Merge remote-tracking branch 'remotes/philmd-gitlab/tags/renesas-20201027' into staging
[qemu.git] / hw / ppc / ppc.c
1 /*
2 * QEMU generic PowerPC hardware System Emulator
3 *
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "cpu.h"
27 #include "hw/irq.h"
28 #include "hw/ppc/ppc.h"
29 #include "hw/ppc/ppc_e500.h"
30 #include "qemu/timer.h"
31 #include "sysemu/cpus.h"
32 #include "qemu/log.h"
33 #include "qemu/main-loop.h"
34 #include "qemu/error-report.h"
35 #include "sysemu/kvm.h"
36 #include "sysemu/runstate.h"
37 #include "kvm_ppc.h"
38 #include "migration/vmstate.h"
39 #include "trace.h"
40
41 //#define PPC_DEBUG_IRQ
42 //#define PPC_DEBUG_TB
43
44 #ifdef PPC_DEBUG_IRQ
45 # define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
46 #else
47 # define LOG_IRQ(...) do { } while (0)
48 #endif
49
50
51 #ifdef PPC_DEBUG_TB
52 # define LOG_TB(...) qemu_log(__VA_ARGS__)
53 #else
54 # define LOG_TB(...) do { } while (0)
55 #endif
56
57 static void cpu_ppc_tb_stop (CPUPPCState *env);
58 static void cpu_ppc_tb_start (CPUPPCState *env);
59
60 void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
61 {
62 CPUState *cs = CPU(cpu);
63 CPUPPCState *env = &cpu->env;
64 unsigned int old_pending;
65 bool locked = false;
66
67 /* We may already have the BQL if coming from the reset path */
68 if (!qemu_mutex_iothread_locked()) {
69 locked = true;
70 qemu_mutex_lock_iothread();
71 }
72
73 old_pending = env->pending_interrupts;
74
75 if (level) {
76 env->pending_interrupts |= 1 << n_IRQ;
77 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
78 } else {
79 env->pending_interrupts &= ~(1 << n_IRQ);
80 if (env->pending_interrupts == 0) {
81 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
82 }
83 }
84
85 if (old_pending != env->pending_interrupts) {
86 kvmppc_set_interrupt(cpu, n_IRQ, level);
87 }
88
89
90 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
91 "req %08x\n", __func__, env, n_IRQ, level,
92 env->pending_interrupts, CPU(cpu)->interrupt_request);
93
94 if (locked) {
95 qemu_mutex_unlock_iothread();
96 }
97 }
98
99 /* PowerPC 6xx / 7xx internal IRQ controller */
100 static void ppc6xx_set_irq(void *opaque, int pin, int level)
101 {
102 PowerPCCPU *cpu = opaque;
103 CPUPPCState *env = &cpu->env;
104 int cur_level;
105
106 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
107 env, pin, level);
108 cur_level = (env->irq_input_state >> pin) & 1;
109 /* Don't generate spurious events */
110 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
111 CPUState *cs = CPU(cpu);
112
113 switch (pin) {
114 case PPC6xx_INPUT_TBEN:
115 /* Level sensitive - active high */
116 LOG_IRQ("%s: %s the time base\n",
117 __func__, level ? "start" : "stop");
118 if (level) {
119 cpu_ppc_tb_start(env);
120 } else {
121 cpu_ppc_tb_stop(env);
122 }
123 case PPC6xx_INPUT_INT:
124 /* Level sensitive - active high */
125 LOG_IRQ("%s: set the external IRQ state to %d\n",
126 __func__, level);
127 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
128 break;
129 case PPC6xx_INPUT_SMI:
130 /* Level sensitive - active high */
131 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
132 __func__, level);
133 ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
134 break;
135 case PPC6xx_INPUT_MCP:
136 /* Negative edge sensitive */
137 /* XXX: TODO: actual reaction may depends on HID0 status
138 * 603/604/740/750: check HID0[EMCP]
139 */
140 if (cur_level == 1 && level == 0) {
141 LOG_IRQ("%s: raise machine check state\n",
142 __func__);
143 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
144 }
145 break;
146 case PPC6xx_INPUT_CKSTP_IN:
147 /* Level sensitive - active low */
148 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
149 /* XXX: Note that the only way to restart the CPU is to reset it */
150 if (level) {
151 LOG_IRQ("%s: stop the CPU\n", __func__);
152 cs->halted = 1;
153 }
154 break;
155 case PPC6xx_INPUT_HRESET:
156 /* Level sensitive - active low */
157 if (level) {
158 LOG_IRQ("%s: reset the CPU\n", __func__);
159 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
160 }
161 break;
162 case PPC6xx_INPUT_SRESET:
163 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
164 __func__, level);
165 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
166 break;
167 default:
168 /* Unknown pin - do nothing */
169 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
170 return;
171 }
172 if (level)
173 env->irq_input_state |= 1 << pin;
174 else
175 env->irq_input_state &= ~(1 << pin);
176 }
177 }
178
179 void ppc6xx_irq_init(PowerPCCPU *cpu)
180 {
181 CPUPPCState *env = &cpu->env;
182
183 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
184 PPC6xx_INPUT_NB);
185 }
186
187 #if defined(TARGET_PPC64)
188 /* PowerPC 970 internal IRQ controller */
189 static void ppc970_set_irq(void *opaque, int pin, int level)
190 {
191 PowerPCCPU *cpu = opaque;
192 CPUPPCState *env = &cpu->env;
193 int cur_level;
194
