hw/arm/raspi: fix CPRMAN base address
[qemu.git] / hw / net / rtl8139.c
1 /**
2 * QEMU RTL8139 emulation
3 *
4 * Copyright (c) 2006 Igor Kovalenko
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23
24 * Modifications:
25 * 2006-Jan-28 Mark Malakanov : TSAD and CSCR implementation (for Windows driver)
26 *
27 * 2006-Apr-28 Juergen Lock : EEPROM emulation changes for FreeBSD driver
28 * HW revision ID changes for FreeBSD driver
29 *
30 * 2006-Jul-01 Igor Kovalenko : Implemented loopback mode for FreeBSD driver
31 * Corrected packet transfer reassembly routine for 8139C+ mode
32 * Rearranged debugging print statements
33 * Implemented PCI timer interrupt (disabled by default)
34 * Implemented Tally Counters, increased VM load/save version
35 * Implemented IP/TCP/UDP checksum task offloading
36 *
37 * 2006-Jul-04 Igor Kovalenko : Implemented TCP segmentation offloading
38 * Fixed MTU=1500 for produced ethernet frames
39 *
40 * 2006-Jul-09 Igor Kovalenko : Fixed TCP header length calculation while processing
41 * segmentation offloading
42 * Removed slirp.h dependency
43 * Added rx/tx buffer reset when enabling rx/tx operation
44 *
45 * 2010-Feb-04 Frediano Ziglio: Rewrote timer support using QEMU timer only
46 * when strictly needed (required for
47 * Darwin)
48 * 2011-Mar-22 Benjamin Poirier: Implemented VLAN offloading
49 */
50
51 /* For crc32 */
52
53 #include "qemu/osdep.h"
54 #include <zlib.h>
55
56 #include "hw/pci/pci.h"
57 #include "hw/qdev-properties.h"
58 #include "migration/vmstate.h"
59 #include "sysemu/dma.h"
60 #include "qemu/module.h"
61 #include "qemu/timer.h"
62 #include "net/net.h"
63 #include "net/eth.h"
64 #include "sysemu/sysemu.h"
65 #include "qom/object.h"
66
67 /* debug RTL8139 card */
68 //#define DEBUG_RTL8139 1
69
70 #define PCI_PERIOD 30 /* 30 ns period = 33.333333 Mhz frequency */
71
72 #define SET_MASKED(input, mask, curr) \
73 ( ( (input) & ~(mask) ) | ( (curr) & (mask) ) )
74
75 /* arg % size for size which is a power of 2 */
76 #define MOD2(input, size) \
77 ( ( input ) & ( size - 1 ) )
78
79 #define ETHER_TYPE_LEN 2
80 #define ETH_MTU 1500
81
82 #define VLAN_TCI_LEN 2
83 #define VLAN_HLEN (ETHER_TYPE_LEN + VLAN_TCI_LEN)
84
85 #if defined (DEBUG_RTL8139)
86 # define DPRINTF(fmt, ...) \
87 do { fprintf(stderr, "RTL8139: " fmt, ## __VA_ARGS__); } while (0)
88 #else
89 static inline GCC_FMT_ATTR(1, 2) int DPRINTF(const char *fmt, ...)
90 {
91 return 0;
92 }
93 #endif
94
95 #define TYPE_RTL8139 "rtl8139"
96
97 OBJECT_DECLARE_SIMPLE_TYPE(RTL8139State, RTL8139)
98
99 /* Symbolic offsets to registers. */
100 enum RTL8139_registers {
101 MAC0 = 0, /* Ethernet hardware address. */
102 MAR0 = 8, /* Multicast filter. */
103 TxStatus0 = 0x10,/* Transmit status (Four 32bit registers). C mode only */
104 /* Dump Tally Conter control register(64bit). C+ mode only */
105 TxAddr0 = 0x20, /* Tx descriptors (also four 32bit). */
106 RxBuf = 0x30,
107 ChipCmd = 0x37,
108 RxBufPtr = 0x38,
109 RxBufAddr = 0x3A,
110 IntrMask = 0x3C,
111 IntrStatus = 0x3E,
112 TxConfig = 0x40,
113 RxConfig = 0x44,
114 Timer = 0x48, /* A general-purpose counter. */
115 RxMissed = 0x4C, /* 24 bits valid, write clears. */
116 Cfg9346 = 0x50,
117 Config0 = 0x51,
118 Config1 = 0x52,
119 FlashReg = 0x54,
120 MediaStatus = 0x58,
121 Config3 = 0x59,
122 Config4 = 0x5A, /* absent on RTL-8139A */
123 HltClk = 0x5B,
124 MultiIntr = 0x5C,
125 PCIRevisionID = 0x5E,
126 TxSummary = 0x60, /* TSAD register. Transmit Status of All Descriptors*/
127 BasicModeCtrl = 0x62,
128 BasicModeStatus = 0x64,
129 NWayAdvert = 0x66,
130 NWayLPAR = 0x68,
131 NWayExpansion = 0x6A,
132 /* Undocumented registers, but required for proper operation. */
133 FIFOTMS = 0x70, /* FIFO Control and test. */
134 CSCR = 0x74, /* Chip Status and Configuration Register. */
135 PARA78 = 0x78,
136 PARA7c = 0x7c, /* Magic transceiver parameter register. */
137 Config5 = 0xD8, /* absent on RTL-8139A */
138 /* C+ mode */
139 TxPoll = 0xD9, /* Tell chip to check Tx descriptors for work */
140 RxMaxSize = 0xDA, /* Max size of an Rx packet (8169 only) */
141 CpCmd = 0xE0, /* C+ Command register (C+ mode only) */
142 IntrMitigate = 0xE2, /* rx/tx interrupt mitigation control */
143 RxRingAddrLO = 0xE4, /* 64-bit start addr of Rx ring */
144 RxRingAddrHI = 0xE8, /* 64-bit start addr of Rx ring */
145 TxThresh = 0xEC, /* Early Tx threshold */
146 };
147
148 enum ClearBitMasks {
149 MultiIntrClear = 0xF000,
150 ChipCmdClear = 0xE2,
151 Config1Clear = (1<<7)|(1<<6)|(1<<3)|(1<<2)|(1<<1),
152 };
153
154 enum ChipCmdBits {
155 CmdReset = 0x10,
156 CmdRxEnb = 0x08,
157 CmdTxEnb = 0x04,
158 RxBufEmpty = 0x01,
159 };
160
161 /* C+ mode */
162 enum CplusCmdBits {
163 CPlusRxVLAN = 0x0040, /* enable receive VLAN detagging */
164 CPlusRxChkSum = 0x0020, /* enable receive checksum offloading */
165 CPlusRxEnb = 0x0002,
166 CPlusTxEnb = 0x0001,
167 };
168
169 /* Interrupt register bits, using my own meaningful names. */
170 enum IntrStatusBits {
171 PCIErr = 0x8000,
172 PCSTimeout = 0x4000,
173 RxFIFOOver = 0x40,
174 RxUnderrun = 0x20, /* Packet Underrun / Link Change */
175 RxOverflow = 0x10,
176 TxErr = 0x08,
177 TxOK = 0x04,
178 RxErr = 0x02,
179 RxOK = 0x01,
180
181 RxAckBits = RxFIFOOver | RxOverflow | RxOK,
182 };
183
184 enum TxStatusBits {
185 TxHostOwns = 0x2000,
186 TxUnderrun = 0x4000,
187 TxStatOK = 0x8000,
188 TxOutOfWindow = 0x20000000,
189 TxAborted = 0x40000000,
190 TxCarrierLost = 0x80000000,
191 };
192 enum RxStatusBits {
193 RxMulticast = 0x8000,
194 RxPhysical = 0x4000,
195 RxBroadcast = 0x2000,
196 RxBadSymbol = 0x0020,
197 RxRunt = 0x0010,
198 RxTooLong = 0x0008,
199 RxCRCErr = 0x0004,
200 RxBadAlign = 0x0002,
201 RxStatusOK = 0x0001,
202 };
203
204 /* Bits in RxConfig. */
205 enum rx_mode_bits {
206 AcceptErr = 0x20,
207 AcceptRunt = 0x10,
208 AcceptBroadcast = 0x08,
209 AcceptMulticast = 0x04,
210 AcceptMyPhys = 0x02,
211 AcceptAllPhys = 0x01,
212 };
213
214 /* Bits in TxConfig. */
215 enum tx_config_bits {
216
217 /* Interframe Gap Time. Only TxIFG96 doesn't violate IEEE 802.3 */
218 TxIFGShift = 24,
219 TxIFG84 = (0 << TxIFGShift), /* 8.4us / 840ns (10 / 100Mbps) */
220 TxIFG88 = (1 << TxIFGShift), /* 8.8us / 880ns (10 / 100Mbps) */
221 TxIFG92 = (2 << TxIFGShift), /* 9.2us / 920ns (10 / 100Mbps) */
222 TxIFG96 = (3 << TxIFGShift), /* 9.6us / 960ns (10 / 100Mbps) */
223
224 TxLoopBack = (1 << 18) | (1 << 17), /* enable loopback test mode */
225 TxCRC = (1 << 16), /* DISABLE appending CRC to end of Tx packets */
226 TxClearAbt = (1 << 0), /* Clear abort (WO) */
227 TxDMAShift = 8, /* DMA burst value (0-7) is shifted this many bits */
228 TxRetryShift = 4, /* TXRR value (0-15) is shifted this many bits */
229
230 TxVersionMask = 0x7C800000, /* mask out version bits 30-26, 23 */
231 };
232
233
234 /* Transmit Status of All Descriptors (TSAD) Register */
235 enum TSAD_bits {
236 TSAD_TOK3 = 1<<15, // TOK bit of Descriptor 3
237 TSAD_TOK2 = 1<<14, // TOK bit of Descriptor 2
238 TSAD_TOK1 = 1<<13, // TOK bit of Descriptor 1
239 TSAD_TOK0 = 1<<12, // TOK bit of Descriptor 0
240 TSAD_TUN3 = 1<<11, // TUN bit of Descriptor 3
241 TSAD_TUN2 = 1<<10, // TUN bit of Descriptor 2
242 TSAD_TUN1 = 1<<9, // TUN bit of Descriptor 1
243 TSAD_TUN0 = 1<<8, // TUN bit of Descriptor 0
244 TSAD_TABT3 = 1<<07, // TABT bit of Descriptor 3
245 TSAD_TABT2 = 1<<06, // TABT bit of Descriptor 2
246 TSAD_TABT1 = 1<<05, // TABT bit of Descriptor 1
247 TSAD_TABT0 = 1<<04, // TABT bit of Descriptor 0
248 TSAD_OWN3 = 1<<03, // OWN bit of Descriptor 3
249 TSAD_OWN2 = 1<<02, // OWN bit of Descriptor 2
250 TSAD_OWN1 = 1<<01, // OWN bit of Descriptor 1
251 TSAD_OWN0 = 1<<00, // OWN bit of Descriptor 0
252 };
253
254
255 /* Bits in Config1 */
256 enum Config1Bits {
257 Cfg1_PM_Enable = 0x01,
258 Cfg1_VPD_Enable = 0x02,
259 Cfg1_PIO = 0x04,
260 Cfg1_MMIO = 0x08,
261 LWAKE = 0x10, /* not on 8139, 8139A */
262 Cfg1_Driver_Load = 0x20,
263 Cfg1_LED0 = 0x40,
264 Cfg1_LED1 = 0x80,
265 SLEEP = (1 << 1), /* only on 8139, 8139A */
266 PWRDN = (1 << 0), /* only on 8139, 8139A */
267 };
268
269 /* Bits in Config3 */
270 enum Config3Bits {
271 Cfg3_FBtBEn = (1 << 0), /* 1 = Fast Back to Back */
272 Cfg3_FuncRegEn = (1 << 1), /* 1 = enable CardBus Function registers */
273 Cfg3_CLKRUN_En = (1 << 2), /* 1 = enable CLKRUN */
274 Cfg3_CardB_En = (1 << 3), /* 1 = enable CardBus registers */
275 Cfg3_LinkUp = (1 << 4), /* 1 = wake up on link up */
276 Cfg3_Magic = (1 << 5), /* 1 = wake up on Magic Packet (tm) */
277 Cfg3_PARM_En = (1 << 6), /* 0 = software can set twister parameters */
278 Cfg3_GNTSel = (1 << 7), /* 1 = delay 1 clock from PCI GNT signal */
279 };
280
281 /* Bits in Config4 */
282 enum Config4Bits {
283 LWPTN = (1 << 2), /* not on 8139, 8139A */
284 };
285
286 /* Bits in Config5 */
287 enum Config5Bits {
288 Cfg5_PME_STS = (1 << 0), /* 1 = PCI reset resets PME_Status */
289 Cfg5_LANWake = (1 << 1), /* 1 = enable LANWake signal */
290 Cfg5_LDPS = (1 << 2), /* 0 = save power when link is down */
291 Cfg5_FIFOAddrPtr = (1 << 3), /* Realtek internal SRAM testing */
292 Cfg5_UWF = (1 << 4), /* 1 = accept unicast wakeup frame */
293 Cfg5_MWF = (1 << 5), /* 1 = accept multicast wakeup frame */
294 Cfg5_BWF = (1 << 6), /* 1 = accept broadcast wakeup frame */
295 };
296
297 enum RxConfigBits {
298 /* rx fifo threshold */
299 RxCfgFIFOShift = 13,
300 RxCfgFIFONone = (7 << RxCfgFIFOShift),
301
302 /* Max DMA burst */
303 RxCfgDMAShift = 8,
304 RxCfgDMAUnlimited = (7 << RxCfgDMAShift),
305
306 /* rx ring buffer length */
307 RxCfgRcv8K = 0,
308 RxCfgRcv16K = (1 << 11),
309 RxCfgRcv32K = (1 << 12),
310 RxCfgRcv64K = (1 << 11) | (1 << 12),
311
312 /* Disable packet wrap at end of Rx buffer. (not possible with 64k) */
313 RxNoWrap = (1 << 7),
314 };
315
316 /* Twister tuning parameters from RealTek.
