Merge tag 'ide-pull-request' of https://gitlab.com/jsnow/qemu into staging
[qemu.git] / hw / ppc / pnv.c
1 /*
2 * QEMU PowerPC PowerNV machine model
3 *
4 * Copyright (c) 2016, IBM Corporation.
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/datadir.h"
23 #include "qemu/units.h"
24 #include "qemu/cutils.h"
25 #include "qapi/error.h"
26 #include "sysemu/qtest.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/numa.h"
29 #include "sysemu/reset.h"
30 #include "sysemu/runstate.h"
31 #include "sysemu/cpus.h"
32 #include "sysemu/device_tree.h"
33 #include "sysemu/hw_accel.h"
34 #include "target/ppc/cpu.h"
35 #include "hw/ppc/fdt.h"
36 #include "hw/ppc/ppc.h"
37 #include "hw/ppc/pnv.h"
38 #include "hw/ppc/pnv_core.h"
39 #include "hw/loader.h"
40 #include "hw/nmi.h"
41 #include "qapi/visitor.h"
42 #include "monitor/monitor.h"
43 #include "hw/intc/intc.h"
44 #include "hw/ipmi/ipmi.h"
45 #include "target/ppc/mmu-hash64.h"
46 #include "hw/pci/msi.h"
47
48 #include "hw/ppc/xics.h"
49 #include "hw/qdev-properties.h"
50 #include "hw/ppc/pnv_xscom.h"
51 #include "hw/ppc/pnv_pnor.h"
52
53 #include "hw/isa/isa.h"
54 #include "hw/char/serial.h"
55 #include "hw/rtc/mc146818rtc.h"
56
57 #include <libfdt.h>
58
59 #define FDT_MAX_SIZE (1 * MiB)
60
61 #define FW_FILE_NAME "skiboot.lid"
62 #define FW_LOAD_ADDR 0x0
63 #define FW_MAX_SIZE (16 * MiB)
64
65 #define KERNEL_LOAD_ADDR 0x20000000
66 #define KERNEL_MAX_SIZE (128 * MiB)
67 #define INITRD_LOAD_ADDR 0x28000000
68 #define INITRD_MAX_SIZE (128 * MiB)
69
70 static const char *pnv_chip_core_typename(const PnvChip *o)
71 {
72 const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
73 int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
74 char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
75 const char *core_type = object_class_get_name(object_class_by_name(s));
76 g_free(s);
77 return core_type;
78 }
79
80 /*
81 * On Power Systems E880 (POWER8), the max cpus (threads) should be :
82 * 4 * 4 sockets * 12 cores * 8 threads = 1536
83 * Let's make it 2^11
84 */
85 #define MAX_CPUS 2048
86
87 /*
88 * Memory nodes are created by hostboot, one for each range of memory
89 * that has a different "affinity". In practice, it means one range
90 * per chip.
91 */
92 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
93 {
94 char *mem_name;
95 uint64_t mem_reg_property[2];
96 int off;
97
98 mem_reg_property[0] = cpu_to_be64(start);
99 mem_reg_property[1] = cpu_to_be64(size);
100
101 mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
102 off = fdt_add_subnode(fdt, 0, mem_name);
103 g_free(mem_name);
104
105 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
106 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
107 sizeof(mem_reg_property))));
108 _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
109 }
110
111 static int get_cpus_node(void *fdt)
112 {
113 int cpus_offset = fdt_path_offset(fdt, "/cpus");
114
115 if (cpus_offset < 0) {
116 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
117 if (cpus_offset) {
118 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
119 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
120 }
121 }
122 _FDT(cpus_offset);
123 return cpus_offset;
124 }
125
126 /*
127 * The PowerNV cores (and threads) need to use real HW ids and not an
128 * incremental index like it has been done on other platforms. This HW
129 * id is stored in the CPU PIR, it is used to create cpu nodes in the
130 * device tree, used in XSCOM to address cores and in interrupt
131 * servers.
132 */
133 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
134 {
135 PowerPCCPU *cpu = pc->threads[0];
136 CPUState *cs = CPU(cpu);
137 DeviceClass *dc = DEVICE_GET_CLASS(cs);
138 int smt_threads = CPU_CORE(pc)->nr_threads;
139 CPUPPCState *env = &cpu->env;
140 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
141 uint32_t servers_prop[smt_threads];
142 int i;
143 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
144 0xffffffff, 0xffffffff};
145 uint32_t tbfreq = PNV_TIMEBASE_FREQ;
146 uint32_t cpufreq = 1000000000;
147 uint32_t page_sizes_prop[64];
148 size_t page_sizes_prop_size;
149 const uint8_t pa_features[] = { 24, 0,
150 0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
151 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
152 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
153 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
154 int offset;
155 char *nodename;
156 int cpus_offset = get_cpus_node(fdt);
157
158 nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
159 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
160 _FDT(offset);
161 g_free(nodename);
162
163 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
164
165 _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
166 _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
167 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
168
169 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
170 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
171 env->dcache_line_size)));
172 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
173 env->dcache_line_size)));
174 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
175 env->icache_line_size)));
176 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
177 env->icache_line_size)));
178
179 if (pcc->l1_dcache_size) {
180 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
181 pcc->l1_dcache_size)));
182 } else {
183 warn_report("Unknown L1 dcache size for cpu");
184 }
185 if (pcc->l1_icache_size) {
186 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
187 pcc->l1_icache_size)));
188 } else {
189 warn_report("Unknown L1 icache size for cpu");
190 }
191
192 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
193 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
194 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
195 cpu->hash64_opts->slb_size)));
196 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
197 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
198
199 if (ppc_has_spr(cpu, SPR_PURR)) {
200 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
201 }
202
203 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
204 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
205 segs, sizeof(segs))));
206 }
207
208 /*
209 * Advertise VMX/VSX (vector extensions) if available
210 * 0 / no property == no vector extensions
211 * 1 == VMX / Altivec available
212 * 2 == VSX available
213 */
214 if (env->insns_flags & PPC_ALTIVEC) {
215 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
216
217 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
218 }
219
220 /*
221 * Advertise DFP (Decimal Floating Point) if available
222 * 0 / no property == no DFP
223 * 1 == DFP available
224 */
225 if (env->insns_flags2 & PPC2_DFP) {
226 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
227 }
228
229 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
230 sizeof(page_sizes_prop));
231 if (page_sizes_prop_size) {
232 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
233 page_sizes_prop, page_sizes_prop_size)));
234 }
235
236 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
237 pa_features, sizeof(pa_features))));
238
239 /* Build interrupt servers properties */
240 for (i = 0; i < smt_threads; i++) {
241 servers_prop[i] = cpu_to_be32(pc->pir + i);
242 }
243 _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
244 servers_prop, sizeof(servers_prop))));
245 }
246
247 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
248 uint32_t nr_threads)
249 {
250 uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
251 char *name;
252 const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
253 uint32_t irange[2], i, rsize;
254 uint64_t *reg;
255 int offset;
256
257 irange[0] = cpu_to_be32(pir);
258 irange[1] = cpu_to_be32(nr_threads);
259
260 rsize = sizeof(uint64_t) * 2 * nr_threads;
261 reg = g_malloc(rsize);
262 for (i = 0; i < nr_threads; i++) {
263 reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
264 reg[i * 2 + 1] = cpu_to_be64(0x1000);
265 }
266
267 name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
268 offset = fdt_add_subnode(fdt, 0, name);
269 _FDT(offset);
270 g_free(name);
271
272 _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
273 _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
274 _FDT((fdt_setprop_string(fdt, offset, "device_type",
275 "PowerPC-External-Interrupt-Presentation")));
276 _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
277 _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
278 irange, sizeof(irange))));
