qdev: Convert uses of qdev_set_parent_bus() with Coccinelle
[qemu.git] / hw / pci-host / pnv_phb4.c
1 /*
2 * QEMU PowerPC PowerNV (POWER9) PHB4 model
3 *
4 * Copyright (c) 2018-2020, IBM Corporation.
5 *
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qapi/visitor.h"
12 #include "qapi/error.h"
13 #include "qemu-common.h"
14 #include "monitor/monitor.h"
15 #include "target/ppc/cpu.h"
16 #include "hw/pci-host/pnv_phb4_regs.h"
17 #include "hw/pci-host/pnv_phb4.h"
18 #include "hw/pci/pcie_host.h"
19 #include "hw/pci/pcie_port.h"
20 #include "hw/ppc/pnv.h"
21 #include "hw/ppc/pnv_xscom.h"
22 #include "hw/irq.h"
23 #include "hw/qdev-properties.h"
24
25 #define phb_error(phb, fmt, ...) \
26 qemu_log_mask(LOG_GUEST_ERROR, "phb4[%d:%d]: " fmt "\n", \
27 (phb)->chip_id, (phb)->phb_id, ## __VA_ARGS__)
28
29 /*
30 * QEMU version of the GETFIELD/SETFIELD macros
31 *
32 * These are common with the PnvXive model.
33 */
34 static inline uint64_t GETFIELD(uint64_t mask, uint64_t word)
35 {
36 return (word & mask) >> ctz64(mask);
37 }
38
39 static inline uint64_t SETFIELD(uint64_t mask, uint64_t word,
40 uint64_t value)
41 {
42 return (word & ~mask) | ((value << ctz64(mask)) & mask);
43 }
44
45 static PCIDevice *pnv_phb4_find_cfg_dev(PnvPHB4 *phb)
46 {
47 PCIHostState *pci = PCI_HOST_BRIDGE(phb);
48 uint64_t addr = phb->regs[PHB_CONFIG_ADDRESS >> 3];
49 uint8_t bus, devfn;
50
51 if (!(addr >> 63)) {
52 return NULL;
53 }
54 bus = (addr >> 52) & 0xff;
55 devfn = (addr >> 44) & 0xff;
56
57 /* We don't access the root complex this way */
58 if (bus == 0 && devfn == 0) {
59 return NULL;
60 }
61 return pci_find_device(pci->bus, bus, devfn);
62 }
63
64 /*
65 * The CONFIG_DATA register expects little endian accesses, but as the
66 * region is big endian, we have to swap the value.
67 */
68 static void pnv_phb4_config_write(PnvPHB4 *phb, unsigned off,
69 unsigned size, uint64_t val)
70 {
71 uint32_t cfg_addr, limit;
72 PCIDevice *pdev;
73
74 pdev = pnv_phb4_find_cfg_dev(phb);
75 if (!pdev) {
76 return;
77 }
78 cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc;
79 cfg_addr |= off;
80 limit = pci_config_size(pdev);
81 if (limit <= cfg_addr) {
82 /*
83 * conventional pci device can be behind pcie-to-pci bridge.
84 * 256 <= addr < 4K has no effects.
85 */
86 return;
87 }
88 switch (size) {
89 case 1:
90 break;
91 case 2:
92 val = bswap16(val);
93 break;
94 case 4:
95 val = bswap32(val);
96 break;
97 default:
98 g_assert_not_reached();
99 }
100 pci_host_config_write_common(pdev, cfg_addr, limit, val, size);
101 }
102
103 static uint64_t pnv_phb4_config_read(PnvPHB4 *phb, unsigned off,
104 unsigned size)
105 {
106 uint32_t cfg_addr, limit;
107 PCIDevice *pdev;
108 uint64_t val;
109
110 pdev = pnv_phb4_find_cfg_dev(phb);
111 if (!pdev) {
112 return ~0ull;
113 }
114 cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc;
115 cfg_addr |= off;
116 limit = pci_config_size(pdev);
117 if (limit <= cfg_addr) {
118 /*
119 * conventional pci device can be behind pcie-to-pci bridge.
120 * 256 <= addr < 4K has no effects.
121 */
122 return ~0ull;
123 }
124 val = pci_host_config_read_common(pdev, cfg_addr, limit, size);
125 switch (size) {
126 case 1:
127 return val;
128 case 2:
129 return bswap16(val);
130 case 4:
131 return bswap32(val);
132 default:
133 g_assert_not_reached();
134 }
135 }
136
137 /*
138 * Root complex register accesses are memory mapped.
139 */
140 static void pnv_phb4_rc_config_write(PnvPHB4 *phb, unsigned off,
141 unsigned size, uint64_t val)
142 {
143 PCIHostState *pci = PCI_HOST_BRIDGE(phb);
144 PCIDevice *pdev;
145
146 if (size != 4) {
147 phb_error(phb, "rc_config_write invalid size %d\n", size);
148 return;
149 }
150
151 pdev = pci_find_device(pci->bus, 0, 0);
152 assert(pdev);
153
154 pci_host_config_write_common(pdev, off, PHB_RC_CONFIG_SIZE,
155 bswap32(val), 4);
156 }
157
158 static uint64_t pnv_phb4_rc_config_read(PnvPHB4 *phb, unsigned off,
159 unsigned size)
160 {
161 PCIHostState *pci = PCI_HOST_BRIDGE(phb);
162 PCIDevice *pdev;
163 uint64_t val;
164
165 if (size != 4) {
166 phb_error(phb, "rc_config_read invalid size %d\n", size);
167 return ~0ull;
168 }
169
170 pdev = pci_find_device(pci->bus, 0, 0);
171 assert(pdev);
172
173 val = pci_host_config_read_common(pdev, off, PHB_RC_CONFIG_SIZE, 4);
174 return bswap32(val);
175 }
176
177 static void pnv_phb4_check_mbt(PnvPHB4 *phb, uint32_t index)
178 {
179 uint64_t base, start, size, mbe0, mbe1;
180 MemoryRegion *parent;
181 char name[64];
182
183 /* Unmap first */
184 if (memory_region_is_mapped(&phb->mr_mmio[index])) {
185 /* Should we destroy it in RCU friendly way... ? */
186 memory_region_del_subregion(phb->mr_mmio[index].container,
187 &phb->mr_mmio[index]);
188 }
189
190 /* Get table entry */
191 mbe0 = phb->ioda_MBT[(index << 1)];
192 mbe1 = phb->ioda_MBT[(index << 1) + 1];
193
194 if (!(mbe0 & IODA3_MBT0_ENABLE)) {
195 return;
196 }
197
198 /* Grab geometry from registers */
199 base = GETFIELD(IODA3_MBT0_BASE_ADDR, mbe0) << 12;
200 size = GETFIELD(IODA3_MBT1_MASK, mbe1) << 12;
201 size |= 0xff00000000000000ull;