317 Completely undocumented, but required to tune bad links on some boards. */
318 /*
319 enum CSCRBits {
320 CSCR_LinkOKBit = 0x0400,
321 CSCR_LinkChangeBit = 0x0800,
322 CSCR_LinkStatusBits = 0x0f000,
323 CSCR_LinkDownOffCmd = 0x003c0,
324 CSCR_LinkDownCmd = 0x0f3c0,
325 */
326 enum CSCRBits {
327 CSCR_Testfun = 1<<15, /* 1 = Auto-neg speeds up internal timer, WO, def 0 */
328 CSCR_LD = 1<<9, /* Active low TPI link disable signal. When low, TPI still transmits link pulses and TPI stays in good link state. def 1*/
329 CSCR_HEART_BIT = 1<<8, /* 1 = HEART BEAT enable, 0 = HEART BEAT disable. HEART BEAT function is only valid in 10Mbps mode. def 1*/
330 CSCR_JBEN = 1<<7, /* 1 = enable jabber function. 0 = disable jabber function, def 1*/
331 CSCR_F_LINK_100 = 1<<6, /* Used to login force good link in 100Mbps for diagnostic purposes. 1 = DISABLE, 0 = ENABLE. def 1*/
332 CSCR_F_Connect = 1<<5, /* Assertion of this bit forces the disconnect function to be bypassed. def 0*/
333 CSCR_Con_status = 1<<3, /* This bit indicates the status of the connection. 1 = valid connected link detected; 0 = disconnected link detected. RO def 0*/
334 CSCR_Con_status_En = 1<<2, /* Assertion of this bit configures LED1 pin to indicate connection status. def 0*/
335 CSCR_PASS_SCR = 1<<0, /* Bypass Scramble, def 0*/
336 };
337
338 enum Cfg9346Bits {
339 Cfg9346_Normal = 0x00,
340 Cfg9346_Autoload = 0x40,
341 Cfg9346_Programming = 0x80,
342 Cfg9346_ConfigWrite = 0xC0,
343 };
344
345 typedef enum {
346 CH_8139 = 0,
347 CH_8139_K,
348 CH_8139A,
349 CH_8139A_G,
350 CH_8139B,
351 CH_8130,
352 CH_8139C,
353 CH_8100,
354 CH_8100B_8139D,
355 CH_8101,
356 } chip_t;
357
358 enum chip_flags {
359 HasHltClk = (1 << 0),
360 HasLWake = (1 << 1),
361 };
362
363 #define HW_REVID(b30, b29, b28, b27, b26, b23, b22) \
364 (b30<<30 | b29<<29 | b28<<28 | b27<<27 | b26<<26 | b23<<23 | b22<<22)
365 #define HW_REVID_MASK HW_REVID(1, 1, 1, 1, 1, 1, 1)
366
367 #define RTL8139_PCI_REVID_8139 0x10
368 #define RTL8139_PCI_REVID_8139CPLUS 0x20
369
370 #define RTL8139_PCI_REVID RTL8139_PCI_REVID_8139CPLUS
371
372 /* Size is 64 * 16bit words */
373 #define EEPROM_9346_ADDR_BITS 6
374 #define EEPROM_9346_SIZE (1 << EEPROM_9346_ADDR_BITS)
375 #define EEPROM_9346_ADDR_MASK (EEPROM_9346_SIZE - 1)
376
377 enum Chip9346Operation
378 {
379 Chip9346_op_mask = 0xc0, /* 10 zzzzzz */
380 Chip9346_op_read = 0x80, /* 10 AAAAAA */
381 Chip9346_op_write = 0x40, /* 01 AAAAAA D(15)..D(0) */
382 Chip9346_op_ext_mask = 0xf0, /* 11 zzzzzz */
383 Chip9346_op_write_enable = 0x30, /* 00 11zzzz */
384 Chip9346_op_write_all = 0x10, /* 00 01zzzz */
385 Chip9346_op_write_disable = 0x00, /* 00 00zzzz */
386 };
387
388 enum Chip9346Mode
389 {
390 Chip9346_none = 0,
391 Chip9346_enter_command_mode,
392 Chip9346_read_command,
393 Chip9346_data_read, /* from output register */
394 Chip9346_data_write, /* to input register, then to contents at specified address */
395 Chip9346_data_write_all, /* to input register, then filling contents */
396 };
397
398 typedef struct EEprom9346
399 {
400 uint16_t contents[EEPROM_9346_SIZE];
401 int mode;
402 uint32_t tick;
403 uint8_t address;
404 uint16_t input;
405 uint16_t output;
406
407 uint8_t eecs;
408 uint8_t eesk;
409 uint8_t eedi;
410 uint8_t eedo;
411 } EEprom9346;
412
413 typedef struct RTL8139TallyCounters
414 {
415 /* Tally counters */
416 uint64_t TxOk;
417 uint64_t RxOk;
418 uint64_t TxERR;
419 uint32_t RxERR;
420 uint16_t MissPkt;
421 uint16_t FAE;
422 uint32_t Tx1Col;
423 uint32_t TxMCol;
424 uint64_t RxOkPhy;
425 uint64_t RxOkBrd;
426 uint32_t RxOkMul;
427 uint16_t TxAbt;
428 uint16_t TxUndrn;
429 } RTL8139TallyCounters;
430
431 /* Clears all tally counters */
432 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters);
433
434 struct RTL8139State {
435 /*< private >*/
436 PCIDevice parent_obj;
437 /*< public >*/
438
439 uint8_t phys[8]; /* mac address */
440 uint8_t mult[8]; /* multicast mask array */
441
442 uint32_t TxStatus[4]; /* TxStatus0 in C mode*/ /* also DTCCR[0] and DTCCR[1] in C+ mode */
443 uint32_t TxAddr[4]; /* TxAddr0 */
444 uint32_t RxBuf; /* Receive buffer */
445 uint32_t RxBufferSize;/* internal variable, receive ring buffer size in C mode */
446 uint32_t RxBufPtr;
447 uint32_t RxBufAddr;
448
449 uint16_t IntrStatus;
450 uint16_t IntrMask;
451
452 uint32_t TxConfig;
453 uint32_t RxConfig;
454 uint32_t RxMissed;
455
456 uint16_t CSCR;
457
458 uint8_t Cfg9346;
459 uint8_t Config0;
460 uint8_t Config1;
461 uint8_t Config3;
462 uint8_t Config4;
463 uint8_t Config5;
464
465 uint8_t clock_enabled;
466 uint8_t bChipCmdState;
467
468 uint16_t MultiIntr;
469
470 uint16_t BasicModeCtrl;
471 uint16_t BasicModeStatus;
472 uint16_t NWayAdvert;
473 uint16_t NWayLPAR;
474 uint16_t NWayExpansion;
475
476 uint16_t CpCmd;
477 uint8_t TxThresh;
478
479 NICState *nic;
480 NICConf conf;
481
482 /* C ring mode */
483 uint32_t currTxDesc;
484
485 /* C+ mode */
486 uint32_t cplus_enabled;
487
488 uint32_t currCPlusRxDesc;
489 uint32_t currCPlusTxDesc;
490
491 uint32_t RxRingAddrLO;
492 uint32_t RxRingAddrHI;
493
494 EEprom9346 eeprom;
495
496 uint32_t TCTR;
497 uint32_t TimerInt;
498 int64_t TCTR_base;
499
500 /* Tally counters */
501 RTL8139TallyCounters tally_counters;
502
503 /* Non-persistent data */
504 uint8_t *cplus_txbuffer;
505 int cplus_txbuffer_len;
506 int cplus_txbuffer_offset;
507
508 /* PCI interrupt timer */
509 QEMUTimer *timer;
510
511 MemoryRegion bar_io;
512 MemoryRegion bar_mem;
513
514 /* Support migration to/from old versions */
515 int rtl8139_mmio_io_addr_dummy;
516 };
517
518 /* Writes tally counters to memory via DMA */
519 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr);
520
521 static void rtl8139_set_next_tctr_time(RTL8139State *s);
522
523 static void prom9346_decode_command(EEprom9346 *eeprom, uint8_t command)
524 {
525 DPRINTF("eeprom command 0x%02x\n", command);
526
527 switch (command & Chip9346_op_mask)
528 {
529 case Chip9346_op_read:
530 {
531 eeprom->address = command & EEPROM_9346_ADDR_MASK;
532 eeprom->output = eeprom->contents[eeprom->address];
533 eeprom->eedo = 0;
534 eeprom->tick = 0;
535 eeprom->mode = Chip9346_data_read;
536 DPRINTF("eeprom read from address 0x%02x data=0x%04x\n",
537 eeprom->address, eeprom->output);
538 }
539 break;
540
541 case Chip9346_op_write:
542 {
543 eeprom->address = command & EEPROM_9346_ADDR_MASK;
544 eeprom->input = 0;
545 eeprom->tick = 0;
546 eeprom->mode = Chip9346_none; /* Chip9346_data_write */
547 DPRINTF("eeprom begin write to address 0x%02x\n",
548 eeprom->address);
549 }
550 break;
551 default:
552 eeprom->mode = Chip9346_none;
553 switch (command & Chip9346_op_ext_mask)
554 {
555 case Chip9346_op_write_enable:
556 DPRINTF("eeprom write enabled\n");
557 break;
558 case Chip9346_op_write_all:
559 DPRINTF("eeprom begin write all\n");
560 break;
561 case Chip9346_op_write_disable:
562 DPRINTF("eeprom write disabled\n");
563 break;
564 }
565 break;
566 }
567 }
568
569 static void prom9346_shift_clock(EEprom9346 *eeprom)
570 {
571 int bit = eeprom->eedi?1:0;
572
573 ++ eeprom->tick;
574
575 DPRINTF("eeprom: tick %d eedi=%d eedo=%d\n", eeprom->tick, eeprom->eedi,
576 eeprom->eedo);
577
578 switch (eeprom->mode)
579 {
580 case Chip9346_enter_command_mode:
581 if (bit)
582 {
583 eeprom->mode = Chip9346_read_command;
584 eeprom->tick = 0;
585 eeprom->input = 0;
586 DPRINTF("eeprom: +++ synchronized, begin command read\n");
587 }
588 break;
589
590 case Chip9346_read_command:
591 eeprom->input = (eeprom->input << 1) | (bit & 1);
592 if (eeprom->tick == 8)
593 {
594 prom9346_decode_command(eeprom, eeprom->input & 0xff);
595 }
596 break;
597
598 case Chip9346_data_read:
599 eeprom->eedo = (eeprom->output & 0x8000)?1:0;
600 eeprom->output <<= 1;
601 if (eeprom->tick == 16)
602 {
603 #if 1
604 // the FreeBSD drivers (rl and re) don't explicitly toggle
605 // CS between reads (or does setting Cfg9346 to 0 count too?),
606 // so we need to enter wait-for-command state here
607 eeprom->mode = Chip9346_enter_command_mode;
608 eeprom->input = 0;
609 eeprom->tick = 0;
610
611 DPRINTF("eeprom: +++ end of read, awaiting next command\n");
612 #else
613 // original behaviour
614 ++eeprom->address;
615 eeprom->address &= EEPROM_9346_ADDR_MASK;
616 eeprom->output = eeprom->contents[eeprom->address];
617 eeprom->tick = 0;
618
619 DPRINTF("eeprom: +++ read next address 0x%02x data=0x%04x\n",
620 eeprom->address, eeprom->output);
621 #endif
622 }
623 break;
624
625 case Chip9346_data_write:
626 eeprom->input = (eeprom->input << 1) | (bit & 1);
627 if (eeprom->tick == 16)
628 {
629 DPRINTF("eeprom write to address 0x%02x data=0x%04x\n",
630 eeprom->address, eeprom->input);
631
632 eeprom->contents[eeprom->address] = eeprom->input;
633 eeprom->mode = Chip9346_none; /* waiting for next command after CS cycle */
634 eeprom->tick = 0;
635 eeprom->input = 0;
636 }
637 break;
638
639 case Chip9346_data_write_all:
640 eeprom->input = (eeprom->input << 1) | (bit & 1);
641 if (eeprom->tick == 16)
642 {
643 int i;
644 for (i = 0; i < EEPROM_9346_SIZE; i++)
645 {
646 eeprom->contents[i] = eeprom->input;
647 }
648 DPRINTF("eeprom filled with data=0x%04x\n", eeprom->input);
649
650 eeprom->mode = Chip9346_enter_command_mode;
651 eeprom->tick = 0;
652 eeprom->input = 0;
653 }
654 break;
655
656 default:
657 break;
658 }
659 }
660
661 static int prom9346_get_wire(RTL8139State *s)
662 {
663 EEprom9346 *eeprom = &s->eeprom;
664 if (!eeprom->eecs)
665 return 0;
666
667 return eeprom->eedo;
668 }
669
670 /* FIXME: This should be merged into/replaced by eeprom93xx.c. */
671 static void prom9346_set_wire(RTL8139State *s, int eecs, int eesk, int eedi)
672 {
673 EEprom9346 *eeprom = &s->eeprom;
674 uint8_t old_eecs = eeprom->eecs;
675 uint8_t old_eesk = eeprom->eesk;
676
677 eeprom->eecs = eecs;
678 eeprom->eesk = eesk;
679 eeprom->eedi = eedi;
680
681 DPRINTF("eeprom: +++ wires CS=%d SK=%d DI=%d DO=%d\n", eeprom->eecs,
682 eeprom->eesk, eeprom->eedi, eeprom->eedo);
683
684 if (!old_eecs && eecs)
685 {
686 /* Synchronize start */
687 eeprom->tick = 0;
688 eeprom->input = 0;
689 eeprom->output = 0;
690 eeprom->mode = Chip9346_enter_command_mode;
691
692 DPRINTF("=== eeprom: begin access, enter command mode\n");
693 }
694
695 if (!eecs)
696 {
697 DPRINTF("=== eeprom: end access\n");
698 return;
699 }
700
701 if (!old_eesk && eesk)
702 {
703 /* SK front rules */
704 prom9346_shift_clock(eeprom);
705 }
706 }
707
708 static void rtl8139_update_irq(RTL8139State *s)
709 {
710 PCIDevice *d = PCI_DEVICE(s);
711 int isr;
712 isr = (s->IntrStatus & s->IntrMask) & 0xffff;
713
714 DPRINTF("Set IRQ to %d (%04x %04x)\n", isr ? 1 : 0, s->IntrStatus,
715 s->IntrMask);
716
717 pci_set_irq(d, (isr != 0));
718 }
719
720 static int rtl8139_RxWrap(RTL8139State *s)
721 {
722 /* wrapping enabled; assume 1.5k more buffer space if size < 65536 */
723 return (s->RxConfig & (1 << 7));
724 }
725
726 static int rtl8139_receiver_enabled(RTL8139State *s)
727 {
728 return s->bChipCmdState & CmdRxEnb;
729 }
730
731 static int rtl8139_transmitter_enabled(RTL8139State *s)
732 {
733 return s->bChipCmdState & CmdTxEnb;
734 }
735
736 static int rtl8139_cp_receiver_enabled(RTL8139State *s)
737 {
738 return s->CpCmd & CPlusRxEnb;
739 }
740
741 static int rtl8139_cp_transmitter_enabled(RTL8139State *s)
742 {
743 return s->CpCmd & CPlusTxEnb;
744 }
745
746 static void rtl8139_write_buffer(RTL8139State *s, const void *buf, int size)
747 {
748 PCIDevice *d = PCI_DEVICE(s);
749
750 if (s->RxBufAddr + size > s->RxBufferSize)
751 {
752 int wrapped = MOD2(s->RxBufAddr + size, s->RxBufferSize);
753
754 /* write packet data */
755 if (wrapped && !(s->RxBufferSize < 65536 && rtl8139_RxWrap(s)))
756 {
757 DPRINTF(">>> rx packet wrapped in buffer at %d\n", size - wrapped);
758
759 if (size > wrapped)
760 {
761 pci_dma_write(d, s->RxBuf + s->RxBufAddr,
762 buf, size-wrapped);
763 }
764
765 /* reset buffer pointer */
766 s->RxBufAddr = 0;
767
768 pci_dma_write(d, s->RxBuf + s->RxBufAddr,
769 buf + (size-wrapped), wrapped);
770
771 s->RxBufAddr = wrapped;
772
773 return;
774 }
775 }
776
777 /* non-wrapping path or overwrapping enabled */
778 pci_dma_write(d, s->RxBuf + s->RxBufAddr, buf, size);
779
780 s->RxBufAddr += size;
781 }
782
783 #define MIN_BUF_SIZE 60
784 static inline dma_addr_t rtl8139_addr64(uint32_t low, uint32_t high)
785 {
786 return low | ((uint64_t)high << 32);
787 }
788
789 /* Workaround for buggy guest driver such as linux who allocates rx
790 * rings after the receiver were enabled. */
791 static bool rtl8139_cp_rx_valid(RTL8139State *s)
792 {
793 return !(s->RxRingAddrLO == 0 && s->RxRingAddrHI == 0);
794 }
795
796 static bool rtl8139_can_receive(NetClientState *nc)
797 {
798 RTL8139State *s = qemu_get_nic_opaque(nc);
799 int avail;
800
801 /* Receive (drop) packets if card is disabled. */
802 if (!s->clock_enabled) {
803 return true;
804 }
805 if (!rtl8139_receiver_enabled(s)) {
806 return true;
807 }
808
809 if (rtl8139_cp_receiver_enabled(s) && rtl8139_cp_rx_valid(s)) {
810 /* ??? Flow control not implemented in c+ mode.