195 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
196 env, pin, level);
197 cur_level = (env->irq_input_state >> pin) & 1;
198 /* Don't generate spurious events */
199 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
200 CPUState *cs = CPU(cpu);
201
202 switch (pin) {
203 case PPC970_INPUT_INT:
204 /* Level sensitive - active high */
205 LOG_IRQ("%s: set the external IRQ state to %d\n",
206 __func__, level);
207 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
208 break;
209 case PPC970_INPUT_THINT:
210 /* Level sensitive - active high */
211 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
212 level);
213 ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
214 break;
215 case PPC970_INPUT_MCP:
216 /* Negative edge sensitive */
217 /* XXX: TODO: actual reaction may depends on HID0 status
218 * 603/604/740/750: check HID0[EMCP]
219 */
220 if (cur_level == 1 && level == 0) {
221 LOG_IRQ("%s: raise machine check state\n",
222 __func__);
223 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
224 }
225 break;
226 case PPC970_INPUT_CKSTP:
227 /* Level sensitive - active low */
228 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
229 if (level) {
230 LOG_IRQ("%s: stop the CPU\n", __func__);
231 cs->halted = 1;
232 } else {
233 LOG_IRQ("%s: restart the CPU\n", __func__);
234 cs->halted = 0;
235 qemu_cpu_kick(cs);
236 }
237 break;
238 case PPC970_INPUT_HRESET:
239 /* Level sensitive - active low */
240 if (level) {
241 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
242 }
243 break;
244 case PPC970_INPUT_SRESET:
245 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
246 __func__, level);
247 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
248 break;
249 case PPC970_INPUT_TBEN:
250 LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
251 level);
252 /* XXX: TODO */
253 break;
254 default:
255 /* Unknown pin - do nothing */
256 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
257 return;
258 }
259 if (level)
260 env->irq_input_state |= 1 << pin;
261 else
262 env->irq_input_state &= ~(1 << pin);
263 }
264 }
265
266 void ppc970_irq_init(PowerPCCPU *cpu)
267 {
268 CPUPPCState *env = &cpu->env;
269
270 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
271 PPC970_INPUT_NB);
272 }
273
274 /* POWER7 internal IRQ controller */
275 static void power7_set_irq(void *opaque, int pin, int level)
276 {
277 PowerPCCPU *cpu = opaque;
278
279 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
280 &cpu->env, pin, level);
281
282 switch (pin) {
283 case POWER7_INPUT_INT:
284 /* Level sensitive - active high */
285 LOG_IRQ("%s: set the external IRQ state to %d\n",
286 __func__, level);
287 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
288 break;
289 default:
290 /* Unknown pin - do nothing */
291 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
292 return;
293 }
294 }
295
296 void ppcPOWER7_irq_init(PowerPCCPU *cpu)
297 {
298 CPUPPCState *env = &cpu->env;
299
300 env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
301 POWER7_INPUT_NB);
302 }
303
304 /* POWER9 internal IRQ controller */
305 static void power9_set_irq(void *opaque, int pin, int level)
306 {
307 PowerPCCPU *cpu = opaque;
308
309 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
310 &cpu->env, pin, level);
311
312 switch (pin) {
313 case POWER9_INPUT_INT:
314 /* Level sensitive - active high */
315 LOG_IRQ("%s: set the external IRQ state to %d\n",
316 __func__, level);
317 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
318 break;
319 case POWER9_INPUT_HINT:
320 /* Level sensitive - active high */
321 LOG_IRQ("%s: set the external IRQ state to %d\n",
322 __func__, level);
323 ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level);
324 break;
325 default:
326 /* Unknown pin - do nothing */
327 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
328 return;
329 }
330 }
331
332 void ppcPOWER9_irq_init(PowerPCCPU *cpu)
333 {
334 CPUPPCState *env = &cpu->env;
335
336 env->irq_inputs = (void **)qemu_allocate_irqs(&power9_set_irq, cpu,
337 POWER9_INPUT_NB);
338 }
339 #endif /* defined(TARGET_PPC64) */
340
341 void ppc40x_core_reset(PowerPCCPU *cpu)
342 {
343 CPUPPCState *env = &cpu->env;
344 target_ulong dbsr;
345
346 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n");
347 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
348 dbsr = env->spr[SPR_40x_DBSR];
349 dbsr &= ~0x00000300;
350 dbsr |= 0x00000100;
351 env->spr[SPR_40x_DBSR] = dbsr;
352 }
353
354 void ppc40x_chip_reset(PowerPCCPU *cpu)
355 {
356 CPUPPCState *env = &cpu->env;
357 target_ulong dbsr;
358
359 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n");
360 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
361 /* XXX: TODO reset all internal peripherals */
362 dbsr = env->spr[SPR_40x_DBSR];
363 dbsr &= ~0x00000300;
364 dbsr |= 0x00000200;
365 env->spr[SPR_40x_DBSR] = dbsr;
366 }
367
368 void ppc40x_system_reset(PowerPCCPU *cpu)
369 {