202 size = ~size + 1;
203
204 /* Calculate PCI side start address based on M32/M64 window type */
205 if (mbe0 & IODA3_MBT0_TYPE_M32) {
206 start = phb->regs[PHB_M32_START_ADDR >> 3];
207 if ((start + size) > 0x100000000ull) {
208 phb_error(phb, "M32 set beyond 4GB boundary !");
209 size = 0x100000000 - start;
210 }
211 } else {
212 start = base | (phb->regs[PHB_M64_UPPER_BITS >> 3]);
213 }
214
215 /* TODO: Figure out how to implemet/decode AOMASK */
216
217 /* Check if it matches an enabled MMIO region in the PEC stack */
218 if (memory_region_is_mapped(&phb->stack->mmbar0) &&
219 base >= phb->stack->mmio0_base &&
220 (base + size) <= (phb->stack->mmio0_base + phb->stack->mmio0_size)) {
221 parent = &phb->stack->mmbar0;
222 base -= phb->stack->mmio0_base;
223 } else if (memory_region_is_mapped(&phb->stack->mmbar1) &&
224 base >= phb->stack->mmio1_base &&
225 (base + size) <= (phb->stack->mmio1_base + phb->stack->mmio1_size)) {
226 parent = &phb->stack->mmbar1;
227 base -= phb->stack->mmio1_base;
228 } else {
229 phb_error(phb, "PHB MBAR %d out of parent bounds", index);
230 return;
231 }
232
233 /* Create alias (better name ?) */
234 snprintf(name, sizeof(name), "phb4-mbar%d", index);
235 memory_region_init_alias(&phb->mr_mmio[index], OBJECT(phb), name,
236 &phb->pci_mmio, start, size);
237 memory_region_add_subregion(parent, base, &phb->mr_mmio[index]);
238 }
239
240 static void pnv_phb4_check_all_mbt(PnvPHB4 *phb)
241 {
242 uint64_t i;
243 uint32_t num_windows = phb->big_phb ? PNV_PHB4_MAX_MMIO_WINDOWS :
244 PNV_PHB4_MIN_MMIO_WINDOWS;
245
246 for (i = 0; i < num_windows; i++) {
247 pnv_phb4_check_mbt(phb, i);
248 }
249 }
250
251 static uint64_t *pnv_phb4_ioda_access(PnvPHB4 *phb,
252 unsigned *out_table, unsigned *out_idx)
253 {
254 uint64_t adreg = phb->regs[PHB_IODA_ADDR >> 3];
255 unsigned int index = GETFIELD(PHB_IODA_AD_TADR, adreg);
256 unsigned int table = GETFIELD(PHB_IODA_AD_TSEL, adreg);
257 unsigned int mask;
258 uint64_t *tptr = NULL;
259
260 switch (table) {
261 case IODA3_TBL_LIST:
262 tptr = phb->ioda_LIST;
263 mask = 7;
264 break;
265 case IODA3_TBL_MIST:
266 tptr = phb->ioda_MIST;
267 mask = phb->big_phb ? PNV_PHB4_MAX_MIST : (PNV_PHB4_MAX_MIST >> 1);
268 mask -= 1;
269 break;
270 case IODA3_TBL_RCAM:
271 mask = phb->big_phb ? 127 : 63;
272 break;
273 case IODA3_TBL_MRT:
274 mask = phb->big_phb ? 15 : 7;
275 break;
276 case IODA3_TBL_PESTA:
277 case IODA3_TBL_PESTB:
278 mask = phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1);
279 mask -= 1;
280 break;
281 case IODA3_TBL_TVT:
282 tptr = phb->ioda_TVT;
283 mask = phb->big_phb ? PNV_PHB4_MAX_TVEs : (PNV_PHB4_MAX_TVEs >> 1);
284 mask -= 1;
285 break;
286 case IODA3_TBL_TCR:
287 case IODA3_TBL_TDR:
288 mask = phb->big_phb ? 1023 : 511;
289 break;
290 case IODA3_TBL_MBT:
291 tptr = phb->ioda_MBT;
292 mask = phb->big_phb ? PNV_PHB4_MAX_MBEs : (PNV_PHB4_MAX_MBEs >> 1);
293 mask -= 1;
294 break;
295 case IODA3_TBL_MDT:
296 tptr = phb->ioda_MDT;
297 mask = phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1);
298 mask -= 1;
299 break;
300 case IODA3_TBL_PEEV:
301 tptr = phb->ioda_PEEV;
302 mask = phb->big_phb ? PNV_PHB4_MAX_PEEVs : (PNV_PHB4_MAX_PEEVs >> 1);
303 mask -= 1;
304 break;
305 default:
306 phb_error(phb, "invalid IODA table %d", table);
307 return NULL;
308 }
309 index &= mask;
310 if (out_idx) {
311 *out_idx = index;
312 }
313 if (out_table) {
314 *out_table = table;
315 }
316 if (tptr) {
317 tptr += index;
318 }
319 if (adreg & PHB_IODA_AD_AUTOINC) {
320 index = (index + 1) & mask;
321 adreg = SETFIELD(PHB_IODA_AD_TADR, adreg, index);
322 }
323
324 phb->regs[PHB_IODA_ADDR >> 3] = adreg;
325 return tptr;
326 }
327
328 static uint64_t pnv_phb4_ioda_read(PnvPHB4 *phb)
329 {
330 unsigned table, idx;
331 uint64_t *tptr;
332
333 tptr = pnv_phb4_ioda_access(phb, &table, &idx);
334 if (!tptr) {
335 /* Special PESTA case */
336 if (table == IODA3_TBL_PESTA) {
337 return ((uint64_t)(phb->ioda_PEST_AB[idx] & 1)) << 63;
338 } else if (table == IODA3_TBL_PESTB) {
339 return ((uint64_t)(phb->ioda_PEST_AB[idx] & 2)) << 62;
340 }
341 /* Return 0 on unsupported tables, not ff's */
342 return 0;
343 }
344 return *tptr;
345 }
346
347 static void pnv_phb4_ioda_write(PnvPHB4 *phb, uint64_t val)
348 {
349 unsigned table, idx;
350 uint64_t *tptr;
351
352 tptr = pnv_phb4_ioda_access(phb, &table, &idx);
353 if (!tptr) {
354 /* Special PESTA case */
355 if (table == IODA3_TBL_PESTA) {
356 phb->ioda_PEST_AB[idx] &= ~1;
357 phb->ioda_PEST_AB[idx] |= (val >> 63) & 1;
358 } else if (table == IODA3_TBL_PESTB) {
359 phb->ioda_PEST_AB[idx] &= ~2;
360 phb->ioda_PEST_AB[idx] |= (val >> 62) & 2;
361 }
362 return;
363 }
364
365 /* Handle side effects */
366 switch (table) {
367 case IODA3_TBL_LIST:
368 break;
369 case IODA3_TBL_MIST: {
370 /* Special mask for MIST partial write */
371 uint64_t adreg = phb->regs[PHB_IODA_ADDR >> 3];
372 uint32_t mmask = GETFIELD(PHB_IODA_AD_MIST_PWV, adreg);
373 uint64_t v = *tptr;
374 if (mmask == 0) {
375 mmask = 0xf;
376 }
377 if (mmask & 8) {
378 v &= 0x0000ffffffffffffull;
379 v |= 0xcfff000000000000ull & val;
