meson: convert hw/vfio
[qemu.git] / hw / ppc / pnv.c
1 /*
2 * QEMU PowerPC PowerNV machine model
3 *
4 * Copyright (c) 2016, IBM Corporation.
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/units.h"
23 #include "qapi/error.h"
24 #include "sysemu/qtest.h"
25 #include "sysemu/sysemu.h"
26 #include "sysemu/numa.h"
27 #include "sysemu/reset.h"
28 #include "sysemu/runstate.h"
29 #include "sysemu/cpus.h"
30 #include "sysemu/device_tree.h"
31 #include "sysemu/hw_accel.h"
32 #include "target/ppc/cpu.h"
33 #include "qemu/log.h"
34 #include "hw/ppc/fdt.h"
35 #include "hw/ppc/ppc.h"
36 #include "hw/ppc/pnv.h"
37 #include "hw/ppc/pnv_core.h"
38 #include "hw/loader.h"
39 #include "hw/nmi.h"
40 #include "exec/address-spaces.h"
41 #include "qapi/visitor.h"
42 #include "monitor/monitor.h"
43 #include "hw/intc/intc.h"
44 #include "hw/ipmi/ipmi.h"
45 #include "target/ppc/mmu-hash64.h"
46 #include "hw/pci/msi.h"
47
48 #include "hw/ppc/xics.h"
49 #include "hw/qdev-properties.h"
50 #include "hw/ppc/pnv_xscom.h"
51 #include "hw/ppc/pnv_pnor.h"
52
53 #include "hw/isa/isa.h"
54 #include "hw/boards.h"
55 #include "hw/char/serial.h"
56 #include "hw/rtc/mc146818rtc.h"
57
58 #include <libfdt.h>
59
60 #define FDT_MAX_SIZE (1 * MiB)
61
62 #define FW_FILE_NAME "skiboot.lid"
63 #define FW_LOAD_ADDR 0x0
64 #define FW_MAX_SIZE (4 * MiB)
65
66 #define KERNEL_LOAD_ADDR 0x20000000
67 #define KERNEL_MAX_SIZE (256 * MiB)
68 #define INITRD_LOAD_ADDR 0x60000000
69 #define INITRD_MAX_SIZE (256 * MiB)
70
71 static const char *pnv_chip_core_typename(const PnvChip *o)
72 {
73 const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
74 int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
75 char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
76 const char *core_type = object_class_get_name(object_class_by_name(s));
77 g_free(s);
78 return core_type;
79 }
80
81 /*
82 * On Power Systems E880 (POWER8), the max cpus (threads) should be :
83 * 4 * 4 sockets * 12 cores * 8 threads = 1536
84 * Let's make it 2^11
85 */
86 #define MAX_CPUS 2048
87
88 /*
89 * Memory nodes are created by hostboot, one for each range of memory
90 * that has a different "affinity". In practice, it means one range
91 * per chip.
92 */
93 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
94 {
95 char *mem_name;
96 uint64_t mem_reg_property[2];
97 int off;
98
99 mem_reg_property[0] = cpu_to_be64(start);
100 mem_reg_property[1] = cpu_to_be64(size);
101
102 mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
103 off = fdt_add_subnode(fdt, 0, mem_name);
104 g_free(mem_name);
105
106 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
107 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
108 sizeof(mem_reg_property))));
109 _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
110 }
111
112 static int get_cpus_node(void *fdt)
113 {
114 int cpus_offset = fdt_path_offset(fdt, "/cpus");
115
116 if (cpus_offset < 0) {
117 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
118 if (cpus_offset) {
119 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
120 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
121 }
122 }
123 _FDT(cpus_offset);
124 return cpus_offset;
125 }
126
127 /*
128 * The PowerNV cores (and threads) need to use real HW ids and not an
129 * incremental index like it has been done on other platforms. This HW
130 * id is stored in the CPU PIR, it is used to create cpu nodes in the
131 * device tree, used in XSCOM to address cores and in interrupt
132 * servers.
133 */
134 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
135 {
136 PowerPCCPU *cpu = pc->threads[0];
137 CPUState *cs = CPU(cpu);
138 DeviceClass *dc = DEVICE_GET_CLASS(cs);
139 int smt_threads = CPU_CORE(pc)->nr_threads;
140 CPUPPCState *env = &cpu->env;
141 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
142 uint32_t servers_prop[smt_threads];
143 int i;
144 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
145 0xffffffff, 0xffffffff};
146 uint32_t tbfreq = PNV_TIMEBASE_FREQ;
147 uint32_t cpufreq = 1000000000;
148 uint32_t page_sizes_prop[64];
149 size_t page_sizes_prop_size;
150 const uint8_t pa_features[] = { 24, 0,
151 0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
152 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
153 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
154 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
155 int offset;
156 char *nodename;
157 int cpus_offset = get_cpus_node(fdt);
158
159 nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
160 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
161 _FDT(offset);
162 g_free(nodename);
163
164 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
165
166 _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
167 _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
168 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
169
170 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
171 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
172 env->dcache_line_size)));
173 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
174 env->dcache_line_size)));
175 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
176 env->icache_line_size)));
177 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
178 env->icache_line_size)));
179
180 if (pcc->l1_dcache_size) {
181 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
182 pcc->l1_dcache_size)));
183 } else {
184 warn_report("Unknown L1 dcache size for cpu");
185 }
186 if (pcc->l1_icache_size) {
187 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
188 pcc->l1_icache_size)));
189 } else {
190 warn_report("Unknown L1 icache size for cpu");
191 }
192
193 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
194 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
195 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
196 cpu->hash64_opts->slb_size)));
197 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
198 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
199
200 if (env->spr_cb[SPR_PURR].oea_read) {
201 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
202 }
203
204 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
205 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
206 segs, sizeof(segs))));
207 }
208
209 /*
210 * Advertise VMX/VSX (vector extensions) if available
211 * 0 / no property == no vector extensions
212 * 1 == VMX / Altivec available
213 * 2 == VSX available
214 */
215 if (env->insns_flags & PPC_ALTIVEC) {
216 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
217
218 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
219 }
220
221 /*
222 * Advertise DFP (Decimal Floating Point) if available
223 * 0 / no property == no DFP
224 * 1 == DFP available
225 */
226 if (env->insns_flags2 & PPC2_DFP) {
227 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
228 }
229
230 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
231 sizeof(page_sizes_prop));
232 if (page_sizes_prop_size) {
233 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
234 page_sizes_prop, page_sizes_prop_size)));
235 }
236
237 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
238 pa_features, sizeof(pa_features))));
239
240 /* Build interrupt servers properties */
241 for (i = 0; i < smt_threads; i++) {
242 servers_prop[i] = cpu_to_be32(pc->pir + i);
243 }
244 _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
245 servers_prop, sizeof(servers_prop))));
246 }
247
248 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
249 uint32_t nr_threads)
250 {
251 uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
252 char *name;
253 const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
254 uint32_t irange[2], i, rsize;
255 uint64_t *reg;
256 int offset;
257
258 irange[0] = cpu_to_be32(pir);
259 irange[1] = cpu_to_be32(nr_threads);
260
261 rsize = sizeof(uint64_t) * 2 * nr_threads;
262 reg = g_malloc(rsize);
263 for (i = 0; i < nr_threads; i++) {
264 reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
265 reg[i * 2 + 1] = cpu_to_be64(0x1000);
266 }
267
268 name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
269 offset = fdt_add_subnode(fdt, 0, name);
270 _FDT(offset);
271 g_free(name);
272
273 _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
274 _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
275 _FDT((fdt_setprop_string(fdt, offset, "device_type",
276 "PowerPC-External-Interrupt-Presentation")));
277 _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
278 _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
279 irange, sizeof(irange))));