279 _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
280 _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
281 g_free(reg);
282 }
283
284 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
285 {
286 static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
287 int i;
288
289 pnv_dt_xscom(chip, fdt, 0,
290 cpu_to_be64(PNV_XSCOM_BASE(chip)),
291 cpu_to_be64(PNV_XSCOM_SIZE),
292 compat, sizeof(compat));
293
294 for (i = 0; i < chip->nr_cores; i++) {
295 PnvCore *pnv_core = chip->cores[i];
296
297 pnv_dt_core(chip, pnv_core, fdt);
298
299 /* Interrupt Control Presenters (ICP). One per core. */
300 pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
301 }
302
303 if (chip->ram_size) {
304 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
305 }
306 }
307
308 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
309 {
310 static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
311 int i;
312
313 pnv_dt_xscom(chip, fdt, 0,
314 cpu_to_be64(PNV9_XSCOM_BASE(chip)),
315 cpu_to_be64(PNV9_XSCOM_SIZE),
316 compat, sizeof(compat));
317
318 for (i = 0; i < chip->nr_cores; i++) {
319 PnvCore *pnv_core = chip->cores[i];
320
321 pnv_dt_core(chip, pnv_core, fdt);
322 }
323
324 if (chip->ram_size) {
325 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
326 }
327
328 pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
329 }
330
331 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
332 {
333 static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
334 int i;
335
336 pnv_dt_xscom(chip, fdt, 0,
337 cpu_to_be64(PNV10_XSCOM_BASE(chip)),
338 cpu_to_be64(PNV10_XSCOM_SIZE),
339 compat, sizeof(compat));
340
341 for (i = 0; i < chip->nr_cores; i++) {
342 PnvCore *pnv_core = chip->cores[i];
343
344 pnv_dt_core(chip, pnv_core, fdt);
345 }
346
347 if (chip->ram_size) {
348 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
349 }
350
351 pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
352 }
353
354 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
355 {
356 uint32_t io_base = d->ioport_id;
357 uint32_t io_regs[] = {
358 cpu_to_be32(1),
359 cpu_to_be32(io_base),
360 cpu_to_be32(2)
361 };
362 char *name;
363 int node;
364
365 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
366 node = fdt_add_subnode(fdt, lpc_off, name);
367 _FDT(node);
368 g_free(name);
369
370 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
371 _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
372 }
373
374 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
375 {
376 const char compatible[] = "ns16550\0pnpPNP,501";
377 uint32_t io_base = d->ioport_id;
378 uint32_t io_regs[] = {
379 cpu_to_be32(1),
380 cpu_to_be32(io_base),
381 cpu_to_be32(8)
382 };
383 char *name;
384 int node;
385
386 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
387 node = fdt_add_subnode(fdt, lpc_off, name);
388 _FDT(node);
389 g_free(name);
390
391 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
392 _FDT((fdt_setprop(fdt, node, "compatible", compatible,
393 sizeof(compatible))));
394
395 _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
396 _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
397 _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
398 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
399 fdt_get_phandle(fdt, lpc_off))));
400
401 /* This is needed by Linux */
402 _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
403 }
404
405 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
406 {
407 const char compatible[] = "bt\0ipmi-bt";
408 uint32_t io_base;
409 uint32_t io_regs[] = {
410 cpu_to_be32(1),
411 0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
412 cpu_to_be32(3)
413 };
414 uint32_t irq;
415 char *name;
416 int node;
417
418 io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
419 io_regs[1] = cpu_to_be32(io_base);
420
421 irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
422
423 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
424 node = fdt_add_subnode(fdt, lpc_off, name);
425 _FDT(node);
426 g_free(name);
427
428 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
429 _FDT((fdt_setprop(fdt, node, "compatible", compatible,
430 sizeof(compatible))));
431
432 /* Mark it as reserved to avoid Linux trying to claim it */
433 _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
434 _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
435 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
436 fdt_get_phandle(fdt, lpc_off))));
437 }
438
439 typedef struct ForeachPopulateArgs {
440 void *fdt;
441 int offset;
442 } ForeachPopulateArgs;
443
444 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
445 {
446 ForeachPopulateArgs *args = opaque;
447 ISADevice *d = ISA_DEVICE(dev);
448
449 if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
450 pnv_dt_rtc(d, args->fdt, args->offset);
451 } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
452 pnv_dt_serial(d, args->fdt, args->offset);
453 } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
454 pnv_dt_ipmi_bt(d, args->fdt, args->offset);
455 } else {
456 error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
457 d->ioport_id);
458 }
459
460 return 0;
461 }
462
463 /*
464 * The default LPC bus of a multichip system is on chip 0. It's
465 * recognized by the firmware (skiboot) using a "primary" property.
466 */
467 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
468 {
469 int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
470 ForeachPopulateArgs args = {
471 .fdt = fdt,
472 .offset = isa_offset,
473 };
474 uint32_t phandle;
475
476 _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
477
478 phandle = qemu_fdt_alloc_phandle(fdt);
479 assert(phandle > 0);
480 _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
481
482 /*
483 * ISA devices are not necessarily parented to the ISA bus so we
484 * can not use object_child_foreach()
485 */
486 qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
487 &args);
488 }
489
490 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
491 {
492 int off;
493
494 off = fdt_add_subnode(fdt, 0, "ibm,opal");
495 off = fdt_add_subnode(fdt, off, "power-mgt");
496
497 _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
498 }
499
500 static void *pnv_dt_create(MachineState *machine)
501 {
502 PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
503 PnvMachineState *pnv = PNV_MACHINE(machine);
504 void *fdt;
505 char *buf;
506 int off;
507 int i;
508
509 fdt = g_malloc0(FDT_MAX_SIZE);
510 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
511
512 /* /qemu node */
513 _FDT((fdt_add_subnode(fdt, 0, "qemu")));
514
515 /* Root node */
516 _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
517 _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
518 _FDT((fdt_setprop_string(fdt, 0, "model",
519 "IBM PowerNV (emulated by qemu)")));
520 _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
521
522 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
523 _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
524 if (qemu_uuid_set) {
525 _FDT((fdt_property_string(fdt, "system-id", buf)));
526 }
527 g_free(buf);
528
529 off = fdt_add_subnode(fdt, 0, "chosen");
530 if (machine->kernel_cmdline) {
531 _FDT((fdt_setprop_string(fdt, off, "bootargs",
532 machine->kernel_cmdline)));
533 }
534
535 if (pnv->initrd_size) {
536 uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
537 uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
538
539 _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
540 &start_prop, sizeof(start_prop))));
541 _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
542 &end_prop, sizeof(end_prop))));
543 }
544
545 /* Populate device tree for each chip */
546 for (i = 0; i < pnv->num_chips; i++) {
547 PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
548 }
549
550 /* Populate ISA devices on chip 0 */
551 pnv_dt_isa(pnv, fdt);
552
553 if (pnv->bmc) {
554 pnv_dt_bmc_sensors(pnv->bmc, fdt);
555 }
556
557 /* Create an extra node for power management on machines that support it */
558 if (pmc->dt_power_mgt) {
559 pmc->dt_power_mgt(pnv, fdt);
560 }
561
562 return fdt;
563 }
564
565 static void pnv_powerdown_notify(Notifier *n, void *opaque)
566 {
567 PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
568
569 if (pnv->bmc) {
570 pnv_bmc_powerdown(pnv->bmc);
571 }
572 }
573
574 static void pnv_reset(MachineState *machine)
575 {
576 PnvMachineState *pnv = PNV_MACHINE(machine);
577 IPMIBmc *bmc;
578 void *fdt;
579
580 qemu_devices_reset();
581
582 /*
583 * The machine should provide by default an internal BMC simulator.