380 }
381 if (mmask & 4) {
382 v &= 0xffff0000ffffffffull;
383 v |= 0x0000cfff00000000ull & val;
384 }
385 if (mmask & 2) {
386 v &= 0xffffffff0000ffffull;
387 v |= 0x00000000cfff0000ull & val;
388 }
389 if (mmask & 1) {
390 v &= 0xffffffffffff0000ull;
391 v |= 0x000000000000cfffull & val;
392 }
393 *tptr = val;
394 break;
395 }
396 case IODA3_TBL_MBT:
397 *tptr = val;
398
399 /* Copy accross the valid bit to the other half */
400 phb->ioda_MBT[idx ^ 1] &= 0x7fffffffffffffffull;
401 phb->ioda_MBT[idx ^ 1] |= 0x8000000000000000ull & val;
402
403 /* Update mappings */
404 pnv_phb4_check_mbt(phb, idx >> 1);
405 break;
406 default:
407 *tptr = val;
408 }
409 }
410
411 static void pnv_phb4_rtc_invalidate(PnvPHB4 *phb, uint64_t val)
412 {
413 PnvPhb4DMASpace *ds;
414
415 /* Always invalidate all for now ... */
416 QLIST_FOREACH(ds, &phb->dma_spaces, list) {
417 ds->pe_num = PHB_INVALID_PE;
418 }
419 }
420
421 static void pnv_phb4_update_msi_regions(PnvPhb4DMASpace *ds)
422 {
423 uint64_t cfg = ds->phb->regs[PHB_PHB4_CONFIG >> 3];
424
425 if (cfg & PHB_PHB4C_32BIT_MSI_EN) {
426 if (!memory_region_is_mapped(MEMORY_REGION(&ds->msi32_mr))) {
427 memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr),
428 0xffff0000, &ds->msi32_mr);
429 }
430 } else {
431 if (memory_region_is_mapped(MEMORY_REGION(&ds->msi32_mr))) {
432 memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr),
433 &ds->msi32_mr);
434 }
435 }
436
437 if (cfg & PHB_PHB4C_64BIT_MSI_EN) {
438 if (!memory_region_is_mapped(MEMORY_REGION(&ds->msi64_mr))) {
439 memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr),
440 (1ull << 60), &ds->msi64_mr);
441 }
442 } else {
443 if (memory_region_is_mapped(MEMORY_REGION(&ds->msi64_mr))) {
444 memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr),
445 &ds->msi64_mr);
446 }
447 }
448 }
449
450 static void pnv_phb4_update_all_msi_regions(PnvPHB4 *phb)
451 {
452 PnvPhb4DMASpace *ds;
453
454 QLIST_FOREACH(ds, &phb->dma_spaces, list) {
455 pnv_phb4_update_msi_regions(ds);
456 }
457 }
458
459 static void pnv_phb4_update_xsrc(PnvPHB4 *phb)
460 {
461 int shift, flags, i, lsi_base;
462 XiveSource *xsrc = &phb->xsrc;
463
464 /* The XIVE source characteristics can be set at run time */
465 if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_PGSZ_64K) {
466 shift = XIVE_ESB_64K;
467 } else {
468 shift = XIVE_ESB_4K;
469 }
470 if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_STORE_EOI) {
471 flags = XIVE_SRC_STORE_EOI;
472 } else {
473 flags = 0;
474 }
475
476 phb->xsrc.esb_shift = shift;
477 phb->xsrc.esb_flags = flags;
478
479 lsi_base = GETFIELD(PHB_LSI_SRC_ID, phb->regs[PHB_LSI_SOURCE_ID >> 3]);
480 lsi_base <<= 3;
481
482 /* TODO: handle reset values of PHB_LSI_SRC_ID */
483 if (!lsi_base) {
484 return;
485 }
486
487 /* TODO: need a xive_source_irq_reset_lsi() */
488 bitmap_zero(xsrc->lsi_map, xsrc->nr_irqs);
489
490 for (i = 0; i < xsrc->nr_irqs; i++) {
491 bool msi = (i < lsi_base || i >= (lsi_base + 8));
492 if (!msi) {
493 xive_source_irq_set_lsi(xsrc, i);
494 }
495 }
496 }
497
498 static void pnv_phb4_reg_write(void *opaque, hwaddr off, uint64_t val,
499 unsigned size)
500 {
501 PnvPHB4 *phb = PNV_PHB4(opaque);
502 bool changed;
503
504 /* Special case outbound configuration data */
505 if ((off & 0xfffc) == PHB_CONFIG_DATA) {
506 pnv_phb4_config_write(phb, off & 0x3, size, val);
507 return;
508 }
509
510 /* Special case RC configuration space */
511 if ((off & 0xf800) == PHB_RC_CONFIG_BASE) {
512 pnv_phb4_rc_config_write(phb, off & 0x7ff, size, val);
513 return;
514 }
515
516 /* Other registers are 64-bit only */
517 if (size != 8 || off & 0x7) {
518 phb_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d",
519 off, size);
520 return;
521 }
522
523 /* Handle masking */
524 switch (off) {
525 case PHB_LSI_SOURCE_ID:
526 val &= PHB_LSI_SRC_ID;
527 break;
528 case PHB_M64_UPPER_BITS:
529 val &= 0xff00000000000000ull;
530 break;
531 /* TCE Kill */
532 case PHB_TCE_KILL:
533 /* Clear top 3 bits which HW does to indicate successful queuing */
534 val &= ~(PHB_TCE_KILL_ALL | PHB_TCE_KILL_PE | PHB_TCE_KILL_ONE);
535 break;
536 case PHB_Q_DMA_R:
537 /*
538 * This is enough logic to make SW happy but we aren't
539 * actually quiescing the DMAs
540 */
541 if (val & PHB_Q_DMA_R_AUTORESET) {
542 val = 0;
543 } else {
544 val &= PHB_Q_DMA_R_QUIESCE_DMA;
545 }
546 break;
547 /* LEM stuff */
548 case PHB_LEM_FIR_AND_MASK:
549 phb->regs[PHB_LEM_FIR_ACCUM >> 3] &= val;
550 return;
551 case PHB_LEM_FIR_OR_MASK:
552 phb->regs[PHB_LEM_FIR_ACCUM >> 3] |= val;
553 return;
554 case PHB_LEM_ERROR_AND_MASK:
555 phb->regs[PHB_LEM_ERROR_MASK >> 3] &= val;
556 return;
557 case PHB_LEM_ERROR_OR_MASK:
558 phb->regs[PHB_LEM_ERROR_MASK >> 3] |= val;
559 return;
560 case PHB_LEM_WOF:
561 val = 0;
562 break;
563 /* TODO: More regs ..., maybe create a table with masks... */
564
565 /* Read only registers */
566 case PHB_CPU_LOADSTORE_STATUS:
567 case PHB_ETU_ERR_SUMMARY:
568 case PHB_PHB4_GEN_CAP:
569 case PHB_PHB4_TCE_CAP:
570 case PHB_PHB4_IRQ_CAP:
571 case PHB_PHB4_EEH_CAP:
572 return;
573 }
574
575 /* Record whether it changed */
576 changed = phb->regs[off >> 3] != val;
577
578 /* Store in register cache first */
579 phb->regs[off >> 3] = val;
580
581 /* Handle side effects */
582 switch (off) {
583 case PHB_PHB4_CONFIG:
584 if (changed) {
585 pnv_phb4_update_all_msi_regions(phb);
586 }
587 break;
588 case PHB_M32_START_ADDR:
589 case PHB_M64_UPPER_BITS:
590 if (changed) {
591 pnv_phb4_check_all_mbt(phb);
592 }
593 break;
594
595 /* IODA table accesses */
596 case PHB_IODA_DATA0:
597 pnv_phb4_ioda_write(phb, val);
598 break;
599
600 /* RTC invalidation */
601 case PHB_RTC_INVALIDATE:
602 pnv_phb4_rtc_invalidate(phb, val);
603 break;
604
605 /* PHB Control (Affects XIVE source) */
606 case PHB_CTRLR:
607 case PHB_LSI_SOURCE_ID:
608 pnv_phb4_update_xsrc(phb);
609 break;
610
611 /* Silent simple writes */
612 case PHB_ASN_CMPM:
613 case PHB_CONFIG_ADDRESS:
614 case PHB_IODA_ADDR:
615 case PHB_TCE_KILL:
616 case PHB_TCE_SPEC_CTL:
617 case PHB_PEST_BAR:
618 case PHB_PELTV_BAR:
619 case PHB_RTT_BAR:
620 case PHB_LEM_FIR_ACCUM:
621 case PHB_LEM_ERROR_MASK:
622 case PHB_LEM_ACTION0:
623 case PHB_LEM_ACTION1:
624 case PHB_TCE_TAG_ENABLE:
625 case PHB_INT_NOTIFY_ADDR:
626 case PHB_INT_NOTIFY_INDEX:
627 case PHB_DMARD_SYNC:
628 break;
629
630 /* Noise on anything else */
631 default:
632 qemu_log_mask(LOG_UNIMP, "phb4: reg_write 0x%"PRIx64"=%"PRIx64"\n",
633 off, val);
634 }
635 }
636
637 static uint64_t pnv_phb4_reg_read(void *opaque, hwaddr off, unsigned size)
638 {
639 PnvPHB4 *phb = PNV_PHB4(opaque);
640 uint64_t val;
641
642 if ((off & 0xfffc) == PHB_CONFIG_DATA) {
643 return pnv_phb4_config_read(phb, off & 0x3, size);
644 }
645
646 /* Special case RC configuration space */
647 if ((off & 0xf800) == PHB_RC_CONFIG_BASE) {
648 return pnv_phb4_rc_config_read(phb, off & 0x7ff, size);
649 }
650
651 /* Other registers are 64-bit only */
652 if (size != 8 || off & 0x7) {
653 phb_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d",
654 off, size);
655 return ~0ull;
656 }
657
658 /* Default read from cache */
659 val = phb->regs[off >> 3];
660
661 switch (off) {
662 case PHB_VERSION:
663 return phb->version;
664
665 /* Read-only */
666 case PHB_PHB4_GEN_CAP:
667 return 0xe4b8000000000000ull;
668 case PHB_PHB4_TCE_CAP:
669 return phb->big_phb ? 0x4008440000000400ull : 0x2008440000000200ull;
670 case PHB_PHB4_IRQ_CAP:
671 return phb->big_phb ? 0x0800000000001000ull : 0x0800000000000800ull;
672 case PHB_PHB4_EEH_CAP:
673 return phb->big_phb ? 0x2000000000000000ull : 0x1000000000000000ull;
674
675 /* IODA table accesses */
676 case PHB_IODA_DATA0:
677 return pnv_phb4_ioda_read(phb);
678
679 /* Link training always appears trained */
680 case PHB_PCIE_DLP_TRAIN_CTL:
681 /* TODO: Do something sensible with speed ? */
682 return PHB_PCIE_DLP_INBAND_PRESENCE | PHB_PCIE_DLP_TL_LINKACT;
683
684 /* DMA read sync: make it look like it's complete */
685 case PHB_DMARD_SYNC:
686 return PHB_DMARD_SYNC_COMPLETE;
687
688 /* Silent simple reads */
689 case PHB_LSI_SOURCE_ID:
690 case PHB_CPU_LOADSTORE_STATUS:
691 case PHB_ASN_CMPM:
692 case PHB_PHB4_CONFIG:
693 case PHB_M32_START_ADDR:
694 case PHB_CONFIG_ADDRESS:
695 case PHB_IODA_ADDR:
696 case PHB_RTC_INVALIDATE:
697 case PHB_TCE_KILL:
698 case PHB_TCE_SPEC_CTL:
699 case PHB_PEST_BAR:
700 case PHB_PELTV_BAR:
701 case PHB_RTT_BAR:
702 case PHB_M64_UPPER_BITS:
703 case PHB_CTRLR:
704 case PHB_LEM_FIR_ACCUM:
705 case PHB_LEM_ERROR_MASK:
706 case PHB_LEM_ACTION0:
707 case PHB_LEM_ACTION1:
708 case PHB_TCE_TAG_ENABLE:
709 case PHB_INT_NOTIFY_ADDR:
710 case PHB_INT_NOTIFY_INDEX:
711 case PHB_Q_DMA_R:
712 case PHB_ETU_ERR_SUMMARY:
713 break;
714
715 /* Noise on anything else */
716 default:
717 qemu_log_mask(LOG_UNIMP, "phb4: reg_read 0x%"PRIx64"=%"PRIx64"\n",
718 off, val);
719 }
720 return val;
721 }
722
723 static const MemoryRegionOps pnv_phb4_reg_ops = {
724 .read = pnv_phb4_reg_read,
725 .write = pnv_phb4_reg_write,
726 .valid.min_access_size = 1,
727 .valid.max_access_size = 8,
728 .impl.min_access_size = 1,
729 .impl.max_access_size = 8,
730 .endianness = DEVICE_BIG_ENDIAN,
731 };
732
733 static uint64_t pnv_phb4_xscom_read(void *opaque, hwaddr addr, unsigned size)
734 {
735 PnvPHB4 *phb = PNV_PHB4(opaque);
736 uint32_t reg = addr >> 3;
737 uint64_t val;
738 hwaddr offset;
739
740 switch (reg) {
741 case PHB_SCOM_HV_IND_ADDR:
742 return phb->scom_hv_ind_addr_reg;
743
744 case PHB_SCOM_HV_IND_DATA:
745 if (!(phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_VALID)) {
746 phb_error(phb, "Invalid indirect address");
747 return ~0ull;
748 }
749 size = (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_4B) ? 4 : 8;
750 offset = GETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, phb->scom_hv_ind_addr_reg);
751 val = pnv_phb4_reg_read(phb, offset, size);
752 if (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_AUTOINC) {
753 offset += size;
754 offset &= 0x3fff;
755 phb->scom_hv_ind_addr_reg = SETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR,
756 phb->scom_hv_ind_addr_reg,
757 offset);
758 }