280 _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
281 _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
282 g_free(reg);
283 }
284
285 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
286 {
287 static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
288 int i;
289
290 pnv_dt_xscom(chip, fdt, 0,
291 cpu_to_be64(PNV_XSCOM_BASE(chip)),
292 cpu_to_be64(PNV_XSCOM_SIZE),
293 compat, sizeof(compat));
294
295 for (i = 0; i < chip->nr_cores; i++) {
296 PnvCore *pnv_core = chip->cores[i];
297
298 pnv_dt_core(chip, pnv_core, fdt);
299
300 /* Interrupt Control Presenters (ICP). One per core. */
301 pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
302 }
303
304 if (chip->ram_size) {
305 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
306 }
307 }
308
309 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
310 {
311 static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
312 int i;
313
314 pnv_dt_xscom(chip, fdt, 0,
315 cpu_to_be64(PNV9_XSCOM_BASE(chip)),
316 cpu_to_be64(PNV9_XSCOM_SIZE),
317 compat, sizeof(compat));
318
319 for (i = 0; i < chip->nr_cores; i++) {
320 PnvCore *pnv_core = chip->cores[i];
321
322 pnv_dt_core(chip, pnv_core, fdt);
323 }
324
325 if (chip->ram_size) {
326 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
327 }
328
329 pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
330 }
331
332 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
333 {
334 static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
335 int i;
336
337 pnv_dt_xscom(chip, fdt, 0,
338 cpu_to_be64(PNV10_XSCOM_BASE(chip)),
339 cpu_to_be64(PNV10_XSCOM_SIZE),
340 compat, sizeof(compat));
341
342 for (i = 0; i < chip->nr_cores; i++) {
343 PnvCore *pnv_core = chip->cores[i];
344
345 pnv_dt_core(chip, pnv_core, fdt);
346 }
347
348 if (chip->ram_size) {
349 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
350 }
351
352 pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
353 }
354
355 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
356 {
357 uint32_t io_base = d->ioport_id;
358 uint32_t io_regs[] = {
359 cpu_to_be32(1),
360 cpu_to_be32(io_base),
361 cpu_to_be32(2)
362 };
363 char *name;
364 int node;
365
366 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
367 node = fdt_add_subnode(fdt, lpc_off, name);
368 _FDT(node);
369 g_free(name);
370
371 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
372 _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
373 }
374
375 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
376 {
377 const char compatible[] = "ns16550\0pnpPNP,501";
378 uint32_t io_base = d->ioport_id;
379 uint32_t io_regs[] = {
380 cpu_to_be32(1),
381 cpu_to_be32(io_base),
382 cpu_to_be32(8)
383 };
384 char *name;
385 int node;
386
387 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
388 node = fdt_add_subnode(fdt, lpc_off, name);
389 _FDT(node);
390 g_free(name);
391
392 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
393 _FDT((fdt_setprop(fdt, node, "compatible", compatible,
394 sizeof(compatible))));
395
396 _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
397 _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
398 _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
399 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
400 fdt_get_phandle(fdt, lpc_off))));
401
402 /* This is needed by Linux */
403 _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
404 }
405
406 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
407 {
408 const char compatible[] = "bt\0ipmi-bt";
409 uint32_t io_base;
410 uint32_t io_regs[] = {
411 cpu_to_be32(1),
412 0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
413 cpu_to_be32(3)
414 };
415 uint32_t irq;
416 char *name;
417 int node;
418
419 io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
420 io_regs[1] = cpu_to_be32(io_base);
421
422 irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
423
424 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
425 node = fdt_add_subnode(fdt, lpc_off, name);
426 _FDT(node);
427 g_free(name);
428
429 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
430 _FDT((fdt_setprop(fdt, node, "compatible", compatible,
431 sizeof(compatible))));
432
433 /* Mark it as reserved to avoid Linux trying to claim it */
434 _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
435 _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
436 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
437 fdt_get_phandle(fdt, lpc_off))));
438 }
439
440 typedef struct ForeachPopulateArgs {
441 void *fdt;
442 int offset;
443 } ForeachPopulateArgs;
444
445 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
446 {
447 ForeachPopulateArgs *args = opaque;
448 ISADevice *d = ISA_DEVICE(dev);
449
450 if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
451 pnv_dt_rtc(d, args->fdt, args->offset);
452 } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
453 pnv_dt_serial(d, args->fdt, args->offset);
454 } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
455 pnv_dt_ipmi_bt(d, args->fdt, args->offset);
456 } else {
457 error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
458 d->ioport_id);
459 }
460
461 return 0;
462 }
463
464 /*
465 * The default LPC bus of a multichip system is on chip 0. It's
466 * recognized by the firmware (skiboot) using a "primary" property.
467 */
468 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
469 {
470 int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
471 ForeachPopulateArgs args = {
472 .fdt = fdt,
473 .offset = isa_offset,
474 };
475 uint32_t phandle;
476
477 _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
478
479 phandle = qemu_fdt_alloc_phandle(fdt);
480 assert(phandle > 0);
481 _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
482
483 /*
484 * ISA devices are not necessarily parented to the ISA bus so we
485 * can not use object_child_foreach()
486 */
487 qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
488 &args);
489 }
490
491 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
492 {
493 int off;
494
495 off = fdt_add_subnode(fdt, 0, "ibm,opal");
496 off = fdt_add_subnode(fdt, off, "power-mgt");
497
498 _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
499 }
500
501 static void *pnv_dt_create(MachineState *machine)
502 {
503 PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
504 PnvMachineState *pnv = PNV_MACHINE(machine);
505 void *fdt;
506 char *buf;
507 int off;
508 int i;
509
510 fdt = g_malloc0(FDT_MAX_SIZE);
511 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
512
513 /* /qemu node */
514 _FDT((fdt_add_subnode(fdt, 0, "qemu")));
515
516 /* Root node */
517 _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
518 _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
519 _FDT((fdt_setprop_string(fdt, 0, "model",
520 "IBM PowerNV (emulated by qemu)")));
521 _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
522
523 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
524 _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
525 if (qemu_uuid_set) {
526 _FDT((fdt_property_string(fdt, "system-id", buf)));
527 }
528 g_free(buf);
529
530 off = fdt_add_subnode(fdt, 0, "chosen");
531 if (machine->kernel_cmdline) {
532 _FDT((fdt_setprop_string(fdt, off, "bootargs",
533 machine->kernel_cmdline)));
534 }
535
536 if (pnv->initrd_size) {
537 uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
538 uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
539
540 _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
541 &start_prop, sizeof(start_prop))));
542 _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
543 &end_prop, sizeof(end_prop))));
544 }
545
546 /* Populate device tree for each chip */
547 for (i = 0; i < pnv->num_chips; i++) {
548 PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
549 }
550
551 /* Populate ISA devices on chip 0 */
552 pnv_dt_isa(pnv, fdt);
553
554 if (pnv->bmc) {
555 pnv_dt_bmc_sensors(pnv->bmc, fdt);
556 }
557
558 /* Create an extra node for power management on machines that support it */
559 if (pmc->dt_power_mgt) {
560 pmc->dt_power_mgt(pnv, fdt);
561 }
562
563 return fdt;
564 }
565
566 static void pnv_powerdown_notify(Notifier *n, void *opaque)
567 {
568 PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
569
570 if (pnv->bmc) {
571 pnv_bmc_powerdown(pnv->bmc);
572 }
573 }
574
575 static void pnv_reset(MachineState *machine)
576 {
577 PnvMachineState *pnv = PNV_MACHINE(machine);
578 IPMIBmc *bmc;
579 void *fdt;
580
581 qemu_devices_reset();
582
583 /*
584 * The machine should provide by default an internal BMC simulator.
