Merge tag 'seabios-20211203-pull-request' of git://git.kraxel.org/qemu into staging
[qemu.git] / hw / ppc / pnv_psi.c
1 /*
2 * QEMU PowerPC PowerNV Processor Service Interface (PSI) model
3 *
4 * Copyright (c) 2015-2017, IBM Corporation.
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "hw/irq.h"
22 #include "target/ppc/cpu.h"
23 #include "qemu/log.h"
24 #include "qemu/module.h"
25 #include "sysemu/reset.h"
26 #include "qapi/error.h"
27 #include "monitor/monitor.h"
28
29
30 #include "hw/ppc/fdt.h"
31 #include "hw/ppc/pnv.h"
32 #include "hw/ppc/pnv_xscom.h"
33 #include "hw/qdev-properties.h"
34 #include "hw/ppc/pnv_psi.h"
35
36 #include <libfdt.h>
37
38 #define PSIHB_XSCOM_FIR_RW 0x00
39 #define PSIHB_XSCOM_FIR_AND 0x01
40 #define PSIHB_XSCOM_FIR_OR 0x02
41 #define PSIHB_XSCOM_FIRMASK_RW 0x03
42 #define PSIHB_XSCOM_FIRMASK_AND 0x04
43 #define PSIHB_XSCOM_FIRMASK_OR 0x05
44 #define PSIHB_XSCOM_FIRACT0 0x06
45 #define PSIHB_XSCOM_FIRACT1 0x07
46
47 /* Host Bridge Base Address Register */
48 #define PSIHB_XSCOM_BAR 0x0a
49 #define PSIHB_BAR_EN 0x0000000000000001ull
50
51 /* FSP Base Address Register */
52 #define PSIHB_XSCOM_FSPBAR 0x0b
53
54 /* PSI Host Bridge Control/Status Register */
55 #define PSIHB_XSCOM_CR 0x0e
56 #define PSIHB_CR_FSP_CMD_ENABLE 0x8000000000000000ull
57 #define PSIHB_CR_FSP_MMIO_ENABLE 0x4000000000000000ull
58 #define PSIHB_CR_FSP_IRQ_ENABLE 0x1000000000000000ull
59 #define PSIHB_CR_FSP_ERR_RSP_ENABLE 0x0800000000000000ull
60 #define PSIHB_CR_PSI_LINK_ENABLE 0x0400000000000000ull
61 #define PSIHB_CR_FSP_RESET 0x0200000000000000ull
62 #define PSIHB_CR_PSIHB_RESET 0x0100000000000000ull
63 #define PSIHB_CR_PSI_IRQ 0x0000800000000000ull
64 #define PSIHB_CR_FSP_IRQ 0x0000400000000000ull
65 #define PSIHB_CR_FSP_LINK_ACTIVE 0x0000200000000000ull
66 #define PSIHB_CR_IRQ_CMD_EXPECT 0x0000010000000000ull
67 /* and more ... */
68
69 /* PSIHB Status / Error Mask Register */
70 #define PSIHB_XSCOM_SEMR 0x0f
71
72 /* XIVR, to signal interrupts to the CEC firmware. more XIVR below. */
73 #define PSIHB_XSCOM_XIVR_FSP 0x10
74 #define PSIHB_XIVR_SERVER_SH 40
75 #define PSIHB_XIVR_SERVER_MSK (0xffffull << PSIHB_XIVR_SERVER_SH)
76 #define PSIHB_XIVR_PRIO_SH 32
77 #define PSIHB_XIVR_PRIO_MSK (0xffull << PSIHB_XIVR_PRIO_SH)
78 #define PSIHB_XIVR_SRC_SH 29
79 #define PSIHB_XIVR_SRC_MSK (0x7ull << PSIHB_XIVR_SRC_SH)
80 #define PSIHB_XIVR_PENDING 0x01000000ull
81
82 /* PSI Host Bridge Set Control/ Status Register */
83 #define PSIHB_XSCOM_SCR 0x12
84
85 /* PSI Host Bridge Clear Control/ Status Register */
86 #define PSIHB_XSCOM_CCR 0x13
87
88 /* DMA Upper Address Register */
89 #define PSIHB_XSCOM_DMA_UPADD 0x14
90
91 /* Interrupt Status */
92 #define PSIHB_XSCOM_IRQ_STAT 0x15
93 #define PSIHB_IRQ_STAT_OCC 0x0000001000000000ull
94 #define PSIHB_IRQ_STAT_FSI 0x0000000800000000ull
95 #define PSIHB_IRQ_STAT_LPCI2C 0x0000000400000000ull
96 #define PSIHB_IRQ_STAT_LOCERR 0x0000000200000000ull
97 #define PSIHB_IRQ_STAT_EXT 0x0000000100000000ull
98
99 /* remaining XIVR */
100 #define PSIHB_XSCOM_XIVR_OCC 0x16
101 #define PSIHB_XSCOM_XIVR_FSI 0x17
102 #define PSIHB_XSCOM_XIVR_LPCI2C 0x18
103 #define PSIHB_XSCOM_XIVR_LOCERR 0x19
104 #define PSIHB_XSCOM_XIVR_EXT 0x1a
105
106 /* Interrupt Requester Source Compare Register */
107 #define PSIHB_XSCOM_IRSN 0x1b
108 #define PSIHB_IRSN_COMP_SH 45
109 #define PSIHB_IRSN_COMP_MSK (0x7ffffull << PSIHB_IRSN_COMP_SH)
110 #define PSIHB_IRSN_IRQ_MUX 0x0000000800000000ull