759 return val;
760 case PHB_SCOM_ETU_LEM_FIR:
761 case PHB_SCOM_ETU_LEM_FIR_AND:
762 case PHB_SCOM_ETU_LEM_FIR_OR:
763 case PHB_SCOM_ETU_LEM_FIR_MSK:
764 case PHB_SCOM_ETU_LEM_ERR_MSK_AND:
765 case PHB_SCOM_ETU_LEM_ERR_MSK_OR:
766 case PHB_SCOM_ETU_LEM_ACT0:
767 case PHB_SCOM_ETU_LEM_ACT1:
768 case PHB_SCOM_ETU_LEM_WOF:
769 offset = ((reg - PHB_SCOM_ETU_LEM_FIR) << 3) + PHB_LEM_FIR_ACCUM;
770 return pnv_phb4_reg_read(phb, offset, size);
771 case PHB_SCOM_ETU_PMON_CONFIG:
772 case PHB_SCOM_ETU_PMON_CTR0:
773 case PHB_SCOM_ETU_PMON_CTR1:
774 case PHB_SCOM_ETU_PMON_CTR2:
775 case PHB_SCOM_ETU_PMON_CTR3:
776 offset = ((reg - PHB_SCOM_ETU_PMON_CONFIG) << 3) + PHB_PERFMON_CONFIG;
777 return pnv_phb4_reg_read(phb, offset, size);
778
779 default:
780 qemu_log_mask(LOG_UNIMP, "phb4: xscom_read 0x%"HWADDR_PRIx"\n", addr);
781 return ~0ull;
782 }
783 }
784
785 static void pnv_phb4_xscom_write(void *opaque, hwaddr addr,
786 uint64_t val, unsigned size)
787 {
788 PnvPHB4 *phb = PNV_PHB4(opaque);
789 uint32_t reg = addr >> 3;
790 hwaddr offset;
791
792 switch (reg) {
793 case PHB_SCOM_HV_IND_ADDR:
794 phb->scom_hv_ind_addr_reg = val & 0xe000000000001fff;
795 break;
796 case PHB_SCOM_HV_IND_DATA:
797 if (!(phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_VALID)) {
798 phb_error(phb, "Invalid indirect address");
799 break;
800 }
801 size = (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_4B) ? 4 : 8;
802 offset = GETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, phb->scom_hv_ind_addr_reg);
803 pnv_phb4_reg_write(phb, offset, val, size);
804 if (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_AUTOINC) {
805 offset += size;
806 offset &= 0x3fff;
807 phb->scom_hv_ind_addr_reg = SETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR,
808 phb->scom_hv_ind_addr_reg,
809 offset);
810 }
811 break;
812 case PHB_SCOM_ETU_LEM_FIR:
813 case PHB_SCOM_ETU_LEM_FIR_AND:
814 case PHB_SCOM_ETU_LEM_FIR_OR:
815 case PHB_SCOM_ETU_LEM_FIR_MSK:
816 case PHB_SCOM_ETU_LEM_ERR_MSK_AND:
817 case PHB_SCOM_ETU_LEM_ERR_MSK_OR:
818 case PHB_SCOM_ETU_LEM_ACT0:
819 case PHB_SCOM_ETU_LEM_ACT1:
820 case PHB_SCOM_ETU_LEM_WOF:
821 offset = ((reg - PHB_SCOM_ETU_LEM_FIR) << 3) + PHB_LEM_FIR_ACCUM;
822 pnv_phb4_reg_write(phb, offset, val, size);
823 break;
824 case PHB_SCOM_ETU_PMON_CONFIG:
825 case PHB_SCOM_ETU_PMON_CTR0:
826 case PHB_SCOM_ETU_PMON_CTR1:
827 case PHB_SCOM_ETU_PMON_CTR2:
828 case PHB_SCOM_ETU_PMON_CTR3:
829 offset = ((reg - PHB_SCOM_ETU_PMON_CONFIG) << 3) + PHB_PERFMON_CONFIG;
830 pnv_phb4_reg_write(phb, offset, val, size);
831 break;
832 default:
833 qemu_log_mask(LOG_UNIMP, "phb4: xscom_write 0x%"HWADDR_PRIx
834 "=%"PRIx64"\n", addr, val);
835 }
836 }
837
838 const MemoryRegionOps pnv_phb4_xscom_ops = {
839 .read = pnv_phb4_xscom_read,
840 .write = pnv_phb4_xscom_write,
841 .valid.min_access_size = 8,
842 .valid.max_access_size = 8,
843 .impl.min_access_size = 8,
844 .impl.max_access_size = 8,
845 .endianness = DEVICE_BIG_ENDIAN,
846 };
847
848 static int pnv_phb4_map_irq(PCIDevice *pci_dev, int irq_num)
849 {
850 /* Check that out properly ... */
851 return irq_num & 3;
852 }
853
854 static void pnv_phb4_set_irq(void *opaque, int irq_num, int level)
855 {
856 PnvPHB4 *phb = PNV_PHB4(opaque);
857 uint32_t lsi_base;
858
859 /* LSI only ... */
860 if (irq_num > 3) {
861 phb_error(phb, "IRQ %x is not an LSI", irq_num);
862 }
863 lsi_base = GETFIELD(PHB_LSI_SRC_ID, phb->regs[PHB_LSI_SOURCE_ID >> 3]);
864 lsi_base <<= 3;
865 qemu_set_irq(phb->qirqs[lsi_base + irq_num], level);
866 }
867
868 static bool pnv_phb4_resolve_pe(PnvPhb4DMASpace *ds)
869 {
870 uint64_t rtt, addr;
871 uint16_t rte;
872 int bus_num;
873 int num_PEs;
874
875 /* Already resolved ? */
876 if (ds->pe_num != PHB_INVALID_PE) {
877 return true;
878 }
879
880 /* We need to lookup the RTT */
881 rtt = ds->phb->regs[PHB_RTT_BAR >> 3];
882 if (!(rtt & PHB_RTT_BAR_ENABLE)) {
883 phb_error(ds->phb, "DMA with RTT BAR disabled !");
884 /* Set error bits ? fence ? ... */
885 return false;
886 }
887
888 /* Read RTE */
889 bus_num = pci_bus_num(ds->bus);
890 addr = rtt & PHB_RTT_BASE_ADDRESS_MASK;
891 addr += 2 * ((bus_num << 8) | ds->devfn);
892 if (dma_memory_read(&address_space_memory, addr, &rte, sizeof(rte))) {
893 phb_error(ds->phb, "Failed to read RTT entry at 0x%"PRIx64, addr);
894 /* Set error bits ? fence ? ... */
895 return false;
896 }
897 rte = be16_to_cpu(rte);
898
899 /* Fail upon reading of invalid PE# */
900 num_PEs = ds->phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1);
901 if (rte >= num_PEs) {
902 phb_error(ds->phb, "RTE for RID 0x%x invalid (%04x", ds->devfn, rte);
903 rte &= num_PEs - 1;
904 }
905 ds->pe_num = rte;
906 return true;
907 }
908
909 static void pnv_phb4_translate_tve(PnvPhb4DMASpace *ds, hwaddr addr,
910 bool is_write, uint64_t tve,
911 IOMMUTLBEntry *tlb)
912 {
913 uint64_t tta = GETFIELD(IODA3_TVT_TABLE_ADDR, tve);
914 int32_t lev = GETFIELD(IODA3_TVT_NUM_LEVELS, tve);
915 uint32_t tts = GETFIELD(IODA3_TVT_TCE_TABLE_SIZE, tve);
916 uint32_t tps = GETFIELD(IODA3_TVT_IO_PSIZE, tve);
917