585 * If not, try to use the BMC device that was provided on the command
586 * line.
587 */
588 bmc = pnv_bmc_find(&error_fatal);
589 if (!pnv->bmc) {
590 if (!bmc) {
591 if (!qtest_enabled()) {
592 warn_report("machine has no BMC device. Use '-device "
593 "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
594 "to define one");
595 }
596 } else {
597 pnv_bmc_set_pnor(bmc, pnv->pnor);
598 pnv->bmc = bmc;
599 }
600 }
601
602 fdt = pnv_dt_create(machine);
603
604 /* Pack resulting tree */
605 _FDT((fdt_pack(fdt)));
606
607 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
608 cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
609
610 g_free(fdt);
611 }
612
613 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
614 {
615 Pnv8Chip *chip8 = PNV8_CHIP(chip);
616 return pnv_lpc_isa_create(&chip8->lpc, true, errp);
617 }
618
619 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
620 {
621 Pnv8Chip *chip8 = PNV8_CHIP(chip);
622 return pnv_lpc_isa_create(&chip8->lpc, false, errp);
623 }
624
625 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
626 {
627 Pnv9Chip *chip9 = PNV9_CHIP(chip);
628 return pnv_lpc_isa_create(&chip9->lpc, false, errp);
629 }
630
631 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
632 {
633 Pnv10Chip *chip10 = PNV10_CHIP(chip);
634 return pnv_lpc_isa_create(&chip10->lpc, false, errp);
635 }
636
637 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
638 {
639 return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
640 }
641
642 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
643 {
644 Pnv8Chip *chip8 = PNV8_CHIP(chip);
645 int i;
646
647 ics_pic_print_info(&chip8->psi.ics, mon);
648 for (i = 0; i < chip->num_phbs; i++) {
649 pnv_phb3_msi_pic_print_info(&chip8->phbs[i].msis, mon);
650 ics_pic_print_info(&chip8->phbs[i].lsis, mon);
651 }
652 }
653
654 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
655 {
656 Pnv9Chip *chip9 = PNV9_CHIP(chip);
657 int i, j;
658
659 pnv_xive_pic_print_info(&chip9->xive, mon);
660 pnv_psi_pic_print_info(&chip9->psi, mon);
661
662 for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
663 PnvPhb4PecState *pec = &chip9->pecs[i];
664 for (j = 0; j < pec->num_stacks; j++) {
665 pnv_phb4_pic_print_info(&pec->stacks[j].phb, mon);
666 }
667 }
668 }
669
670 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
671 uint32_t core_id)
672 {
673 return PNV_XSCOM_EX_BASE(core_id);
674 }
675
676 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
677 uint32_t core_id)
678 {
679 return PNV9_XSCOM_EC_BASE(core_id);
680 }
681
682 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
683 uint32_t core_id)
684 {
685 return PNV10_XSCOM_EC_BASE(core_id);
686 }
687
688 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
689 {
690 PowerPCCPUClass *ppc_default =
691 POWERPC_CPU_CLASS(object_class_by_name(default_type));
692 PowerPCCPUClass *ppc =
693 POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
694
695 return ppc_default->pvr_match(ppc_default, ppc->pvr);
696 }
697
698 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
699 {
700 ISADevice *dev = isa_new("isa-ipmi-bt");
701
702 object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
703 object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
704 isa_realize_and_unref(dev, bus, &error_fatal);
705 }
706
707 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
708 {
709 Pnv10Chip *chip10 = PNV10_CHIP(chip);
710
711 pnv_psi_pic_print_info(&chip10->psi, mon);
712 }
713
714 static void pnv_init(MachineState *machine)
715 {
716 PnvMachineState *pnv = PNV_MACHINE(machine);
717 MachineClass *mc = MACHINE_GET_CLASS(machine);
718 char *fw_filename;
719 long fw_size;
720 int i;
721 char *chip_typename;
722 DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
723 DeviceState *dev;
724
725 /* allocate RAM */
726 if (machine->ram_size < (1 * GiB)) {
727 warn_report("skiboot may not work with < 1GB of RAM");
728 }
729 memory_region_add_subregion(get_system_memory(), 0, machine->ram);
730
731 /*
732 * Create our simple PNOR device
733 */
734 dev = qdev_new(TYPE_PNV_PNOR);
735 if (pnor) {
736 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
737 }
738 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
739 pnv->pnor = PNV_PNOR(dev);
740
741 /* load skiboot firmware */
742 if (bios_name == NULL) {
743 bios_name = FW_FILE_NAME;
744 }
745
746 fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
747 if (!fw_filename) {
748 error_report("Could not find OPAL firmware '%s'", bios_name);
749 exit(1);
750 }
751
752 fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
753 if (fw_size < 0) {
754 error_report("Could not load OPAL firmware '%s'", fw_filename);
755 exit(1);
756 }
757 g_free(fw_filename);
758
759 /* load kernel */
760 if (machine->kernel_filename) {
761 long kernel_size;
762
763 kernel_size = load_image_targphys(machine->kernel_filename,
764 KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
765 if (kernel_size < 0) {
766 error_report("Could not load kernel '%s'",
767 machine->kernel_filename);
768 exit(1);
769 }
770 }
771
772 /* load initrd */
773 if (machine->initrd_filename) {
774 pnv->initrd_base = INITRD_LOAD_ADDR;
775 pnv->initrd_size = load_image_targphys(machine->initrd_filename,
776 pnv->initrd_base, INITRD_MAX_SIZE);
777 if (pnv->initrd_size < 0) {
778 error_report("Could not load initial ram disk '%s'",
779 machine->initrd_filename);
780 exit(1);
781 }
782 }
783
784 /* MSIs are supported on this platform */
785 msi_nonbroken = true;
786
787 /*
788 * Check compatibility of the specified CPU with the machine
789 * default.
790 */
791 if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
792 error_report("invalid CPU model '%s' for %s machine",
793 machine->cpu_type, mc->name);
794 exit(1);
795 }
796
797 /* Create the processor chips */
798 i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
799 chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
800 i, machine->cpu_type);
801 if (!object_class_by_name(chip_typename)) {
802 error_report("invalid chip model '%.*s' for %s machine",
803 i, machine->cpu_type, mc->name);
804 exit(1);
805 }
806
807 pnv->num_chips =
808 machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
809 /*
810 * TODO: should we decide on how many chips we can create based
811 * on #cores and Venice vs. Murano vs. Naples chip type etc...,
812 */
813 if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 4) {
814 error_report("invalid number of chips: '%d'", pnv->num_chips);
815 error_printf("Try '-smp sockets=N'. Valid values are : 1, 2 or 4.\n");
816 exit(1);
817 }
818
819 pnv->chips = g_new0(PnvChip *, pnv->num_chips);
820 for (i = 0; i < pnv->num_chips; i++) {
821 char chip_name[32];
822 Object *chip = OBJECT(qdev_new(chip_typename));
823
824 pnv->chips[i] = PNV_CHIP(chip);
825
826 /*
827 * TODO: put all the memory in one node on chip 0 until we find a
828 * way to specify different ranges for each chip
829 */
830 if (i == 0) {
831 object_property_set_int(chip, "ram-size", machine->ram_size,
832 &error_fatal);
833 }
834
835 snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
836 object_property_add_child(OBJECT(pnv), chip_name, chip);
837 object_property_set_int(chip, "chip-id", PNV_CHIP_HWID(i),
838 &error_fatal);
839 object_property_set_int(chip, "nr-cores", machine->smp.cores,
840 &error_fatal);
841 object_property_set_int(chip, "nr-threads", machine->smp.threads,
842 &error_fatal);
843 /*
844 * The POWER8 machine use the XICS interrupt interface.