811 This is a hack to work around slirp deficiencies anyway. */
812 return true;
813 }
814
815 avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr,
816 s->RxBufferSize);
817 return avail == 0 || avail >= 1514 || (s->IntrMask & RxOverflow);
818 }
819
820 static ssize_t rtl8139_do_receive(NetClientState *nc, const uint8_t *buf, size_t size_, int do_interrupt)
821 {
822 RTL8139State *s = qemu_get_nic_opaque(nc);
823 PCIDevice *d = PCI_DEVICE(s);
824 /* size is the length of the buffer passed to the driver */
825 size_t size = size_;
826 const uint8_t *dot1q_buf = NULL;
827
828 uint32_t packet_header = 0;
829
830 uint8_t buf1[MIN_BUF_SIZE + VLAN_HLEN];
831 static const uint8_t broadcast_macaddr[6] =
832 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
833
834 DPRINTF(">>> received len=%zu\n", size);
835
836 /* test if board clock is stopped */
837 if (!s->clock_enabled)
838 {
839 DPRINTF("stopped ==========================\n");
840 return -1;
841 }
842
843 /* first check if receiver is enabled */
844
845 if (!rtl8139_receiver_enabled(s))
846 {
847 DPRINTF("receiver disabled ================\n");
848 return -1;
849 }
850
851 /* XXX: check this */
852 if (s->RxConfig & AcceptAllPhys) {
853 /* promiscuous: receive all */
854 DPRINTF(">>> packet received in promiscuous mode\n");
855
856 } else {
857 if (!memcmp(buf, broadcast_macaddr, 6)) {
858 /* broadcast address */
859 if (!(s->RxConfig & AcceptBroadcast))
860 {
861 DPRINTF(">>> broadcast packet rejected\n");
862
863 /* update tally counter */
864 ++s->tally_counters.RxERR;
865
866 return size;
867 }
868
869 packet_header |= RxBroadcast;
870
871 DPRINTF(">>> broadcast packet received\n");
872
873 /* update tally counter */
874 ++s->tally_counters.RxOkBrd;
875
876 } else if (buf[0] & 0x01) {
877 /* multicast */
878 if (!(s->RxConfig & AcceptMulticast))
879 {
880 DPRINTF(">>> multicast packet rejected\n");
881
882 /* update tally counter */
883 ++s->tally_counters.RxERR;
884
885 return size;
886 }
887
888 int mcast_idx = net_crc32(buf, ETH_ALEN) >> 26;
889
890 if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
891 {
892 DPRINTF(">>> multicast address mismatch\n");
893
894 /* update tally counter */
895 ++s->tally_counters.RxERR;
896
897 return size;
898 }
899
900 packet_header |= RxMulticast;
901
902 DPRINTF(">>> multicast packet received\n");
903
904 /* update tally counter */
905 ++s->tally_counters.RxOkMul;
906
907 } else if (s->phys[0] == buf[0] &&
908 s->phys[1] == buf[1] &&
909 s->phys[2] == buf[2] &&
910 s->phys[3] == buf[3] &&
911 s->phys[4] == buf[4] &&
912 s->phys[5] == buf[5]) {
913 /* match */
914 if (!(s->RxConfig & AcceptMyPhys))
915 {
916 DPRINTF(">>> rejecting physical address matching packet\n");
917
918 /* update tally counter */
919 ++s->tally_counters.RxERR;
920
921 return size;
922 }
923
924 packet_header |= RxPhysical;
925
926 DPRINTF(">>> physical address matching packet received\n");
927
928 /* update tally counter */
929 ++s->tally_counters.RxOkPhy;
930
931 } else {
932
933 DPRINTF(">>> unknown packet\n");
934
935 /* update tally counter */
936 ++s->tally_counters.RxERR;
937
938 return size;
939 }
940 }
941
942 /* if too small buffer, then expand it
943 * Include some tailroom in case a vlan tag is later removed. */
944 if (size < MIN_BUF_SIZE + VLAN_HLEN) {
945 memcpy(buf1, buf, size);
946 memset(buf1 + size, 0, MIN_BUF_SIZE + VLAN_HLEN - size);
947 buf = buf1;
948 if (size < MIN_BUF_SIZE) {
949 size = MIN_BUF_SIZE;
950 }
951 }
952
953 if (rtl8139_cp_receiver_enabled(s))
954 {
955 if (!rtl8139_cp_rx_valid(s)) {
956 return size;
957 }
958
959 DPRINTF("in C+ Rx mode ================\n");
960
961 /* begin C+ receiver mode */
962
963 /* w0 ownership flag */
964 #define CP_RX_OWN (1<<31)
965 /* w0 end of ring flag */
966 #define CP_RX_EOR (1<<30)
967 /* w0 bits 0...12 : buffer size */
968 #define CP_RX_BUFFER_SIZE_MASK ((1<<13) - 1)
969 /* w1 tag available flag */
970 #define CP_RX_TAVA (1<<16)
971 /* w1 bits 0...15 : VLAN tag */
972 #define CP_RX_VLAN_TAG_MASK ((1<<16) - 1)
973 /* w2 low 32bit of Rx buffer ptr */
974 /* w3 high 32bit of Rx buffer ptr */
975
976 int descriptor = s->currCPlusRxDesc;
977 dma_addr_t cplus_rx_ring_desc;
978
979 cplus_rx_ring_desc = rtl8139_addr64(s->RxRingAddrLO, s->RxRingAddrHI);
980 cplus_rx_ring_desc += 16 * descriptor;
981
982 DPRINTF("+++ C+ mode reading RX descriptor %d from host memory at "
983 "%08x %08x = "DMA_ADDR_FMT"\n", descriptor, s->RxRingAddrHI,
984 s->RxRingAddrLO, cplus_rx_ring_desc);
985
986 uint32_t val, rxdw0,rxdw1,rxbufLO,rxbufHI;
987
988 pci_dma_read(d, cplus_rx_ring_desc, &val, 4);
989 rxdw0 = le32_to_cpu(val);
990 pci_dma_read(d, cplus_rx_ring_desc+4, &val, 4);
991 rxdw1 = le32_to_cpu(val);
992 pci_dma_read(d, cplus_rx_ring_desc+8, &val, 4);
993 rxbufLO = le32_to_cpu(val);
994 pci_dma_read(d, cplus_rx_ring_desc+12, &val, 4);
995 rxbufHI = le32_to_cpu(val);
996
997 DPRINTF("+++ C+ mode RX descriptor %d %08x %08x %08x %08x\n",
998 descriptor, rxdw0, rxdw1, rxbufLO, rxbufHI);
999
1000 if (!(rxdw0 & CP_RX_OWN))
1001 {
1002 DPRINTF("C+ Rx mode : descriptor %d is owned by host\n",
1003 descriptor);
1004
1005 s->IntrStatus |= RxOverflow;
1006 ++s->RxMissed;
1007
1008 /* update tally counter */
1009 ++s->tally_counters.RxERR;
1010 ++s->tally_counters.MissPkt;
1011
1012 rtl8139_update_irq(s);
1013 return size_;
1014 }
1015
1016 uint32_t rx_space = rxdw0 & CP_RX_BUFFER_SIZE_MASK;
1017
1018 /* write VLAN info to descriptor variables. */
1019 if (s->CpCmd & CPlusRxVLAN &&
1020 lduw_be_p(&buf[ETH_ALEN * 2]) == ETH_P_VLAN) {
1021 dot1q_buf = &buf[ETH_ALEN * 2];
1022 size -= VLAN_HLEN;
1023 /* if too small buffer, use the tailroom added duing expansion */
1024 if (size < MIN_BUF_SIZE) {
1025 size = MIN_BUF_SIZE;
1026 }
1027
1028 rxdw1 &= ~CP_RX_VLAN_TAG_MASK;
1029 /* BE + ~le_to_cpu()~ + cpu_to_le() = BE */
1030 rxdw1 |= CP_RX_TAVA | lduw_le_p(&dot1q_buf[ETHER_TYPE_LEN]);
1031
1032 DPRINTF("C+ Rx mode : extracted vlan tag with tci: ""%u\n",
1033 lduw_be_p(&dot1q_buf[ETHER_TYPE_LEN]));
1034 } else {
1035 /* reset VLAN tag flag */
1036 rxdw1 &= ~CP_RX_TAVA;
1037 }
1038
1039 /* TODO: scatter the packet over available receive ring descriptors space */
1040
1041 if (size+4 > rx_space)
1042 {
1043 DPRINTF("C+ Rx mode : descriptor %d size %d received %zu + 4\n",
1044 descriptor, rx_space, size);
1045
1046 s->IntrStatus |= RxOverflow;
1047 ++s->RxMissed;
1048
1049 /* update tally counter */
1050 ++s->tally_counters.RxERR;
1051 ++s->tally_counters.MissPkt;
1052
1053 rtl8139_update_irq(s);
1054 return size_;
1055 }
1056
1057 dma_addr_t rx_addr = rtl8139_addr64(rxbufLO, rxbufHI);
1058
1059 /* receive/copy to target memory */
1060 if (dot1q_buf) {
1061 pci_dma_write(d, rx_addr, buf, 2 * ETH_ALEN);
1062 pci_dma_write(d, rx_addr + 2 * ETH_ALEN,
1063 buf + 2 * ETH_ALEN + VLAN_HLEN,
1064 size - 2 * ETH_ALEN);
1065 } else {
1066 pci_dma_write(d, rx_addr, buf, size);
1067 }
1068
1069 if (s->CpCmd & CPlusRxChkSum)
1070 {
1071 /* do some packet checksumming */
1072 }
1073
1074 /* write checksum */
1075 val = cpu_to_le32(crc32(0, buf, size_));
1076 pci_dma_write(d, rx_addr+size, (uint8_t *)&val, 4);
1077
1078 /* first segment of received packet flag */
1079 #define CP_RX_STATUS_FS (1<<29)
1080 /* last segment of received packet flag */
1081 #define CP_RX_STATUS_LS (1<<28)
1082 /* multicast packet flag */
1083 #define CP_RX_STATUS_MAR (1<<26)
1084 /* physical-matching packet flag */
1085 #define CP_RX_STATUS_PAM (1<<25)
1086 /* broadcast packet flag */
1087 #define CP_RX_STATUS_BAR (1<<24)
1088 /* runt packet flag */
1089 #define CP_RX_STATUS_RUNT (1<<19)
1090 /* crc error flag */
1091 #define CP_RX_STATUS_CRC (1<<18)
1092 /* IP checksum error flag */
1093 #define CP_RX_STATUS_IPF (1<<15)
1094 /* UDP checksum error flag */
1095 #define CP_RX_STATUS_UDPF (1<<14)
1096 /* TCP checksum error flag */
1097 #define CP_RX_STATUS_TCPF (1<<13)
1098
1099 /* transfer ownership to target */
1100 rxdw0 &= ~CP_RX_OWN;
1101
1102 /* set first segment bit */
1103 rxdw0 |= CP_RX_STATUS_FS;
1104
1105 /* set last segment bit */
1106 rxdw0 |= CP_RX_STATUS_LS;
1107
1108 /* set received packet type flags */
1109 if (packet_header & RxBroadcast)
1110 rxdw0 |= CP_RX_STATUS_BAR;
1111 if (packet_header & RxMulticast)
1112 rxdw0 |= CP_RX_STATUS_MAR;
1113 if (packet_header & RxPhysical)
1114 rxdw0 |= CP_RX_STATUS_PAM;
1115
1116 /* set received size */
1117 rxdw0 &= ~CP_RX_BUFFER_SIZE_MASK;
1118 rxdw0 |= (size+4);
1119
1120 /* update ring data */
1121 val = cpu_to_le32(rxdw0);
1122 pci_dma_write(d, cplus_rx_ring_desc, (uint8_t *)&val, 4);
1123 val = cpu_to_le32(rxdw1);
1124 pci_dma_write(d, cplus_rx_ring_desc+4, (uint8_t *)&val, 4);
1125
1126 /* update tally counter */
1127 ++s->tally_counters.RxOk;
1128
1129 /* seek to next Rx descriptor */
1130 if (rxdw0 & CP_RX_EOR)
1131 {
1132 s->currCPlusRxDesc = 0;
1133 }
1134 else
1135 {
1136 ++s->currCPlusRxDesc;
1137 }
1138
1139 DPRINTF("done C+ Rx mode ----------------\n");
1140
1141 }
1142 else
1143 {
1144 DPRINTF("in ring Rx mode ================\n");
1145
1146 /* begin ring receiver mode */
1147 int avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr, s->RxBufferSize);
1148
1149 /* if receiver buffer is empty then avail == 0 */
1150
1151 #define RX_ALIGN(x) (((x) + 3) & ~0x3)
1152
1153 if (avail != 0 && RX_ALIGN(size + 8) >= avail)
1154 {
1155 DPRINTF("rx overflow: rx buffer length %d head 0x%04x "
1156 "read 0x%04x === available 0x%04x need 0x%04zx\n",
1157 s->RxBufferSize, s->RxBufAddr, s->RxBufPtr, avail, size + 8);
1158
1159 s->IntrStatus |= RxOverflow;
1160 ++s->RxMissed;
1161 rtl8139_update_irq(s);
1162 return 0;
1163 }
1164
1165 packet_header |= RxStatusOK;
1166
1167 packet_header |= (((size+4) << 16) & 0xffff0000);
1168
1169 /* write header */
1170 uint32_t val = cpu_to_le32(packet_header);
1171
1172 rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1173
1174 rtl8139_write_buffer(s, buf, size);
1175
1176 /* write checksum */
1177 val = cpu_to_le32(crc32(0, buf, size));
1178 rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1179
1180 /* correct buffer write pointer */
1181 s->RxBufAddr = MOD2(RX_ALIGN(s->RxBufAddr), s->RxBufferSize);
1182
1183 /* now we can signal we have received something */
1184
1185 DPRINTF("received: rx buffer length %d head 0x%04x read 0x%04x\n",
1186 s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
1187 }
1188
1189 s->IntrStatus |= RxOK;
1190
1191 if (do_interrupt)
1192 {
1193 rtl8139_update_irq(s);
1194 }
1195
1196 return size_;
1197 }
1198
1199 static ssize_t rtl8139_receive(NetClientState *nc, const uint8_t *buf, size_t size)
1200 {
1201 return rtl8139_do_receive(nc, buf, size, 1);
1202 }
1203
1204 static void rtl8139_reset_rxring(RTL8139State *s, uint32_t bufferSize)
1205 {
1206 s->RxBufferSize = bufferSize;
1207 s->RxBufPtr = 0;
1208 s->RxBufAddr = 0;
1209 }
1210
1211 static void rtl8139_reset_phy(RTL8139State *s)
1212 {
1213 s->BasicModeStatus = 0x7809;
1214 s->BasicModeStatus |= 0x0020; /* autonegotiation completed */
1215 /* preserve link state */
1216 s->BasicModeStatus |= qemu_get_queue(s->nic)->link_down ? 0 : 0x04;
1217
1218 s->NWayAdvert = 0x05e1; /* all modes, full duplex */
1219 s->NWayLPAR = 0x05e1; /* all modes, full duplex */
1220 s->NWayExpansion = 0x0001; /* autonegotiation supported */
1221
1222 s->CSCR = CSCR_F_LINK_100 | CSCR_HEART_BIT | CSCR_LD;
1223 }
1224
1225 static void rtl8139_reset(DeviceState *d)
1226 {
1227 RTL8139State *s = RTL8139(d);
1228 int i;
1229
1230 /* restore MAC address */
1231 memcpy(s->phys, s->conf.macaddr.a, 6);
1232 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys);
1233
1234 /* reset interrupt mask */