584 * If not, try to use the BMC device that was provided on the command
585 * line.
586 */
587 bmc = pnv_bmc_find(&error_fatal);
588 if (!pnv->bmc) {
589 if (!bmc) {
590 if (!qtest_enabled()) {
591 warn_report("machine has no BMC device. Use '-device "
592 "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
593 "to define one");
594 }
595 } else {
596 pnv_bmc_set_pnor(bmc, pnv->pnor);
597 pnv->bmc = bmc;
598 }
599 }
600
601 fdt = pnv_dt_create(machine);
602
603 /* Pack resulting tree */
604 _FDT((fdt_pack(fdt)));
605
606 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
607 cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
608
609 g_free(fdt);
610 }
611
612 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
613 {
614 Pnv8Chip *chip8 = PNV8_CHIP(chip);
615 return pnv_lpc_isa_create(&chip8->lpc, true, errp);
616 }
617
618 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
619 {
620 Pnv8Chip *chip8 = PNV8_CHIP(chip);
621 return pnv_lpc_isa_create(&chip8->lpc, false, errp);
622 }
623
624 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
625 {
626 Pnv9Chip *chip9 = PNV9_CHIP(chip);
627 return pnv_lpc_isa_create(&chip9->lpc, false, errp);
628 }
629
630 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
631 {
632 Pnv10Chip *chip10 = PNV10_CHIP(chip);
633 return pnv_lpc_isa_create(&chip10->lpc, false, errp);
634 }
635
636 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
637 {
638 return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
639 }
640
641 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
642 {
643 Pnv8Chip *chip8 = PNV8_CHIP(chip);
644 int i;
645
646 ics_pic_print_info(&chip8->psi.ics, mon);
647 for (i = 0; i < chip->num_phbs; i++) {
648 pnv_phb3_msi_pic_print_info(&chip8->phbs[i].msis, mon);
649 ics_pic_print_info(&chip8->phbs[i].lsis, mon);
650 }
651 }
652
653 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
654 {
655 Pnv9Chip *chip9 = PNV9_CHIP(chip);
656 int i, j;
657
658 pnv_xive_pic_print_info(&chip9->xive, mon);
659 pnv_psi_pic_print_info(&chip9->psi, mon);
660
661 for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
662 PnvPhb4PecState *pec = &chip9->pecs[i];
663 for (j = 0; j < pec->num_stacks; j++) {
664 pnv_phb4_pic_print_info(&pec->stacks[j].phb, mon);
665 }
666 }
667 }
668
669 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
670 uint32_t core_id)
671 {
672 return PNV_XSCOM_EX_BASE(core_id);
673 }
674
675 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
676 uint32_t core_id)
677 {
678 return PNV9_XSCOM_EC_BASE(core_id);
679 }
680
681 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
682 uint32_t core_id)
683 {
684 return PNV10_XSCOM_EC_BASE(core_id);
685 }
686
687 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
688 {
689 PowerPCCPUClass *ppc_default =
690 POWERPC_CPU_CLASS(object_class_by_name(default_type));
691 PowerPCCPUClass *ppc =
692 POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
693
694 return ppc_default->pvr_match(ppc_default, ppc->pvr);
695 }
696
697 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
698 {
699 ISADevice *dev = isa_new("isa-ipmi-bt");
700
701 object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
702 object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
703 isa_realize_and_unref(dev, bus, &error_fatal);
704 }
705
706 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
707 {
708 Pnv10Chip *chip10 = PNV10_CHIP(chip);
709
710 pnv_psi_pic_print_info(&chip10->psi, mon);
711 }
712
713 static void pnv_init(MachineState *machine)
714 {
715 const char *bios_name = machine->firmware ?: FW_FILE_NAME;
716 PnvMachineState *pnv = PNV_MACHINE(machine);
717 MachineClass *mc = MACHINE_GET_CLASS(machine);
718 char *fw_filename;
719 long fw_size;
720 int i;
721 char *chip_typename;
722 DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
723 DeviceState *dev;
724
725 /* allocate RAM */
726 if (machine->ram_size < mc->default_ram_size) {
727 char *sz = size_to_str(mc->default_ram_size);
728 error_report("Invalid RAM size, should be bigger than %s", sz);
729 g_free(sz);
730 exit(EXIT_FAILURE);
731 }
732 memory_region_add_subregion(get_system_memory(), 0, machine->ram);
733
734 /*
735 * Create our simple PNOR device
736 */
737 dev = qdev_new(TYPE_PNV_PNOR);
738 if (pnor) {
739 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
740 }
741 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
742 pnv->pnor = PNV_PNOR(dev);
743
744 /* load skiboot firmware */
745 fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
746 if (!fw_filename) {
747 error_report("Could not find OPAL firmware '%s'", bios_name);
748 exit(1);
749 }
750
751 fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
752 if (fw_size < 0) {
753 error_report("Could not load OPAL firmware '%s'", fw_filename);
754 exit(1);
755 }
756 g_free(fw_filename);
757
758 /* load kernel */
759 if (machine->kernel_filename) {
760 long kernel_size;
761
762 kernel_size = load_image_targphys(machine->kernel_filename,
763 KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
764 if (kernel_size < 0) {
765 error_report("Could not load kernel '%s'",
766 machine->kernel_filename);
767 exit(1);
768 }
769 }
770
771 /* load initrd */
772 if (machine->initrd_filename) {
773 pnv->initrd_base = INITRD_LOAD_ADDR;
774 pnv->initrd_size = load_image_targphys(machine->initrd_filename,
775 pnv->initrd_base, INITRD_MAX_SIZE);
776 if (pnv->initrd_size < 0) {
777 error_report("Could not load initial ram disk '%s'",
778 machine->initrd_filename);
779 exit(1);
780 }
781 }
782
783 /* MSIs are supported on this platform */
784 msi_nonbroken = true;
785
786 /*
787 * Check compatibility of the specified CPU with the machine
788 * default.
789 */
790 if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
791 error_report("invalid CPU model '%s' for %s machine",
792 machine->cpu_type, mc->name);
793 exit(1);
794 }
795
796 /* Create the processor chips */
797 i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
798 chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
799 i, machine->cpu_type);
800 if (!object_class_by_name(chip_typename)) {
801 error_report("invalid chip model '%.*s' for %s machine",
802 i, machine->cpu_type, mc->name);
803 exit(1);
804 }
805
806 pnv->num_chips =
807 machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
808 /*
809 * TODO: should we decide on how many chips we can create based
810 * on #cores and Venice vs. Murano vs. Naples chip type etc...,
811 */
812 if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 4) {
813 error_report("invalid number of chips: '%d'", pnv->num_chips);
814 error_printf("Try '-smp sockets=N'. Valid values are : 1, 2 or 4.\n");
815 exit(1);
816 }
817
818 pnv->chips = g_new0(PnvChip *, pnv->num_chips);
819 for (i = 0; i < pnv->num_chips; i++) {
820 char chip_name[32];
821 Object *chip = OBJECT(qdev_new(chip_typename));
822
823 pnv->chips[i] = PNV_CHIP(chip);
824
825 /*
826 * TODO: put all the memory in one node on chip 0 until we find a
827 * way to specify different ranges for each chip
828 */
829 if (i == 0) {
830 object_property_set_int(chip, "ram-size", machine->ram_size,
831 &error_fatal);
832 }
833
834 snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
835 object_property_add_child(OBJECT(pnv), chip_name, chip);
836 object_property_set_int(chip, "chip-id", PNV_CHIP_HWID(i),
837 &error_fatal);
838 object_property_set_int(chip, "nr-cores", machine->smp.cores,
839 &error_fatal);
840 object_property_set_int(chip, "nr-threads", machine->smp.threads,
841 &error_fatal);
842 /*
843 * The POWER8 machine use the XICS interrupt interface.