370 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n");
371 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
372 }
373
374 void store_40x_dbcr0(CPUPPCState *env, uint32_t val)
375 {
376 PowerPCCPU *cpu = env_archcpu(env);
377
378 switch ((val >> 28) & 0x3) {
379 case 0x0:
380 /* No action */
381 break;
382 case 0x1:
383 /* Core reset */
384 ppc40x_core_reset(cpu);
385 break;
386 case 0x2:
387 /* Chip reset */
388 ppc40x_chip_reset(cpu);
389 break;
390 case 0x3:
391 /* System reset */
392 ppc40x_system_reset(cpu);
393 break;
394 }
395 }
396
397 /* PowerPC 40x internal IRQ controller */
398 static void ppc40x_set_irq(void *opaque, int pin, int level)
399 {
400 PowerPCCPU *cpu = opaque;
401 CPUPPCState *env = &cpu->env;
402 int cur_level;
403
404 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
405 env, pin, level);
406 cur_level = (env->irq_input_state >> pin) & 1;
407 /* Don't generate spurious events */
408 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
409 CPUState *cs = CPU(cpu);
410
411 switch (pin) {
412 case PPC40x_INPUT_RESET_SYS:
413 if (level) {
414 LOG_IRQ("%s: reset the PowerPC system\n",
415 __func__);
416 ppc40x_system_reset(cpu);
417 }
418 break;
419 case PPC40x_INPUT_RESET_CHIP:
420 if (level) {
421 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
422 ppc40x_chip_reset(cpu);
423 }
424 break;
425 case PPC40x_INPUT_RESET_CORE:
426 /* XXX: TODO: update DBSR[MRR] */
427 if (level) {
428 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
429 ppc40x_core_reset(cpu);
430 }
431 break;
432 case PPC40x_INPUT_CINT:
433 /* Level sensitive - active high */
434 LOG_IRQ("%s: set the critical IRQ state to %d\n",
435 __func__, level);
436 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
437 break;
438 case PPC40x_INPUT_INT:
439 /* Level sensitive - active high */
440 LOG_IRQ("%s: set the external IRQ state to %d\n",
441 __func__, level);
442 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
443 break;
444 case PPC40x_INPUT_HALT:
445 /* Level sensitive - active low */
446 if (level) {
447 LOG_IRQ("%s: stop the CPU\n", __func__);
448 cs->halted = 1;
449 } else {
450 LOG_IRQ("%s: restart the CPU\n", __func__);
451 cs->halted = 0;
452 qemu_cpu_kick(cs);
453 }
454 break;
455 case PPC40x_INPUT_DEBUG:
456 /* Level sensitive - active high */
457 LOG_IRQ("%s: set the debug pin state to %d\n",
458 __func__, level);
459 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
460 break;
461 default:
462 /* Unknown pin - do nothing */
463 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
464 return;
465 }
466 if (level)
467 env->irq_input_state |= 1 << pin;
468 else
469 env->irq_input_state &= ~(1 << pin);
470 }
471 }
472
473 void ppc40x_irq_init(PowerPCCPU *cpu)
474 {
475 CPUPPCState *env = &cpu->env;
476
477 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
478 cpu, PPC40x_INPUT_NB);
479 }
480
481 /* PowerPC E500 internal IRQ controller */
482 static void ppce500_set_irq(void *opaque, int pin, int level)
483 {
484 PowerPCCPU *cpu = opaque;
485 CPUPPCState *env = &cpu->env;
486 int cur_level;
487
488 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
489 env, pin, level);
490 cur_level = (env->irq_input_state >> pin) & 1;
491 /* Don't generate spurious events */
492 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
493 switch (pin) {
494 case PPCE500_INPUT_MCK:
495 if (level) {
496 LOG_IRQ("%s: reset the PowerPC system\n",
497 __func__);
498 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
499 }
500 break;
501 case PPCE500_INPUT_RESET_CORE:
502 if (level) {
503 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
504 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
505 }
506 break;
507 case PPCE500_INPUT_CINT:
508 /* Level sensitive - active high */
509 LOG_IRQ("%s: set the critical IRQ state to %d\n",
510 __func__, level);
511 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
512 break;
513 case PPCE500_INPUT_INT:
514 /* Level sensitive - active high */
515 LOG_IRQ("%s: set the core IRQ state to %d\n",
516 __func__, level);
517 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
518 break;
519 case PPCE500_INPUT_DEBUG:
520 /* Level sensitive - active high */
521 LOG_IRQ("%s: set the debug pin state to %d\n",
522 __func__, level);
523 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
524 break;
525 default:
526 /* Unknown pin - do nothing */
527 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
528 return;
529 }
530 if (level)
531 env->irq_input_state |= 1 << pin;
532 else
533 env->irq_input_state &= ~(1 << pin);
534 }
535 }
536
537 void ppce500_irq_init(PowerPCCPU *cpu)
538 {
539 CPUPPCState *env = &cpu->env;
540
541 env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
542 cpu, PPCE500_INPUT_NB);
543 }
544
545 /* Enable or Disable the E500 EPR capability */
546 void ppce500_set_mpic_proxy(bool enabled)
547 {
548 CPUState *cs;
549
550 CPU_FOREACH(cs) {
551 PowerPCCPU *cpu = POWERPC_CPU(cs);
552
