
1567 .size = sizeof(NICState),
1568 .can_receive = e1000_can_receive,
1569 .receive = e1000_receive,
1570 .receive_iov = e1000_receive_iov,
1571 .link_status_changed = e1000_set_link_status,
1572 };
1573
1574 static void e1000_write_config(PCIDevice *pci_dev, uint32_t address,
1575 uint32_t val, int len)
1576 {
1577 E1000State *s = E1000(pci_dev);
1578
1579 pci_default_write_config(pci_dev, address, val, len);
1580
1581 if (range_covers_byte(address, len, PCI_COMMAND) &&
1582 (pci_dev->config[PCI_COMMAND] & PCI_COMMAND_MASTER)) {
1583 qemu_flush_queued_packets(qemu_get_queue(s->nic));
1584 }
1585 }
1586
1587 static void pci_e1000_realize(PCIDevice *pci_dev, Error **errp)
1588 {
1589 DeviceState *dev = DEVICE(pci_dev);
1590 E1000State *d = E1000(pci_dev);
1591 uint8_t *pci_conf;
1592 uint8_t *macaddr;
1593
1594 pci_dev->config_write = e1000_write_config;
1595
1596 pci_conf = pci_dev->config;
1597
1598 /* TODO: RST# value should be 0, PCI spec 6.2.4 */
1599 pci_conf[PCI_CACHE_LINE_SIZE] = 0x10;
1600
1601 pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
1602
1603 e1000_mmio_setup(d);
1604
1605 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &d->mmio);
1606
1607 pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &d->io);
1608
1609 qemu_macaddr_default_if_unset(&d->conf.macaddr);
1610 macaddr = d->conf.macaddr.a;
1611
1612 e1000x_core_prepare_eeprom(d->eeprom_data,
1613 e1000_eeprom_template,
1614 sizeof(e1000_eeprom_template),
1615 PCI_DEVICE_GET_CLASS(pci_dev)->device_id,
1616 macaddr);
1617
1618 d->nic = qemu_new_nic(&net_e1000_info, &d->conf,
1619 object_get_typename(OBJECT(d)), dev->id, d);
1620
1621 qemu_format_nic_info_str(qemu_get_queue(d->nic), macaddr);
1622
1623 d->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, e1000_autoneg_timer, d);
1624 d->mit_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000_mit_timer, d);
1625 }
1626
1627 static void qdev_e1000_reset(DeviceState *dev)
1628 {
1629 E1000State *d = E1000(dev);
1630 e1000_reset(d);
1631 }
1632
1633 static Property e1000_properties[] = {
1634 DEFINE_NIC_PROPERTIES(E1000State, conf),
1635 DEFINE_PROP_BIT("autonegotiation", E1000State,
1636 compat_flags, E1000_FLAG_AUTONEG_BIT, true),
1637 DEFINE_PROP_BIT("mitigation", E1000State,
1638 compat_flags, E1000_FLAG_MIT_BIT, true),
1639 DEFINE_PROP_BIT("extra_mac_registers", E1000State,
1640 compat_flags, E1000_FLAG_MAC_BIT, true),
1641 DEFINE_PROP_END_OF_LIST(),
1642 };
1643
1644 typedef struct E1000Info {
1645 const char *name;
1646 uint16_t device_id;
1647 uint8_t revision;
1648 uint16_t phy_id2;
1649 } E1000Info;
1650
1651 static void e1000_class_init(ObjectClass *klass, void *data)
1652 {
1653 DeviceClass *dc = DEVICE_CLASS(klass);
1654 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1655 E1000BaseClass *e = E1000_DEVICE_CLASS(klass);
1656 const E1000Info *info = data;
1657
1658 k->realize = pci_e1000_realize;
1659 k->exit = pci_e1000_uninit;
1660 k->romfile = "efi-e1000.rom";
1661 k->vendor_id = PCI_VENDOR_ID_INTEL;
1662 k->device_id = info->device_id;
1663 k->revision = info->revision;
1664 e->phy_id2 = info->phy_id2;
1665 k->class_id = PCI_CLASS_NETWORK_ETHERNET;
1666 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
1667 dc->desc = "Intel Gigabit Ethernet";
1668 dc->reset = qdev_e1000_reset;
1669 dc->vmsd = &vmstate_e1000;
1670 dc->props = e1000_properties;
1671 }
1672
1673 static void e1000_instance_init(Object *obj)
1674 {
1675 E1000State *n = E1000(obj);
1676 device_add_bootindex_property(obj, &n->conf.bootindex,
1677 "bootindex", "/ethernet-phy@0",
1678 DEVICE(n), NULL);
1679 }
1680
1681 static const TypeInfo e1000_base_info = {
1682 .name = TYPE_E1000_BASE,
1683 .parent = TYPE_PCI_DEVICE,
1684 .instance_size = sizeof(E1000State),
1685 .instance_init = e1000_instance_init,
1686 .class_size = sizeof(E1000BaseClass),
1687 .abstract = true,
1688 };
1689
1690 static const E1000Info e1000_devices[] = {
1691 {
1692 .name = "e1000",
1693 .device_id = E1000_DEV_ID_82540EM,
1694 .revision = 0x03,
1695 .phy_id2 = E1000_PHY_ID2_8254xx_DEFAULT,
1696 },
1697 {
1698 .name = "e1000-82544gc",
1699 .device_id = E1000_DEV_ID_82544GC_COPPER,
1700 .revision = 0x03,
1701 .phy_id2 = E1000_PHY_ID2_82544x,
1702 },
1703 {
1704 .name = "e1000-82545em",
1705 .device_id = E1000_DEV_ID_82545EM_COPPER,
1706 .revision = 0x03,
1707 .phy_id2 = E1000_PHY_ID2_8254xx_DEFAULT,
1708 },
1709 };
1710
1711 static void e1000_register_types(void)
1712 {
1713 int i;
1714
1715 type_register_static(&e1000_base_info);
1716 for (i = 0; i < ARRAY_SIZE(e1000_devices); i++) {
1717 const E1000Info *info = &e1000_devices[i];
1718 TypeInfo type_info = {};
1719
1720 type_info.name = info->name;
1721 type_info.parent = TYPE_E1000_BASE;
1722 type_info.class_data = (void *)info;
1723 type_info.class_init = e1000_class_init;
1724 type_info.instance_init = e1000_instance_init;
1725
1726 type_register(&type_info);
1727 }
1728 }
1729
1730 type_init(e1000_register_types)