111 #define PSIHB_IRSN_IRQ_RESET 0x0000000400000000ull
112 #define PSIHB_IRSN_DOWNSTREAM_EN 0x0000000200000000ull
113 #define PSIHB_IRSN_UPSTREAM_EN 0x0000000100000000ull
114 #define PSIHB_IRSN_COMPMASK_SH 13
115 #define PSIHB_IRSN_COMPMASK_MSK (0x7ffffull << PSIHB_IRSN_COMPMASK_SH)
116
117 #define PSIHB_BAR_MASK 0x0003fffffff00000ull
118 #define PSIHB_FSPBAR_MASK 0x0003ffff00000000ull
119
120 #define PSIHB9_BAR_MASK 0x00fffffffff00000ull
121 #define PSIHB9_FSPBAR_MASK 0x00ffffff00000000ull
122
123 #define PSIHB_REG(addr) (((addr) >> 3) + PSIHB_XSCOM_BAR)
124
125 static void pnv_psi_set_bar(PnvPsi *psi, uint64_t bar)
126 {
127 PnvPsiClass *ppc = PNV_PSI_GET_CLASS(psi);
128 MemoryRegion *sysmem = get_system_memory();
129 uint64_t old = psi->regs[PSIHB_XSCOM_BAR];
130
131 psi->regs[PSIHB_XSCOM_BAR] = bar & (ppc->bar_mask | PSIHB_BAR_EN);
132
133 /* Update MR, always remove it first */
134 if (old & PSIHB_BAR_EN) {
135 memory_region_del_subregion(sysmem, &psi->regs_mr);
136 }
137
138 /* Then add it back if needed */
139 if (bar & PSIHB_BAR_EN) {
140 uint64_t addr = bar & ppc->bar_mask;
141 memory_region_add_subregion(sysmem, addr, &psi->regs_mr);
142 }
143 }
144
145 static void pnv_psi_update_fsp_mr(PnvPsi *psi)
146 {
147 /* TODO: Update FSP MR if/when we support FSP BAR */
148 }
149
150 static void pnv_psi_set_cr(PnvPsi *psi, uint64_t cr)
151 {
152 uint64_t old = psi->regs[PSIHB_XSCOM_CR];
153
154 psi->regs[PSIHB_XSCOM_CR] = cr;
155
156 /* Check some bit changes */
157 if ((old ^ psi->regs[PSIHB_XSCOM_CR]) & PSIHB_CR_FSP_MMIO_ENABLE) {
158 pnv_psi_update_fsp_mr(psi);
159 }
160 }
161
162 static void pnv_psi_set_irsn(PnvPsi *psi, uint64_t val)
163 {
164 ICSState *ics = &PNV8_PSI(psi)->ics;
165
166 /* In this model we ignore the up/down enable bits for now
167 * as SW doesn't use them (other than setting them at boot).
168 * We ignore IRQ_MUX, its meaning isn't clear and we don't use
169 * it and finally we ignore reset (XXX fix that ?)
170 */
171 psi->regs[PSIHB_XSCOM_IRSN] = val & (PSIHB_IRSN_COMP_MSK |
172 PSIHB_IRSN_IRQ_MUX |
173 PSIHB_IRSN_IRQ_RESET |
174 PSIHB_IRSN_DOWNSTREAM_EN |
175 PSIHB_IRSN_UPSTREAM_EN);
176
177 /* We ignore the compare mask as well, our ICS emulation is too
178 * simplistic to make any use if it, and we extract the offset
179 * from the compare value
180 */
181 ics->offset = (val & PSIHB_IRSN_COMP_MSK) >> PSIHB_IRSN_COMP_SH;
182 }
183
184 /*
185 * FSP and PSI interrupts are muxed under the same number.
186 */
187 static const uint32_t xivr_regs[] = {
188 [PSIHB_IRQ_PSI] = PSIHB_XSCOM_XIVR_FSP,
189 [PSIHB_IRQ_FSP] = PSIHB_XSCOM_XIVR_FSP,
190 [PSIHB_IRQ_OCC] = PSIHB_XSCOM_XIVR_OCC,
191 [PSIHB_IRQ_FSI] = PSIHB_XSCOM_XIVR_FSI,
192 [PSIHB_IRQ_LPC_I2C] = PSIHB_XSCOM_XIVR_LPCI2C,
193 [PSIHB_IRQ_LOCAL_ERR] = PSIHB_XSCOM_XIVR_LOCERR,
194 [PSIHB_IRQ_EXTERNAL] = PSIHB_XSCOM_XIVR_EXT,
195 };
196
197 static const uint32_t stat_regs[] = {
198 [PSIHB_IRQ_PSI] = PSIHB_XSCOM_CR,
199 [PSIHB_IRQ_FSP] = PSIHB_XSCOM_CR,
200 [PSIHB_IRQ_OCC] = PSIHB_XSCOM_IRQ_STAT,
201 [PSIHB_IRQ_FSI] = PSIHB_XSCOM_IRQ_STAT,
202 [PSIHB_IRQ_LPC_I2C] = PSIHB_XSCOM_IRQ_STAT,
203 [PSIHB_IRQ_LOCAL_ERR] = PSIHB_XSCOM_IRQ_STAT,
204 [PSIHB_IRQ_EXTERNAL] = PSIHB_XSCOM_IRQ_STAT,
205 };
206
207 static const uint64_t stat_bits[] = {
208 [PSIHB_IRQ_PSI] = PSIHB_CR_PSI_IRQ,
209 [PSIHB_IRQ_FSP] = PSIHB_CR_FSP_IRQ,
210 [PSIHB_IRQ_OCC] = PSIHB_IRQ_STAT_OCC,
211 [PSIHB_IRQ_FSI] = PSIHB_IRQ_STAT_FSI,