918 /* Invalid levels */
919 if (lev > 4) {
920 phb_error(ds->phb, "Invalid #levels in TVE %d", lev);
921 return;
922 }
923
924 /* Invalid entry */
925 if (tts == 0) {
926 phb_error(ds->phb, "Access to invalid TVE");
927 return;
928 }
929
930 /* IO Page Size of 0 means untranslated, else use TCEs */
931 if (tps == 0) {
932 /* TODO: Handle boundaries */
933
934 /* Use 4k pages like q35 ... for now */
935 tlb->iova = addr & 0xfffffffffffff000ull;
936 tlb->translated_addr = addr & 0x0003fffffffff000ull;
937 tlb->addr_mask = 0xfffull;
938 tlb->perm = IOMMU_RW;
939 } else {
940 uint32_t tce_shift, tbl_shift, sh;
941 uint64_t base, taddr, tce, tce_mask;
942
943 /* Address bits per bottom level TCE entry */
944 tce_shift = tps + 11;
945
946 /* Address bits per table level */
947 tbl_shift = tts + 8;
948
949 /* Top level table base address */
950 base = tta << 12;
951
952 /* Total shift to first level */
953 sh = tbl_shift * lev + tce_shift;
954
955 /* TODO: Limit to support IO page sizes */
956
957 /* TODO: Multi-level untested */
958 while ((lev--) >= 0) {
959 /* Grab the TCE address */
960 taddr = base | (((addr >> sh) & ((1ul << tbl_shift) - 1)) << 3);
961 if (dma_memory_read(&address_space_memory, taddr, &tce,
962 sizeof(tce))) {
963 phb_error(ds->phb, "Failed to read TCE at 0x%"PRIx64, taddr);
964 return;
965 }
966 tce = be64_to_cpu(tce);
967
968 /* Check permission for indirect TCE */
969 if ((lev >= 0) && !(tce & 3)) {
970 phb_error(ds->phb, "Invalid indirect TCE at 0x%"PRIx64, taddr);
971 phb_error(ds->phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr,
972 is_write ? 'W' : 'R', tve);
973 phb_error(ds->phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d",
974 tta, lev, tts, tps);
975 return;
976 }
977 sh -= tbl_shift;
978 base = tce & ~0xfffull;
979 }
980
981 /* We exit the loop with TCE being the final TCE */
982 tce_mask = ~((1ull << tce_shift) - 1);
983 tlb->iova = addr & tce_mask;
984 tlb->translated_addr = tce & tce_mask;
985 tlb->addr_mask = ~tce_mask;
986 tlb->perm = tce & 3;
987 if ((is_write & !(tce & 2)) || ((!is_write) && !(tce & 1))) {
988 phb_error(ds->phb, "TCE access fault at 0x%"PRIx64, taddr);
989 phb_error(ds->phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr,
990 is_write ? 'W' : 'R', tve);
991 phb_error(ds->phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d",
992 tta, lev, tts, tps);
993 }
994 }
995 }
996
997 static IOMMUTLBEntry pnv_phb4_translate_iommu(IOMMUMemoryRegion *iommu,
998 hwaddr addr,
999 IOMMUAccessFlags flag,
1000 int iommu_idx)
1001 {
1002 PnvPhb4DMASpace *ds = container_of(iommu, PnvPhb4DMASpace, dma_mr);
1003 int tve_sel;
1004 uint64_t tve, cfg;
1005 IOMMUTLBEntry ret = {
1006 .target_as = &address_space_memory,
1007 .iova = addr,
1008 .translated_addr = 0,
1009 .addr_mask = ~(hwaddr)0,
1010 .perm = IOMMU_NONE,
1011 };
1012
1013 /* Resolve PE# */
1014 if (!pnv_phb4_resolve_pe(ds)) {
1015 phb_error(ds->phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x",
1016 ds->bus, pci_bus_num(ds->bus), ds->devfn);
1017 return ret;
1018 }
1019
1020 /* Check top bits */
1021 switch (addr >> 60) {
1022 case 00:
1023 /* DMA or 32-bit MSI ? */
1024 cfg = ds->phb->regs[PHB_PHB4_CONFIG >> 3];
1025 if ((cfg & PHB_PHB4C_32BIT_MSI_EN) &&
1026 ((addr & 0xffffffffffff0000ull) == 0xffff0000ull)) {
1027 phb_error(ds->phb, "xlate on 32-bit MSI region");
1028 return ret;
1029 }
1030 /* Choose TVE XXX Use PHB4 Control Register */
1031 tve_sel = (addr >> 59) & 1;
1032 tve = ds->phb->ioda_TVT[ds->pe_num * 2 + tve_sel];
1033 pnv_phb4_translate_tve(ds, addr, flag & IOMMU_WO, tve, &ret);
1034 break;
1035 case 01:
1036 phb_error(ds->phb, "xlate on 64-bit MSI region");
1037 break;
1038 default:
1039 phb_error(ds->phb, "xlate on unsupported address 0x%"PRIx64, addr);
1040 }
1041 return ret;
1042 }
1043
1044 #define TYPE_PNV_PHB4_IOMMU_MEMORY_REGION "pnv-phb4-iommu-memory-region"
1045 #define PNV_PHB4_IOMMU_MEMORY_REGION(obj) \
1046 OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_PNV_PHB4_IOMMU_MEMORY_REGION)
1047
1048 static void pnv_phb4_iommu_memory_region_class_init(ObjectClass *klass,
1049 void *data)
1050 {
1051 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
1052
1053 imrc->translate = pnv_phb4_translate_iommu;
1054 }
1055
1056 static const TypeInfo pnv_phb4_iommu_memory_region_info = {
1057 .parent = TYPE_IOMMU_MEMORY_REGION,
1058 .name = TYPE_PNV_PHB4_IOMMU_MEMORY_REGION,
1059 .class_init = pnv_phb4_iommu_memory_region_class_init,
1060 };
1061
1062 /*
1063 * MSI/MSIX memory region implementation.
1064 * The handler handles both MSI and MSIX.
1065 */
1066 static void pnv_phb4_msi_write(void *opaque, hwaddr addr,
1067 uint64_t data, unsigned size)
1068 {
1069 PnvPhb4DMASpace *ds = opaque;
1070 PnvPHB4 *phb = ds->phb;
1071
1072 uint32_t src = ((addr >> 4) & 0xffff) | (data & 0x1f);
1073
1074 /* Resolve PE# */
1075 if (!pnv_phb4_resolve_pe(ds)) {
1076 phb_error(phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x",
1077 ds->bus, pci_bus_num(ds->bus), ds->devfn);
1078 return;
1079 }
1080
1081 /* TODO: Check it doesn't collide with LSIs */