844 * Propagate the XICS fabric to the chip and its controllers.
845 */
846 if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
847 object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
848 }
849 if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
850 object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
851 &error_abort);
852 }
853 sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
854 }
855 g_free(chip_typename);
856
857 /* Instantiate ISA bus on chip 0 */
858 pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
859
860 /* Create serial port */
861 serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
862
863 /* Create an RTC ISA device too */
864 mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
865
866 /*
867 * Create the machine BMC simulator and the IPMI BT device for
868 * communication with the BMC
869 */
870 if (defaults_enabled()) {
871 pnv->bmc = pnv_bmc_create(pnv->pnor);
872 pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
873 }
874
875 /*
876 * The PNOR is mapped on the LPC FW address space by the BMC.
877 * Since we can not reach the remote BMC machine with LPC memops,
878 * map it always for now.
879 */
880 memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
881 &pnv->pnor->mmio);
882
883 /*
884 * OpenPOWER systems use a IPMI SEL Event message to notify the
885 * host to powerdown
886 */
887 pnv->powerdown_notifier.notify = pnv_powerdown_notify;
888 qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
889 }
890
891 /*
892 * 0:21 Reserved - Read as zeros
893 * 22:24 Chip ID
894 * 25:28 Core number
895 * 29:31 Thread ID
896 */
897 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
898 {
899 return (chip->chip_id << 7) | (core_id << 3);
900 }
901
902 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
903 Error **errp)
904 {
905 Pnv8Chip *chip8 = PNV8_CHIP(chip);
906 Error *local_err = NULL;
907 Object *obj;
908 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
909
910 obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
911 if (local_err) {
912 error_propagate(errp, local_err);
913 return;
914 }
915
916 pnv_cpu->intc = obj;
917 }
918
919
920 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
921 {
922 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
923
924 icp_reset(ICP(pnv_cpu->intc));
925 }
926
927 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
928 {
929 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
930
931 icp_destroy(ICP(pnv_cpu->intc));
932 pnv_cpu->intc = NULL;
933 }
934
935 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
936 Monitor *mon)
937 {
938 icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
939 }
940
941 /*
942 * 0:48 Reserved - Read as zeroes
943 * 49:52 Node ID
944 * 53:55 Chip ID
945 * 56 Reserved - Read as zero
946 * 57:61 Core number
947 * 62:63 Thread ID
948 *
949 * We only care about the lower bits. uint32_t is fine for the moment.
950 */
951 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
952 {
953 return (chip->chip_id << 8) | (core_id << 2);
954 }
955
956 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
957 {
958 return (chip->chip_id << 8) | (core_id << 2);
959 }
960
961 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
962 Error **errp)
963 {
964 Pnv9Chip *chip9 = PNV9_CHIP(chip);
965 Error *local_err = NULL;
966 Object *obj;
967 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
968
969 /*
970 * The core creates its interrupt presenter but the XIVE interrupt
971 * controller object is initialized afterwards. Hopefully, it's
972 * only used at runtime.
973 */
974 obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
975 &local_err);
976 if (local_err) {
977 error_propagate(errp, local_err);
978 return;
979 }
980
981 pnv_cpu->intc = obj;
982 }
983
984 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
985 {
986 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
987
988 xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
989 }
990
991 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
992 {
993 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
994
995 xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
996 pnv_cpu->intc = NULL;
997 }
998
999 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1000 Monitor *mon)
1001 {
1002 xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1003 }
1004
1005 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1006 Error **errp)
1007 {
1008 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1009
1010 /* Will be defined when the interrupt controller is */
1011 pnv_cpu->intc = NULL;
1012 }
1013
1014 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1015 {
1016 ;
1017 }
1018
1019 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1020 {
1021 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1022
1023 pnv_cpu->intc = NULL;
1024 }
1025
1026 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1027 Monitor *mon)
1028 {
1029 }
1030
1031 /*
1032 * Allowed core identifiers on a POWER8 Processor Chip :
1033 *
1034 * <EX0 reserved>
1035 * EX1 - Venice only
1036 * EX2 - Venice only
1037 * EX3 - Venice only
1038 * EX4
1039 * EX5
1040 * EX6
1041 * <EX7,8 reserved> <reserved>
1042 * EX9 - Venice only
1043 * EX10 - Venice only
1044 * EX11 - Venice only
1045 * EX12
1046 * EX13
1047 * EX14
1048 * <EX15 reserved>
1049 */
1050 #define POWER8E_CORE_MASK (0x7070ull)
1051 #define POWER8_CORE_MASK (0x7e7eull)
1052
1053 /*
1054 * POWER9 has 24 cores, ids starting at 0x0
1055 */
1056 #define POWER9_CORE_MASK (0xffffffffffffffull)
1057
1058
1059 #define POWER10_CORE_MASK (0xffffffffffffffull)
1060
1061 static void pnv_chip_power8_instance_init(Object *obj)
1062 {
1063 PnvChip *chip = PNV_CHIP(obj);
1064 Pnv8Chip *chip8 = PNV8_CHIP(obj);
1065 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1066 int i;
1067
1068 object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1069 (Object **)&chip8->xics,
1070 object_property_allow_set_link,
1071 OBJ_PROP_LINK_STRONG);
1072
1073 object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1074
1075 object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1076
1077 object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1078
1079 object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1080
1081 for (i = 0; i < pcc->num_phbs; i++) {
1082 object_initialize_child(obj, "phb[*]", &chip8->phbs[i], TYPE_PNV_PHB3);
1083 }
1084
1085 /*
1086 * Number of PHBs is the chip default
1087 */
1088 chip->num_phbs = pcc->num_phbs;
1089 }
1090
1091 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1092 {
1093 PnvChip *chip = PNV_CHIP(chip8);
1094 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1095 int i, j;
1096 char *name;
1097
1098 name = g_strdup_printf("icp-%x", chip->chip_id);
1099 memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1100 sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1101 g_free(name);
1102
1103 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1104
1105 /* Map the ICP registers for each thread */
1106 for (i = 0; i < chip->nr_cores; i++) {
1107 PnvCore *pnv_core = chip->cores[i];
1108 int core_hwid = CPU_CORE(pnv_core)->core_id;
1109
1110 for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1111 uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1112 PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1113
1114 memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1115 &icp->mmio);
1116 }
1117 }
1118 }
1119
1120 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1121 {
1122 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1123 PnvChip *chip = PNV_CHIP(dev);
1124 Pnv8Chip *chip8 = PNV8_CHIP(dev);
1125 Pnv8Psi *psi8 = &chip8->psi;
1126 Error *local_err = NULL;
1127 int i;
1128
1129 assert(chip8->xics);
1130
1131 /* XSCOM bridge is first */
1132 pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1133 if (local_err) {
1134 error_propagate(errp, local_err);
1135 return;
1136 }
1137 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1138
1139 pcc->parent_realize(dev, &local_err);
1140 if (local_err) {
1141 error_propagate(errp, local_err);
1142 return;
1143 }
1144
1145 /* Processor Service Interface (PSI) Host Bridge */
1146 object_property_set_int(OBJECT(&chip8->psi), "bar", PNV_PSIHB_BASE(chip),
1147 &error_fatal);
1148 object_property_set_link(OBJECT(&chip8->psi), ICS_PROP_XICS,
1149 OBJECT(chip8->xics), &error_abort);
1150 if (!qdev_realize(DEVICE(&chip8->psi), NULL, errp)) {
1151 return;
1152 }
1153 pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1154 &PNV_PSI(psi8)->xscom_regs);
1155
1156 /* Create LPC controller */