553 cpu->env.mpic_proxy = enabled;
554 if (kvm_enabled()) {
555 kvmppc_set_mpic_proxy(cpu, enabled);
556 }
557 }
558 }
559
560 /*****************************************************************************/
561 /* PowerPC time base and decrementer emulation */
562
563 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
564 {
565 /* TB time in tb periods */
566 return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset;
567 }
568
569 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
570 {
571 ppc_tb_t *tb_env = env->tb_env;
572 uint64_t tb;
573
574 if (kvm_enabled()) {
575 return env->spr[SPR_TBL];
576 }
577
578 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
579 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
580
581 return tb;
582 }
583
584 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
585 {
586 ppc_tb_t *tb_env = env->tb_env;
587 uint64_t tb;
588
589 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
590 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
591
592 return tb >> 32;
593 }
594
595 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
596 {
597 if (kvm_enabled()) {
598 return env->spr[SPR_TBU];
599 }
600
601 return _cpu_ppc_load_tbu(env);
602 }
603
604 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
605 int64_t *tb_offsetp, uint64_t value)
606 {
607 *tb_offsetp = value -
608 muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
609
610 LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
611 __func__, value, *tb_offsetp);
612 }
613
614 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
615 {
616 ppc_tb_t *tb_env = env->tb_env;
617 uint64_t tb;
618
619 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
620 tb &= 0xFFFFFFFF00000000ULL;
621 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
622 &tb_env->tb_offset, tb | (uint64_t)value);
623 }
624
625 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
626 {
627 ppc_tb_t *tb_env = env->tb_env;
628 uint64_t tb;
629
630 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
631 tb &= 0x00000000FFFFFFFFULL;
632 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
633 &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
634 }
635
636 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
637 {
638 _cpu_ppc_store_tbu(env, value);
639 }
640
641 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
642 {
643 ppc_tb_t *tb_env = env->tb_env;
644 uint64_t tb;
645
646 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
647 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
648
649 return tb;
650 }
651
652 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
653 {
654 ppc_tb_t *tb_env = env->tb_env;
655 uint64_t tb;
656
657 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
658 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
659
660 return tb >> 32;
661 }
662
663 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
664 {
665 ppc_tb_t *tb_env = env->tb_env;
666 uint64_t tb;
667
668 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
669 tb &= 0xFFFFFFFF00000000ULL;
670 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
671 &tb_env->atb_offset, tb | (uint64_t)value);
672 }
673
674 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
675 {
676 ppc_tb_t *tb_env = env->tb_env;
677 uint64_t tb;
678
679 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
680 tb &= 0x00000000FFFFFFFFULL;
681 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
682 &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
683 }
684
685 uint64_t cpu_ppc_load_vtb(CPUPPCState *env)
686 {
687 ppc_tb_t *tb_env = env->tb_env;
688
689 return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
690 tb_env->vtb_offset);
691 }
692
693 void cpu_ppc_store_vtb(CPUPPCState *env, uint64_t value)
694 {
695 ppc_tb_t *tb_env = env->tb_env;
696
697 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
698 &tb_env->vtb_offset, value);
699 }
700
701 void cpu_ppc_store_tbu40(CPUPPCState *env, uint64_t value)
702 {
703 ppc_tb_t *tb_env = env->tb_env;
704 uint64_t tb;
705
706 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
707 tb_env->tb_offset);
708 tb &= 0xFFFFFFUL;
709 tb |= (value & ~0xFFFFFFUL);
710 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
711 &tb_env->tb_offset, tb);
712 }
713
714 static void cpu_ppc_tb_stop (CPUPPCState *env)
715 {
716 ppc_tb_t *tb_env = env->tb_env;
717 uint64_t tb, atb, vmclk;
718
719 /* If the time base is already frozen, do nothing */
720 if (tb_env->tb_freq != 0) {
721 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
722 /* Get the time base */
723 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
724 /* Get the alternate time base */
725 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
726 /* Store the time base value (ie compute the current offset) */
727 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
728 /* Store the alternate time base value (compute the current offset) */