845 * Propagate the XICS fabric to the chip and its controllers.
846 */
847 if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
848 object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
849 }
850 if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
851 object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
852 &error_abort);
853 }
854 sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
855 }
856 g_free(chip_typename);
857
858 /* Instantiate ISA bus on chip 0 */
859 pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
860
861 /* Create serial port */
862 serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
863
864 /* Create an RTC ISA device too */
865 mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
866
867 /*
868 * Create the machine BMC simulator and the IPMI BT device for
869 * communication with the BMC
870 */
871 if (defaults_enabled()) {
872 pnv->bmc = pnv_bmc_create(pnv->pnor);
873 pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
874 }
875
876 /*
877 * OpenPOWER systems use a IPMI SEL Event message to notify the
878 * host to powerdown
879 */
880 pnv->powerdown_notifier.notify = pnv_powerdown_notify;
881 qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
882 }
883
884 /*
885 * 0:21 Reserved - Read as zeros
886 * 22:24 Chip ID
887 * 25:28 Core number
888 * 29:31 Thread ID
889 */
890 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
891 {
892 return (chip->chip_id << 7) | (core_id << 3);
893 }
894
895 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
896 Error **errp)
897 {
898 Pnv8Chip *chip8 = PNV8_CHIP(chip);
899 Error *local_err = NULL;
900 Object *obj;
901 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
902
903 obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
904 if (local_err) {
905 error_propagate(errp, local_err);
906 return;
907 }
908
909 pnv_cpu->intc = obj;
910 }
911
912
913 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
914 {
915 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
916
917 icp_reset(ICP(pnv_cpu->intc));
918 }
919
920 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
921 {
922 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
923
924 icp_destroy(ICP(pnv_cpu->intc));
925 pnv_cpu->intc = NULL;
926 }
927
928 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
929 Monitor *mon)
930 {
931 icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
932 }
933
934 /*
935 * 0:48 Reserved - Read as zeroes
936 * 49:52 Node ID
937 * 53:55 Chip ID
938 * 56 Reserved - Read as zero
939 * 57:61 Core number
940 * 62:63 Thread ID
941 *
942 * We only care about the lower bits. uint32_t is fine for the moment.
943 */
944 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
945 {
946 return (chip->chip_id << 8) | (core_id << 2);
947 }
948
949 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
950 {
951 return (chip->chip_id << 8) | (core_id << 2);
952 }
953
954 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
955 Error **errp)
956 {
957 Pnv9Chip *chip9 = PNV9_CHIP(chip);
958 Error *local_err = NULL;
959 Object *obj;
960 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
961
962 /*
963 * The core creates its interrupt presenter but the XIVE interrupt
964 * controller object is initialized afterwards. Hopefully, it's
965 * only used at runtime.
966 */
967 obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
968 &local_err);
969 if (local_err) {
970 error_propagate(errp, local_err);
971 return;
972 }
973
974 pnv_cpu->intc = obj;
975 }
976
977 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
978 {
979 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
980
981 xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
982 }
983
984 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
985 {
986 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
987
988 xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
989 pnv_cpu->intc = NULL;
990 }
991
992 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
993 Monitor *mon)
994 {
995 xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
996 }
997
998 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
999 Error **errp)
1000 {
1001 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1002
1003 /* Will be defined when the interrupt controller is */
1004 pnv_cpu->intc = NULL;
1005 }
1006
1007 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1008 {
1009 ;
1010 }
1011
1012 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1013 {
1014 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1015
1016 pnv_cpu->intc = NULL;
1017 }
1018
1019 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1020 Monitor *mon)
1021 {
1022 }
1023
1024 /*
1025 * Allowed core identifiers on a POWER8 Processor Chip :
1026 *
1027 * <EX0 reserved>
1028 * EX1 - Venice only
1029 * EX2 - Venice only
1030 * EX3 - Venice only
1031 * EX4
1032 * EX5
1033 * EX6
1034 * <EX7,8 reserved> <reserved>
1035 * EX9 - Venice only
1036 * EX10 - Venice only
1037 * EX11 - Venice only
1038 * EX12
1039 * EX13
1040 * EX14
1041 * <EX15 reserved>
1042 */
1043 #define POWER8E_CORE_MASK (0x7070ull)
1044 #define POWER8_CORE_MASK (0x7e7eull)
1045
1046 /*
1047 * POWER9 has 24 cores, ids starting at 0x0
1048 */
1049 #define POWER9_CORE_MASK (0xffffffffffffffull)
1050
1051
1052 #define POWER10_CORE_MASK (0xffffffffffffffull)
1053
1054 static void pnv_chip_power8_instance_init(Object *obj)
1055 {
1056 PnvChip *chip = PNV_CHIP(obj);
1057 Pnv8Chip *chip8 = PNV8_CHIP(obj);
1058 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1059 int i;
1060
1061 object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1062 (Object **)&chip8->xics,
1063 object_property_allow_set_link,
1064 OBJ_PROP_LINK_STRONG);
1065
1066 object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1067
1068 object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1069
1070 object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1071
1072 object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1073
1074 for (i = 0; i < pcc->num_phbs; i++) {
1075 object_initialize_child(obj, "phb[*]", &chip8->phbs[i], TYPE_PNV_PHB3);
1076 }
1077
1078 /*
1079 * Number of PHBs is the chip default
1080 */
1081 chip->num_phbs = pcc->num_phbs;
1082 }
1083
1084 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1085 {
1086 PnvChip *chip = PNV_CHIP(chip8);
1087 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1088 int i, j;
1089 char *name;
1090
1091 name = g_strdup_printf("icp-%x", chip->chip_id);
1092 memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1093 sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1094 g_free(name);
1095
1096 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1097
1098 /* Map the ICP registers for each thread */
1099 for (i = 0; i < chip->nr_cores; i++) {
1100 PnvCore *pnv_core = chip->cores[i];
1101 int core_hwid = CPU_CORE(pnv_core)->core_id;
1102
1103 for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1104 uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1105 PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1106
1107 memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1108 &icp->mmio);
1109 }
1110 }
1111 }
1112
1113 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1114 {
1115 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1116 PnvChip *chip = PNV_CHIP(dev);
1117 Pnv8Chip *chip8 = PNV8_CHIP(dev);
1118 Pnv8Psi *psi8 = &chip8->psi;
1119 Error *local_err = NULL;
1120 int i;
1121
1122 assert(chip8->xics);
1123
1124 /* XSCOM bridge is first */
1125 pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1126 if (local_err) {
1127 error_propagate(errp, local_err);
1128 return;
1129 }
1130 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1131
1132 pcc->parent_realize(dev, &local_err);
1133 if (local_err) {
1134 error_propagate(errp, local_err);
1135 return;
1136 }
1137
1138 /* Processor Service Interface (PSI) Host Bridge */
1139 object_property_set_int(OBJECT(&chip8->psi), "bar", PNV_PSIHB_BASE(chip),
1140 &error_fatal);
1141 object_property_set_link(OBJECT(&chip8->psi), ICS_PROP_XICS,
1142 OBJECT(chip8->xics), &error_abort);
1143 if (!qdev_realize(DEVICE(&chip8->psi), NULL, errp)) {
1144 return;
1145 }
1146 pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1147 &PNV_PSI(psi8)->xscom_regs);
1148
1149 /* Create LPC controller */
1150 object_property_set_link(OBJECT(&chip8->lpc), "psi", OBJECT(&chip8->psi),
1151 &error_abort);