212 [PSIHB_IRQ_LPC_I2C] = PSIHB_IRQ_STAT_LPCI2C,
213 [PSIHB_IRQ_LOCAL_ERR] = PSIHB_IRQ_STAT_LOCERR,
214 [PSIHB_IRQ_EXTERNAL] = PSIHB_IRQ_STAT_EXT,
215 };
216
217 void pnv_psi_irq_set(PnvPsi *psi, int irq, bool state)
218 {
219 PNV_PSI_GET_CLASS(psi)->irq_set(psi, irq, state);
220 }
221
222 static void pnv_psi_power8_irq_set(PnvPsi *psi, int irq, bool state)
223 {
224 uint32_t xivr_reg;
225 uint32_t stat_reg;
226 uint32_t src;
227 bool masked;
228
229 if (irq > PSIHB_IRQ_EXTERNAL) {
230 qemu_log_mask(LOG_GUEST_ERROR, "PSI: Unsupported irq %d\n", irq);
231 return;
232 }
233
234 xivr_reg = xivr_regs[irq];
235 stat_reg = stat_regs[irq];
236
237 src = (psi->regs[xivr_reg] & PSIHB_XIVR_SRC_MSK) >> PSIHB_XIVR_SRC_SH;
238 if (state) {
239 psi->regs[stat_reg] |= stat_bits[irq];
240 /* TODO: optimization, check mask here. That means
241 * re-evaluating when unmasking
242 */
243 qemu_irq_raise(psi->qirqs[src]);
244 } else {
245 psi->regs[stat_reg] &= ~stat_bits[irq];
246
247 /* FSP and PSI are muxed so don't lower if either is still set */
248 if (stat_reg != PSIHB_XSCOM_CR ||
249 !(psi->regs[stat_reg] & (PSIHB_CR_PSI_IRQ | PSIHB_CR_FSP_IRQ))) {
250 qemu_irq_lower(psi->qirqs[src]);
251 } else {
252 state = true;
253 }
254 }
255
256 /* Note about the emulation of the pending bit: This isn't
257 * entirely correct. The pending bit should be cleared when the
258 * EOI has been received. However, we don't have callbacks on EOI
259 * (especially not under KVM) so no way to emulate that properly,
260 * so instead we just set that bit as the logical "output" of the
261 * XIVR (ie pending & !masked)
262 *
263 * CLG: We could define a new ICS object with a custom eoi()
264 * handler to clear the pending bit. But I am not sure this would
265 * be useful for the software anyhow.
266 */
267 masked = (psi->regs[xivr_reg] & PSIHB_XIVR_PRIO_MSK) == PSIHB_XIVR_PRIO_MSK;
268 if (state && !masked) {
269 psi->regs[xivr_reg] |= PSIHB_XIVR_PENDING;
270 } else {
271 psi->regs[xivr_reg] &= ~PSIHB_XIVR_PENDING;
272 }
273 }
274
275 static void pnv_psi_set_xivr(PnvPsi *psi, uint32_t reg, uint64_t val)
276 {
277 ICSState *ics = &PNV8_PSI(psi)->ics;
278 uint16_t server;
279 uint8_t prio;
280 uint8_t src;
281
282 psi->regs[reg] = (psi->regs[reg] & PSIHB_XIVR_PENDING) |
283 (val & (PSIHB_XIVR_SERVER_MSK |
284 PSIHB_XIVR_PRIO_MSK |
285 PSIHB_XIVR_SRC_MSK));
286 val = psi->regs[reg];
287 server = (val & PSIHB_XIVR_SERVER_MSK) >> PSIHB_XIVR_SERVER_SH;
288 prio = (val & PSIHB_XIVR_PRIO_MSK) >> PSIHB_XIVR_PRIO_SH;
289 src = (val & PSIHB_XIVR_SRC_MSK) >> PSIHB_XIVR_SRC_SH;
290
291 if (src >= PSI_NUM_INTERRUPTS) {
292 qemu_log_mask(LOG_GUEST_ERROR, "PSI: Unsupported irq %d\n", src);
293 return;
294 }
295
296 /* Remove pending bit if the IRQ is masked */
297 if ((psi->regs[reg] & PSIHB_XIVR_PRIO_MSK) == PSIHB_XIVR_PRIO_MSK) {
298 psi->regs[reg] &= ~PSIHB_XIVR_PENDING;
299 }
300
301 /* The low order 2 bits are the link pointer (Type II interrupts).
302 * Shift back to get a valid IRQ server.
303 */
304 server >>= 2;
305
306 /* Now because of source remapping, weird things can happen
307 * if you change the source number dynamically, our simple ICS
308 * doesn't deal with remapping. So we just poke a different
309 * ICS entry based on what source number was written. This will
310 * do for now but a more accurate implementation would instead
311 * use a fixed server/prio and a remapper of the generated irq.