729 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
730 /* Set the time base frequency to zero */
731 tb_env->tb_freq = 0;
732 /* Now, the time bases are frozen to tb_offset / atb_offset value */
733 }
734 }
735
736 static void cpu_ppc_tb_start (CPUPPCState *env)
737 {
738 ppc_tb_t *tb_env = env->tb_env;
739 uint64_t tb, atb, vmclk;
740
741 /* If the time base is not frozen, do nothing */
742 if (tb_env->tb_freq == 0) {
743 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
744 /* Get the time base from tb_offset */
745 tb = tb_env->tb_offset;
746 /* Get the alternate time base from atb_offset */
747 atb = tb_env->atb_offset;
748 /* Restore the tb frequency from the decrementer frequency */
749 tb_env->tb_freq = tb_env->decr_freq;
750 /* Store the time base value */
751 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
752 /* Store the alternate time base value */
753 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
754 }
755 }
756
757 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
758 {
759 ppc_tb_t *tb_env = env->tb_env;
760 int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
761 return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
762 }
763
764 static inline int64_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
765 {
766 ppc_tb_t *tb_env = env->tb_env;
767 int64_t decr, diff;
768
769 diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
770 if (diff >= 0) {
771 decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
772 } else if (tb_env->flags & PPC_TIMER_BOOKE) {
773 decr = 0;
774 } else {
775 decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
776 }
777 LOG_TB("%s: %016" PRIx64 "\n", __func__, decr);
778
779 return decr;
780 }
781
782 target_ulong cpu_ppc_load_decr(CPUPPCState *env)
783 {
784 ppc_tb_t *tb_env = env->tb_env;
785 uint64_t decr;
786
787 if (kvm_enabled()) {
788 return env->spr[SPR_DECR];
789 }
790
791 decr = _cpu_ppc_load_decr(env, tb_env->decr_next);
792
793 /*
794 * If large decrementer is enabled then the decrementer is signed extened
795 * to 64 bits, otherwise it is a 32 bit value.
796 */
797 if (env->spr[SPR_LPCR] & LPCR_LD) {
798 return decr;
799 }
800 return (uint32_t) decr;
801 }
802
803 target_ulong cpu_ppc_load_hdecr(CPUPPCState *env)
804 {
805 PowerPCCPU *cpu = env_archcpu(env);
806 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
807 ppc_tb_t *tb_env = env->tb_env;
808 uint64_t hdecr;
809
810 hdecr = _cpu_ppc_load_decr(env, tb_env->hdecr_next);
811
812 /*
813 * If we have a large decrementer (POWER9 or later) then hdecr is sign
814 * extended to 64 bits, otherwise it is 32 bits.
815 */
816 if (pcc->lrg_decr_bits > 32) {
817 return hdecr;
818 }
819 return (uint32_t) hdecr;
820 }
821
822 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
823 {
824 ppc_tb_t *tb_env = env->tb_env;
825
826 return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
827 tb_env->purr_offset);
828 }
829
830 /* When decrementer expires,
831 * all we need to do is generate or queue a CPU exception
832 */
833 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
834 {
835 /* Raise it */
836 LOG_TB("raise decrementer exception\n");
837 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
838 }
839
840 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
841 {
842 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
843 }
844
845 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
846 {
847 CPUPPCState *env = &cpu->env;
848
849 /* Raise it */
850 LOG_TB("raise hv decrementer exception\n");
851
852 /* The architecture specifies that we don't deliver HDEC
853 * interrupts in a PM state. Not only they don't cause a
854 * wakeup but they also get effectively discarded.
855 */
856 if (!env->resume_as_sreset) {
857 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
858 }
859 }
860
861 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
862 {
863 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
864 }
865
866 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
867 QEMUTimer *timer,
868 void (*raise_excp)(void *),
869 void (*lower_excp)(PowerPCCPU *),
870 target_ulong decr, target_ulong value,
871 int nr_bits)
872 {
873 CPUPPCState *env = &cpu->env;
874 ppc_tb_t *tb_env = env->tb_env;
875 uint64_t now, next;
876 bool negative;
877
878 /* Truncate value to decr_width and sign extend for simplicity */
879 value &= ((1ULL << nr_bits) - 1);
880 negative = !!(value & (1ULL << (nr_bits - 1)));
881 if (negative) {
882 value |= (0xFFFFFFFFULL << nr_bits);
883 }
884
885 LOG_TB("%s: " TARGET_FMT_lx " => " TARGET_FMT_lx "\n", __func__,
886 decr, value);
887
888 if (kvm_enabled()) {
889 /* KVM handles decrementer exceptions, we don't need our own timer */
890 return;
891 }
892
893 /*
894 * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
895 * interrupt.
896 *
897 * If we get a really small DEC value, we can assume that by the time we
898 * handled it we should inject an interrupt already.