1152 qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1153 pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1154
1155 chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1156 (uint64_t) PNV_XSCOM_BASE(chip),
1157 PNV_XSCOM_LPC_BASE);
1158
1159 /*
1160 * Interrupt Management Area. This is the memory region holding
1161 * all the Interrupt Control Presenter (ICP) registers
1162 */
1163 pnv_chip_icp_realize(chip8, &local_err);
1164 if (local_err) {
1165 error_propagate(errp, local_err);
1166 return;
1167 }
1168
1169 /* Create the simplified OCC model */
1170 object_property_set_link(OBJECT(&chip8->occ), "psi", OBJECT(&chip8->psi),
1171 &error_abort);
1172 if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1173 return;
1174 }
1175 pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1176
1177 /* OCC SRAM model */
1178 memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1179 &chip8->occ.sram_regs);
1180
1181 /* HOMER */
1182 object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1183 &error_abort);
1184 if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1185 return;
1186 }
1187 /* Homer Xscom region */
1188 pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1189
1190 /* Homer mmio region */
1191 memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1192 &chip8->homer.regs);
1193
1194 /* PHB3 controllers */
1195 for (i = 0; i < chip->num_phbs; i++) {
1196 PnvPHB3 *phb = &chip8->phbs[i];
1197 PnvPBCQState *pbcq = &phb->pbcq;
1198
1199 object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1200 object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1201 &error_fatal);
1202 if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1203 return;
1204 }
1205
1206 /* Populate the XSCOM address space. */
1207 pnv_xscom_add_subregion(chip,
1208 PNV_XSCOM_PBCQ_NEST_BASE + 0x400 * phb->phb_id,
1209 &pbcq->xscom_nest_regs);
1210 pnv_xscom_add_subregion(chip,
1211 PNV_XSCOM_PBCQ_PCI_BASE + 0x400 * phb->phb_id,
1212 &pbcq->xscom_pci_regs);
1213 pnv_xscom_add_subregion(chip,
1214 PNV_XSCOM_PBCQ_SPCI_BASE + 0x040 * phb->phb_id,
1215 &pbcq->xscom_spci_regs);
1216 }
1217 }
1218
1219 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1220 {
1221 addr &= (PNV_XSCOM_SIZE - 1);
1222 return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1223 }
1224
1225 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1226 {
1227 DeviceClass *dc = DEVICE_CLASS(klass);
1228 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1229
1230 k->chip_cfam_id = 0x221ef04980000000ull; /* P8 Murano DD2.1 */
1231 k->cores_mask = POWER8E_CORE_MASK;
1232 k->num_phbs = 3;
1233 k->core_pir = pnv_chip_core_pir_p8;
1234 k->intc_create = pnv_chip_power8_intc_create;
1235 k->intc_reset = pnv_chip_power8_intc_reset;
1236 k->intc_destroy = pnv_chip_power8_intc_destroy;
1237 k->intc_print_info = pnv_chip_power8_intc_print_info;
1238 k->isa_create = pnv_chip_power8_isa_create;
1239 k->dt_populate = pnv_chip_power8_dt_populate;
1240 k->pic_print_info = pnv_chip_power8_pic_print_info;
1241 k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1242 k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1243 dc->desc = "PowerNV Chip POWER8E";
1244
1245 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1246 &k->parent_realize);
1247 }
1248
1249 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1250 {
1251 DeviceClass *dc = DEVICE_CLASS(klass);
1252 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1253
1254 k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1255 k->cores_mask = POWER8_CORE_MASK;
1256 k->num_phbs = 3;
1257 k->core_pir = pnv_chip_core_pir_p8;
1258 k->intc_create = pnv_chip_power8_intc_create;
1259 k->intc_reset = pnv_chip_power8_intc_reset;
1260 k->intc_destroy = pnv_chip_power8_intc_destroy;
1261 k->intc_print_info = pnv_chip_power8_intc_print_info;
1262 k->isa_create = pnv_chip_power8_isa_create;
1263 k->dt_populate = pnv_chip_power8_dt_populate;
1264 k->pic_print_info = pnv_chip_power8_pic_print_info;
1265 k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1266 k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1267 dc->desc = "PowerNV Chip POWER8";
1268
1269 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1270 &k->parent_realize);
1271 }
1272
1273 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1274 {
1275 DeviceClass *dc = DEVICE_CLASS(klass);
1276 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1277
1278 k->chip_cfam_id = 0x120d304980000000ull; /* P8 Naples DD1.0 */
1279 k->cores_mask = POWER8_CORE_MASK;
1280 k->num_phbs = 3;
1281 k->core_pir = pnv_chip_core_pir_p8;
1282 k->intc_create = pnv_chip_power8_intc_create;
1283 k->intc_reset = pnv_chip_power8_intc_reset;
1284 k->intc_destroy = pnv_chip_power8_intc_destroy;
1285 k->intc_print_info = pnv_chip_power8_intc_print_info;
1286 k->isa_create = pnv_chip_power8nvl_isa_create;
1287 k->dt_populate = pnv_chip_power8_dt_populate;
1288 k->pic_print_info = pnv_chip_power8_pic_print_info;
1289 k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1290 k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1291 dc->desc = "PowerNV Chip POWER8NVL";
1292
1293 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1294 &k->parent_realize);
1295 }
1296
1297 static void pnv_chip_power9_instance_init(Object *obj)
1298 {
1299 PnvChip *chip = PNV_CHIP(obj);
1300 Pnv9Chip *chip9 = PNV9_CHIP(obj);
1301 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1302 int i;
1303
1304 object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1305 object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1306 "xive-fabric");
1307
1308 object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1309
1310 object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1311
1312 object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1313
1314 object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1315
1316 for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1317 object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1318 TYPE_PNV_PHB4_PEC);
1319 }
1320
1321 /*
1322 * Number of PHBs is the chip default
1323 */
1324 chip->num_phbs = pcc->num_phbs;
1325 }
1326
1327 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1328 {
1329 PnvChip *chip = PNV_CHIP(chip9);
1330 int i;
1331
1332 chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1333 chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1334
1335 for (i = 0; i < chip9->nr_quads; i++) {
1336 char eq_name[32];
1337 PnvQuad *eq = &chip9->quads[i];
1338 PnvCore *pnv_core = chip->cores[i * 4];
1339 int core_id = CPU_CORE(pnv_core)->core_id;
1340
1341 snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1342 object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1343 sizeof(*eq), TYPE_PNV_QUAD,
1344 &error_fatal, NULL);
1345
1346 object_property_set_int(OBJECT(eq), "id", core_id, &error_fatal);
1347 qdev_realize(DEVICE(eq), NULL, &error_fatal);
1348
1349 pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1350 &eq->xscom_regs);
1351 }
1352 }
1353
1354 static void pnv_chip_power9_phb_realize(PnvChip *chip, Error **errp)
1355 {
1356 Pnv9Chip *chip9 = PNV9_CHIP(chip);
1357 int i, j;
1358 int phb_id = 0;
1359
1360 for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1361 PnvPhb4PecState *pec = &chip9->pecs[i];
1362 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1363 uint32_t pec_nest_base;
1364 uint32_t pec_pci_base;
1365
1366 object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1367 /*
1368 * PEC0 -> 1 stack
1369 * PEC1 -> 2 stacks
1370 * PEC2 -> 3 stacks
1371 */
1372 object_property_set_int(OBJECT(pec), "num-stacks", i + 1,
1373 &error_fatal);
1374 object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1375 &error_fatal);
1376 object_property_set_link(OBJECT(pec), "system-memory",
1377 OBJECT(get_system_memory()), &error_abort);
1378 if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1379 return;
1380 }
1381
1382 pec_nest_base = pecc->xscom_nest_base(pec);
1383 pec_pci_base = pecc->xscom_pci_base(pec);
1384
1385 pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1386 pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1387
1388 for (j = 0; j < pec->num_stacks && phb_id < chip->num_phbs;
1389 j++, phb_id++) {
1390 PnvPhb4PecStack *stack = &pec->stacks[j];
1391 Object *obj = OBJECT(&stack->phb);
1392
1393 object_property_set_int(obj, "index", phb_id, &error_fatal);
1394 object_property_set_int(obj, "chip-id", chip->chip_id,
1395 &error_fatal);
1396 object_property_set_int(obj, "version", PNV_PHB4_VERSION,
1397 &error_fatal);