1235 s->IntrStatus = 0;
1236 s->IntrMask = 0;
1237
1238 rtl8139_update_irq(s);
1239
1240 /* mark all status registers as owned by host */
1241 for (i = 0; i < 4; ++i)
1242 {
1243 s->TxStatus[i] = TxHostOwns;
1244 }
1245
1246 s->currTxDesc = 0;
1247 s->currCPlusRxDesc = 0;
1248 s->currCPlusTxDesc = 0;
1249
1250 s->RxRingAddrLO = 0;
1251 s->RxRingAddrHI = 0;
1252
1253 s->RxBuf = 0;
1254
1255 rtl8139_reset_rxring(s, 8192);
1256
1257 /* ACK the reset */
1258 s->TxConfig = 0;
1259
1260 #if 0
1261 // s->TxConfig |= HW_REVID(1, 0, 0, 0, 0, 0, 0); // RTL-8139 HasHltClk
1262 s->clock_enabled = 0;
1263 #else
1264 s->TxConfig |= HW_REVID(1, 1, 1, 0, 1, 1, 0); // RTL-8139C+ HasLWake
1265 s->clock_enabled = 1;
1266 #endif
1267
1268 s->bChipCmdState = CmdReset; /* RxBufEmpty bit is calculated on read from ChipCmd */;
1269
1270 /* set initial state data */
1271 s->Config0 = 0x0; /* No boot ROM */
1272 s->Config1 = 0xC; /* IO mapped and MEM mapped registers available */
1273 s->Config3 = 0x1; /* fast back-to-back compatible */
1274 s->Config5 = 0x0;
1275
1276 s->CpCmd = 0x0; /* reset C+ mode */
1277 s->cplus_enabled = 0;
1278
1279 // s->BasicModeCtrl = 0x3100; // 100Mbps, full duplex, autonegotiation
1280 // s->BasicModeCtrl = 0x2100; // 100Mbps, full duplex
1281 s->BasicModeCtrl = 0x1000; // autonegotiation
1282
1283 rtl8139_reset_phy(s);
1284
1285 /* also reset timer and disable timer interrupt */
1286 s->TCTR = 0;
1287 s->TimerInt = 0;
1288 s->TCTR_base = 0;
1289 rtl8139_set_next_tctr_time(s);
1290
1291 /* reset tally counters */
1292 RTL8139TallyCounters_clear(&s->tally_counters);
1293 }
1294
1295 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters)
1296 {
1297 counters->TxOk = 0;
1298 counters->RxOk = 0;
1299 counters->TxERR = 0;
1300 counters->RxERR = 0;
1301 counters->MissPkt = 0;
1302 counters->FAE = 0;
1303 counters->Tx1Col = 0;
1304 counters->TxMCol = 0;
1305 counters->RxOkPhy = 0;
1306 counters->RxOkBrd = 0;
1307 counters->RxOkMul = 0;
1308 counters->TxAbt = 0;
1309 counters->TxUndrn = 0;
1310 }
1311
1312 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr)
1313 {
1314 PCIDevice *d = PCI_DEVICE(s);
1315 RTL8139TallyCounters *tally_counters = &s->tally_counters;
1316 uint16_t val16;
1317 uint32_t val32;
1318 uint64_t val64;
1319
1320 val64 = cpu_to_le64(tally_counters->TxOk);
1321 pci_dma_write(d, tc_addr + 0, (uint8_t *)&val64, 8);
1322
1323 val64 = cpu_to_le64(tally_counters->RxOk);
1324 pci_dma_write(d, tc_addr + 8, (uint8_t *)&val64, 8);
1325
1326 val64 = cpu_to_le64(tally_counters->TxERR);
1327 pci_dma_write(d, tc_addr + 16, (uint8_t *)&val64, 8);
1328
1329 val32 = cpu_to_le32(tally_counters->RxERR);
1330 pci_dma_write(d, tc_addr + 24, (uint8_t *)&val32, 4);
1331
1332 val16 = cpu_to_le16(tally_counters->MissPkt);
1333 pci_dma_write(d, tc_addr + 28, (uint8_t *)&val16, 2);
1334
1335 val16 = cpu_to_le16(tally_counters->FAE);
1336 pci_dma_write(d, tc_addr + 30, (uint8_t *)&val16, 2);
1337
1338 val32 = cpu_to_le32(tally_counters->Tx1Col);
1339 pci_dma_write(d, tc_addr + 32, (uint8_t *)&val32, 4);
1340
1341 val32 = cpu_to_le32(tally_counters->TxMCol);
1342 pci_dma_write(d, tc_addr + 36, (uint8_t *)&val32, 4);
1343
1344 val64 = cpu_to_le64(tally_counters->RxOkPhy);
1345 pci_dma_write(d, tc_addr + 40, (uint8_t *)&val64, 8);
1346
1347 val64 = cpu_to_le64(tally_counters->RxOkBrd);
1348 pci_dma_write(d, tc_addr + 48, (uint8_t *)&val64, 8);
1349
1350 val32 = cpu_to_le32(tally_counters->RxOkMul);
1351 pci_dma_write(d, tc_addr + 56, (uint8_t *)&val32, 4);
1352
1353 val16 = cpu_to_le16(tally_counters->TxAbt);
1354 pci_dma_write(d, tc_addr + 60, (uint8_t *)&val16, 2);
1355
1356 val16 = cpu_to_le16(tally_counters->TxUndrn);
1357 pci_dma_write(d, tc_addr + 62, (uint8_t *)&val16, 2);
1358 }
1359
1360 static void rtl8139_ChipCmd_write(RTL8139State *s, uint32_t val)
1361 {
1362 DeviceState *d = DEVICE(s);
1363
1364 val &= 0xff;
1365
1366 DPRINTF("ChipCmd write val=0x%08x\n", val);
1367
1368 if (val & CmdReset)
1369 {
1370 DPRINTF("ChipCmd reset\n");
1371 rtl8139_reset(d);
1372 }
1373 if (val & CmdRxEnb)
1374 {
1375 DPRINTF("ChipCmd enable receiver\n");
1376
1377 s->currCPlusRxDesc = 0;
1378 }
1379 if (val & CmdTxEnb)
1380 {
1381 DPRINTF("ChipCmd enable transmitter\n");
1382
1383 s->currCPlusTxDesc = 0;
1384 }
1385
1386 /* mask unwritable bits */
1387 val = SET_MASKED(val, 0xe3, s->bChipCmdState);
1388
1389 /* Deassert reset pin before next read */
1390 val &= ~CmdReset;
1391
1392 s->bChipCmdState = val;
1393 }
1394
1395 static int rtl8139_RxBufferEmpty(RTL8139State *s)
1396 {
1397 int unread = MOD2(s->RxBufferSize + s->RxBufAddr - s->RxBufPtr, s->RxBufferSize);
1398
1399 if (unread != 0)
1400 {
1401 DPRINTF("receiver buffer data available 0x%04x\n", unread);
1402 return 0;
1403 }
1404
1405 DPRINTF("receiver buffer is empty\n");
1406
1407 return 1;
1408 }
1409
1410 static uint32_t rtl8139_ChipCmd_read(RTL8139State *s)
1411 {
1412 uint32_t ret = s->bChipCmdState;
1413
1414 if (rtl8139_RxBufferEmpty(s))
1415 ret |= RxBufEmpty;
1416
1417 DPRINTF("ChipCmd read val=0x%04x\n", ret);
1418
1419 return ret;
1420 }
1421
1422 static void rtl8139_CpCmd_write(RTL8139State *s, uint32_t val)
1423 {
1424 val &= 0xffff;
1425
1426 DPRINTF("C+ command register write(w) val=0x%04x\n", val);
1427
1428 s->cplus_enabled = 1;
1429
1430 /* mask unwritable bits */
1431 val = SET_MASKED(val, 0xff84, s->CpCmd);
1432
1433 s->CpCmd = val;
1434 }
1435
1436 static uint32_t rtl8139_CpCmd_read(RTL8139State *s)
1437 {
1438 uint32_t ret = s->CpCmd;
1439
1440 DPRINTF("C+ command register read(w) val=0x%04x\n", ret);
1441
1442 return ret;
1443 }
1444
1445 static void rtl8139_IntrMitigate_write(RTL8139State *s, uint32_t val)
1446 {
1447 DPRINTF("C+ IntrMitigate register write(w) val=0x%04x\n", val);
1448 }
1449
1450 static uint32_t rtl8139_IntrMitigate_read(RTL8139State *s)
1451 {
1452 uint32_t ret = 0;
1453
1454 DPRINTF("C+ IntrMitigate register read(w) val=0x%04x\n", ret);
1455
1456 return ret;
1457 }
1458
1459 static int rtl8139_config_writable(RTL8139State *s)
1460 {
1461 if ((s->Cfg9346 & Chip9346_op_mask) == Cfg9346_ConfigWrite)
1462 {
1463 return 1;
1464 }
1465
1466 DPRINTF("Configuration registers are write-protected\n");
1467
1468 return 0;
1469 }
1470
1471 static void rtl8139_BasicModeCtrl_write(RTL8139State *s, uint32_t val)
1472 {
1473 val &= 0xffff;
1474
1475 DPRINTF("BasicModeCtrl register write(w) val=0x%04x\n", val);
1476
1477 /* mask unwritable bits */
1478 uint32_t mask = 0xccff;
1479
1480 if (1 || !rtl8139_config_writable(s))
1481 {
1482 /* Speed setting and autonegotiation enable bits are read-only */
1483 mask |= 0x3000;
1484 /* Duplex mode setting is read-only */
1485 mask |= 0x0100;
1486 }
1487
1488 if (val & 0x8000) {
1489 /* Reset PHY */
1490 rtl8139_reset_phy(s);
1491 }
1492
1493 val = SET_MASKED(val, mask, s->BasicModeCtrl);
1494
1495 s->BasicModeCtrl = val;
1496 }
1497
1498 static uint32_t rtl8139_BasicModeCtrl_read(RTL8139State *s)
1499 {
1500 uint32_t ret = s->BasicModeCtrl;
1501
1502 DPRINTF("BasicModeCtrl register read(w) val=0x%04x\n", ret);
1503
1504 return ret;
1505 }
1506
1507 static void rtl8139_BasicModeStatus_write(RTL8139State *s, uint32_t val)
1508 {
1509 val &= 0xffff;
1510
1511 DPRINTF("BasicModeStatus register write(w) val=0x%04x\n", val);
1512
1513 /* mask unwritable bits */
1514 val = SET_MASKED(val, 0xff3f, s->BasicModeStatus);
1515
1516 s->BasicModeStatus = val;
1517 }
1518
1519 static uint32_t rtl8139_BasicModeStatus_read(RTL8139State *s)
1520 {
1521 uint32_t ret = s->BasicModeStatus;
1522
1523 DPRINTF("BasicModeStatus register read(w) val=0x%04x\n", ret);
1524
1525 return ret;
1526 }
1527
1528 static void rtl8139_Cfg9346_write(RTL8139State *s, uint32_t val)
1529 {
1530 DeviceState *d = DEVICE(s);
1531
1532 val &= 0xff;
1533
1534 DPRINTF("Cfg9346 write val=0x%02x\n", val);
1535
1536 /* mask unwritable bits */
1537 val = SET_MASKED(val, 0x31, s->Cfg9346);
1538
1539 uint32_t opmode = val & 0xc0;
1540 uint32_t eeprom_val = val & 0xf;
1541
1542 if (opmode == 0x80) {
1543 /* eeprom access */
1544 int eecs = (eeprom_val & 0x08)?1:0;
1545 int eesk = (eeprom_val & 0x04)?1:0;
1546 int eedi = (eeprom_val & 0x02)?1:0;
1547 prom9346_set_wire(s, eecs, eesk, eedi);
1548 } else if (opmode == 0x40) {
1549 /* Reset. */
1550 val = 0;
1551 rtl8139_reset(d);
1552 }
1553
1554 s->Cfg9346 = val;
1555 }
1556
1557 static uint32_t rtl8139_Cfg9346_read(RTL8139State *s)
1558 {
1559 uint32_t ret = s->Cfg9346;
1560
1561 uint32_t opmode = ret & 0xc0;
1562
1563 if (opmode == 0x80)
1564 {
1565 /* eeprom access */
1566 int eedo = prom9346_get_wire(s);
1567 if (eedo)
1568 {
1569 ret |= 0x01;
1570 }
1571 else
1572 {
1573 ret &= ~0x01;
1574 }
1575 }
1576
1577 DPRINTF("Cfg9346 read val=0x%02x\n", ret);
1578
1579 return ret;
1580 }
1581
1582 static void rtl8139_Config0_write(RTL8139State *s, uint32_t val)
1583 {
1584 val &= 0xff;
1585
1586 DPRINTF("Config0 write val=0x%02x\n", val);
1587
1588 if (!rtl8139_config_writable(s)) {
1589 return;
1590 }
1591
1592 /* mask unwritable bits */
1593 val = SET_MASKED(val, 0xf8, s->Config0);
1594
1595 s->Config0 = val;
1596 }
1597
1598 static uint32_t rtl8139_Config0_read(RTL8139State *s)
1599 {
1600 uint32_t ret = s->Config0;
1601
1602 DPRINTF("Config0 read val=0x%02x\n", ret);
1603
1604 return ret;
1605 }
1606
1607 static void rtl8139_Config1_write(RTL8139State *s, uint32_t val)
1608 {
1609 val &= 0xff;
1610
1611 DPRINTF("Config1 write val=0x%02x\n", val);
1612
1613 if (!rtl8139_config_writable(s)) {
1614 return;
1615 }
1616
1617 /* mask unwritable bits */
1618 val = SET_MASKED(val, 0xC, s->Config1);
1619
1620 s->Config1 = val;
1621 }
1622
1623 static uint32_t rtl8139_Config1_read(RTL8139State *s)
1624 {
1625 uint32_t ret = s->Config1;
1626
1627 DPRINTF("Config1 read val=0x%02x\n", ret);
1628
1629 return ret;
1630 }
1631
1632 static void rtl8139_Config3_write(RTL8139State *s, uint32_t val)
1633 {
1634 val &= 0xff;
1635
1636 DPRINTF("Config3 write val=0x%02x\n", val);
1637
1638 if (!rtl8139_config_writable(s)) {
1639 return;
1640 }
1641
1642 /* mask unwritable bits */
1643 val = SET_MASKED(val, 0x8F, s->Config3);
1644
1645 s->Config3 = val;
1646 }
1647
1648 static uint32_t rtl8139_Config3_read(RTL8139State *s)
1649 {
1650 uint32_t ret = s->Config3;
1651
1652 DPRINTF("Config3 read val=0x%02x\n", ret);
1653
1654 return ret;
1655 }
1656
1657 static void rtl8139_Config4_write(RTL8139State *s, uint32_t val)
1658 {
1659 val &= 0xff;
1660
1661 DPRINTF("Config4 write val=0x%02x\n", val);
1662
1663 if (!rtl8139_config_writable(s)) {
1664 return;
1665 }
1666
1667 /* mask unwritable bits */
1668 val = SET_MASKED(val, 0x0a, s->Config4);
1669
1670 s->Config4 = val;
1671 }
1672
1673 static uint32_t rtl8139_Config4_read(RTL8139State *s)
1674 {
1675 uint32_t ret = s->Config4;
1676
1677 DPRINTF("Config4 read val=0x%02x\n", ret);
1678
1679 return ret;
1680 }
1681
1682 static void rtl8139_Config5_write(RTL8139State *s, uint32_t val)
1683 {
1684 val &= 0xff;
1685
1686 DPRINTF("Config5 write val=0x%02x\n", val);
1687
1688 /* mask unwritable bits */
1689 val = SET_MASKED(val, 0x80, s->Config5);
1690
1691 s->Config5 = val;
1692 }
1693
1694 static uint32_t rtl8139_Config5_read(RTL8139State *s)
1695 {
1696 uint32_t ret = s->Config5;
1697
1698 DPRINTF("Config5 read val=0x%02x\n", ret);
1699
1700 return ret;
1701 }
1702
1703 static void rtl8139_TxConfig_write(RTL8139State *s, uint32_t val)
1704 {
1705 if (!rtl8139_transmitter_enabled(s))
1706 {
1707 DPRINTF("transmitter disabled; no TxConfig write val=0x%08x\n", val);
1708 return;
1709 }
1710
1711 DPRINTF("TxConfig write val=0x%08x\n", val);
1712
1713 val = SET_MASKED(val, TxVersionMask | 0x8070f80f, s->TxConfig);