1157 object_property_set_link(OBJECT(&chip8->lpc), "psi", OBJECT(&chip8->psi),
1158 &error_abort);
1159 qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1160 pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1161
1162 chip->fw_mr = &chip8->lpc.isa_fw;
1163 chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1164 (uint64_t) PNV_XSCOM_BASE(chip),
1165 PNV_XSCOM_LPC_BASE);
1166
1167 /*
1168 * Interrupt Management Area. This is the memory region holding
1169 * all the Interrupt Control Presenter (ICP) registers
1170 */
1171 pnv_chip_icp_realize(chip8, &local_err);
1172 if (local_err) {
1173 error_propagate(errp, local_err);
1174 return;
1175 }
1176
1177 /* Create the simplified OCC model */
1178 object_property_set_link(OBJECT(&chip8->occ), "psi", OBJECT(&chip8->psi),
1179 &error_abort);
1180 if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1181 return;
1182 }
1183 pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1184
1185 /* OCC SRAM model */
1186 memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1187 &chip8->occ.sram_regs);
1188
1189 /* HOMER */
1190 object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1191 &error_abort);
1192 if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1193 return;
1194 }
1195 /* Homer Xscom region */
1196 pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1197
1198 /* Homer mmio region */
1199 memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1200 &chip8->homer.regs);
1201
1202 /* PHB3 controllers */
1203 for (i = 0; i < chip->num_phbs; i++) {
1204 PnvPHB3 *phb = &chip8->phbs[i];
1205 PnvPBCQState *pbcq = &phb->pbcq;
1206
1207 object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1208 object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1209 &error_fatal);
1210 if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1211 return;
1212 }
1213
1214 /* Populate the XSCOM address space. */
1215 pnv_xscom_add_subregion(chip,
1216 PNV_XSCOM_PBCQ_NEST_BASE + 0x400 * phb->phb_id,
1217 &pbcq->xscom_nest_regs);
1218 pnv_xscom_add_subregion(chip,
1219 PNV_XSCOM_PBCQ_PCI_BASE + 0x400 * phb->phb_id,
1220 &pbcq->xscom_pci_regs);
1221 pnv_xscom_add_subregion(chip,
1222 PNV_XSCOM_PBCQ_SPCI_BASE + 0x040 * phb->phb_id,
1223 &pbcq->xscom_spci_regs);
1224 }
1225 }
1226
1227 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1228 {
1229 addr &= (PNV_XSCOM_SIZE - 1);
1230 return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1231 }
1232
1233 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1234 {
1235 DeviceClass *dc = DEVICE_CLASS(klass);
1236 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1237
1238 k->chip_cfam_id = 0x221ef04980000000ull; /* P8 Murano DD2.1 */
1239 k->cores_mask = POWER8E_CORE_MASK;
1240 k->num_phbs = 3;
1241 k->core_pir = pnv_chip_core_pir_p8;
1242 k->intc_create = pnv_chip_power8_intc_create;
1243 k->intc_reset = pnv_chip_power8_intc_reset;
1244 k->intc_destroy = pnv_chip_power8_intc_destroy;
1245 k->intc_print_info = pnv_chip_power8_intc_print_info;
1246 k->isa_create = pnv_chip_power8_isa_create;
1247 k->dt_populate = pnv_chip_power8_dt_populate;
1248 k->pic_print_info = pnv_chip_power8_pic_print_info;
1249 k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1250 k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1251 dc->desc = "PowerNV Chip POWER8E";
1252
1253 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1254 &k->parent_realize);
1255 }
1256
1257 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1258 {
1259 DeviceClass *dc = DEVICE_CLASS(klass);
1260 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1261
1262 k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1263 k->cores_mask = POWER8_CORE_MASK;
1264 k->num_phbs = 3;
1265 k->core_pir = pnv_chip_core_pir_p8;
1266 k->intc_create = pnv_chip_power8_intc_create;
1267 k->intc_reset = pnv_chip_power8_intc_reset;
1268 k->intc_destroy = pnv_chip_power8_intc_destroy;
1269 k->intc_print_info = pnv_chip_power8_intc_print_info;
1270 k->isa_create = pnv_chip_power8_isa_create;
1271 k->dt_populate = pnv_chip_power8_dt_populate;
1272 k->pic_print_info = pnv_chip_power8_pic_print_info;
1273 k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1274 k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1275 dc->desc = "PowerNV Chip POWER8";
1276
1277 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1278 &k->parent_realize);
1279 }
1280
1281 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1282 {
1283 DeviceClass *dc = DEVICE_CLASS(klass);
1284 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1285
1286 k->chip_cfam_id = 0x120d304980000000ull; /* P8 Naples DD1.0 */
1287 k->cores_mask = POWER8_CORE_MASK;
1288 k->num_phbs = 3;
1289 k->core_pir = pnv_chip_core_pir_p8;
1290 k->intc_create = pnv_chip_power8_intc_create;
1291 k->intc_reset = pnv_chip_power8_intc_reset;
1292 k->intc_destroy = pnv_chip_power8_intc_destroy;
1293 k->intc_print_info = pnv_chip_power8_intc_print_info;
1294 k->isa_create = pnv_chip_power8nvl_isa_create;
1295 k->dt_populate = pnv_chip_power8_dt_populate;
1296 k->pic_print_info = pnv_chip_power8_pic_print_info;
1297 k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1298 k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1299 dc->desc = "PowerNV Chip POWER8NVL";
1300
1301 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1302 &k->parent_realize);
1303 }
1304
1305 static void pnv_chip_power9_instance_init(Object *obj)
1306 {
1307 PnvChip *chip = PNV_CHIP(obj);
1308 Pnv9Chip *chip9 = PNV9_CHIP(obj);
1309 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1310 int i;
1311
1312 object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1313 object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1314 "xive-fabric");
1315
1316 object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1317
1318 object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1319
1320 object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1321
1322 object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1323
1324 for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1325 object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1326 TYPE_PNV_PHB4_PEC);
1327 }
1328
1329 /*
1330 * Number of PHBs is the chip default
1331 */
1332 chip->num_phbs = pcc->num_phbs;
1333 }
1334
1335 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1336 {
1337 PnvChip *chip = PNV_CHIP(chip9);
1338 int i;
1339
1340 chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1341 chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1342
1343 for (i = 0; i < chip9->nr_quads; i++) {
1344 char eq_name[32];
1345 PnvQuad *eq = &chip9->quads[i];
1346 PnvCore *pnv_core = chip->cores[i * 4];
1347 int core_id = CPU_CORE(pnv_core)->core_id;
1348
1349 snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1350 object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1351 sizeof(*eq), TYPE_PNV_QUAD,
1352 &error_fatal, NULL);
1353
1354 object_property_set_int(OBJECT(eq), "id", core_id, &error_fatal);
1355 qdev_realize(DEVICE(eq), NULL, &error_fatal);
1356
1357 pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1358 &eq->xscom_regs);
1359 }
1360 }
1361
1362 static void pnv_chip_power9_phb_realize(PnvChip *chip, Error **errp)
1363 {
1364 Pnv9Chip *chip9 = PNV9_CHIP(chip);
1365 int i, j;
1366 int phb_id = 0;
1367
1368 for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1369 PnvPhb4PecState *pec = &chip9->pecs[i];
1370 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1371 uint32_t pec_nest_base;
1372 uint32_t pec_pci_base;
1373
1374 object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1375 /*
1376 * PEC0 -> 1 stack
1377 * PEC1 -> 2 stacks
1378 * PEC2 -> 3 stacks
1379 */
1380 object_property_set_int(OBJECT(pec), "num-stacks", i + 1,
1381 &error_fatal);
1382 object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1383 &error_fatal);
1384 object_property_set_link(OBJECT(pec), "system-memory",
1385 OBJECT(get_system_memory()), &error_abort);
1386 if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1387 return;
1388 }
1389
1390 pec_nest_base = pecc->xscom_nest_base(pec);
1391 pec_pci_base = pecc->xscom_pci_base(pec);
1392
1393 pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1394 pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1395
1396 for (j = 0; j < pec->num_stacks && phb_id < chip->num_phbs;
1397 j++, phb_id++) {
1398 PnvPhb4PecStack *stack = &pec->stacks[j];
1399 Object *obj = OBJECT(&stack->phb);
1400
1401 object_property_set_int(obj, "index", phb_id, &error_fatal);
1402 object_property_set_int(obj, "chip-id", chip->chip_id,