1398 object_property_set_int(obj, "device-id", PNV_PHB4_DEVICE_ID,
1399 &error_fatal);
1400 object_property_set_link(obj, "stack", OBJECT(stack),
1401 &error_abort);
1402 if (!sysbus_realize(SYS_BUS_DEVICE(obj), errp)) {
1403 return;
1404 }
1405
1406 /* Populate the XSCOM address space. */
1407 pnv_xscom_add_subregion(chip,
1408 pec_nest_base + 0x40 * (stack->stack_no + 1),
1409 &stack->nest_regs_mr);
1410 pnv_xscom_add_subregion(chip,
1411 pec_pci_base + 0x40 * (stack->stack_no + 1),
1412 &stack->pci_regs_mr);
1413 pnv_xscom_add_subregion(chip,
1414 pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 +
1415 0x40 * stack->stack_no,
1416 &stack->phb_regs_mr);
1417 }
1418 }
1419 }
1420
1421 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1422 {
1423 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1424 Pnv9Chip *chip9 = PNV9_CHIP(dev);
1425 PnvChip *chip = PNV_CHIP(dev);
1426 Pnv9Psi *psi9 = &chip9->psi;
1427 Error *local_err = NULL;
1428
1429 /* XSCOM bridge is first */
1430 pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1431 if (local_err) {
1432 error_propagate(errp, local_err);
1433 return;
1434 }
1435 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1436
1437 pcc->parent_realize(dev, &local_err);
1438 if (local_err) {
1439 error_propagate(errp, local_err);
1440 return;
1441 }
1442
1443 pnv_chip_quad_realize(chip9, &local_err);
1444 if (local_err) {
1445 error_propagate(errp, local_err);
1446 return;
1447 }
1448
1449 /* XIVE interrupt controller (POWER9) */
1450 object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1451 PNV9_XIVE_IC_BASE(chip), &error_fatal);
1452 object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1453 PNV9_XIVE_VC_BASE(chip), &error_fatal);
1454 object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1455 PNV9_XIVE_PC_BASE(chip), &error_fatal);
1456 object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1457 PNV9_XIVE_TM_BASE(chip), &error_fatal);
1458 object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1459 &error_abort);
1460 if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1461 return;
1462 }
1463 pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1464 &chip9->xive.xscom_regs);
1465
1466 /* Processor Service Interface (PSI) Host Bridge */
1467 object_property_set_int(OBJECT(&chip9->psi), "bar", PNV9_PSIHB_BASE(chip),
1468 &error_fatal);
1469 if (!qdev_realize(DEVICE(&chip9->psi), NULL, errp)) {
1470 return;
1471 }
1472 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1473 &PNV_PSI(psi9)->xscom_regs);
1474
1475 /* LPC */
1476 object_property_set_link(OBJECT(&chip9->lpc), "psi", OBJECT(&chip9->psi),
1477 &error_abort);
1478 if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1479 return;
1480 }
1481 memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1482 &chip9->lpc.xscom_regs);
1483
1484 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1485 (uint64_t) PNV9_LPCM_BASE(chip));
1486
1487 /* Create the simplified OCC model */
1488 object_property_set_link(OBJECT(&chip9->occ), "psi", OBJECT(&chip9->psi),
1489 &error_abort);
1490 if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1491 return;
1492 }
1493 pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1494
1495 /* OCC SRAM model */
1496 memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1497 &chip9->occ.sram_regs);
1498
1499 /* HOMER */
1500 object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1501 &error_abort);
1502 if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1503 return;
1504 }
1505 /* Homer Xscom region */
1506 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1507
1508 /* Homer mmio region */
1509 memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1510 &chip9->homer.regs);
1511
1512 /* PHBs */
1513 pnv_chip_power9_phb_realize(chip, &local_err);
1514 if (local_err) {
1515 error_propagate(errp, local_err);
1516 return;
1517 }
1518 }
1519
1520 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1521 {
1522 addr &= (PNV9_XSCOM_SIZE - 1);
1523 return addr >> 3;
1524 }
1525
1526 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1527 {
1528 DeviceClass *dc = DEVICE_CLASS(klass);
1529 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1530
1531 k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1532 k->cores_mask = POWER9_CORE_MASK;
1533 k->core_pir = pnv_chip_core_pir_p9;
1534 k->intc_create = pnv_chip_power9_intc_create;
1535 k->intc_reset = pnv_chip_power9_intc_reset;
1536 k->intc_destroy = pnv_chip_power9_intc_destroy;
1537 k->intc_print_info = pnv_chip_power9_intc_print_info;
1538 k->isa_create = pnv_chip_power9_isa_create;
1539 k->dt_populate = pnv_chip_power9_dt_populate;
1540 k->pic_print_info = pnv_chip_power9_pic_print_info;
1541 k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1542 k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1543 dc->desc = "PowerNV Chip POWER9";
1544 k->num_phbs = 6;
1545
1546 device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1547 &k->parent_realize);
1548 }
1549
1550 static void pnv_chip_power10_instance_init(Object *obj)
1551 {
1552 Pnv10Chip *chip10 = PNV10_CHIP(obj);
1553
1554 object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1555 object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1556 }
1557
1558 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1559 {
1560 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1561 PnvChip *chip = PNV_CHIP(dev);
1562 Pnv10Chip *chip10 = PNV10_CHIP(dev);
1563 Error *local_err = NULL;
1564
1565 /* XSCOM bridge is first */
1566 pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1567 if (local_err) {
1568 error_propagate(errp, local_err);
1569 return;
1570 }
1571 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1572
1573 pcc->parent_realize(dev, &local_err);
1574 if (local_err) {
1575 error_propagate(errp, local_err);
1576 return;
1577 }
1578
1579 /* Processor Service Interface (PSI) Host Bridge */
1580 object_property_set_int(OBJECT(&chip10->psi), "bar",
1581 PNV10_PSIHB_BASE(chip), &error_fatal);
1582 if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1583 return;
1584 }
1585 pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1586 &PNV_PSI(&chip10->psi)->xscom_regs);
1587
1588 /* LPC */
1589 object_property_set_link(OBJECT(&chip10->lpc), "psi",
1590 OBJECT(&chip10->psi), &error_abort);
1591 if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1592 return;
1593 }
1594 memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1595 &chip10->lpc.xscom_regs);
1596
1597 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1598 (uint64_t) PNV10_LPCM_BASE(chip));
1599 }
1600
1601 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1602 {
1603 addr &= (PNV10_XSCOM_SIZE - 1);
1604 return addr >> 3;
1605 }
1606
1607 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1608 {
1609 DeviceClass *dc = DEVICE_CLASS(klass);
1610 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1611
1612 k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1613 k->cores_mask = POWER10_CORE_MASK;
1614 k->core_pir = pnv_chip_core_pir_p10;
1615 k->intc_create = pnv_chip_power10_intc_create;
1616 k->intc_reset = pnv_chip_power10_intc_reset;
1617 k->intc_destroy = pnv_chip_power10_intc_destroy;
1618 k->intc_print_info = pnv_chip_power10_intc_print_info;
1619 k->isa_create = pnv_chip_power10_isa_create;
1620 k->dt_populate = pnv_chip_power10_dt_populate;
1621 k->pic_print_info = pnv_chip_power10_pic_print_info;
1622 k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1623 k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1624 dc->desc = "PowerNV Chip POWER10";
1625
1626 device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1627 &k->parent_realize);
1628 }
1629
1630 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1631 {
1632 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1633 int cores_max;
1634
1635 /*
1636 * No custom mask for this chip, let's use the default one from *
1637 * the chip class
1638 */
1639 if (!chip->cores_mask) {
1640 chip->cores_mask = pcc->cores_mask;
1641 }
1642
1643 /* filter alien core ids ! some are reserved */
1644 if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1645 error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1646 chip->cores_mask);
1647 return;
1648 }
1649 chip->cores_mask &= pcc->cores_mask;
1650
1651 /* now that we have a sane layout, let check the number of cores */
1652 cores_max = ctpop64(chip->cores_mask);
1653 if (chip->nr_cores > cores_max) {