1714
1715 s->TxConfig = val;
1716 }
1717
1718 static void rtl8139_TxConfig_writeb(RTL8139State *s, uint32_t val)
1719 {
1720 DPRINTF("RTL8139C TxConfig via write(b) val=0x%02x\n", val);
1721
1722 uint32_t tc = s->TxConfig;
1723 tc &= 0xFFFFFF00;
1724 tc |= (val & 0x000000FF);
1725 rtl8139_TxConfig_write(s, tc);
1726 }
1727
1728 static uint32_t rtl8139_TxConfig_read(RTL8139State *s)
1729 {
1730 uint32_t ret = s->TxConfig;
1731
1732 DPRINTF("TxConfig read val=0x%04x\n", ret);
1733
1734 return ret;
1735 }
1736
1737 static void rtl8139_RxConfig_write(RTL8139State *s, uint32_t val)
1738 {
1739 DPRINTF("RxConfig write val=0x%08x\n", val);
1740
1741 /* mask unwritable bits */
1742 val = SET_MASKED(val, 0xf0fc0040, s->RxConfig);
1743
1744 s->RxConfig = val;
1745
1746 /* reset buffer size and read/write pointers */
1747 rtl8139_reset_rxring(s, 8192 << ((s->RxConfig >> 11) & 0x3));
1748
1749 DPRINTF("RxConfig write reset buffer size to %d\n", s->RxBufferSize);
1750 }
1751
1752 static uint32_t rtl8139_RxConfig_read(RTL8139State *s)
1753 {
1754 uint32_t ret = s->RxConfig;
1755
1756 DPRINTF("RxConfig read val=0x%08x\n", ret);
1757
1758 return ret;
1759 }
1760
1761 static void rtl8139_transfer_frame(RTL8139State *s, uint8_t *buf, int size,
1762 int do_interrupt, const uint8_t *dot1q_buf)
1763 {
1764 struct iovec *iov = NULL;
1765 struct iovec vlan_iov[3];
1766
1767 if (!size)
1768 {
1769 DPRINTF("+++ empty ethernet frame\n");
1770 return;
1771 }
1772
1773 if (dot1q_buf && size >= ETH_ALEN * 2) {
1774 iov = (struct iovec[3]) {
1775 { .iov_base = buf, .iov_len = ETH_ALEN * 2 },
1776 { .iov_base = (void *) dot1q_buf, .iov_len = VLAN_HLEN },
1777 { .iov_base = buf + ETH_ALEN * 2,
1778 .iov_len = size - ETH_ALEN * 2 },
1779 };
1780
1781 memcpy(vlan_iov, iov, sizeof(vlan_iov));
1782 iov = vlan_iov;
1783 }
1784
1785 if (TxLoopBack == (s->TxConfig & TxLoopBack))
1786 {
1787 size_t buf2_size;
1788 uint8_t *buf2;
1789
1790 if (iov) {
1791 buf2_size = iov_size(iov, 3);
1792 buf2 = g_malloc(buf2_size);
1793 iov_to_buf(iov, 3, 0, buf2, buf2_size);
1794 buf = buf2;
1795 }
1796
1797 DPRINTF("+++ transmit loopback mode\n");
1798 rtl8139_do_receive(qemu_get_queue(s->nic), buf, size, do_interrupt);
1799
1800 if (iov) {
1801 g_free(buf2);
1802 }
1803 }
1804 else
1805 {
1806 if (iov) {
1807 qemu_sendv_packet(qemu_get_queue(s->nic), iov, 3);
1808 } else {
1809 qemu_send_packet(qemu_get_queue(s->nic), buf, size);
1810 }
1811 }
1812 }
1813
1814 static int rtl8139_transmit_one(RTL8139State *s, int descriptor)
1815 {
1816 if (!rtl8139_transmitter_enabled(s))
1817 {
1818 DPRINTF("+++ cannot transmit from descriptor %d: transmitter "
1819 "disabled\n", descriptor);
1820 return 0;
1821 }
1822
1823 if (s->TxStatus[descriptor] & TxHostOwns)
1824 {
1825 DPRINTF("+++ cannot transmit from descriptor %d: owned by host "
1826 "(%08x)\n", descriptor, s->TxStatus[descriptor]);
1827 return 0;
1828 }
1829
1830 DPRINTF("+++ transmitting from descriptor %d\n", descriptor);
1831
1832 PCIDevice *d = PCI_DEVICE(s);
1833 int txsize = s->TxStatus[descriptor] & 0x1fff;
1834 uint8_t txbuffer[0x2000];
1835
1836 DPRINTF("+++ transmit reading %d bytes from host memory at 0x%08x\n",
1837 txsize, s->TxAddr[descriptor]);
1838
1839 pci_dma_read(d, s->TxAddr[descriptor], txbuffer, txsize);
1840
1841 /* Mark descriptor as transferred */
1842 s->TxStatus[descriptor] |= TxHostOwns;
1843 s->TxStatus[descriptor] |= TxStatOK;
1844
1845 rtl8139_transfer_frame(s, txbuffer, txsize, 0, NULL);
1846
1847 DPRINTF("+++ transmitted %d bytes from descriptor %d\n", txsize,
1848 descriptor);
1849
1850 /* update interrupt */
1851 s->IntrStatus |= TxOK;
1852 rtl8139_update_irq(s);
1853
1854 return 1;
1855 }
1856
1857 #define TCP_HEADER_CLEAR_FLAGS(tcp, off) ((tcp)->th_offset_flags &= cpu_to_be16(~TCP_FLAGS_ONLY(off)))
1858
1859 /* produces ones' complement sum of data */
1860 static uint16_t ones_complement_sum(uint8_t *data, size_t len)
1861 {
1862 uint32_t result = 0;
1863
1864 for (; len > 1; data+=2, len-=2)
1865 {
1866 result += *(uint16_t*)data;
1867 }
1868
1869 /* add the remainder byte */
1870 if (len)
1871 {
1872 uint8_t odd[2] = {*data, 0};
1873 result += *(uint16_t*)odd;
1874 }
1875
1876 while (result>>16)
1877 result = (result & 0xffff) + (result >> 16);
1878
1879 return result;
1880 }
1881
1882 static uint16_t ip_checksum(void *data, size_t len)
1883 {
1884 return ~ones_complement_sum((uint8_t*)data, len);
1885 }
1886
1887 static int rtl8139_cplus_transmit_one(RTL8139State *s)
1888 {
1889 if (!rtl8139_transmitter_enabled(s))
1890 {
1891 DPRINTF("+++ C+ mode: transmitter disabled\n");
1892 return 0;
1893 }
1894
1895 if (!rtl8139_cp_transmitter_enabled(s))
1896 {
1897 DPRINTF("+++ C+ mode: C+ transmitter disabled\n");
1898 return 0 ;
1899 }
1900
1901 PCIDevice *d = PCI_DEVICE(s);
1902 int descriptor = s->currCPlusTxDesc;
1903
1904 dma_addr_t cplus_tx_ring_desc = rtl8139_addr64(s->TxAddr[0], s->TxAddr[1]);
1905
1906 /* Normal priority ring */
1907 cplus_tx_ring_desc += 16 * descriptor;
1908
1909 DPRINTF("+++ C+ mode reading TX descriptor %d from host memory at "
1910 "%08x %08x = 0x"DMA_ADDR_FMT"\n", descriptor, s->TxAddr[1],
1911 s->TxAddr[0], cplus_tx_ring_desc);
1912
1913 uint32_t val, txdw0,txdw1,txbufLO,txbufHI;
1914
1915 pci_dma_read(d, cplus_tx_ring_desc, (uint8_t *)&val, 4);
1916 txdw0 = le32_to_cpu(val);
1917 pci_dma_read(d, cplus_tx_ring_desc+4, (uint8_t *)&val, 4);
1918 txdw1 = le32_to_cpu(val);
1919 pci_dma_read(d, cplus_tx_ring_desc+8, (uint8_t *)&val, 4);
1920 txbufLO = le32_to_cpu(val);
1921 pci_dma_read(d, cplus_tx_ring_desc+12, (uint8_t *)&val, 4);
1922 txbufHI = le32_to_cpu(val);
1923
1924 DPRINTF("+++ C+ mode TX descriptor %d %08x %08x %08x %08x\n", descriptor,
1925 txdw0, txdw1, txbufLO, txbufHI);
1926
1927 /* w0 ownership flag */
1928 #define CP_TX_OWN (1<<31)
1929 /* w0 end of ring flag */
1930 #define CP_TX_EOR (1<<30)
1931 /* first segment of received packet flag */
1932 #define CP_TX_FS (1<<29)
1933 /* last segment of received packet flag */
1934 #define CP_TX_LS (1<<28)
1935 /* large send packet flag */
1936 #define CP_TX_LGSEN (1<<27)
1937 /* large send MSS mask, bits 16...25 */
1938 #define CP_TC_LGSEN_MSS_MASK ((1 << 12) - 1)
1939
1940 /* IP checksum offload flag */
1941 #define CP_TX_IPCS (1<<18)
1942 /* UDP checksum offload flag */
1943 #define CP_TX_UDPCS (1<<17)
1944 /* TCP checksum offload flag */
1945 #define CP_TX_TCPCS (1<<16)
1946
1947 /* w0 bits 0...15 : buffer size */
1948 #define CP_TX_BUFFER_SIZE (1<<16)
1949 #define CP_TX_BUFFER_SIZE_MASK (CP_TX_BUFFER_SIZE - 1)
1950 /* w1 add tag flag */
1951 #define CP_TX_TAGC (1<<17)
1952 /* w1 bits 0...15 : VLAN tag (big endian) */
1953 #define CP_TX_VLAN_TAG_MASK ((1<<16) - 1)
1954 /* w2 low 32bit of Rx buffer ptr */
1955 /* w3 high 32bit of Rx buffer ptr */
1956
1957 /* set after transmission */
1958 /* FIFO underrun flag */
1959 #define CP_TX_STATUS_UNF (1<<25)
1960 /* transmit error summary flag, valid if set any of three below */
1961 #define CP_TX_STATUS_TES (1<<23)
1962 /* out-of-window collision flag */
1963 #define CP_TX_STATUS_OWC (1<<22)
1964 /* link failure flag */
1965 #define CP_TX_STATUS_LNKF (1<<21)
1966 /* excessive collisions flag */
1967 #define CP_TX_STATUS_EXC (1<<20)
1968
1969 if (!(txdw0 & CP_TX_OWN))
1970 {
1971 DPRINTF("C+ Tx mode : descriptor %d is owned by host\n", descriptor);
1972 return 0 ;
1973 }
1974
1975 DPRINTF("+++ C+ Tx mode : transmitting from descriptor %d\n", descriptor);
1976
1977 if (txdw0 & CP_TX_FS)
1978 {
1979 DPRINTF("+++ C+ Tx mode : descriptor %d is first segment "
1980 "descriptor\n", descriptor);
1981
1982 /* reset internal buffer offset */
1983 s->cplus_txbuffer_offset = 0;
1984 }
1985
1986 int txsize = txdw0 & CP_TX_BUFFER_SIZE_MASK;
1987 dma_addr_t tx_addr = rtl8139_addr64(txbufLO, txbufHI);
1988
1989 /* make sure we have enough space to assemble the packet */
1990 if (!s->cplus_txbuffer)
1991 {
1992 s->cplus_txbuffer_len = CP_TX_BUFFER_SIZE;
1993 s->cplus_txbuffer = g_malloc(s->cplus_txbuffer_len);
1994 s->cplus_txbuffer_offset = 0;
1995
1996 DPRINTF("+++ C+ mode transmission buffer allocated space %d\n",
1997 s->cplus_txbuffer_len);
1998 }
1999
2000 if (s->cplus_txbuffer_offset + txsize >= s->cplus_txbuffer_len)
2001 {
2002 /* The spec didn't tell the maximum size, stick to CP_TX_BUFFER_SIZE */
2003 txsize = s->cplus_txbuffer_len - s->cplus_txbuffer_offset;
2004 DPRINTF("+++ C+ mode transmission buffer overrun, truncated descriptor"
2005 "length to %d\n", txsize);
2006 }
2007
2008 /* append more data to the packet */
2009
2010 DPRINTF("+++ C+ mode transmit reading %d bytes from host memory at "
2011 DMA_ADDR_FMT" to offset %d\n", txsize, tx_addr,
2012 s->cplus_txbuffer_offset);
2013
2014 pci_dma_read(d, tx_addr,
2015 s->cplus_txbuffer + s->cplus_txbuffer_offset, txsize);
2016 s->cplus_txbuffer_offset += txsize;
2017
2018 /* seek to next Rx descriptor */
2019 if (txdw0 & CP_TX_EOR)
2020 {
2021 s->currCPlusTxDesc = 0;
2022 }
2023 else
2024 {
2025 ++s->currCPlusTxDesc;
2026 if (s->currCPlusTxDesc >= 64)
2027 s->currCPlusTxDesc = 0;
2028 }
2029
2030 /* transfer ownership to target */
2031 txdw0 &= ~CP_TX_OWN;
2032
2033 /* reset error indicator bits */
2034 txdw0 &= ~CP_TX_STATUS_UNF;
2035 txdw0 &= ~CP_TX_STATUS_TES;
2036 txdw0 &= ~CP_TX_STATUS_OWC;
2037 txdw0 &= ~CP_TX_STATUS_LNKF;
2038 txdw0 &= ~CP_TX_STATUS_EXC;
2039
2040 /* update ring data */
2041 val = cpu_to_le32(txdw0);
2042 pci_dma_write(d, cplus_tx_ring_desc, (uint8_t *)&val, 4);
2043
2044 /* Now decide if descriptor being processed is holding the last segment of packet */
2045 if (txdw0 & CP_TX_LS)
2046 {
2047 uint8_t dot1q_buffer_space[VLAN_HLEN];
2048 uint16_t *dot1q_buffer;
2049
2050 DPRINTF("+++ C+ Tx mode : descriptor %d is last segment descriptor\n",
2051 descriptor);
2052
2053 /* can transfer fully assembled packet */
2054
2055 uint8_t *saved_buffer = s->cplus_txbuffer;
2056 int saved_size = s->cplus_txbuffer_offset;
2057 int saved_buffer_len = s->cplus_txbuffer_len;
2058
2059 /* create vlan tag */
2060 if (txdw1 & CP_TX_TAGC) {
2061 /* the vlan tag is in BE byte order in the descriptor
2062 * BE + le_to_cpu() + ~swap()~ = cpu */
2063 DPRINTF("+++ C+ Tx mode : inserting vlan tag with ""tci: %u\n",
2064 bswap16(txdw1 & CP_TX_VLAN_TAG_MASK));
2065
2066 dot1q_buffer = (uint16_t *) dot1q_buffer_space;
2067 dot1q_buffer[0] = cpu_to_be16(ETH_P_VLAN);
2068 /* BE + le_to_cpu() + ~cpu_to_le()~ = BE */
2069 dot1q_buffer[1] = cpu_to_le16(txdw1 & CP_TX_VLAN_TAG_MASK);
2070 } else {
2071 dot1q_buffer = NULL;
2072 }
2073
2074 /* reset the card space to protect from recursive call */
2075 s->cplus_txbuffer = NULL;
2076 s->cplus_txbuffer_offset = 0;
2077 s->cplus_txbuffer_len = 0;
2078
2079 if (txdw0 & (CP_TX_IPCS | CP_TX_UDPCS | CP_TX_TCPCS | CP_TX_LGSEN))
2080 {
2081 DPRINTF("+++ C+ mode offloaded task checksum\n");
2082
2083 /* Large enough for Ethernet and IP headers? */
2084 if (saved_size < ETH_HLEN + sizeof(struct ip_header)) {
2085 goto skip_offload;
2086 }
2087
2088 /* ip packet header */
2089 struct ip_header *ip = NULL;
2090 int hlen = 0;
2091 uint8_t ip_protocol = 0;
2092 uint16_t ip_data_len = 0;
2093
2094 uint8_t *eth_payload_data = NULL;
2095 size_t eth_payload_len = 0;
2096
2097 int proto = be16_to_cpu(*(uint16_t *)(saved_buffer + 12));
2098 if (proto != ETH_P_IP)
2099 {
2100 goto skip_offload;
2101 }
2102
2103 DPRINTF("+++ C+ mode has IP packet\n");
2104
2105 /* Note on memory alignment: eth_payload_data is 16-bit aligned
2106 * since saved_buffer is allocated with g_malloc() and ETH_HLEN is
2107 * even. 32-bit accesses must use ldl/stl wrappers to avoid
2108 * unaligned accesses.