899 *
900 * On MSB level based DEC implementations the MSB always means the interrupt
901 * is pending, so raise it on those.
902 *
903 * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
904 * an edge interrupt, so raise it here too.
905 */
906 if ((value < 3) ||
907 ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && negative) ||
908 ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && negative
909 && !(decr & (1ULL << (nr_bits - 1))))) {
910 (*raise_excp)(cpu);
911 return;
912 }
913
914 /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
915 if (!negative && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
916 (*lower_excp)(cpu);
917 }
918
919 /* Calculate the next timer event */
920 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
921 next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
922 *nextp = next;
923
924 /* Adjust timer */
925 timer_mod(timer, next);
926 }
927
928 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, target_ulong decr,
929 target_ulong value, int nr_bits)
930 {
931 ppc_tb_t *tb_env = cpu->env.tb_env;
932
933 __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
934 tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
935 value, nr_bits);
936 }
937
938 void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value)
939 {
940 PowerPCCPU *cpu = env_archcpu(env);
941 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
942 int nr_bits = 32;
943
944 if (env->spr[SPR_LPCR] & LPCR_LD) {
945 nr_bits = pcc->lrg_decr_bits;
946 }
947
948 _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, nr_bits);
949 }
950
951 static void cpu_ppc_decr_cb(void *opaque)
952 {
953 PowerPCCPU *cpu = opaque;
954
955 cpu_ppc_decr_excp(cpu);
956 }
957
958 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, target_ulong hdecr,
959 target_ulong value, int nr_bits)
960 {
961 ppc_tb_t *tb_env = cpu->env.tb_env;
962
963 if (tb_env->hdecr_timer != NULL) {
964 __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
965 tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
966 hdecr, value, nr_bits);
967 }
968 }
969
970 void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value)
971 {
972 PowerPCCPU *cpu = env_archcpu(env);
973 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
974
975 _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value,
976 pcc->lrg_decr_bits);
977 }
978
979 static void cpu_ppc_hdecr_cb(void *opaque)
980 {
981 PowerPCCPU *cpu = opaque;
982
983 cpu_ppc_hdecr_excp(cpu);
984 }
985
986 void cpu_ppc_store_purr(CPUPPCState *env, uint64_t value)
987 {
988 ppc_tb_t *tb_env = env->tb_env;
989
990 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
991 &tb_env->purr_offset, value);
992 }
993
994 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
995 {
996 CPUPPCState *env = opaque;
997 PowerPCCPU *cpu = env_archcpu(env);
998 ppc_tb_t *tb_env = env->tb_env;
999
1000 tb_env->tb_freq = freq;
1001 tb_env->decr_freq = freq;
1002 /* There is a bug in Linux 2.4 kernels:
1003 * if a decrementer exception is pending when it enables msr_ee at startup,
1004 * it's not ready to handle it...
1005 */
1006 _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
1007 _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
1008 cpu_ppc_store_purr(env, 0x0000000000000000ULL);
1009 }
1010
1011 static void timebase_save(PPCTimebase *tb)
1012 {
1013 uint64_t ticks = cpu_get_host_ticks();
1014 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1015
1016 if (!first_ppc_cpu->env.tb_env) {
1017 error_report("No timebase object");
1018 return;
1019 }
1020
1021 /* not used anymore, we keep it for compatibility */
1022 tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
1023 /*
1024 * tb_offset is only expected to be changed by QEMU so
1025 * there is no need to update it from KVM here
1026 */
1027 tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
1028
1029 tb->runstate_paused = runstate_check(RUN_STATE_PAUSED);
1030 }
1031
1032 static void timebase_load(PPCTimebase *tb)
1033 {
1034 CPUState *cpu;
1035 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1036 int64_t tb_off_adj, tb_off;
1037 unsigned long freq;
1038
1039 if (!first_ppc_cpu->env.tb_env) {
1040 error_report("No timebase object");
1041 return;
1042 }
1043
1044 freq = first_ppc_cpu->env.tb_env->tb_freq;
1045
1046 tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
1047
1048 tb_off = first_ppc_cpu->env.tb_env->tb_offset;
1049 trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
1050 (tb_off_adj - tb_off) / freq);
1051
1052 /* Set new offset to all CPUs */
1053 CPU_FOREACH(cpu) {
1054 PowerPCCPU *pcpu = POWERPC_CPU(cpu);
1055 pcpu->env.tb_env->tb_offset = tb_off_adj;
1056 kvmppc_set_reg_tb_offset(pcpu, pcpu->env.tb_env->tb_offset);
1057 }
1058 }
1059
1060 void cpu_ppc_clock_vm_state_change(void *opaque, int running,
1061 RunState state)
1062 {
1063 PPCTimebase *tb = opaque;
1064
1065 if (running) {
1066 timebase_load(tb);
1067 } else {
1068 timebase_save(tb);
1069 }
1070 }
1071
1072 /*
1073 * When migrating a running guest, read the clock just
1074 * before migration, so that the guest clock counts
1075 * during the events between:
1076 *
1077 * * vm_stop()
1078 * *
1079 * * pre_save()
1080 *
1081 * This reduces clock difference on migration from 5s
1082 * to 0.1s (when max_downtime == 5s), because sending the
1083 * final pages of memory (which happens between vm_stop()
1084 * and pre_save()) takes max_downtime.