1654 error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1655 cores_max);
1656 return;
1657 }
1658 }
1659
1660 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1661 {
1662 Error *error = NULL;
1663 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1664 const char *typename = pnv_chip_core_typename(chip);
1665 int i, core_hwid;
1666 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1667
1668 if (!object_class_by_name(typename)) {
1669 error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1670 return;
1671 }
1672
1673 /* Cores */
1674 pnv_chip_core_sanitize(chip, &error);
1675 if (error) {
1676 error_propagate(errp, error);
1677 return;
1678 }
1679
1680 chip->cores = g_new0(PnvCore *, chip->nr_cores);
1681
1682 for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1683 && (i < chip->nr_cores); core_hwid++) {
1684 char core_name[32];
1685 PnvCore *pnv_core;
1686 uint64_t xscom_core_base;
1687
1688 if (!(chip->cores_mask & (1ull << core_hwid))) {
1689 continue;
1690 }
1691
1692 pnv_core = PNV_CORE(object_new(typename));
1693
1694 snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1695 object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
1696 chip->cores[i] = pnv_core;
1697 object_property_set_int(OBJECT(pnv_core), "nr-threads",
1698 chip->nr_threads, &error_fatal);
1699 object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
1700 core_hwid, &error_fatal);
1701 object_property_set_int(OBJECT(pnv_core), "pir",
1702 pcc->core_pir(chip, core_hwid), &error_fatal);
1703 object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
1704 &error_fatal);
1705 object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
1706 &error_abort);
1707 qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
1708
1709 /* Each core has an XSCOM MMIO region */
1710 xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1711
1712 pnv_xscom_add_subregion(chip, xscom_core_base,
1713 &pnv_core->xscom_regs);
1714 i++;
1715 }
1716 }
1717
1718 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1719 {
1720 PnvChip *chip = PNV_CHIP(dev);
1721 Error *error = NULL;
1722
1723 /* Cores */
1724 pnv_chip_core_realize(chip, &error);
1725 if (error) {
1726 error_propagate(errp, error);
1727 return;
1728 }
1729 }
1730
1731 static Property pnv_chip_properties[] = {
1732 DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1733 DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1734 DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1735 DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1736 DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1737 DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
1738 DEFINE_PROP_UINT32("num-phbs", PnvChip, num_phbs, 0),
1739 DEFINE_PROP_END_OF_LIST(),
1740 };
1741
1742 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1743 {
1744 DeviceClass *dc = DEVICE_CLASS(klass);
1745
1746 set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1747 dc->realize = pnv_chip_realize;
1748 device_class_set_props(dc, pnv_chip_properties);
1749 dc->desc = "PowerNV Chip";
1750 }
1751
1752 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1753 {
1754 int i, j;
1755
1756 for (i = 0; i < chip->nr_cores; i++) {
1757 PnvCore *pc = chip->cores[i];
1758 CPUCore *cc = CPU_CORE(pc);
1759
1760 for (j = 0; j < cc->nr_threads; j++) {
1761 if (ppc_cpu_pir(pc->threads[j]) == pir) {
1762 return pc->threads[j];
1763 }
1764 }
1765 }
1766 return NULL;
1767 }
1768
1769 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1770 {
1771 PnvMachineState *pnv = PNV_MACHINE(xi);
1772 int i, j;
1773
1774 for (i = 0; i < pnv->num_chips; i++) {
1775 PnvChip *chip = pnv->chips[i];
1776 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1777
1778 if (ics_valid_irq(&chip8->psi.ics, irq)) {
1779 return &chip8->psi.ics;
1780 }
1781 for (j = 0; j < chip->num_phbs; j++) {
1782 if (ics_valid_irq(&chip8->phbs[j].lsis, irq)) {
1783 return &chip8->phbs[j].lsis;
1784 }
1785 if (ics_valid_irq(ICS(&chip8->phbs[j].msis), irq)) {
1786 return ICS(&chip8->phbs[j].msis);
1787 }
1788 }
1789 }
1790 return NULL;
1791 }
1792
1793 static void pnv_ics_resend(XICSFabric *xi)
1794 {
1795 PnvMachineState *pnv = PNV_MACHINE(xi);
1796 int i, j;
1797
1798 for (i = 0; i < pnv->num_chips; i++) {
1799 PnvChip *chip = pnv->chips[i];
1800 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1801
1802 ics_resend(&chip8->psi.ics);
1803 for (j = 0; j < chip->num_phbs; j++) {
1804 ics_resend(&chip8->phbs[j].lsis);
1805 ics_resend(ICS(&chip8->phbs[j].msis));
1806 }
1807 }
1808 }
1809
1810 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1811 {
1812 PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1813
1814 return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1815 }
1816
1817 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1818 Monitor *mon)
1819 {
1820 PnvMachineState *pnv = PNV_MACHINE(obj);
1821 int i;
1822 CPUState *cs;
1823
1824 CPU_FOREACH(cs) {
1825 PowerPCCPU *cpu = POWERPC_CPU(cs);
1826
1827 /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
1828 PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
1829 mon);
1830 }
1831
1832 for (i = 0; i < pnv->num_chips; i++) {
1833 PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1834 }
1835 }
1836
1837 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
1838 uint8_t nvt_blk, uint32_t nvt_idx,
1839 bool cam_ignore, uint8_t priority,
1840 uint32_t logic_serv,
1841 XiveTCTXMatch *match)
1842 {
1843 PnvMachineState *pnv = PNV_MACHINE(xfb);
1844 int total_count = 0;
1845 int i;
1846
1847 for (i = 0; i < pnv->num_chips; i++) {
1848 Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
1849 XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
1850 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
1851 int count;
1852
1853 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
1854 priority, logic_serv, match);
1855
1856 if (count < 0) {
1857 return count;
1858 }
1859
1860 total_count += count;
1861 }
1862
1863 return total_count;
1864 }
1865
1866 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1867 {
1868 MachineClass *mc = MACHINE_CLASS(oc);
1869 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1870 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1871 static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
1872
1873 mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1874 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1875
1876 xic->icp_get = pnv_icp_get;
1877 xic->ics_get = pnv_ics_get;
1878 xic->ics_resend = pnv_ics_resend;
1879
1880 pmc->compat = compat;
1881 pmc->compat_size = sizeof(compat);
1882 }
1883
1884 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1885 {
1886 MachineClass *mc = MACHINE_CLASS(oc);
1887 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
1888 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1889 static const char compat[] = "qemu,powernv9\0ibm,powernv";
1890
1891 mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1892 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1893 xfc->match_nvt = pnv_match_nvt;
1894
1895 mc->alias = "powernv";
1896
1897 pmc->compat = compat;
1898 pmc->compat_size = sizeof(compat);
1899 pmc->dt_power_mgt = pnv_dt_power_mgt;
1900 }
1901
1902 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
1903 {
1904 MachineClass *mc = MACHINE_CLASS(oc);
1905 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1906 static const char compat[] = "qemu,powernv10\0ibm,powernv";
1907
1908 mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
1909 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v1.0");
1910
1911 pmc->compat = compat;
1912 pmc->compat_size = sizeof(compat);
1913 pmc->dt_power_mgt = pnv_dt_power_mgt;
1914 }
1915
1916 static bool pnv_machine_get_hb(Object *obj, Error **errp)
1917 {
1918 PnvMachineState *pnv = PNV_MACHINE(obj);
1919
1920 return !!pnv->fw_load_addr;
1921 }
1922
1923 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
1924 {
1925 PnvMachineState *pnv = PNV_MACHINE(obj);
1926
1927 if (value) {
1928 pnv->fw_load_addr = 0x8000000;
1929 }
1930 }
1931
1932 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
1933 {
1934 PowerPCCPU *cpu = POWERPC_CPU(cs);
1935 CPUPPCState *env = &cpu->env;
1936
1937 cpu_synchronize_state(cs);
1938 ppc_cpu_do_system_reset(cs);
1939 if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
1940 /*
1941 * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
1942 * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
1943 * (PPC_BIT(43)).