2109 */
2110 eth_payload_data = saved_buffer + ETH_HLEN;
2111 eth_payload_len = saved_size - ETH_HLEN;
2112
2113 ip = (struct ip_header*)eth_payload_data;
2114
2115 if (IP_HEADER_VERSION(ip) != IP_HEADER_VERSION_4) {
2116 DPRINTF("+++ C+ mode packet has bad IP version %d "
2117 "expected %d\n", IP_HEADER_VERSION(ip),
2118 IP_HEADER_VERSION_4);
2119 goto skip_offload;
2120 }
2121
2122 hlen = IP_HDR_GET_LEN(ip);
2123 if (hlen < sizeof(struct ip_header) || hlen > eth_payload_len) {
2124 goto skip_offload;
2125 }
2126
2127 ip_protocol = ip->ip_p;
2128
2129 ip_data_len = be16_to_cpu(ip->ip_len);
2130 if (ip_data_len < hlen || ip_data_len > eth_payload_len) {
2131 goto skip_offload;
2132 }
2133 ip_data_len -= hlen;
2134
2135 if (txdw0 & CP_TX_IPCS)
2136 {
2137 DPRINTF("+++ C+ mode need IP checksum\n");
2138
2139 ip->ip_sum = 0;
2140 ip->ip_sum = ip_checksum(ip, hlen);
2141 DPRINTF("+++ C+ mode IP header len=%d checksum=%04x\n",
2142 hlen, ip->ip_sum);
2143 }
2144
2145 if ((txdw0 & CP_TX_LGSEN) && ip_protocol == IP_PROTO_TCP)
2146 {
2147 /* Large enough for the TCP header? */
2148 if (ip_data_len < sizeof(tcp_header)) {
2149 goto skip_offload;
2150 }
2151
2152 int large_send_mss = (txdw0 >> 16) & CP_TC_LGSEN_MSS_MASK;
2153
2154 DPRINTF("+++ C+ mode offloaded task TSO MTU=%d IP data %d "
2155 "frame data %d specified MSS=%d\n", ETH_MTU,
2156 ip_data_len, saved_size - ETH_HLEN, large_send_mss);
2157
2158 int tcp_send_offset = 0;
2159 int send_count = 0;
2160
2161 /* maximum IP header length is 60 bytes */
2162 uint8_t saved_ip_header[60];
2163
2164 /* save IP header template; data area is used in tcp checksum calculation */
2165 memcpy(saved_ip_header, eth_payload_data, hlen);
2166
2167 /* a placeholder for checksum calculation routine in tcp case */
2168 uint8_t *data_to_checksum = eth_payload_data + hlen - 12;
2169 // size_t data_to_checksum_len = eth_payload_len - hlen + 12;
2170
2171 /* pointer to TCP header */
2172 tcp_header *p_tcp_hdr = (tcp_header*)(eth_payload_data + hlen);
2173
2174 int tcp_hlen = TCP_HEADER_DATA_OFFSET(p_tcp_hdr);
2175
2176 /* Invalid TCP data offset? */
2177 if (tcp_hlen < sizeof(tcp_header) || tcp_hlen > ip_data_len) {
2178 goto skip_offload;
2179 }
2180
2181 /* ETH_MTU = ip header len + tcp header len + payload */
2182 int tcp_data_len = ip_data_len - tcp_hlen;
2183 int tcp_chunk_size = ETH_MTU - hlen - tcp_hlen;
2184
2185 DPRINTF("+++ C+ mode TSO IP data len %d TCP hlen %d TCP "
2186 "data len %d TCP chunk size %d\n", ip_data_len,
2187 tcp_hlen, tcp_data_len, tcp_chunk_size);
2188
2189 /* note the cycle below overwrites IP header data,
2190 but restores it from saved_ip_header before sending packet */
2191
2192 int is_last_frame = 0;
2193
2194 for (tcp_send_offset = 0; tcp_send_offset < tcp_data_len; tcp_send_offset += tcp_chunk_size)
2195 {
2196 uint16_t chunk_size = tcp_chunk_size;
2197
2198 /* check if this is the last frame */
2199 if (tcp_send_offset + tcp_chunk_size >= tcp_data_len)
2200 {
2201 is_last_frame = 1;
2202 chunk_size = tcp_data_len - tcp_send_offset;
2203 }
2204
2205 DPRINTF("+++ C+ mode TSO TCP seqno %08x\n",
2206 ldl_be_p(&p_tcp_hdr->th_seq));
2207
2208 /* add 4 TCP pseudoheader fields */
2209 /* copy IP source and destination fields */
2210 memcpy(data_to_checksum, saved_ip_header + 12, 8);
2211
2212 DPRINTF("+++ C+ mode TSO calculating TCP checksum for "
2213 "packet with %d bytes data\n", tcp_hlen +
2214 chunk_size);
2215
2216 if (tcp_send_offset)
2217 {
2218 memcpy((uint8_t*)p_tcp_hdr + tcp_hlen, (uint8_t*)p_tcp_hdr + tcp_hlen + tcp_send_offset, chunk_size);
2219 }
2220
2221 /* keep PUSH and FIN flags only for the last frame */
2222 if (!is_last_frame)
2223 {
2224 TCP_HEADER_CLEAR_FLAGS(p_tcp_hdr, TH_PUSH | TH_FIN);
2225 }
2226
2227 /* recalculate TCP checksum */
2228 ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2229 p_tcpip_hdr->zeros = 0;
2230 p_tcpip_hdr->ip_proto = IP_PROTO_TCP;
2231 p_tcpip_hdr->ip_payload = cpu_to_be16(tcp_hlen + chunk_size);
2232
2233 p_tcp_hdr->th_sum = 0;
2234
2235 int tcp_checksum = ip_checksum(data_to_checksum, tcp_hlen + chunk_size + 12);
2236 DPRINTF("+++ C+ mode TSO TCP checksum %04x\n",
2237 tcp_checksum);
2238
2239 p_tcp_hdr->th_sum = tcp_checksum;
2240
2241 /* restore IP header */
2242 memcpy(eth_payload_data, saved_ip_header, hlen);
2243
2244 /* set IP data length and recalculate IP checksum */
2245 ip->ip_len = cpu_to_be16(hlen + tcp_hlen + chunk_size);
2246
2247 /* increment IP id for subsequent frames */
2248 ip->ip_id = cpu_to_be16(tcp_send_offset/tcp_chunk_size + be16_to_cpu(ip->ip_id));
2249
2250 ip->ip_sum = 0;
2251 ip->ip_sum = ip_checksum(eth_payload_data, hlen);
2252 DPRINTF("+++ C+ mode TSO IP header len=%d "
2253 "checksum=%04x\n", hlen, ip->ip_sum);
2254
2255 int tso_send_size = ETH_HLEN + hlen + tcp_hlen + chunk_size;
2256 DPRINTF("+++ C+ mode TSO transferring packet size "
2257 "%d\n", tso_send_size);
2258 rtl8139_transfer_frame(s, saved_buffer, tso_send_size,
2259 0, (uint8_t *) dot1q_buffer);
2260
2261 /* add transferred count to TCP sequence number */
2262 stl_be_p(&p_tcp_hdr->th_seq,
2263 chunk_size + ldl_be_p(&p_tcp_hdr->th_seq));
2264 ++send_count;
2265 }
2266
2267 /* Stop sending this frame */
2268 saved_size = 0;
2269 }
2270 else if (txdw0 & (CP_TX_TCPCS|CP_TX_UDPCS))
2271 {
2272 DPRINTF("+++ C+ mode need TCP or UDP checksum\n");
2273
2274 /* maximum IP header length is 60 bytes */
2275 uint8_t saved_ip_header[60];
2276 memcpy(saved_ip_header, eth_payload_data, hlen);
2277
2278 uint8_t *data_to_checksum = eth_payload_data + hlen - 12;
2279 // size_t data_to_checksum_len = eth_payload_len - hlen + 12;
2280
2281 /* add 4 TCP pseudoheader fields */
2282 /* copy IP source and destination fields */
2283 memcpy(data_to_checksum, saved_ip_header + 12, 8);
2284
2285 if ((txdw0 & CP_TX_TCPCS) && ip_protocol == IP_PROTO_TCP)
2286 {
2287 DPRINTF("+++ C+ mode calculating TCP checksum for "
2288 "packet with %d bytes data\n", ip_data_len);
2289
2290 ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2291 p_tcpip_hdr->zeros = 0;
2292 p_tcpip_hdr->ip_proto = IP_PROTO_TCP;
2293 p_tcpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2294
2295 tcp_header* p_tcp_hdr = (tcp_header *) (data_to_checksum+12);
2296
2297 p_tcp_hdr->th_sum = 0;
2298
2299 int tcp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2300 DPRINTF("+++ C+ mode TCP checksum %04x\n",
2301 tcp_checksum);
2302
2303 p_tcp_hdr->th_sum = tcp_checksum;
2304 }
2305 else if ((txdw0 & CP_TX_UDPCS) && ip_protocol == IP_PROTO_UDP)
2306 {
2307 DPRINTF("+++ C+ mode calculating UDP checksum for "
2308 "packet with %d bytes data\n", ip_data_len);
2309
2310 ip_pseudo_header *p_udpip_hdr = (ip_pseudo_header *)data_to_checksum;
2311 p_udpip_hdr->zeros = 0;
2312 p_udpip_hdr->ip_proto = IP_PROTO_UDP;
2313 p_udpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2314
2315 udp_header *p_udp_hdr = (udp_header *) (data_to_checksum+12);
2316
2317 p_udp_hdr->uh_sum = 0;
2318
2319 int udp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2320 DPRINTF("+++ C+ mode UDP checksum %04x\n",
2321 udp_checksum);
2322
2323 p_udp_hdr->uh_sum = udp_checksum;
2324 }
2325
2326 /* restore IP header */
2327 memcpy(eth_payload_data, saved_ip_header, hlen);
2328 }
2329 }
2330
2331 skip_offload:
2332 /* update tally counter */
2333 ++s->tally_counters.TxOk;
2334
2335 DPRINTF("+++ C+ mode transmitting %d bytes packet\n", saved_size);
2336
2337 rtl8139_transfer_frame(s, saved_buffer, saved_size, 1,
2338 (uint8_t *) dot1q_buffer);
2339
2340 /* restore card space if there was no recursion and reset offset */
2341 if (!s->cplus_txbuffer)
2342 {
2343 s->cplus_txbuffer = saved_buffer;
2344 s->cplus_txbuffer_len = saved_buffer_len;
2345 s->cplus_txbuffer_offset = 0;
2346 }
2347 else
2348 {
2349 g_free(saved_buffer);
2350 }
2351 }
2352 else
2353 {
2354 DPRINTF("+++ C+ mode transmission continue to next descriptor\n");
2355 }
2356
2357 return 1;
2358 }
2359
2360 static void rtl8139_cplus_transmit(RTL8139State *s)
2361 {
2362 int txcount = 0;
2363
2364 while (txcount < 64 && rtl8139_cplus_transmit_one(s))
2365 {
2366 ++txcount;
2367 }
2368
2369 /* Mark transfer completed */
2370 if (!txcount)
2371 {
2372 DPRINTF("C+ mode : transmitter queue stalled, current TxDesc = %d\n",
2373 s->currCPlusTxDesc);
2374 }
2375 else
2376 {
2377 /* update interrupt status */
2378 s->IntrStatus |= TxOK;
2379 rtl8139_update_irq(s);
2380 }
2381 }
2382
2383 static void rtl8139_transmit(RTL8139State *s)
2384 {
2385 int descriptor = s->currTxDesc, txcount = 0;
2386
2387 /*while*/
2388 if (rtl8139_transmit_one(s, descriptor))
2389 {
2390 ++s->currTxDesc;
2391 s->currTxDesc %= 4;
2392 ++txcount;
2393 }
2394
2395 /* Mark transfer completed */
2396 if (!txcount)
2397 {
2398 DPRINTF("transmitter queue stalled, current TxDesc = %d\n",
2399 s->currTxDesc);
2400 }
2401 }
2402
2403 static void rtl8139_TxStatus_write(RTL8139State *s, uint32_t txRegOffset, uint32_t val)
2404 {
2405
2406 int descriptor = txRegOffset/4;
2407
2408 /* handle C+ transmit mode register configuration */
2409
2410 if (s->cplus_enabled)
2411 {
2412 DPRINTF("RTL8139C+ DTCCR write offset=0x%x val=0x%08x "
2413 "descriptor=%d\n", txRegOffset, val, descriptor);
2414
2415 /* handle Dump Tally Counters command */
2416 s->TxStatus[descriptor] = val;
2417
2418 if (descriptor == 0 && (val & 0x8))
2419 {
2420 hwaddr tc_addr = rtl8139_addr64(s->TxStatus[0] & ~0x3f, s->TxStatus[1]);
2421
2422 /* dump tally counters to specified memory location */
2423 RTL8139TallyCounters_dma_write(s, tc_addr);
2424
2425 /* mark dump completed */
2426 s->TxStatus[0] &= ~0x8;
2427 }
2428
2429 return;
2430 }
2431
2432 DPRINTF("TxStatus write offset=0x%x val=0x%08x descriptor=%d\n",
2433 txRegOffset, val, descriptor);
2434
2435 /* mask only reserved bits */
2436 val &= ~0xff00c000; /* these bits are reset on write */
2437 val = SET_MASKED(val, 0x00c00000, s->TxStatus[descriptor]);
2438
2439 s->TxStatus[descriptor] = val;
2440
2441 /* attempt to start transmission */
2442 rtl8139_transmit(s);
2443 }
2444
2445 static uint32_t rtl8139_TxStatus_TxAddr_read(RTL8139State *s, uint32_t regs[],
2446 uint32_t base, uint8_t addr,
2447 int size)
2448 {
2449 uint32_t reg = (addr - base) / 4;
2450 uint32_t offset = addr & 0x3;
2451 uint32_t ret = 0;
2452
2453 if (addr & (size - 1)) {
2454 DPRINTF("not implemented read for TxStatus/TxAddr "
2455 "addr=0x%x size=0x%x\n", addr, size);
2456 return ret;
2457 }
2458
2459 switch (size) {
2460 case 1: /* fall through */
2461 case 2: /* fall through */
2462 case 4:
2463 ret = (regs[reg] >> offset * 8) & (((uint64_t)1 << (size * 8)) - 1);
2464 DPRINTF("TxStatus/TxAddr[%d] read addr=0x%x size=0x%x val=0x%08x\n",
2465 reg, addr, size, ret);
2466 break;
2467 default:
2468 DPRINTF("unsupported size 0x%x of TxStatus/TxAddr reading\n", size);
2469 break;
2470 }
2471
2472 return ret;
2473 }
2474
2475 static uint16_t rtl8139_TSAD_read(RTL8139State *s)
2476 {
2477 uint16_t ret = 0;
2478
2479 /* Simulate TSAD, it is read only anyway */
2480
2481 ret = ((s->TxStatus[3] & TxStatOK )?TSAD_TOK3:0)
2482 |((s->TxStatus[2] & TxStatOK )?TSAD_TOK2:0)
2483 |((s->TxStatus[1] & TxStatOK )?TSAD_TOK1:0)
2484 |((s->TxStatus[0] & TxStatOK )?TSAD_TOK0:0)
2485
2486 |((s->TxStatus[3] & TxUnderrun)?TSAD_TUN3:0)
2487 |((s->TxStatus[2] & TxUnderrun)?TSAD_TUN2:0)
2488 |((s->TxStatus[1] & TxUnderrun)?TSAD_TUN1:0)
2489 |((s->TxStatus[0] & TxUnderrun)?TSAD_TUN0:0)
2490
2491 |((s->TxStatus[3] & TxAborted )?TSAD_TABT3:0)
2492 |((s->TxStatus[2] & TxAborted )?TSAD_TABT2:0)
2493 |((s->TxStatus[1] & TxAborted )?TSAD_TABT1:0)
2494 |((s->TxStatus[0] & TxAborted )?TSAD_TABT0:0)
2495
2496 |((s->TxStatus[3] & TxHostOwns )?TSAD_OWN3:0)
2497 |((s->TxStatus[2] & TxHostOwns )?TSAD_OWN2:0)
2498 |((s->TxStatus[1] & TxHostOwns )?TSAD_OWN1:0)
2499 |((s->TxStatus[0] & TxHostOwns )?TSAD_OWN0:0) ;
2500
2501
2502 DPRINTF("TSAD read val=0x%04x\n", ret);
2503
2504 return ret;
2505 }
2506
2507 static uint16_t rtl8139_CSCR_read(RTL8139State *s)
2508 {
2509 uint16_t ret = s->CSCR;
2510
2511 DPRINTF("CSCR read val=0x%04x\n", ret);
2512
2513 return ret;