312 */
313 ics_write_xive(ics, src, server, prio, prio);
314 }
315
316 static uint64_t pnv_psi_reg_read(PnvPsi *psi, uint32_t offset, bool mmio)
317 {
318 uint64_t val = 0xffffffffffffffffull;
319
320 switch (offset) {
321 case PSIHB_XSCOM_FIR_RW:
322 case PSIHB_XSCOM_FIRACT0:
323 case PSIHB_XSCOM_FIRACT1:
324 case PSIHB_XSCOM_BAR:
325 case PSIHB_XSCOM_FSPBAR:
326 case PSIHB_XSCOM_CR:
327 case PSIHB_XSCOM_XIVR_FSP:
328 case PSIHB_XSCOM_XIVR_OCC:
329 case PSIHB_XSCOM_XIVR_FSI:
330 case PSIHB_XSCOM_XIVR_LPCI2C:
331 case PSIHB_XSCOM_XIVR_LOCERR:
332 case PSIHB_XSCOM_XIVR_EXT:
333 case PSIHB_XSCOM_IRQ_STAT:
334 case PSIHB_XSCOM_SEMR:
335 case PSIHB_XSCOM_DMA_UPADD:
336 case PSIHB_XSCOM_IRSN:
337 val = psi->regs[offset];
338 break;
339 default:
340 qemu_log_mask(LOG_UNIMP, "PSI: read at 0x%" PRIx32 "\n", offset);
341 }
342 return val;
343 }
344
345 static void pnv_psi_reg_write(PnvPsi *psi, uint32_t offset, uint64_t val,
346 bool mmio)
347 {
348 switch (offset) {
349 case PSIHB_XSCOM_FIR_RW:
350 case PSIHB_XSCOM_FIRACT0:
351 case PSIHB_XSCOM_FIRACT1:
352 case PSIHB_XSCOM_SEMR:
353 case PSIHB_XSCOM_DMA_UPADD:
354 psi->regs[offset] = val;
355 break;
356 case PSIHB_XSCOM_FIR_OR:
357 psi->regs[PSIHB_XSCOM_FIR_RW] |= val;
358 break;
359 case PSIHB_XSCOM_FIR_AND:
360 psi->regs[PSIHB_XSCOM_FIR_RW] &= val;
361 break;
362 case PSIHB_XSCOM_BAR:
363 /* Only XSCOM can write this one */
364 if (!mmio) {
365 pnv_psi_set_bar(psi, val);
366 } else {
367 qemu_log_mask(LOG_GUEST_ERROR, "PSI: invalid write of BAR\n");
368 }
369 break;
370 case PSIHB_XSCOM_FSPBAR:
371 psi->regs[PSIHB_XSCOM_FSPBAR] = val & PSIHB_FSPBAR_MASK;
372 pnv_psi_update_fsp_mr(psi);
373 break;
374 case PSIHB_XSCOM_CR:
375 pnv_psi_set_cr(psi, val);
376 break;
377 case PSIHB_XSCOM_SCR:
378 pnv_psi_set_cr(psi, psi->regs[PSIHB_XSCOM_CR] | val);
379 break;
380 case PSIHB_XSCOM_CCR:
381 pnv_psi_set_cr(psi, psi->regs[PSIHB_XSCOM_CR] & ~val);
382 break;
383 case PSIHB_XSCOM_XIVR_FSP:
384 case PSIHB_XSCOM_XIVR_OCC:
385 case PSIHB_XSCOM_XIVR_FSI:
386 case PSIHB_XSCOM_XIVR_LPCI2C:
387 case PSIHB_XSCOM_XIVR_LOCERR:
388 case PSIHB_XSCOM_XIVR_EXT:
389 pnv_psi_set_xivr(psi, offset, val);
390 break;
391 case PSIHB_XSCOM_IRQ_STAT:
392 /* Read only */
393 qemu_log_mask(LOG_GUEST_ERROR, "PSI: invalid write of IRQ_STAT\n");
394 break;
395 case PSIHB_XSCOM_IRSN:
396 pnv_psi_set_irsn(psi, val);
397 break;
398 default:
399 qemu_log_mask(LOG_UNIMP, "PSI: write at 0x%" PRIx32 "\n", offset);
400 }
401 }
402
403 /*
404 * The values of the registers when accessed through the MMIO region
405 * follow the relation : xscom = (mmio + 0x50) >> 3
406 */
407 static uint64_t pnv_psi_mmio_read(void *opaque, hwaddr addr, unsigned size)
408 {
409 return pnv_psi_reg_read(opaque, PSIHB_REG(addr), true);
410 }
411
412 static void pnv_psi_mmio_write(void *opaque, hwaddr addr,
413 uint64_t val, unsigned size)
414 {
415 pnv_psi_reg_write(opaque, PSIHB_REG(addr), val, true);
416 }
417
418 static const MemoryRegionOps psi_mmio_ops = {
419 .read = pnv_psi_mmio_read,
420 .write = pnv_psi_mmio_write,
421 .endianness = DEVICE_BIG_ENDIAN,
422 .valid = {
423 .min_access_size = 8,
424 .max_access_size = 8,
425 },
426 .impl = {
427 .min_access_size = 8,
428 .max_access_size = 8,
429 },
430 };
431
432 static uint64_t pnv_psi_xscom_read(void *opaque, hwaddr addr, unsigned size)
433 {
434 return pnv_psi_reg_read(opaque, addr >> 3, false);
435 }
436
437 static void pnv_psi_xscom_write(void *opaque, hwaddr addr,
438 uint64_t val, unsigned size)
439 {
440 pnv_psi_reg_write(opaque, addr >> 3, val, false);
441 }
442
443 static const MemoryRegionOps pnv_psi_xscom_ops = {
444 .read = pnv_psi_xscom_read,
445 .write = pnv_psi_xscom_write,
446 .endianness = DEVICE_BIG_ENDIAN,
447 .valid = {
448 .min_access_size = 8,
449 .max_access_size = 8,
450 },
451 .impl = {