1085 */
1086 static int timebase_pre_save(void *opaque)
1087 {
1088 PPCTimebase *tb = opaque;
1089
1090 /* guest_timebase won't be overridden in case of paused guest */
1091 if (!tb->runstate_paused) {
1092 timebase_save(tb);
1093 }
1094
1095 return 0;
1096 }
1097
1098 const VMStateDescription vmstate_ppc_timebase = {
1099 .name = "timebase",
1100 .version_id = 1,
1101 .minimum_version_id = 1,
1102 .minimum_version_id_old = 1,
1103 .pre_save = timebase_pre_save,
1104 .fields = (VMStateField []) {
1105 VMSTATE_UINT64(guest_timebase, PPCTimebase),
1106 VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
1107 VMSTATE_END_OF_LIST()
1108 },
1109 };
1110
1111 /* Set up (once) timebase frequency (in Hz) */
1112 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
1113 {
1114 PowerPCCPU *cpu = env_archcpu(env);
1115 ppc_tb_t *tb_env;
1116
1117 tb_env = g_malloc0(sizeof(ppc_tb_t));
1118 env->tb_env = tb_env;
1119 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1120 if (is_book3s_arch2x(env)) {
1121 /* All Book3S 64bit CPUs implement level based DEC logic */
1122 tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
1123 }
1124 /* Create new timer */
1125 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
1126 if (env->has_hv_mode) {
1127 tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
1128 cpu);
1129 } else {
1130 tb_env->hdecr_timer = NULL;
1131 }
1132 cpu_ppc_set_tb_clk(env, freq);
1133
1134 return &cpu_ppc_set_tb_clk;
1135 }
1136
1137 /* Specific helpers for POWER & PowerPC 601 RTC */
1138 void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
1139 {
1140 _cpu_ppc_store_tbu(env, value);
1141 }
1142
1143 uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
1144 {
1145 return _cpu_ppc_load_tbu(env);
1146 }
1147
1148 void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
1149 {
1150 cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
1151 }
1152
1153 uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
1154 {
1155 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
1156 }
1157
1158 /*****************************************************************************/
1159 /* PowerPC 40x timers */
1160
1161 /* PIT, FIT & WDT */
1162 typedef struct ppc40x_timer_t ppc40x_timer_t;
1163 struct ppc40x_timer_t {
1164 uint64_t pit_reload; /* PIT auto-reload value */
1165 uint64_t fit_next; /* Tick for next FIT interrupt */
1166 QEMUTimer *fit_timer;
1167 uint64_t wdt_next; /* Tick for next WDT interrupt */
1168 QEMUTimer *wdt_timer;
1169
1170 /* 405 have the PIT, 440 have a DECR. */
1171 unsigned int decr_excp;
1172 };
1173
1174 /* Fixed interval timer */
1175 static void cpu_4xx_fit_cb (void *opaque)
1176 {
1177 PowerPCCPU *cpu;
1178 CPUPPCState *env;
1179 ppc_tb_t *tb_env;
1180 ppc40x_timer_t *ppc40x_timer;
1181 uint64_t now, next;
1182
1183 env = opaque;
1184 cpu = env_archcpu(env);
1185 tb_env = env->tb_env;
1186 ppc40x_timer = tb_env->opaque;
1187 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1188 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1189 case 0:
1190 next = 1 << 9;
1191 break;
1192 case 1:
1193 next = 1 << 13;
1194 break;
1195 case 2:
1196 next = 1 << 17;
1197 break;
1198 case 3:
1199 next = 1 << 21;
1200 break;
1201 default:
1202 /* Cannot occur, but makes gcc happy */
1203 return;
1204 }
1205 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq);
1206 if (next == now)
1207 next++;
1208 timer_mod(ppc40x_timer->fit_timer, next);
1209 env->spr[SPR_40x_TSR] |= 1 << 26;
1210 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1211 ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1212 }
1213 LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1214 (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1215 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1216 }
1217
1218 /* Programmable interval timer */
1219 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1220 {
1221 ppc40x_timer_t *ppc40x_timer;
1222 uint64_t now, next;
1223
1224 ppc40x_timer = tb_env->opaque;
1225 if (ppc40x_timer->pit_reload <= 1 ||
1226 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1227 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1228 /* Stop PIT */
1229 LOG_TB("%s: stop PIT\n", __func__);
1230 timer_del(tb_env->decr_timer);
1231 } else {
1232 LOG_TB("%s: start PIT %016" PRIx64 "\n",
1233 __func__, ppc40x_timer->pit_reload);
1234 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1235 next = now + muldiv64(ppc40x_timer->pit_reload,
1236 NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1237 if (is_excp)