2514 }
2515
2516 static void rtl8139_TxAddr_write(RTL8139State *s, uint32_t txAddrOffset, uint32_t val)
2517 {
2518 DPRINTF("TxAddr write offset=0x%x val=0x%08x\n", txAddrOffset, val);
2519
2520 s->TxAddr[txAddrOffset/4] = val;
2521 }
2522
2523 static uint32_t rtl8139_TxAddr_read(RTL8139State *s, uint32_t txAddrOffset)
2524 {
2525 uint32_t ret = s->TxAddr[txAddrOffset/4];
2526
2527 DPRINTF("TxAddr read offset=0x%x val=0x%08x\n", txAddrOffset, ret);
2528
2529 return ret;
2530 }
2531
2532 static void rtl8139_RxBufPtr_write(RTL8139State *s, uint32_t val)
2533 {
2534 DPRINTF("RxBufPtr write val=0x%04x\n", val);
2535
2536 /* this value is off by 16 */
2537 s->RxBufPtr = MOD2(val + 0x10, s->RxBufferSize);
2538
2539 /* more buffer space may be available so try to receive */
2540 qemu_flush_queued_packets(qemu_get_queue(s->nic));
2541
2542 DPRINTF(" CAPR write: rx buffer length %d head 0x%04x read 0x%04x\n",
2543 s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
2544 }
2545
2546 static uint32_t rtl8139_RxBufPtr_read(RTL8139State *s)
2547 {
2548 /* this value is off by 16 */
2549 uint32_t ret = s->RxBufPtr - 0x10;
2550
2551 DPRINTF("RxBufPtr read val=0x%04x\n", ret);
2552
2553 return ret;
2554 }
2555
2556 static uint32_t rtl8139_RxBufAddr_read(RTL8139State *s)
2557 {
2558 /* this value is NOT off by 16 */
2559 uint32_t ret = s->RxBufAddr;
2560
2561 DPRINTF("RxBufAddr read val=0x%04x\n", ret);
2562
2563 return ret;
2564 }
2565
2566 static void rtl8139_RxBuf_write(RTL8139State *s, uint32_t val)
2567 {
2568 DPRINTF("RxBuf write val=0x%08x\n", val);
2569
2570 s->RxBuf = val;
2571
2572 /* may need to reset rxring here */
2573 }
2574
2575 static uint32_t rtl8139_RxBuf_read(RTL8139State *s)
2576 {
2577 uint32_t ret = s->RxBuf;
2578
2579 DPRINTF("RxBuf read val=0x%08x\n", ret);
2580
2581 return ret;
2582 }
2583
2584 static void rtl8139_IntrMask_write(RTL8139State *s, uint32_t val)
2585 {
2586 DPRINTF("IntrMask write(w) val=0x%04x\n", val);
2587
2588 /* mask unwritable bits */
2589 val = SET_MASKED(val, 0x1e00, s->IntrMask);
2590
2591 s->IntrMask = val;
2592
2593 rtl8139_update_irq(s);
2594
2595 }
2596
2597 static uint32_t rtl8139_IntrMask_read(RTL8139State *s)
2598 {
2599 uint32_t ret = s->IntrMask;
2600
2601 DPRINTF("IntrMask read(w) val=0x%04x\n", ret);
2602
2603 return ret;
2604 }
2605
2606 static void rtl8139_IntrStatus_write(RTL8139State *s, uint32_t val)
2607 {
2608 DPRINTF("IntrStatus write(w) val=0x%04x\n", val);
2609
2610 #if 0
2611
2612 /* writing to ISR has no effect */
2613
2614 return;
2615
2616 #else
2617 uint16_t newStatus = s->IntrStatus & ~val;
2618
2619 /* mask unwritable bits */
2620 newStatus = SET_MASKED(newStatus, 0x1e00, s->IntrStatus);
2621
2622 /* writing 1 to interrupt status register bit clears it */
2623 s->IntrStatus = 0;
2624 rtl8139_update_irq(s);
2625
2626 s->IntrStatus = newStatus;
2627 rtl8139_set_next_tctr_time(s);
2628 rtl8139_update_irq(s);
2629
2630 #endif
2631 }
2632
2633 static uint32_t rtl8139_IntrStatus_read(RTL8139State *s)
2634 {
2635 uint32_t ret = s->IntrStatus;
2636
2637 DPRINTF("IntrStatus read(w) val=0x%04x\n", ret);
2638
2639 #if 0
2640
2641 /* reading ISR clears all interrupts */
2642 s->IntrStatus = 0;
2643
2644 rtl8139_update_irq(s);
2645
2646 #endif
2647
2648 return ret;
2649 }
2650
2651 static void rtl8139_MultiIntr_write(RTL8139State *s, uint32_t val)
2652 {
2653 DPRINTF("MultiIntr write(w) val=0x%04x\n", val);
2654
2655 /* mask unwritable bits */
2656 val = SET_MASKED(val, 0xf000, s->MultiIntr);
2657
2658 s->MultiIntr = val;
2659 }
2660
2661 static uint32_t rtl8139_MultiIntr_read(RTL8139State *s)
2662 {
2663 uint32_t ret = s->MultiIntr;
2664
2665 DPRINTF("MultiIntr read(w) val=0x%04x\n", ret);
2666
2667 return ret;
2668 }
2669
2670 static void rtl8139_io_writeb(void *opaque, uint8_t addr, uint32_t val)
2671 {
2672 RTL8139State *s = opaque;
2673
2674 switch (addr)
2675 {
2676 case MAC0 ... MAC0+4:
2677 s->phys[addr - MAC0] = val;
2678 break;
2679 case MAC0+5:
2680 s->phys[addr - MAC0] = val;
2681 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys);
2682 break;
2683 case MAC0+6 ... MAC0+7:
2684 /* reserved */
2685 break;
2686 case MAR0 ... MAR0+7:
2687 s->mult[addr - MAR0] = val;
2688 break;
2689 case ChipCmd:
2690 rtl8139_ChipCmd_write(s, val);
2691 break;
2692 case Cfg9346:
2693 rtl8139_Cfg9346_write(s, val);
2694 break;
2695 case TxConfig: /* windows driver sometimes writes using byte-lenth call */
2696 rtl8139_TxConfig_writeb(s, val);
2697 break;
2698 case Config0:
2699 rtl8139_Config0_write(s, val);
2700 break;
2701 case Config1:
2702 rtl8139_Config1_write(s, val);
2703 break;
2704 case Config3:
2705 rtl8139_Config3_write(s, val);
2706 break;
2707 case Config4:
2708 rtl8139_Config4_write(s, val);
2709 break;
2710 case Config5:
2711 rtl8139_Config5_write(s, val);
2712 break;
2713 case MediaStatus:
2714 /* ignore */
2715 DPRINTF("not implemented write(b) to MediaStatus val=0x%02x\n",
2716 val);
2717 break;
2718
2719 case HltClk:
2720 DPRINTF("HltClk write val=0x%08x\n", val);
2721 if (val == 'R')
2722 {
2723 s->clock_enabled = 1;
2724 }
2725 else if (val == 'H')
2726 {
2727 s->clock_enabled = 0;
2728 }
2729 break;
2730
2731 case TxThresh:
2732 DPRINTF("C+ TxThresh write(b) val=0x%02x\n", val);
2733 s->TxThresh = val;
2734 break;
2735
2736 case TxPoll:
2737 DPRINTF("C+ TxPoll write(b) val=0x%02x\n", val);
2738 if (val & (1 << 7))
2739 {
2740 DPRINTF("C+ TxPoll high priority transmission (not "
2741 "implemented)\n");
2742 //rtl8139_cplus_transmit(s);
2743 }
2744 if (val & (1 << 6))
2745 {
2746 DPRINTF("C+ TxPoll normal priority transmission\n");
2747 rtl8139_cplus_transmit(s);
2748 }
2749
2750 break;
2751
2752 default:
2753 DPRINTF("not implemented write(b) addr=0x%x val=0x%02x\n", addr,
2754 val);
2755 break;
2756 }
2757 }
2758
2759 static void rtl8139_io_writew(void *opaque, uint8_t addr, uint32_t val)
2760 {
2761 RTL8139State *s = opaque;
2762
2763 switch (addr)
2764 {
2765 case IntrMask:
2766 rtl8139_IntrMask_write(s, val);
2767 break;
2768
2769 case IntrStatus:
2770 rtl8139_IntrStatus_write(s, val);
2771 break;
2772
2773 case MultiIntr:
2774 rtl8139_MultiIntr_write(s, val);
2775 break;
2776
2777 case RxBufPtr:
2778 rtl8139_RxBufPtr_write(s, val);
2779 break;
2780
2781 case BasicModeCtrl:
2782 rtl8139_BasicModeCtrl_write(s, val);
2783 break;
2784 case BasicModeStatus:
2785 rtl8139_BasicModeStatus_write(s, val);
2786 break;
2787 case NWayAdvert:
2788 DPRINTF("NWayAdvert write(w) val=0x%04x\n", val);
2789 s->NWayAdvert = val;
2790 break;
2791 case NWayLPAR:
2792 DPRINTF("forbidden NWayLPAR write(w) val=0x%04x\n", val);
2793 break;
2794 case NWayExpansion:
2795 DPRINTF("NWayExpansion write(w) val=0x%04x\n", val);
2796 s->NWayExpansion = val;
2797 break;
2798
2799 case CpCmd:
2800 rtl8139_CpCmd_write(s, val);
2801 break;
2802
2803 case IntrMitigate:
2804 rtl8139_IntrMitigate_write(s, val);
2805 break;
2806
2807 default:
2808 DPRINTF("ioport write(w) addr=0x%x val=0x%04x via write(b)\n",
2809 addr, val);
2810
2811 rtl8139_io_writeb(opaque, addr, val & 0xff);
2812 rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2813 break;
2814 }
2815 }
2816
2817 static void rtl8139_set_next_tctr_time(RTL8139State *s)
2818 {
2819 const uint64_t ns_per_period = (uint64_t)PCI_PERIOD << 32;
2820
2821 DPRINTF("entered rtl8139_set_next_tctr_time\n");
2822
2823 /* This function is called at least once per period, so it is a good
2824 * place to update the timer base.
2825 *
2826 * After one iteration of this loop the value in the Timer register does
2827 * not change, but the device model is counting up by 2^32 ticks (approx.
2828 * 130 seconds).
2829 */
2830 while (s->TCTR_base + ns_per_period <= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)) {
2831 s->TCTR_base += ns_per_period;
2832 }
2833
2834 if (!s->TimerInt) {
2835 timer_del(s->timer);
2836 } else {
2837 uint64_t delta = (uint64_t)s->TimerInt * PCI_PERIOD;
2838 if (s->TCTR_base + delta <= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)) {
2839 delta += ns_per_period;
2840 }
2841 timer_mod(s->timer, s->TCTR_base + delta);
2842 }
2843 }
2844
2845 static void rtl8139_io_writel(void *opaque, uint8_t addr, uint32_t val)
2846 {
2847 RTL8139State *s = opaque;
2848
2849 switch (addr)
2850 {
2851 case RxMissed:
2852 DPRINTF("RxMissed clearing on write\n");
2853 s->RxMissed = 0;
2854 break;
2855
2856 case TxConfig:
2857 rtl8139_TxConfig_write(s, val);
2858 break;
2859
2860 case RxConfig:
2861 rtl8139_RxConfig_write(s, val);
2862 break;
2863
2864 case TxStatus0 ... TxStatus0+4*4-1:
2865 rtl8139_TxStatus_write(s, addr-TxStatus0, val);
2866 break;
2867
2868 case TxAddr0 ... TxAddr0+4*4-1:
2869 rtl8139_TxAddr_write(s, addr-TxAddr0, val);
2870 break;
2871
2872 case RxBuf:
2873 rtl8139_RxBuf_write(s, val);
2874 break;
2875
2876 case RxRingAddrLO:
2877 DPRINTF("C+ RxRing low bits write val=0x%08x\n", val);
2878 s->RxRingAddrLO = val;
2879 break;
2880
2881 case RxRingAddrHI:
2882 DPRINTF("C+ RxRing high bits write val=0x%08x\n", val);
2883 s->RxRingAddrHI = val;
2884 break;
2885
2886 case Timer:
2887 DPRINTF("TCTR Timer reset on write\n");
2888 s->TCTR_base = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
2889 rtl8139_set_next_tctr_time(s);
2890 break;
2891
2892 case FlashReg:
2893 DPRINTF("FlashReg TimerInt write val=0x%08x\n", val);
2894 if (s->TimerInt != val) {
2895 s->TimerInt = val;
2896 rtl8139_set_next_tctr_time(s);
2897 }
2898 break;
2899
2900 default:
2901 DPRINTF("ioport write(l) addr=0x%x val=0x%08x via write(b)\n",
2902 addr, val);
2903 rtl8139_io_writeb(opaque, addr, val & 0xff);
2904 rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2905 rtl8139_io_writeb(opaque, addr + 2, (val >> 16) & 0xff);
2906 rtl8139_io_writeb(opaque, addr + 3, (val >> 24) & 0xff);
2907 break;
2908 }
2909 }
2910
2911 static uint32_t rtl8139_io_readb(void *opaque, uint8_t addr)
2912 {
2913 RTL8139State *s = opaque;
2914 int ret;
2915
2916 switch (addr)
2917 {
2918 case MAC0 ... MAC0+5:
2919 ret = s->phys[addr - MAC0];
2920 break;
2921 case MAC0+6 ... MAC0+7:
2922 ret = 0;
2923 break;
2924 case MAR0 ... MAR0+7:
2925 ret = s->mult[addr - MAR0];
2926 break;
2927 case TxStatus0 ... TxStatus0+4*4-1:
2928 ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
2929 addr, 1);
2930 break;
2931 case ChipCmd:
2932 ret = rtl8139_ChipCmd_read(s);
2933 break;
2934 case Cfg9346:
2935 ret = rtl8139_Cfg9346_read(s);
2936 break;
2937 case Config0:
2938 ret = rtl8139_Config0_read(s);
2939 break;
2940 case Config1:
2941 ret = rtl8139_Config1_read(s);
2942 break;
2943 case Config3:
2944 ret = rtl8139_Config3_read(s);
2945 break;
2946 case Config4:
2947 ret = rtl8139_Config4_read(s);
2948 break;
2949 case Config5:
2950 ret = rtl8139_Config5_read(s);
2951 break;
2952
2953 case MediaStatus:
2954 /* The LinkDown bit of MediaStatus is inverse with link status */
2955 ret = 0xd0 | (~s->BasicModeStatus & 0x04);
2956 DPRINTF("MediaStatus read 0x%x\n", ret);
2957 break;
2958
2959 case HltClk:
2960 ret = s->clock_enabled;
2961 DPRINTF("HltClk read 0x%x\n", ret);
2962 break;
2963
2964 case PCIRevisionID:
2965 ret = RTL8139_PCI_REVID;
2966 DPRINTF("PCI Revision ID read 0x%x\n", ret);
2967 break;
2968
2969 case TxThresh:
2970 ret = s->TxThresh;
2971 DPRINTF("C+ TxThresh read(b) val=0x%02x\n", ret);
2972 break;
2973
2974 case 0x43: /* Part of TxConfig register. Windows driver tries to read it */
2975 ret = s->TxConfig >> 24;
2976 DPRINTF("RTL8139C TxConfig at 0x43 read(b) val=0x%02x\n", ret);
2977 break;
2978
2979 default:
2980 DPRINTF("not implemented read(b) addr=0x%x\n", addr);
2981 ret = 0;
2982 break;
2983 }
2984
2985 return ret;
2986 }
2987
2988 static uint32_t rtl8139_io_readw(void *opaque, uint8_t addr)
2989 {
2990 RTL8139State *s = opaque;
2991 uint32_t ret;
2992
2993 switch (addr)
2994 {
2995 case TxAddr0 ... TxAddr0+4*4-1:
2996 ret = rtl8139_TxStatus_TxAddr_read(s, s->TxAddr, TxAddr0, addr, 2);
2997 break;
2998 case IntrMask:
2999 ret = rtl8139_IntrMask_read(s);
3000 break;
3001
3002 case IntrStatus:
3003 ret = rtl8139_IntrStatus_read(s);
3004 break;
3005
3006 case MultiIntr:
3007 ret = rtl8139_MultiIntr_read(s);
3008 break;
3009
3010 case RxBufPtr:
3011 ret = rtl8139_RxBufPtr_read(s);
3012 break;
3013
3014 case RxBufAddr:
3015 ret = rtl8139_RxBufAddr_read(s);
3016 break;
3017
3018 case BasicModeCtrl:
3019 ret = rtl8139_BasicModeCtrl_read(s);
3020 break;
3021 case BasicModeStatus:
3022 ret = rtl8139_BasicModeStatus_read(s);
3023 break;
3024 case NWayAdvert:
3025 ret = s->NWayAdvert;
3026 DPRINTF("NWayAdvert read(w) val=0x%04x\n", ret);
3027 break;
3028 case NWayLPAR:
3029 ret = s->NWayLPAR;
3030 DPRINTF("NWayLPAR read(w) val=0x%04x\n", ret);
3031 break;
3032 case NWayExpansion:
3033 ret = s->NWayExpansion;
3034 DPRINTF("NWayExpansion read(w) val=0x%04x\n", ret);
3035 break;
3036
3037 case CpCmd:
3038 ret = rtl8139_CpCmd_read(s);
3039 break;
3040
3041 case IntrMitigate:
3042 ret = rtl8139_IntrMitigate_read(s);
3043 break;
3044
3045 case TxSummary:
3046 ret = rtl8139_TSAD_read(s);
3047 break;
3048
3049 case CSCR:
3050 ret = rtl8139_CSCR_read(s);
3051 break;
3052
3053 default:
3054 DPRINTF("ioport read(w) addr=0x%x via read(b)\n", addr);
3055
3056 ret = rtl8139_io_readb(opaque, addr);
3057 ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3058
3059 DPRINTF("ioport read(w) addr=0x%x val=0x%04x\n", addr, ret);
3060 break;
3061 }
3062
3063 return ret;
3064 }
3065
3066 static uint32_t rtl8139_io_readl(void *opaque, uint8_t addr)
3067 {
3068 RTL8139State *s = opaque;
3069 uint32_t ret;
3070
3071 switch (addr)
3072 {
3073 case RxMissed:
3074 ret = s->RxMissed;
3075
3076 DPRINTF("RxMissed read val=0x%08x\n", ret);
3077 break;
3078
3079 case TxConfig:
3080 ret = rtl8139_TxConfig_read(s);
3081 break;
3082
3083 case RxConfig:
3084 ret = rtl8139_RxConfig_read(s);
3085 break;
3086
3087 case TxStatus0 ... TxStatus0+4*4-1:
3088 ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
3089 addr, 4);
3090 break;
3091
3092 case TxAddr0 ... TxAddr0+4*4-1:
3093 ret = rtl8139_TxAddr_read(s, addr-TxAddr0);
3094 break;
3095
3096 case RxBuf:
3097 ret = rtl8139_RxBuf_read(s);
3098 break;
3099
3100 case RxRingAddrLO:
3101 ret = s->RxRingAddrLO;
3102 DPRINTF("C+ RxRing low bits read val=0x%08x\n", ret);
3103 break;
3104
3105 case RxRingAddrHI:
3106 ret = s->RxRingAddrHI;
3107 DPRINTF("C+ RxRing high bits read val=0x%08x\n", ret);
3108 break;
3109
3110 case Timer:
3111 ret = (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - s->TCTR_base) /
3112 PCI_PERIOD;
3113 DPRINTF("TCTR Timer read val=0x%08x\n", ret);
3114 break;
3115
3116 case FlashReg:
3117 ret = s->TimerInt;
3118 DPRINTF("FlashReg TimerInt read val=0x%08x\n", ret);
3119 break;
3120
3121 default:
3122 DPRINTF("ioport read(l) addr=0x%x via read(b)\n", addr);
3123
3124 ret = rtl8139_io_readb(opaque, addr);
3125 ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3126 ret |= rtl8139_io_readb(opaque, addr + 2) << 16;
3127 ret |= rtl8139_io_readb(opaque, addr + 3) << 24;
3128
3129 DPRINTF("read(l) addr=0x%x val=%08x\n", addr, ret);
3130 break;
3131 }
3132
3133 return ret;
3134 }
3135
3136 /* */
3137
3138 static int rtl8139_post_load(void *opaque, int version_id)
3139 {
3140 RTL8139State* s = opaque;
3141 rtl8139_set_next_tctr_time(s);
3142 if (version_id < 4) {
3143 s->cplus_enabled = s->CpCmd != 0;
3144 }
3145
3146 /* nc.link_down can't be migrated, so infer link_down according
3147 * to link status bit in BasicModeStatus */
3148 qemu_get_queue(s->nic)->link_down = (s->BasicModeStatus & 0x04) == 0;
3149
3150 return 0;
3151 }
3152
3153 static bool rtl8139_hotplug_ready_needed(void *opaque)
3154 {
3155 return qdev_machine_modified();
3156 }
3157
3158 static const VMStateDescription vmstate_rtl8139_hotplug_ready ={
3159 .name = "rtl8139/hotplug_ready",
3160 .version_id = 1,
3161 .minimum_version_id = 1,
3162 .needed = rtl8139_hotplug_ready_needed,
3163 .fields = (VMStateField[]) {
3164 VMSTATE_END_OF_LIST()
3165 }
3166 };
3167
3168 static int rtl8139_pre_save(void *opaque)
3169 {
3170 RTL8139State* s = opaque;
3171 int64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
3172
3173 /* for migration to older versions */
3174 s->TCTR = (current_time - s->TCTR_base) / PCI_PERIOD;
3175 s->rtl8139_mmio_io_addr_dummy = 0;
3176
3177 return 0;
3178 }
3179
3180 static const VMStateDescription vmstate_rtl8139 = {
3181 .name = "rtl8139",
3182 .version_id = 5,
3183 .minimum_version_id = 3,
3184 .post_load = rtl8139_post_load,
3185 .pre_save = rtl8139_pre_save,
3186 .fields = (VMStateField[]) {
3187 VMSTATE_PCI_DEVICE(parent_obj, RTL8139State),
3188 VMSTATE_PARTIAL_BUFFER(phys, RTL8139State, 6),
3189 VMSTATE_BUFFER(mult, RTL8139State),
3190 VMSTATE_UINT32_ARRAY(TxStatus, RTL8139State, 4),
3191 VMSTATE_UINT32_ARRAY(TxAddr, RTL8139State, 4),
3192
3193 VMSTATE_UINT32(RxBuf, RTL8139State),
3194 VMSTATE_UINT32(RxBufferSize, RTL8139State),
3195 VMSTATE_UINT32(RxBufPtr, RTL8139State),
3196 VMSTATE_UINT32(RxBufAddr, RTL8139State),
3197
3198 VMSTATE_UINT16(IntrStatus, RTL8139State),
3199 VMSTATE_UINT16(IntrMask, RTL8139State),
3200
3201 VMSTATE_UINT32(TxConfig, RTL8139State),
3202 VMSTATE_UINT32(RxConfig, RTL8139State),
3203 VMSTATE_UINT32(RxMissed, RTL8139State),
3204 VMSTATE_UINT16(CSCR, RTL8139State),
3205
3206 VMSTATE_UINT8(Cfg9346, RTL8139State),
3207 VMSTATE_UINT8(Config0, RTL8139State),
3208 VMSTATE_UINT8(Config1, RTL8139State),
3209 VMSTATE_UINT8(Config3, RTL8139State),
3210 VMSTATE_UINT8(Config4, RTL8139State),
3211 VMSTATE_UINT8(Config5, RTL8139State),
3212
3213 VMSTATE_UINT8(clock_enabled, RTL8139State),
3214 VMSTATE_UINT8(bChipCmdState, RTL8139State),
3215
3216 VMSTATE_UINT16(MultiIntr, RTL8139State),
3217
3218 VMSTATE_UINT16(BasicModeCtrl, RTL8139State),
3219 VMSTATE_UINT16(BasicModeStatus, RTL8139State),
3220 VMSTATE_UINT16(NWayAdvert, RTL8139State),
3221 VMSTATE_UINT16(NWayLPAR, RTL8139State),
3222 VMSTATE_UINT16(NWayExpansion, RTL8139State),
3223
3224 VMSTATE_UINT16(CpCmd, RTL8139State),
3225 VMSTATE_UINT8(TxThresh, RTL8139State),
3226
3227 VMSTATE_UNUSED(4),
3228 VMSTATE_MACADDR(conf.macaddr, RTL8139State),
3229 VMSTATE_INT32(rtl8139_mmio_io_addr_dummy, RTL8139State),
3230
3231 VMSTATE_UINT32(currTxDesc, RTL8139State),
3232 VMSTATE_UINT32(currCPlusRxDesc, RTL8139State),
3233 VMSTATE_UINT32(currCPlusTxDesc, RTL8139State),
3234 VMSTATE_UINT32(RxRingAddrLO, RTL8139State),
3235 VMSTATE_UINT32(RxRingAddrHI, RTL8139State),
3236
3237 VMSTATE_UINT16_ARRAY(eeprom.contents, RTL8139State, EEPROM_9346_SIZE),
3238 VMSTATE_INT32(eeprom.mode, RTL8139State),
3239 VMSTATE_UINT32(eeprom.tick, RTL8139State),
3240 VMSTATE_UINT8(eeprom.address, RTL8139State),
3241 VMSTATE_UINT16(eeprom.input, RTL8139State),
3242 VMSTATE_UINT16(eeprom.output, RTL8139State),
3243
3244 VMSTATE_UINT8(eeprom.eecs, RTL8139State),
3245 VMSTATE_UINT8(eeprom.eesk, RTL8139State),
3246 VMSTATE_UINT8(eeprom.eedi, RTL8139State),
3247 VMSTATE_UINT8(eeprom.eedo, RTL8139State),
3248
3249 VMSTATE_UINT32(TCTR, RTL8139State),
3250 VMSTATE_UINT32(TimerInt, RTL8139State),
3251 VMSTATE_INT64(TCTR_base, RTL8139State),
3252
3253 VMSTATE_UINT64(tally_counters.TxOk, RTL8139State),
3254 VMSTATE_UINT64(tally_counters.RxOk, RTL8139State),
3255 VMSTATE_UINT64(tally_counters.TxERR, RTL8139State),
3256 VMSTATE_UINT32(tally_counters.RxERR, RTL8139State),
3257 VMSTATE_UINT16(tally_counters.MissPkt, RTL8139State),
3258 VMSTATE_UINT16(tally_counters.FAE, RTL8139State),
3259 VMSTATE_UINT32(tally_counters.Tx1Col, RTL8139State),
3260 VMSTATE_UINT32(tally_counters.TxMCol, RTL8139State),
3261 VMSTATE_UINT64(tally_counters.RxOkPhy, RTL8139State),
3262 VMSTATE_UINT64(tally_counters.RxOkBrd, RTL8139State),
3263 VMSTATE_UINT32_V(tally_counters.RxOkMul, RTL8139State, 5),
3264 VMSTATE_UINT16(tally_counters.TxAbt, RTL8139State),
3265 VMSTATE_UINT16(tally_counters.TxUndrn, RTL8139State),
3266
3267 VMSTATE_UINT32_V(cplus_enabled, RTL8139State, 4),
3268 VMSTATE_END_OF_LIST()
3269 },
3270 .subsections = (const VMStateDescription*[]) {
3271 &vmstate_rtl8139_hotplug_ready,
3272 NULL
3273 }
3274 };
3275
3276 /***********************************************************/
3277 /* PCI RTL8139 definitions */
3278
3279 static void rtl8139_ioport_write(void *opaque, hwaddr addr,
3280 uint64_t val, unsigned size)
3281 {
3282 switch (size) {
3283 case 1:
3284 rtl8139_io_writeb(opaque, addr, val);
3285 break;
3286 case 2:
3287 rtl8139_io_writew(opaque, addr, val);
3288 break;
3289 case 4:
3290 rtl8139_io_writel(opaque, addr, val);
3291 break;
3292 }
3293 }
3294
3295 static uint64_t rtl8139_ioport_read(void *opaque, hwaddr addr,
3296 unsigned size)
3297 {
3298 switch (size) {
3299 case 1:
3300 return rtl8139_io_readb(opaque, addr);
3301 case 2:
3302 return rtl8139_io_readw(opaque, addr);
3303 case 4:
3304 return rtl8139_io_readl(opaque, addr);
3305 }
3306
3307 return -1;
3308 }
3309
3310 static const MemoryRegionOps rtl8139_io_ops = {
3311 .read = rtl8139_ioport_read,
3312 .write = rtl8139_ioport_write,
3313 .impl = {
3314 .min_access_size = 1,
3315 .max_access_size = 4,
3316 },
3317 .endianness = DEVICE_LITTLE_ENDIAN,
3318 };
3319
3320 static void rtl8139_timer(void *opaque)
3321 {
3322 RTL8139State *s = opaque;
3323
3324 if (!s->clock_enabled)
3325 {
3326 DPRINTF(">>> timer: clock is not running\n");
3327 return;
3328 }
3329
3330 s->IntrStatus |= PCSTimeout;
3331 rtl8139_update_irq(s);
3332 rtl8139_set_next_tctr_time(s);
3333 }
3334
3335 static void pci_rtl8139_uninit(PCIDevice *dev)
3336 {
3337 RTL8139State *s = RTL8139(dev);
3338
3339 g_free(s->cplus_txbuffer);
3340 s->cplus_txbuffer = NULL;
3341 timer_del(s->timer);
3342 timer_free(s->timer);
3343 qemu_del_nic(s->nic);
3344 }
3345
3346 static void rtl8139_set_link_status(NetClientState *nc)
3347 {
3348 RTL8139State *s = qemu_get_nic_opaque(nc);
3349
3350 if (nc->link_down) {
3351 s->BasicModeStatus &= ~0x04;
3352 } else {
3353 s->BasicModeStatus |= 0x04;
3354 }
3355
3356 s->IntrStatus |= RxUnderrun;
3357 rtl8139_update_irq(s);
3358 }
3359
3360 static NetClientInfo net_rtl8139_info = {
3361 .type = NET_CLIENT_DRIVER_NIC,
3362 .size = sizeof(NICState),
3363 .can_receive = rtl8139_can_receive,
3364 .receive = rtl8139_receive,
3365 .link_status_changed = rtl8139_set_link_status,
3366 };
3367
3368 static void pci_rtl8139_realize(PCIDevice *dev, Error **errp)
3369 {
3370 RTL8139State *s = RTL8139(dev);
3371 DeviceState *d = DEVICE(dev);
3372 uint8_t *pci_conf;
3373
3374 pci_conf = dev->config;
3375 pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
3376 /* TODO: start of capability list, but no capability
3377 * list bit in status register, and offset 0xdc seems unused. */
3378 pci_conf[PCI_CAPABILITY_LIST] = 0xdc;
3379
3380 memory_region_init_io(&s->bar_io, OBJECT(s), &rtl8139_io_ops, s,
3381 "rtl8139", 0x100);
3382 memory_region_init_alias(&s->bar_mem, OBJECT(s), "rtl8139-mem", &s->bar_io,
3383 0, 0x100);
3384
3385 pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->bar_io);
3386 pci_register_bar(dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar_mem);
3387
3388 qemu_macaddr_default_if_unset(&s->conf.macaddr);
3389
3390 /* prepare eeprom */
3391 s->eeprom.contents[0] = 0x8129;
3392 #if 1
3393 /* PCI vendor and device ID should be mirrored here */
3394 s->eeprom.contents[1] = PCI_VENDOR_ID_REALTEK;
3395 s->eeprom.contents[2] = PCI_DEVICE_ID_REALTEK_8139;
3396 #endif
3397 s->eeprom.contents[7] = s->conf.macaddr.a[0] | s->conf.macaddr.a[1] << 8;
3398 s->eeprom.contents[8] = s->conf.macaddr.a[2] | s->conf.macaddr.a[3] << 8;
3399 s->eeprom.contents[9] = s->conf.macaddr.a[4] | s->conf.macaddr.a[5] << 8;
3400
3401 s->nic = qemu_new_nic(&net_rtl8139_info, &s->conf,
3402 object_get_typename(OBJECT(dev)), d->id, s);
3403 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
3404
3405 s->cplus_txbuffer = NULL;
3406 s->cplus_txbuffer_len = 0;
3407 s->cplus_txbuffer_offset = 0;
3408
3409 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, rtl8139_timer, s);
3410 }
3411
3412 static void rtl8139_instance_init(Object *obj)
3413 {
3414 RTL8139State *s = RTL8139(obj);
3415
3416 device_add_bootindex_property(obj, &s->conf.bootindex,
3417 "bootindex", "/ethernet-phy@0",
3418 DEVICE(obj));
3419 }
3420
3421 static Property rtl8139_properties[] = {