452 .min_access_size = 8,
453 .max_access_size = 8,
454 }
455 };
456
457 static void pnv_psi_reset(DeviceState *dev)
458 {
459 PnvPsi *psi = PNV_PSI(dev);
460
461 memset(psi->regs, 0x0, sizeof(psi->regs));
462
463 psi->regs[PSIHB_XSCOM_BAR] = psi->bar | PSIHB_BAR_EN;
464 }
465
466 static void pnv_psi_reset_handler(void *dev)
467 {
468 device_cold_reset(DEVICE(dev));
469 }
470
471 static void pnv_psi_realize(DeviceState *dev, Error **errp)
472 {
473 PnvPsi *psi = PNV_PSI(dev);
474
475 /* Default BAR for MMIO region */
476 pnv_psi_set_bar(psi, psi->bar | PSIHB_BAR_EN);
477
478 qemu_register_reset(pnv_psi_reset_handler, dev);
479 }
480
481 static void pnv_psi_power8_instance_init(Object *obj)
482 {
483 Pnv8Psi *psi8 = PNV8_PSI(obj);
484
485 object_initialize_child(obj, "ics-psi", &psi8->ics, TYPE_ICS);
486 object_property_add_alias(obj, ICS_PROP_XICS, OBJECT(&psi8->ics),
487 ICS_PROP_XICS);
488 }
489
490 static const uint8_t irq_to_xivr[] = {
491 PSIHB_XSCOM_XIVR_FSP,
492 PSIHB_XSCOM_XIVR_OCC,
493 PSIHB_XSCOM_XIVR_FSI,
494 PSIHB_XSCOM_XIVR_LPCI2C,
495 PSIHB_XSCOM_XIVR_LOCERR,
496 PSIHB_XSCOM_XIVR_EXT,
497 };
498
499 static void pnv_psi_power8_realize(DeviceState *dev, Error **errp)
500 {
501 PnvPsi *psi = PNV_PSI(dev);
502 ICSState *ics = &PNV8_PSI(psi)->ics;
503 unsigned int i;
504
505 /* Create PSI interrupt control source */
506 if (!object_property_set_int(OBJECT(ics), "nr-irqs", PSI_NUM_INTERRUPTS,
507 errp)) {
508 return;
509 }
510 if (!qdev_realize(DEVICE(ics), NULL, errp)) {
511 return;
512 }
513
514 for (i = 0; i < ics->nr_irqs; i++) {
515 ics_set_irq_type(ics, i, true);
516 }
517
518 psi->qirqs = qemu_allocate_irqs(ics_set_irq, ics, ics->nr_irqs);
519
520 /* XSCOM region for PSI registers */
521 pnv_xscom_region_init(&psi->xscom_regs, OBJECT(dev), &pnv_psi_xscom_ops,
522 psi, "xscom-psi", PNV_XSCOM_PSIHB_SIZE);
523
524 /* Initialize MMIO region */
525 memory_region_init_io(&psi->regs_mr, OBJECT(dev), &psi_mmio_ops, psi,
526 "psihb", PNV_PSIHB_SIZE);
527
528 /* Default sources in XIVR */
529 for (i = 0; i < PSI_NUM_INTERRUPTS; i++) {
530 uint8_t xivr = irq_to_xivr[i];
531 psi->regs[xivr] = PSIHB_XIVR_PRIO_MSK |
532 ((uint64_t) i << PSIHB_XIVR_SRC_SH);
533 }
534
535 pnv_psi_realize(dev, errp);
536 }
537
538 static int pnv_psi_dt_xscom(PnvXScomInterface *dev, void *fdt, int xscom_offset)
539 {
540 PnvPsiClass *ppc = PNV_PSI_GET_CLASS(dev);
541 char *name;
542 int offset;
543 uint32_t reg[] = {
544 cpu_to_be32(ppc->xscom_pcba),
545 cpu_to_be32(ppc->xscom_size)
546 };
547
548 name = g_strdup_printf("psihb@%x", ppc->xscom_pcba);
549 offset = fdt_add_subnode(fdt, xscom_offset, name);
550 _FDT(offset);
551 g_free(name);
552
553 _FDT(fdt_setprop(fdt, offset, "reg", reg, sizeof(reg)));
554 _FDT(fdt_setprop_cell(fdt, offset, "#address-cells", 2));
555 _FDT(fdt_setprop_cell(fdt, offset, "#size-cells", 1));
556 _FDT(fdt_setprop(fdt, offset, "compatible", ppc->compat,
557 ppc->compat_size));
558 return 0;
559 }
560
561 static Property pnv_psi_properties[] = {
562 DEFINE_PROP_UINT64("bar", PnvPsi, bar, 0),
563 DEFINE_PROP_UINT64("fsp-bar", PnvPsi, fsp_bar, 0),
564 DEFINE_PROP_END_OF_LIST(),
565 };
566
567 static void pnv_psi_power8_class_init(ObjectClass *klass, void *data)
568 {
569 DeviceClass *dc = DEVICE_CLASS(klass);
570 PnvPsiClass *ppc = PNV_PSI_CLASS(klass);
571 static const char compat[] = "ibm,power8-psihb-x\0ibm,psihb-x";
572
573 dc->desc = "PowerNV PSI Controller POWER8";
574 dc->realize = pnv_psi_power8_realize;
575
576 ppc->xscom_pcba = PNV_XSCOM_PSIHB_BASE;
577 ppc->xscom_size = PNV_XSCOM_PSIHB_SIZE;
578 ppc->bar_mask = PSIHB_BAR_MASK;
579 ppc->irq_set = pnv_psi_power8_irq_set;
580 ppc->compat = compat;
581 ppc->compat_size = sizeof(compat);
582 }
583
584 static const TypeInfo pnv_psi_power8_info = {
585 .name = TYPE_PNV8_PSI,