1403 &error_fatal);
1404 object_property_set_int(obj, "version", PNV_PHB4_VERSION,
1405 &error_fatal);
1406 object_property_set_int(obj, "device-id", PNV_PHB4_DEVICE_ID,
1407 &error_fatal);
1408 object_property_set_link(obj, "stack", OBJECT(stack),
1409 &error_abort);
1410 if (!sysbus_realize(SYS_BUS_DEVICE(obj), errp)) {
1411 return;
1412 }
1413
1414 /* Populate the XSCOM address space. */
1415 pnv_xscom_add_subregion(chip,
1416 pec_nest_base + 0x40 * (stack->stack_no + 1),
1417 &stack->nest_regs_mr);
1418 pnv_xscom_add_subregion(chip,
1419 pec_pci_base + 0x40 * (stack->stack_no + 1),
1420 &stack->pci_regs_mr);
1421 pnv_xscom_add_subregion(chip,
1422 pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 +
1423 0x40 * stack->stack_no,
1424 &stack->phb_regs_mr);
1425 }
1426 }
1427 }
1428
1429 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1430 {
1431 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1432 Pnv9Chip *chip9 = PNV9_CHIP(dev);
1433 PnvChip *chip = PNV_CHIP(dev);
1434 Pnv9Psi *psi9 = &chip9->psi;
1435 Error *local_err = NULL;
1436
1437 /* XSCOM bridge is first */
1438 pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1439 if (local_err) {
1440 error_propagate(errp, local_err);
1441 return;
1442 }
1443 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1444
1445 pcc->parent_realize(dev, &local_err);
1446 if (local_err) {
1447 error_propagate(errp, local_err);
1448 return;
1449 }
1450
1451 pnv_chip_quad_realize(chip9, &local_err);
1452 if (local_err) {
1453 error_propagate(errp, local_err);
1454 return;
1455 }
1456
1457 /* XIVE interrupt controller (POWER9) */
1458 object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1459 PNV9_XIVE_IC_BASE(chip), &error_fatal);
1460 object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1461 PNV9_XIVE_VC_BASE(chip), &error_fatal);
1462 object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1463 PNV9_XIVE_PC_BASE(chip), &error_fatal);
1464 object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1465 PNV9_XIVE_TM_BASE(chip), &error_fatal);
1466 object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1467 &error_abort);
1468 if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1469 return;
1470 }
1471 pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1472 &chip9->xive.xscom_regs);
1473
1474 /* Processor Service Interface (PSI) Host Bridge */
1475 object_property_set_int(OBJECT(&chip9->psi), "bar", PNV9_PSIHB_BASE(chip),
1476 &error_fatal);
1477 if (!qdev_realize(DEVICE(&chip9->psi), NULL, errp)) {
1478 return;
1479 }
1480 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1481 &PNV_PSI(psi9)->xscom_regs);
1482
1483 /* LPC */
1484 object_property_set_link(OBJECT(&chip9->lpc), "psi", OBJECT(&chip9->psi),
1485 &error_abort);
1486 if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1487 return;
1488 }
1489 memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1490 &chip9->lpc.xscom_regs);
1491
1492 chip->fw_mr = &chip9->lpc.isa_fw;
1493 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1494 (uint64_t) PNV9_LPCM_BASE(chip));
1495
1496 /* Create the simplified OCC model */
1497 object_property_set_link(OBJECT(&chip9->occ), "psi", OBJECT(&chip9->psi),
1498 &error_abort);
1499 if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1500 return;
1501 }
1502 pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1503
1504 /* OCC SRAM model */
1505 memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1506 &chip9->occ.sram_regs);
1507
1508 /* HOMER */
1509 object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1510 &error_abort);
1511 if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1512 return;
1513 }
1514 /* Homer Xscom region */
1515 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1516
1517 /* Homer mmio region */
1518 memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1519 &chip9->homer.regs);
1520
1521 /* PHBs */
1522 pnv_chip_power9_phb_realize(chip, &local_err);
1523 if (local_err) {
1524 error_propagate(errp, local_err);
1525 return;
1526 }
1527 }
1528
1529 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1530 {
1531 addr &= (PNV9_XSCOM_SIZE - 1);
1532 return addr >> 3;
1533 }
1534
1535 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1536 {
1537 DeviceClass *dc = DEVICE_CLASS(klass);
1538 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1539
1540 k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1541 k->cores_mask = POWER9_CORE_MASK;
1542 k->core_pir = pnv_chip_core_pir_p9;
1543 k->intc_create = pnv_chip_power9_intc_create;
1544 k->intc_reset = pnv_chip_power9_intc_reset;
1545 k->intc_destroy = pnv_chip_power9_intc_destroy;
1546 k->intc_print_info = pnv_chip_power9_intc_print_info;
1547 k->isa_create = pnv_chip_power9_isa_create;
1548 k->dt_populate = pnv_chip_power9_dt_populate;
1549 k->pic_print_info = pnv_chip_power9_pic_print_info;
1550 k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1551 k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1552 dc->desc = "PowerNV Chip POWER9";
1553 k->num_phbs = 6;
1554
1555 device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1556 &k->parent_realize);
1557 }
1558
1559 static void pnv_chip_power10_instance_init(Object *obj)
1560 {
1561 Pnv10Chip *chip10 = PNV10_CHIP(obj);
1562
1563 object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1564 object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1565 }
1566
1567 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1568 {
1569 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1570 PnvChip *chip = PNV_CHIP(dev);
1571 Pnv10Chip *chip10 = PNV10_CHIP(dev);
1572 Error *local_err = NULL;
1573
1574 /* XSCOM bridge is first */
1575 pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1576 if (local_err) {
1577 error_propagate(errp, local_err);
1578 return;
1579 }
1580 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1581
1582 pcc->parent_realize(dev, &local_err);
1583 if (local_err) {
1584 error_propagate(errp, local_err);
1585 return;
1586 }
1587
1588 /* Processor Service Interface (PSI) Host Bridge */
1589 object_property_set_int(OBJECT(&chip10->psi), "bar",
1590 PNV10_PSIHB_BASE(chip), &error_fatal);
1591 if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1592 return;
1593 }
1594 pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1595 &PNV_PSI(&chip10->psi)->xscom_regs);
1596
1597 /* LPC */
1598 object_property_set_link(OBJECT(&chip10->lpc), "psi",
1599 OBJECT(&chip10->psi), &error_abort);
1600 if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1601 return;
1602 }
1603 memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1604 &chip10->lpc.xscom_regs);
1605
1606 chip->fw_mr = &chip10->lpc.isa_fw;
1607 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1608 (uint64_t) PNV10_LPCM_BASE(chip));
1609 }
1610
1611 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1612 {
1613 addr &= (PNV10_XSCOM_SIZE - 1);
1614 return addr >> 3;
1615 }
1616
1617 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1618 {
1619 DeviceClass *dc = DEVICE_CLASS(klass);
1620 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1621
1622 k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1623 k->cores_mask = POWER10_CORE_MASK;
1624 k->core_pir = pnv_chip_core_pir_p10;
1625 k->intc_create = pnv_chip_power10_intc_create;
1626 k->intc_reset = pnv_chip_power10_intc_reset;
1627 k->intc_destroy = pnv_chip_power10_intc_destroy;
1628 k->intc_print_info = pnv_chip_power10_intc_print_info;
1629 k->isa_create = pnv_chip_power10_isa_create;
1630 k->dt_populate = pnv_chip_power10_dt_populate;
1631 k->pic_print_info = pnv_chip_power10_pic_print_info;
1632 k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1633 k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1634 dc->desc = "PowerNV Chip POWER10";
1635
1636 device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1637 &k->parent_realize);
1638 }
1639
1640 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1641 {
1642 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1643 int cores_max;
1644
1645 /*
1646 * No custom mask for this chip, let's use the default one from *
1647 * the chip class
1648 */
1649 if (!chip->cores_mask) {
1650 chip->cores_mask = pcc->cores_mask;
1651 }
1652
1653 /* filter alien core ids ! some are reserved */
1654 if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1655 error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1656 chip->cores_mask);
1657 return;
1658 }
1659 chip->cores_mask &= pcc->cores_mask;
1660
1661 /* now that we have a sane layout, let check the number of cores */