1082 if (src >= phb->xsrc.nr_irqs) {
1083 phb_error(phb, "MSI %d out of bounds", src);
1084 return;
1085 }
1086
1087 /* TODO: check PE/MSI assignement */
1088
1089 qemu_irq_pulse(phb->qirqs[src]);
1090 }
1091
1092 /* There is no .read as the read result is undefined by PCI spec */
1093 static uint64_t pnv_phb4_msi_read(void *opaque, hwaddr addr, unsigned size)
1094 {
1095 PnvPhb4DMASpace *ds = opaque;
1096
1097 phb_error(ds->phb, "Invalid MSI read @ 0x%" HWADDR_PRIx, addr);
1098 return -1;
1099 }
1100
1101 static const MemoryRegionOps pnv_phb4_msi_ops = {
1102 .read = pnv_phb4_msi_read,
1103 .write = pnv_phb4_msi_write,
1104 .endianness = DEVICE_LITTLE_ENDIAN
1105 };
1106
1107 static PnvPhb4DMASpace *pnv_phb4_dma_find(PnvPHB4 *phb, PCIBus *bus, int devfn)
1108 {
1109 PnvPhb4DMASpace *ds;
1110
1111 QLIST_FOREACH(ds, &phb->dma_spaces, list) {
1112 if (ds->bus == bus && ds->devfn == devfn) {
1113 break;
1114 }
1115 }
1116 return ds;
1117 }
1118
1119 static AddressSpace *pnv_phb4_dma_iommu(PCIBus *bus, void *opaque, int devfn)
1120 {
1121 PnvPHB4 *phb = opaque;
1122 PnvPhb4DMASpace *ds;
1123 char name[32];
1124
1125 ds = pnv_phb4_dma_find(phb, bus, devfn);
1126
1127 if (ds == NULL) {
1128 ds = g_malloc0(sizeof(PnvPhb4DMASpace));
1129 ds->bus = bus;
1130 ds->devfn = devfn;
1131 ds->pe_num = PHB_INVALID_PE;
1132 ds->phb = phb;
1133 snprintf(name, sizeof(name), "phb4-%d.%d-iommu", phb->chip_id,
1134 phb->phb_id);
1135 memory_region_init_iommu(&ds->dma_mr, sizeof(ds->dma_mr),
1136 TYPE_PNV_PHB4_IOMMU_MEMORY_REGION,
1137 OBJECT(phb), name, UINT64_MAX);
1138 address_space_init(&ds->dma_as, MEMORY_REGION(&ds->dma_mr),
1139 name);
1140 memory_region_init_io(&ds->msi32_mr, OBJECT(phb), &pnv_phb4_msi_ops,
1141 ds, "msi32", 0x10000);
1142 memory_region_init_io(&ds->msi64_mr, OBJECT(phb), &pnv_phb4_msi_ops,
1143 ds, "msi64", 0x100000);
1144 pnv_phb4_update_msi_regions(ds);
1145
1146 QLIST_INSERT_HEAD(&phb->dma_spaces, ds, list);
1147 }
1148 return &ds->dma_as;
1149 }
1150
1151 static void pnv_phb4_instance_init(Object *obj)
1152 {
1153 PnvPHB4 *phb = PNV_PHB4(obj);
1154
1155 QLIST_INIT(&phb->dma_spaces);
1156
1157 /* XIVE interrupt source object */
1158 object_initialize_child(obj, "source", &phb->xsrc, sizeof(XiveSource),
1159 TYPE_XIVE_SOURCE, &error_abort, NULL);
1160
1161 /* Root Port */
1162 object_initialize_child(obj, "root", &phb->root, sizeof(phb->root),
1163 TYPE_PNV_PHB4_ROOT_PORT, &error_abort, NULL);
1164
1165 qdev_prop_set_int32(DEVICE(&phb->root), "addr", PCI_DEVFN(0, 0));
1166 qdev_prop_set_bit(DEVICE(&phb->root), "multifunction", false);
1167 }
1168
1169 static void pnv_phb4_realize(DeviceState *dev, Error **errp)
1170 {
1171 PnvPHB4 *phb = PNV_PHB4(dev);
1172 PCIHostState *pci = PCI_HOST_BRIDGE(dev);
1173 XiveSource *xsrc = &phb->xsrc;
1174 Error *local_err = NULL;
1175 int nr_irqs;
1176 char name[32];
1177
1178 assert(phb->stack);
1179
1180 /* Set the "big_phb" flag */
1181 phb->big_phb = phb->phb_id == 0 || phb->phb_id == 3;
1182
1183 /* Controller Registers */
1184 snprintf(name, sizeof(name), "phb4-%d.%d-regs", phb->chip_id,
1185 phb->phb_id);
1186 memory_region_init_io(&phb->mr_regs, OBJECT(phb), &pnv_phb4_reg_ops, phb,
1187 name, 0x2000);
1188
1189 /*
1190 * PHB4 doesn't support IO space. However, qemu gets very upset if
1191 * we don't have an IO region to anchor IO BARs onto so we just
1192 * initialize one which we never hook up to anything
1193 */
1194
1195 snprintf(name, sizeof(name), "phb4-%d.%d-pci-io", phb->chip_id,
1196 phb->phb_id);
1197 memory_region_init(&phb->pci_io, OBJECT(phb), name, 0x10000);
1198
1199 snprintf(name, sizeof(name), "phb4-%d.%d-pci-mmio", phb->chip_id,
1200 phb->phb_id);
1201 memory_region_init(&phb->pci_mmio, OBJECT(phb), name,
1202 PCI_MMIO_TOTAL_SIZE);
1203
1204 pci->bus = pci_register_root_bus(dev, "root-bus",
1205 pnv_phb4_set_irq, pnv_phb4_map_irq, phb,
1206 &phb->pci_mmio, &phb->pci_io,
1207 0, 4, TYPE_PNV_PHB4_ROOT_BUS);
1208 pci_setup_iommu(pci->bus, pnv_phb4_dma_iommu, phb);
1209
1210 /* Add a single Root port */
1211 qdev_prop_set_uint8(DEVICE(&phb->root), "chassis", phb->chip_id);
1212 qdev_prop_set_uint16(DEVICE(&phb->root), "slot", phb->phb_id);
1213 qdev_realize(DEVICE(&phb->root), BUS(pci->bus), &error_fatal);
1214
1215 /* Setup XIVE Source */
1216 if (phb->big_phb) {
1217 nr_irqs = PNV_PHB4_MAX_INTs;
1218 } else {
1219 nr_irqs = PNV_PHB4_MAX_INTs >> 1;
1220 }
1221 object_property_set_int(OBJECT(xsrc), nr_irqs, "nr-irqs", &error_fatal);
1222 object_property_set_link(OBJECT(xsrc), OBJECT(phb), "xive", &error_fatal);
1223 object_property_set_bool(OBJECT(xsrc), true, "realized", &local_err);
1224 if (local_err) {
1225 error_propagate(errp, local_err);
1226 return;
1227 }
1228
1229 pnv_phb4_update_xsrc(phb);
1230
1231 phb->qirqs = qemu_allocate_irqs(xive_source_set_irq, xsrc, xsrc->nr_irqs);
1232 }
1233
1234 static void pnv_phb4_reset(DeviceState *dev)
1235 {
1236 PnvPHB4 *phb = PNV_PHB4(dev);
1237 PCIDevice *root_dev = PCI_DEVICE(&phb->root);
1238
1239 /*
1240 * Configure PCI device id at reset using a property.