586 .parent = TYPE_PNV_PSI,
587 .instance_size = sizeof(Pnv8Psi),
588 .instance_init = pnv_psi_power8_instance_init,
589 .class_init = pnv_psi_power8_class_init,
590 };
591
592
593 /* Common registers */
594
595 #define PSIHB9_CR 0x20
596 #define PSIHB9_SEMR 0x28
597
598 /* P9 registers */
599
600 #define PSIHB9_INTERRUPT_CONTROL 0x58
601 #define PSIHB9_IRQ_METHOD PPC_BIT(0)
602 #define PSIHB9_IRQ_RESET PPC_BIT(1)
603 #define PSIHB9_ESB_CI_BASE 0x60
604 #define PSIHB9_ESB_CI_64K PPC_BIT(1)
605 #define PSIHB9_ESB_CI_ADDR_MASK PPC_BITMASK(8, 47)
606 #define PSIHB9_ESB_CI_VALID PPC_BIT(63)
607 #define PSIHB9_ESB_NOTIF_ADDR 0x68
608 #define PSIHB9_ESB_NOTIF_ADDR_MASK PPC_BITMASK(8, 60)
609 #define PSIHB9_ESB_NOTIF_VALID PPC_BIT(63)
610 #define PSIHB9_IVT_OFFSET 0x70
611 #define PSIHB9_IVT_OFF_SHIFT 32
612
613 #define PSIHB9_IRQ_LEVEL 0x78 /* assertion */
614 #define PSIHB9_IRQ_LEVEL_PSI PPC_BIT(0)
615 #define PSIHB9_IRQ_LEVEL_OCC PPC_BIT(1)
616 #define PSIHB9_IRQ_LEVEL_FSI PPC_BIT(2)
617 #define PSIHB9_IRQ_LEVEL_LPCHC PPC_BIT(3)
618 #define PSIHB9_IRQ_LEVEL_LOCAL_ERR PPC_BIT(4)
619 #define PSIHB9_IRQ_LEVEL_GLOBAL_ERR PPC_BIT(5)
620 #define PSIHB9_IRQ_LEVEL_TPM PPC_BIT(6)
621 #define PSIHB9_IRQ_LEVEL_LPC_SIRQ1 PPC_BIT(7)
622 #define PSIHB9_IRQ_LEVEL_LPC_SIRQ2 PPC_BIT(8)
623 #define PSIHB9_IRQ_LEVEL_LPC_SIRQ3 PPC_BIT(9)
624 #define PSIHB9_IRQ_LEVEL_LPC_SIRQ4 PPC_BIT(10)
625 #define PSIHB9_IRQ_LEVEL_SBE_I2C PPC_BIT(11)
626 #define PSIHB9_IRQ_LEVEL_DIO PPC_BIT(12)
627 #define PSIHB9_IRQ_LEVEL_PSU PPC_BIT(13)
628 #define PSIHB9_IRQ_LEVEL_I2C_C PPC_BIT(14)
629 #define PSIHB9_IRQ_LEVEL_I2C_D PPC_BIT(15)
630 #define PSIHB9_IRQ_LEVEL_I2C_E PPC_BIT(16)
631 #define PSIHB9_IRQ_LEVEL_SBE PPC_BIT(19)
632
633 #define PSIHB9_IRQ_STAT 0x80 /* P bit */
634 #define PSIHB9_IRQ_STAT_PSI PPC_BIT(0)
635 #define PSIHB9_IRQ_STAT_OCC PPC_BIT(1)
636 #define PSIHB9_IRQ_STAT_FSI PPC_BIT(2)
637 #define PSIHB9_IRQ_STAT_LPCHC PPC_BIT(3)
638 #define PSIHB9_IRQ_STAT_LOCAL_ERR PPC_BIT(4)
639 #define PSIHB9_IRQ_STAT_GLOBAL_ERR PPC_BIT(5)
640 #define PSIHB9_IRQ_STAT_TPM PPC_BIT(6)
641 #define PSIHB9_IRQ_STAT_LPC_SIRQ1 PPC_BIT(7)
642 #define PSIHB9_IRQ_STAT_LPC_SIRQ2 PPC_BIT(8)
643 #define PSIHB9_IRQ_STAT_LPC_SIRQ3 PPC_BIT(9)
644 #define PSIHB9_IRQ_STAT_LPC_SIRQ4 PPC_BIT(10)
645 #define PSIHB9_IRQ_STAT_SBE_I2C PPC_BIT(11)
646 #define PSIHB9_IRQ_STAT_DIO PPC_BIT(12)
647 #define PSIHB9_IRQ_STAT_PSU PPC_BIT(13)
648
649 static void pnv_psi_notify(XiveNotifier *xf, uint32_t srcno)
650 {
651 PnvPsi *psi = PNV_PSI(xf);
652 uint64_t notif_port = psi->regs[PSIHB_REG(PSIHB9_ESB_NOTIF_ADDR)];
653 bool valid = notif_port & PSIHB9_ESB_NOTIF_VALID;
654 uint64_t notify_addr = notif_port & ~PSIHB9_ESB_NOTIF_VALID;
655
656 uint32_t offset =
657 (psi->regs[PSIHB_REG(PSIHB9_IVT_OFFSET)] >> PSIHB9_IVT_OFF_SHIFT);
658 uint64_t data = XIVE_TRIGGER_PQ | offset | srcno;
659 MemTxResult result;
660
661 if (!valid) {
662 return;
663 }
664
665 address_space_stq_be(&address_space_memory, notify_addr, data,
666 MEMTXATTRS_UNSPECIFIED, &result);
667 if (result != MEMTX_OK) {
668 qemu_log_mask(LOG_GUEST_ERROR, "%s: trigger failed @%"
669 HWADDR_PRIx "\n", __func__, notif_port);
670 return;
671 }
672 }
673
674 static uint64_t pnv_psi_p9_mmio_read(void *opaque, hwaddr addr, unsigned size)
675 {
676 PnvPsi *psi = PNV_PSI(opaque);
677 uint32_t reg = PSIHB_REG(addr);
678 uint64_t val = -1;
679
680 switch (addr) {
681 case PSIHB9_CR:
682 case PSIHB9_SEMR:
683 /* FSP stuff */
684 case PSIHB9_INTERRUPT_CONTROL:
685 case PSIHB9_ESB_CI_BASE:
686 case PSIHB9_ESB_NOTIF_ADDR:
687 case PSIHB9_IVT_OFFSET:
688 val = psi->regs[reg];
689 break;
690 default:
691 qemu_log_mask(LOG_GUEST_ERROR, "PSI: read at 0x%" PRIx64 "\n", addr);
692 }
693
694 return val;
695 }
696
697 static void pnv_psi_p9_mmio_write(void *opaque, hwaddr addr,