1662 cores_max = ctpop64(chip->cores_mask);
1663 if (chip->nr_cores > cores_max) {
1664 error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1665 cores_max);
1666 return;
1667 }
1668 }
1669
1670 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1671 {
1672 Error *error = NULL;
1673 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1674 const char *typename = pnv_chip_core_typename(chip);
1675 int i, core_hwid;
1676 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1677
1678 if (!object_class_by_name(typename)) {
1679 error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1680 return;
1681 }
1682
1683 /* Cores */
1684 pnv_chip_core_sanitize(chip, &error);
1685 if (error) {
1686 error_propagate(errp, error);
1687 return;
1688 }
1689
1690 chip->cores = g_new0(PnvCore *, chip->nr_cores);
1691
1692 for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1693 && (i < chip->nr_cores); core_hwid++) {
1694 char core_name[32];
1695 PnvCore *pnv_core;
1696 uint64_t xscom_core_base;
1697
1698 if (!(chip->cores_mask & (1ull << core_hwid))) {
1699 continue;
1700 }
1701
1702 pnv_core = PNV_CORE(object_new(typename));
1703
1704 snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1705 object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
1706 chip->cores[i] = pnv_core;
1707 object_property_set_int(OBJECT(pnv_core), "nr-threads",
1708 chip->nr_threads, &error_fatal);
1709 object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
1710 core_hwid, &error_fatal);
1711 object_property_set_int(OBJECT(pnv_core), "pir",
1712 pcc->core_pir(chip, core_hwid), &error_fatal);
1713 object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
1714 &error_fatal);
1715 object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
1716 &error_abort);
1717 qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
1718
1719 /* Each core has an XSCOM MMIO region */
1720 xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1721
1722 pnv_xscom_add_subregion(chip, xscom_core_base,
1723 &pnv_core->xscom_regs);
1724 i++;
1725 }
1726 }
1727
1728 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1729 {
1730 PnvChip *chip = PNV_CHIP(dev);
1731 Error *error = NULL;
1732
1733 /* Cores */
1734 pnv_chip_core_realize(chip, &error);
1735 if (error) {
1736 error_propagate(errp, error);
1737 return;
1738 }
1739 }
1740
1741 static Property pnv_chip_properties[] = {
1742 DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1743 DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1744 DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1745 DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1746 DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1747 DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
1748 DEFINE_PROP_UINT32("num-phbs", PnvChip, num_phbs, 0),
1749 DEFINE_PROP_END_OF_LIST(),
1750 };
1751
1752 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1753 {
1754 DeviceClass *dc = DEVICE_CLASS(klass);
1755
1756 set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1757 dc->realize = pnv_chip_realize;
1758 device_class_set_props(dc, pnv_chip_properties);
1759 dc->desc = "PowerNV Chip";
1760 }
1761
1762 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1763 {
1764 int i, j;
1765
1766 for (i = 0; i < chip->nr_cores; i++) {
1767 PnvCore *pc = chip->cores[i];
1768 CPUCore *cc = CPU_CORE(pc);
1769
1770 for (j = 0; j < cc->nr_threads; j++) {
1771 if (ppc_cpu_pir(pc->threads[j]) == pir) {
1772 return pc->threads[j];
1773 }
1774 }
1775 }
1776 return NULL;
1777 }
1778
1779 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1780 {
1781 PnvMachineState *pnv = PNV_MACHINE(xi);
1782 int i, j;
1783
1784 for (i = 0; i < pnv->num_chips; i++) {
1785 PnvChip *chip = pnv->chips[i];
1786 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1787
1788 if (ics_valid_irq(&chip8->psi.ics, irq)) {
1789 return &chip8->psi.ics;
1790 }
1791 for (j = 0; j < chip->num_phbs; j++) {
1792 if (ics_valid_irq(&chip8->phbs[j].lsis, irq)) {
1793 return &chip8->phbs[j].lsis;
1794 }
1795 if (ics_valid_irq(ICS(&chip8->phbs[j].msis), irq)) {
1796 return ICS(&chip8->phbs[j].msis);
1797 }
1798 }
1799 }
1800 return NULL;
1801 }
1802
1803 static void pnv_ics_resend(XICSFabric *xi)
1804 {
1805 PnvMachineState *pnv = PNV_MACHINE(xi);
1806 int i, j;
1807
1808 for (i = 0; i < pnv->num_chips; i++) {
1809 PnvChip *chip = pnv->chips[i];
1810 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1811
1812 ics_resend(&chip8->psi.ics);
1813 for (j = 0; j < chip->num_phbs; j++) {
1814 ics_resend(&chip8->phbs[j].lsis);
1815 ics_resend(ICS(&chip8->phbs[j].msis));
1816 }
1817 }
1818 }
1819
1820 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1821 {
1822 PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1823
1824 return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1825 }
1826
1827 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1828 Monitor *mon)
1829 {
1830 PnvMachineState *pnv = PNV_MACHINE(obj);
1831 int i;
1832 CPUState *cs;
1833
1834 CPU_FOREACH(cs) {
1835 PowerPCCPU *cpu = POWERPC_CPU(cs);
1836
1837 /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
1838 PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
1839 mon);
1840 }
1841
1842 for (i = 0; i < pnv->num_chips; i++) {
1843 PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1844 }
1845 }
1846
1847 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
1848 uint8_t nvt_blk, uint32_t nvt_idx,
1849 bool cam_ignore, uint8_t priority,
1850 uint32_t logic_serv,
1851 XiveTCTXMatch *match)
1852 {
1853 PnvMachineState *pnv = PNV_MACHINE(xfb);
1854 int total_count = 0;
1855 int i;
1856
1857 for (i = 0; i < pnv->num_chips; i++) {
1858 Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
1859 XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
1860 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
1861 int count;
1862
1863 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
1864 priority, logic_serv, match);
1865
1866 if (count < 0) {
1867 return count;
1868 }
1869
1870 total_count += count;
1871 }
1872
1873 return total_count;
1874 }
1875
1876 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1877 {
1878 MachineClass *mc = MACHINE_CLASS(oc);
1879 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1880 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1881 static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
1882
1883 mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1884 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1885
1886 xic->icp_get = pnv_icp_get;
1887 xic->ics_get = pnv_ics_get;
1888 xic->ics_resend = pnv_ics_resend;
1889
1890 pmc->compat = compat;
1891 pmc->compat_size = sizeof(compat);
1892 }
1893
1894 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1895 {
1896 MachineClass *mc = MACHINE_CLASS(oc);
1897 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
1898 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1899 static const char compat[] = "qemu,powernv9\0ibm,powernv";
1900
1901 mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1902 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1903 xfc->match_nvt = pnv_match_nvt;
1904
1905 mc->alias = "powernv";
1906
1907 pmc->compat = compat;
1908 pmc->compat_size = sizeof(compat);
1909 pmc->dt_power_mgt = pnv_dt_power_mgt;
1910 }
1911
1912 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
1913 {
1914 MachineClass *mc = MACHINE_CLASS(oc);
1915 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1916 static const char compat[] = "qemu,powernv10\0ibm,powernv";
1917
1918 mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
1919 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v1.0");
1920
1921 pmc->compat = compat;
1922 pmc->compat_size = sizeof(compat);
1923 pmc->dt_power_mgt = pnv_dt_power_mgt;
1924 }
1925
1926 static bool pnv_machine_get_hb(Object *obj, Error **errp)
1927 {
1928 PnvMachineState *pnv = PNV_MACHINE(obj);
1929
1930 return !!pnv->fw_load_addr;
1931 }
1932
1933 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
1934 {
1935 PnvMachineState *pnv = PNV_MACHINE(obj);
1936
1937 if (value) {
1938 pnv->fw_load_addr = 0x8000000;
1939 }
1940 }
1941
1942 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
1943 {
1944 PowerPCCPU *cpu = POWERPC_CPU(cs);
1945 CPUPPCState *env = &cpu->env;
1946
1947 cpu_synchronize_state(cs);
1948 ppc_cpu_do_system_reset(cs);
1949 if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
1950 /*
1951 * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
1952 * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
1953 * (PPC_BIT(43)).