1241 */
1242 pci_config_set_vendor_id(root_dev->config, PCI_VENDOR_ID_IBM);
1243 pci_config_set_device_id(root_dev->config, phb->device_id);
1244 }
1245
1246 static const char *pnv_phb4_root_bus_path(PCIHostState *host_bridge,
1247 PCIBus *rootbus)
1248 {
1249 PnvPHB4 *phb = PNV_PHB4(host_bridge);
1250
1251 snprintf(phb->bus_path, sizeof(phb->bus_path), "00%02x:%02x",
1252 phb->chip_id, phb->phb_id);
1253 return phb->bus_path;
1254 }
1255
1256 static void pnv_phb4_xive_notify(XiveNotifier *xf, uint32_t srcno)
1257 {
1258 PnvPHB4 *phb = PNV_PHB4(xf);
1259 uint64_t notif_port = phb->regs[PHB_INT_NOTIFY_ADDR >> 3];
1260 uint32_t offset = phb->regs[PHB_INT_NOTIFY_INDEX >> 3];
1261 uint64_t data = XIVE_TRIGGER_PQ | offset | srcno;
1262 MemTxResult result;
1263
1264 address_space_stq_be(&address_space_memory, notif_port, data,
1265 MEMTXATTRS_UNSPECIFIED, &result);
1266 if (result != MEMTX_OK) {
1267 phb_error(phb, "trigger failed @%"HWADDR_PRIx "\n", notif_port);
1268 return;
1269 }
1270 }
1271
1272 static Property pnv_phb4_properties[] = {
1273 DEFINE_PROP_UINT32("index", PnvPHB4, phb_id, 0),
1274 DEFINE_PROP_UINT32("chip-id", PnvPHB4, chip_id, 0),
1275 DEFINE_PROP_UINT64("version", PnvPHB4, version, 0),
1276 DEFINE_PROP_UINT16("device-id", PnvPHB4, device_id, 0),
1277 DEFINE_PROP_LINK("stack", PnvPHB4, stack, TYPE_PNV_PHB4_PEC_STACK,
1278 PnvPhb4PecStack *),
1279 DEFINE_PROP_END_OF_LIST(),
1280 };
1281
1282 static void pnv_phb4_class_init(ObjectClass *klass, void *data)
1283 {
1284 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
1285 DeviceClass *dc = DEVICE_CLASS(klass);
1286 XiveNotifierClass *xfc = XIVE_NOTIFIER_CLASS(klass);
1287
1288 hc->root_bus_path = pnv_phb4_root_bus_path;
1289 dc->realize = pnv_phb4_realize;
1290 device_class_set_props(dc, pnv_phb4_properties);
1291 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1292 dc->user_creatable = false;
1293 dc->reset = pnv_phb4_reset;
1294
1295 xfc->notify = pnv_phb4_xive_notify;
1296 }
1297
1298 static const TypeInfo pnv_phb4_type_info = {
1299 .name = TYPE_PNV_PHB4,
1300 .parent = TYPE_PCIE_HOST_BRIDGE,
1301 .instance_init = pnv_phb4_instance_init,
1302 .instance_size = sizeof(PnvPHB4),
1303 .class_init = pnv_phb4_class_init,
1304 .interfaces = (InterfaceInfo[]) {
1305 { TYPE_XIVE_NOTIFIER },
1306 { },
1307 }
1308 };
1309
1310 static void pnv_phb4_root_bus_class_init(ObjectClass *klass, void *data)
1311 {
1312 BusClass *k = BUS_CLASS(klass);
1313
1314 /*
1315 * PHB4 has only a single root complex. Enforce the limit on the
1316 * parent bus
1317 */
1318 k->max_dev = 1;
1319 }
1320
1321 static const TypeInfo pnv_phb4_root_bus_info = {
1322 .name = TYPE_PNV_PHB4_ROOT_BUS,
1323 .parent = TYPE_PCIE_BUS,
1324 .class_init = pnv_phb4_root_bus_class_init,
1325 .interfaces = (InterfaceInfo[]) {
1326 { INTERFACE_PCIE_DEVICE },
1327 { }
1328 },
1329 };
1330
1331 static void pnv_phb4_root_port_reset(DeviceState *dev)
1332 {
1333 PCIERootPortClass *rpc = PCIE_ROOT_PORT_GET_CLASS(dev);
1334 PCIDevice *d = PCI_DEVICE(dev);
1335 uint8_t *conf = d->config;
1336
1337 rpc->parent_reset(dev);
1338
1339 pci_byte_test_and_set_mask(conf + PCI_IO_BASE,
1340 PCI_IO_RANGE_MASK & 0xff);
1341 pci_byte_test_and_clear_mask(conf + PCI_IO_LIMIT,
1342 PCI_IO_RANGE_MASK & 0xff);
1343 pci_set_word(conf + PCI_MEMORY_BASE, 0);
1344 pci_set_word(conf + PCI_MEMORY_LIMIT, 0xfff0);
1345 pci_set_word(conf + PCI_PREF_MEMORY_BASE, 0x1);
1346 pci_set_word(conf + PCI_PREF_MEMORY_LIMIT, 0xfff1);
1347 pci_set_long(conf + PCI_PREF_BASE_UPPER32, 0x1); /* Hack */
1348 pci_set_long(conf + PCI_PREF_LIMIT_UPPER32, 0xffffffff);
1349 }
1350
1351 static void pnv_phb4_root_port_realize(DeviceState *dev, Error **errp)
1352 {
1353 PCIERootPortClass *rpc = PCIE_ROOT_PORT_GET_CLASS(dev);
1354 Error *local_err = NULL;
1355
1356 rpc->parent_realize(dev, &local_err);
1357 if (local_err) {
1358 error_propagate(errp, local_err);
1359 return;
1360 }
1361 }
1362
1363 static void pnv_phb4_root_port_class_init(ObjectClass *klass, void *data)
1364 {
1365 DeviceClass *dc = DEVICE_CLASS(klass);
1366 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1367 PCIERootPortClass *rpc = PCIE_ROOT_PORT_CLASS(klass);
1368
1369 dc->desc = "IBM PHB4 PCIE Root Port";
1370 dc->user_creatable = false;
1371
1372 device_class_set_parent_realize(dc, pnv_phb4_root_port_realize,
1373 &rpc->parent_realize);
1374 device_class_set_parent_reset(dc, pnv_phb4_root_port_reset,
1375 &rpc->parent_reset);
1376
1377 k->vendor_id = PCI_VENDOR_ID_IBM;
1378 k->device_id = PNV_PHB4_DEVICE_ID;
1379 k->revision = 0;
1380
1381 rpc->exp_offset = 0x48;
1382 rpc->aer_offset = 0x100;
1383
1384 dc->reset = &pnv_phb4_root_port_reset;
1385 }
1386
1387 static const TypeInfo pnv_phb4_root_port_info = {
1388 .name = TYPE_PNV_PHB4_ROOT_PORT,
1389 .parent = TYPE_PCIE_ROOT_PORT,
1390 .instance_size = sizeof(PnvPHB4RootPort),
1391 .class_init = pnv_phb4_root_port_class_init,
1392 };
1393
1394 static void pnv_phb4_register_types(void)
1395 {
1396 type_register_static(&pnv_phb4_root_bus_info);
1397 type_register_static(&pnv_phb4_root_port_info);
1398 type_register_static(&pnv_phb4_type_info);
1399 type_register_static(&pnv_phb4_iommu_memory_region_info);
1400 }
1401
1402 type_init(pnv_phb4_register_types);
1403
1404 void pnv_phb4_update_regions(PnvPhb4PecStack *stack)
1405 {
1406 PnvPHB4 *phb = &stack->phb;
1407
1408 /* Unmap first always */
1409 if (memory_region_is_mapped(&phb->mr_regs)) {
1410 memory_region_del_subregion(&stack->phbbar, &phb->mr_regs);
1411 }
1412 if (memory_region_is_mapped(&phb->xsrc.esb_mmio)) {
1413 memory_region_del_subregion(&stack->intbar, &phb->xsrc.esb_mmio);
1414 }
1415
1416 /* Map registers if enabled */
1417 if (memory_region_is_mapped(&stack->phbbar)) {
1418 memory_region_add_subregion(&stack->phbbar, 0, &phb->mr_regs);
1419 }
1420
1421 /* Map ESB if enabled */
1422 if (memory_region_is_mapped(&stack->intbar)) {
1423 memory_region_add_subregion(&stack->intbar, 0, &phb->xsrc.esb_mmio);
1424 }
1425
1426 /* Check/update m32 */
1427 pnv_phb4_check_all_mbt(phb);
1428 }
1429
1430 void pnv_phb4_pic_print_info(PnvPHB4 *phb, Monitor *mon)
1431 {
1432 uint32_t offset = phb->regs[PHB_INT_NOTIFY_INDEX >> 3];
1433
1434 monitor_printf(mon, "PHB4[%x:%x] Source %08x .. %08x\n",
1435 phb->chip_id, phb->phb_id,
1436 offset, offset + phb->xsrc.nr_irqs - 1);
1437 xive_source_pic_print_info(&phb->xsrc, 0, mon);
1438 }