698 uint64_t val, unsigned size)
699 {
700 PnvPsi *psi = PNV_PSI(opaque);
701 Pnv9Psi *psi9 = PNV9_PSI(psi);
702 uint32_t reg = PSIHB_REG(addr);
703 MemoryRegion *sysmem = get_system_memory();
704
705 switch (addr) {
706 case PSIHB9_CR:
707 case PSIHB9_SEMR:
708 /* FSP stuff */
709 break;
710 case PSIHB9_INTERRUPT_CONTROL:
711 if (val & PSIHB9_IRQ_RESET) {
712 device_cold_reset(DEVICE(&psi9->source));
713 }
714 psi->regs[reg] = val;
715 break;
716
717 case PSIHB9_ESB_CI_BASE:
718 if (!(val & PSIHB9_ESB_CI_VALID)) {
719 if (psi->regs[reg] & PSIHB9_ESB_CI_VALID) {
720 memory_region_del_subregion(sysmem, &psi9->source.esb_mmio);
721 }
722 } else {
723 if (!(psi->regs[reg] & PSIHB9_ESB_CI_VALID)) {
724 memory_region_add_subregion(sysmem,
725 val & ~PSIHB9_ESB_CI_VALID,
726 &psi9->source.esb_mmio);
727 }
728 }
729 psi->regs[reg] = val;
730 break;
731
732 case PSIHB9_ESB_NOTIF_ADDR:
733 psi->regs[reg] = val;
734 break;
735 case PSIHB9_IVT_OFFSET:
736 psi->regs[reg] = val;
737 break;
738 default:
739 qemu_log_mask(LOG_GUEST_ERROR, "PSI: write at 0x%" PRIx64 "\n", addr);
740 }
741 }
742
743 static const MemoryRegionOps pnv_psi_p9_mmio_ops = {
744 .read = pnv_psi_p9_mmio_read,
745 .write = pnv_psi_p9_mmio_write,
746 .endianness = DEVICE_BIG_ENDIAN,
747 .valid = {
748 .min_access_size = 8,
749 .max_access_size = 8,
750 },
751 .impl = {
752 .min_access_size = 8,
753 .max_access_size = 8,
754 },
755 };
756
757 static uint64_t pnv_psi_p9_xscom_read(void *opaque, hwaddr addr, unsigned size)
758 {
759 /* No read are expected */
760 qemu_log_mask(LOG_GUEST_ERROR, "PSI: xscom read at 0x%" PRIx64 "\n", addr);
761 return -1;
762 }
763
764 static void pnv_psi_p9_xscom_write(void *opaque, hwaddr addr,
765 uint64_t val, unsigned size)
766 {
767 PnvPsi *psi = PNV_PSI(opaque);
768
769 /* XSCOM is only used to set the PSIHB MMIO region */
770 switch (addr >> 3) {
771 case PSIHB_XSCOM_BAR:
772 pnv_psi_set_bar(psi, val);
773 break;
774 default:
775 qemu_log_mask(LOG_GUEST_ERROR, "PSI: xscom write at 0x%" PRIx64 "\n",
776 addr);
777 }
778 }
779
780 static const MemoryRegionOps pnv_psi_p9_xscom_ops = {
781 .read = pnv_psi_p9_xscom_read,
782 .write = pnv_psi_p9_xscom_write,
783 .endianness = DEVICE_BIG_ENDIAN,
784 .valid = {
785 .min_access_size = 8,
786 .max_access_size = 8,
787 },
788 .impl = {
789 .min_access_size = 8,
790 .max_access_size = 8,
791 }
792 };
793
794 static void pnv_psi_power9_irq_set(PnvPsi *psi, int irq, bool state)
795 {
796 uint64_t irq_method = psi->regs[PSIHB_REG(PSIHB9_INTERRUPT_CONTROL)];
797
798 if (irq > PSIHB9_NUM_IRQS) {
799 qemu_log_mask(LOG_GUEST_ERROR, "PSI: Unsupported irq %d\n", irq);
800 return;
801 }
802
803 if (irq_method & PSIHB9_IRQ_METHOD) {
804 qemu_log_mask(LOG_GUEST_ERROR, "PSI: LSI IRQ method no supported\n");
805 return;
806 }
807
808 /* Update LSI levels */
809 if (state) {
810 psi->regs[PSIHB_REG(PSIHB9_IRQ_LEVEL)] |= PPC_BIT(irq);
811 } else {
812 psi->regs[PSIHB_REG(PSIHB9_IRQ_LEVEL)] &= ~PPC_BIT(irq);
813 }
814
815 qemu_set_irq(psi->qirqs[irq], state);
816 }
817
818 static void pnv_psi_power9_reset(DeviceState *dev)
819 {
820 Pnv9Psi *psi = PNV9_PSI(dev);
821
822 pnv_psi_reset(dev);
823
824 if (memory_region_is_mapped(&psi->source.esb_mmio)) {
825 memory_region_del_subregion(get_system_memory(), &psi->source.esb_mmio);
826 }
827 }
828
829 static void pnv_psi_power9_instance_init(Object *obj)
830 {
831 Pnv9Psi *psi = PNV9_PSI(obj);
832
833 object_initialize_child(obj, "source", &psi->source, TYPE_XIVE_SOURCE);
834 }
835
836 static void pnv_psi_power9_realize(DeviceState *dev, Error **errp)
837 {
838 PnvPsi *psi = PNV_PSI(dev);
839 XiveSource *xsrc = &PNV9_PSI(psi)->source;
840 int i;
841
842 /* This is the only device with 4k ESB pages */
843 object_property_set_int(OBJECT(xsrc), "shift", XIVE_ESB_4K, &error_fatal);