1954 */
1955 if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
1956 warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
1957 env->spr[SPR_SRR1] |= SRR1_WAKERESET;
1958 }
1959 } else {
1960 /*
1961 * For non-powersave system resets, SRR1[42:45] are defined to be
1962 * implementation-dependent. The POWER9 User Manual specifies that
1963 * an external (SCOM driven, which may come from a BMC nmi command or
1964 * another CPU requesting a NMI IPI) system reset exception should be
1965 * 0b0010 (PPC_BIT(44)).
1966 */
1967 env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
1968 }
1969 }
1970
1971 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
1972 {
1973 CPUState *cs;
1974
1975 CPU_FOREACH(cs) {
1976 async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
1977 }
1978 }
1979
1980 static void pnv_machine_class_init(ObjectClass *oc, void *data)
1981 {
1982 MachineClass *mc = MACHINE_CLASS(oc);
1983 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1984 NMIClass *nc = NMI_CLASS(oc);
1985
1986 mc->desc = "IBM PowerNV (Non-Virtualized)";
1987 mc->init = pnv_init;
1988 mc->reset = pnv_reset;
1989 mc->max_cpus = MAX_CPUS;
1990 /* Pnv provides a AHCI device for storage */
1991 mc->block_default_type = IF_IDE;
1992 mc->no_parallel = 1;
1993 mc->default_boot_order = NULL;
1994 /*
1995 * RAM defaults to less than 2048 for 32-bit hosts, and large
1996 * enough to fit the maximum initrd size at it's load address
1997 */
1998 mc->default_ram_size = 1 * GiB;
1999 mc->default_ram_id = "pnv.ram";
2000 ispc->print_info = pnv_pic_print_info;
2001 nc->nmi_monitor_handler = pnv_nmi;
2002
2003 object_class_property_add_bool(oc, "hb-mode",
2004 pnv_machine_get_hb, pnv_machine_set_hb);
2005 object_class_property_set_description(oc, "hb-mode",
2006 "Use a hostboot like boot loader");
2007 }
2008
2009 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2010 { \
2011 .name = type, \
2012 .class_init = class_initfn, \
2013 .parent = TYPE_PNV8_CHIP, \
2014 }
2015
2016 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2017 { \
2018 .name = type, \
2019 .class_init = class_initfn, \
2020 .parent = TYPE_PNV9_CHIP, \
2021 }
2022
2023 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2024 { \
2025 .name = type, \
2026 .class_init = class_initfn, \
2027 .parent = TYPE_PNV10_CHIP, \
2028 }
2029
2030 static const TypeInfo types[] = {
2031 {
2032 .name = MACHINE_TYPE_NAME("powernv10"),
2033 .parent = TYPE_PNV_MACHINE,
2034 .class_init = pnv_machine_power10_class_init,
2035 },
2036 {
2037 .name = MACHINE_TYPE_NAME("powernv9"),
2038 .parent = TYPE_PNV_MACHINE,
2039 .class_init = pnv_machine_power9_class_init,
2040 .interfaces = (InterfaceInfo[]) {
2041 { TYPE_XIVE_FABRIC },
2042 { },
2043 },
2044 },
2045 {
2046 .name = MACHINE_TYPE_NAME("powernv8"),
2047 .parent = TYPE_PNV_MACHINE,
2048 .class_init = pnv_machine_power8_class_init,
2049 .interfaces = (InterfaceInfo[]) {
2050 { TYPE_XICS_FABRIC },
2051 { },
2052 },
2053 },
2054 {
2055 .name = TYPE_PNV_MACHINE,
2056 .parent = TYPE_MACHINE,
2057 .abstract = true,
2058 .instance_size = sizeof(PnvMachineState),
2059 .class_init = pnv_machine_class_init,
2060 .class_size = sizeof(PnvMachineClass),
2061 .interfaces = (InterfaceInfo[]) {
2062 { TYPE_INTERRUPT_STATS_PROVIDER },
2063 { TYPE_NMI },
2064 { },
2065 },
2066 },
2067 {
2068 .name = TYPE_PNV_CHIP,
2069 .parent = TYPE_SYS_BUS_DEVICE,
2070 .class_init = pnv_chip_class_init,
2071 .instance_size = sizeof(PnvChip),
2072 .class_size = sizeof(PnvChipClass),
2073 .abstract = true,
2074 },
2075
2076 /*
2077 * P10 chip and variants
2078 */
2079 {
2080 .name = TYPE_PNV10_CHIP,
2081 .parent = TYPE_PNV_CHIP,
2082 .instance_init = pnv_chip_power10_instance_init,
2083 .instance_size = sizeof(Pnv10Chip),
2084 },
2085 DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2086
2087 /*
2088 * P9 chip and variants
2089 */
2090 {
2091 .name = TYPE_PNV9_CHIP,
2092 .parent = TYPE_PNV_CHIP,
2093 .instance_init = pnv_chip_power9_instance_init,
2094 .instance_size = sizeof(Pnv9Chip),
2095 },
2096 DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2097
2098 /*
2099 * P8 chip and variants
2100 */
2101 {
2102 .name = TYPE_PNV8_CHIP,
2103 .parent = TYPE_PNV_CHIP,
2104 .instance_init = pnv_chip_power8_instance_init,
2105 .instance_size = sizeof(Pnv8Chip),
2106 },
2107 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2108 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2109 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2110 pnv_chip_power8nvl_class_init),
2111 };
2112
2113 DEFINE_TYPES(types)