1944 */
1945 if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
1946 warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
1947 env->spr[SPR_SRR1] |= SRR1_WAKERESET;
1948 }
1949 } else {
1950 /*
1951 * For non-powersave system resets, SRR1[42:45] are defined to be
1952 * implementation-dependent. The POWER9 User Manual specifies that
1953 * an external (SCOM driven, which may come from a BMC nmi command or
1954 * another CPU requesting a NMI IPI) system reset exception should be
1955 * 0b0010 (PPC_BIT(44)).
1956 */
1957 env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
1958 }
1959 }
1960
1961 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
1962 {
1963 CPUState *cs;
1964
1965 CPU_FOREACH(cs) {
1966 async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
1967 }
1968 }
1969
1970 static void pnv_machine_class_init(ObjectClass *oc, void *data)
1971 {
1972 MachineClass *mc = MACHINE_CLASS(oc);
1973 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1974 NMIClass *nc = NMI_CLASS(oc);
1975
1976 mc->desc = "IBM PowerNV (Non-Virtualized)";
1977 mc->init = pnv_init;
1978 mc->reset = pnv_reset;
1979 mc->max_cpus = MAX_CPUS;
1980 /* Pnv provides a AHCI device for storage */
1981 mc->block_default_type = IF_IDE;
1982 mc->no_parallel = 1;
1983 mc->default_boot_order = NULL;
1984 /*
1985 * RAM defaults to less than 2048 for 32-bit hosts, and large
1986 * enough to fit the maximum initrd size at it's load address
1987 */
1988 mc->default_ram_size = INITRD_LOAD_ADDR + INITRD_MAX_SIZE;
1989 mc->default_ram_id = "pnv.ram";
1990 ispc->print_info = pnv_pic_print_info;
1991 nc->nmi_monitor_handler = pnv_nmi;
1992
1993 object_class_property_add_bool(oc, "hb-mode",
1994 pnv_machine_get_hb, pnv_machine_set_hb);
1995 object_class_property_set_description(oc, "hb-mode",
1996 "Use a hostboot like boot loader");
1997 }
1998
1999 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2000 { \
2001 .name = type, \
2002 .class_init = class_initfn, \
2003 .parent = TYPE_PNV8_CHIP, \
2004 }
2005
2006 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2007 { \
2008 .name = type, \
2009 .class_init = class_initfn, \
2010 .parent = TYPE_PNV9_CHIP, \
2011 }
2012
2013 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2014 { \
2015 .name = type, \
2016 .class_init = class_initfn, \
2017 .parent = TYPE_PNV10_CHIP, \
2018 }
2019
2020 static const TypeInfo types[] = {
2021 {
2022 .name = MACHINE_TYPE_NAME("powernv10"),
2023 .parent = TYPE_PNV_MACHINE,
2024 .class_init = pnv_machine_power10_class_init,
2025 },
2026 {
2027 .name = MACHINE_TYPE_NAME("powernv9"),
2028 .parent = TYPE_PNV_MACHINE,
2029 .class_init = pnv_machine_power9_class_init,
2030 .interfaces = (InterfaceInfo[]) {
2031 { TYPE_XIVE_FABRIC },
2032 { },
2033 },
2034 },
2035 {
2036 .name = MACHINE_TYPE_NAME("powernv8"),
2037 .parent = TYPE_PNV_MACHINE,
2038 .class_init = pnv_machine_power8_class_init,
2039 .interfaces = (InterfaceInfo[]) {
2040 { TYPE_XICS_FABRIC },
2041 { },
2042 },
2043 },
2044 {
2045 .name = TYPE_PNV_MACHINE,
2046 .parent = TYPE_MACHINE,
2047 .abstract = true,
2048 .instance_size = sizeof(PnvMachineState),
2049 .class_init = pnv_machine_class_init,
2050 .class_size = sizeof(PnvMachineClass),
2051 .interfaces = (InterfaceInfo[]) {
2052 { TYPE_INTERRUPT_STATS_PROVIDER },
2053 { TYPE_NMI },
2054 { },
2055 },
2056 },
2057 {
2058 .name = TYPE_PNV_CHIP,
2059 .parent = TYPE_SYS_BUS_DEVICE,
2060 .class_init = pnv_chip_class_init,
2061 .instance_size = sizeof(PnvChip),
2062 .class_size = sizeof(PnvChipClass),
2063 .abstract = true,
2064 },
2065
2066 /*
2067 * P10 chip and variants
2068 */
2069 {
2070 .name = TYPE_PNV10_CHIP,
2071 .parent = TYPE_PNV_CHIP,
2072 .instance_init = pnv_chip_power10_instance_init,
2073 .instance_size = sizeof(Pnv10Chip),
2074 },
2075 DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2076
2077 /*
2078 * P9 chip and variants
2079 */
2080 {
2081 .name = TYPE_PNV9_CHIP,
2082 .parent = TYPE_PNV_CHIP,
2083 .instance_init = pnv_chip_power9_instance_init,
2084 .instance_size = sizeof(Pnv9Chip),
2085 },
2086 DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2087
2088 /*
2089 * P8 chip and variants
2090 */
2091 {
2092 .name = TYPE_PNV8_CHIP,
2093 .parent = TYPE_PNV_CHIP,
2094 .instance_init = pnv_chip_power8_instance_init,
2095 .instance_size = sizeof(Pnv8Chip),
2096 },
2097 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2098 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2099 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2100 pnv_chip_power8nvl_class_init),
2101 };
2102
2103 DEFINE_TYPES(types)