844 object_property_set_int(OBJECT(xsrc), "nr-irqs", PSIHB9_NUM_IRQS,
845 &error_fatal);
846 object_property_set_link(OBJECT(xsrc), "xive", OBJECT(psi), &error_abort);
847 if (!qdev_realize(DEVICE(xsrc), NULL, errp)) {
848 return;
849 }
850
851 for (i = 0; i < xsrc->nr_irqs; i++) {
852 xive_source_irq_set_lsi(xsrc, i);
853 }
854
855 psi->qirqs = qemu_allocate_irqs(xive_source_set_irq, xsrc, xsrc->nr_irqs);
856
857 /* XSCOM region for PSI registers */
858 pnv_xscom_region_init(&psi->xscom_regs, OBJECT(dev), &pnv_psi_p9_xscom_ops,
859 psi, "xscom-psi", PNV9_XSCOM_PSIHB_SIZE);
860
861 /* MMIO region for PSI registers */
862 memory_region_init_io(&psi->regs_mr, OBJECT(dev), &pnv_psi_p9_mmio_ops, psi,
863 "psihb", PNV9_PSIHB_SIZE);
864
865 pnv_psi_realize(dev, errp);
866 }
867
868 static void pnv_psi_power9_class_init(ObjectClass *klass, void *data)
869 {
870 DeviceClass *dc = DEVICE_CLASS(klass);
871 PnvPsiClass *ppc = PNV_PSI_CLASS(klass);
872 XiveNotifierClass *xfc = XIVE_NOTIFIER_CLASS(klass);
873 static const char compat[] = "ibm,power9-psihb-x\0ibm,psihb-x";
874
875 dc->desc = "PowerNV PSI Controller POWER9";
876 dc->realize = pnv_psi_power9_realize;
877 dc->reset = pnv_psi_power9_reset;
878
879 ppc->xscom_pcba = PNV9_XSCOM_PSIHB_BASE;
880 ppc->xscom_size = PNV9_XSCOM_PSIHB_SIZE;
881 ppc->bar_mask = PSIHB9_BAR_MASK;
882 ppc->irq_set = pnv_psi_power9_irq_set;
883 ppc->compat = compat;
884 ppc->compat_size = sizeof(compat);
885
886 xfc->notify = pnv_psi_notify;
887 }
888
889 static const TypeInfo pnv_psi_power9_info = {
890 .name = TYPE_PNV9_PSI,
891 .parent = TYPE_PNV_PSI,
892 .instance_size = sizeof(Pnv9Psi),
893 .instance_init = pnv_psi_power9_instance_init,
894 .class_init = pnv_psi_power9_class_init,
895 .interfaces = (InterfaceInfo[]) {
896 { TYPE_XIVE_NOTIFIER },
897 { },
898 },
899 };
900
901 static void pnv_psi_power10_class_init(ObjectClass *klass, void *data)
902 {
903 DeviceClass *dc = DEVICE_CLASS(klass);
904 PnvPsiClass *ppc = PNV_PSI_CLASS(klass);
905 static const char compat[] = "ibm,power10-psihb-x\0ibm,psihb-x";
906
907 dc->desc = "PowerNV PSI Controller POWER10";
908
909 ppc->xscom_pcba = PNV10_XSCOM_PSIHB_BASE;
910 ppc->xscom_size = PNV10_XSCOM_PSIHB_SIZE;
911 ppc->compat = compat;
912 ppc->compat_size = sizeof(compat);
913 }
914
915 static const TypeInfo pnv_psi_power10_info = {
916 .name = TYPE_PNV10_PSI,
917 .parent = TYPE_PNV9_PSI,
918 .class_init = pnv_psi_power10_class_init,
919 };
920
921 static void pnv_psi_class_init(ObjectClass *klass, void *data)
922 {
923 DeviceClass *dc = DEVICE_CLASS(klass);
924 PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
925
926 xdc->dt_xscom = pnv_psi_dt_xscom;
927
928 dc->desc = "PowerNV PSI Controller";
929 device_class_set_props(dc, pnv_psi_properties);
930 dc->reset = pnv_psi_reset;
931 dc->user_creatable = false;
932 }
933
934 static const TypeInfo pnv_psi_info = {
935 .name = TYPE_PNV_PSI,
936 .parent = TYPE_DEVICE,
937 .instance_size = sizeof(PnvPsi),
938 .class_init = pnv_psi_class_init,
939 .class_size = sizeof(PnvPsiClass),
940 .abstract = true,
941 .interfaces = (InterfaceInfo[]) {
942 { TYPE_PNV_XSCOM_INTERFACE },
943 { }
944 }
945 };
946
947 static void pnv_psi_register_types(void)
948 {
949 type_register_static(&pnv_psi_info);
950 type_register_static(&pnv_psi_power8_info);
951 type_register_static(&pnv_psi_power9_info);
952 type_register_static(&pnv_psi_power10_info);
953 }
954
955 type_init(pnv_psi_register_types);
956
957 void pnv_psi_pic_print_info(Pnv9Psi *psi9, Monitor *mon)
958 {
959 PnvPsi *psi = PNV_PSI(psi9);
960
961 uint32_t offset =
962 (psi->regs[PSIHB_REG(PSIHB9_IVT_OFFSET)] >> PSIHB9_IVT_OFF_SHIFT);
963
964 monitor_printf(mon, "PSIHB Source %08x .. %08x\n",
965 offset, offset + psi9->source.nr_irqs - 1);
966 xive_source_pic_print_info(&psi9->source, offset, mon);
967 }