1238 next += tb_env->decr_next - now;
1239 if (next == now)
1240 next++;
1241 timer_mod(tb_env->decr_timer, next);
1242 tb_env->decr_next = next;
1243 }
1244 }
1245
1246 static void cpu_4xx_pit_cb (void *opaque)
1247 {
1248 PowerPCCPU *cpu;
1249 CPUPPCState *env;
1250 ppc_tb_t *tb_env;
1251 ppc40x_timer_t *ppc40x_timer;
1252
1253 env = opaque;
1254 cpu = env_archcpu(env);
1255 tb_env = env->tb_env;
1256 ppc40x_timer = tb_env->opaque;
1257 env->spr[SPR_40x_TSR] |= 1 << 27;
1258 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1259 ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1260 }
1261 start_stop_pit(env, tb_env, 1);
1262 LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
1263 "%016" PRIx64 "\n", __func__,
1264 (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1265 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1266 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1267 ppc40x_timer->pit_reload);
1268 }
1269
1270 /* Watchdog timer */
1271 static void cpu_4xx_wdt_cb (void *opaque)
1272 {
1273 PowerPCCPU *cpu;
1274 CPUPPCState *env;
1275 ppc_tb_t *tb_env;
1276 ppc40x_timer_t *ppc40x_timer;
1277 uint64_t now, next;
1278
1279 env = opaque;
1280 cpu = env_archcpu(env);
1281 tb_env = env->tb_env;
1282 ppc40x_timer = tb_env->opaque;
1283 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1284 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1285 case 0:
1286 next = 1 << 17;
1287 break;
1288 case 1:
1289 next = 1 << 21;
1290 break;
1291 case 2:
1292 next = 1 << 25;
1293 break;
1294 case 3:
1295 next = 1 << 29;
1296 break;
1297 default:
1298 /* Cannot occur, but makes gcc happy */
1299 return;
1300 }
1301 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1302 if (next == now)
1303 next++;
1304 LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1305 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1306 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1307 case 0x0:
1308 case 0x1:
1309 timer_mod(ppc40x_timer->wdt_timer, next);
1310 ppc40x_timer->wdt_next = next;
1311 env->spr[SPR_40x_TSR] |= 1U << 31;
1312 break;
1313 case 0x2:
1314 timer_mod(ppc40x_timer->wdt_timer, next);
1315 ppc40x_timer->wdt_next = next;
1316 env->spr[SPR_40x_TSR] |= 1 << 30;
1317 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1318 ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1319 }
1320 break;
1321 case 0x3:
1322 env->spr[SPR_40x_TSR] &= ~0x30000000;
1323 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1324 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1325 case 0x0:
1326 /* No reset */
1327 break;
1328 case 0x1: /* Core reset */
1329 ppc40x_core_reset(cpu);
1330 break;
1331 case 0x2: /* Chip reset */
1332 ppc40x_chip_reset(cpu);
1333 break;
1334 case 0x3: /* System reset */
1335 ppc40x_system_reset(cpu);
1336 break;
1337 }
1338 }
1339 }
1340
1341 void store_40x_pit (CPUPPCState *env, target_ulong val)
1342 {
1343 ppc_tb_t *tb_env;
1344 ppc40x_timer_t *ppc40x_timer;
1345
1346 tb_env = env->tb_env;
1347 ppc40x_timer = tb_env->opaque;
1348 LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1349 ppc40x_timer->pit_reload = val;
1350 start_stop_pit(env, tb_env, 0);
1351 }
1352
1353 target_ulong load_40x_pit (CPUPPCState *env)
1354 {
1355 return cpu_ppc_load_decr(env);
1356 }
1357
1358 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1359 {
1360 CPUPPCState *env = opaque;
1361 ppc_tb_t *tb_env = env->tb_env;
1362
1363 LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1364 freq);
1365 tb_env->tb_freq = freq;
1366 tb_env->decr_freq = freq;
1367 /* XXX: we should also update all timers */
1368 }
1369
1370 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1371 unsigned int decr_excp)
1372 {
1373 ppc_tb_t *tb_env;
1374 ppc40x_timer_t *ppc40x_timer;
1375
1376 tb_env = g_malloc0(sizeof(ppc_tb_t));
1377 env->tb_env = tb_env;
1378 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1379 ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1380 tb_env->tb_freq = freq;
1381 tb_env->decr_freq = freq;
1382 tb_env->opaque = ppc40x_timer;
1383 LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1384 if (ppc40x_timer != NULL) {
1385 /* We use decr timer for PIT */
1386 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
1387 ppc40x_timer->fit_timer =
1388 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
1389 ppc40x_timer->wdt_timer =
1390 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
1391 ppc40x_timer->decr_excp = decr_excp;
1392 }
1393
1394 return &ppc_40x_set_tb_clk;
1395 }
1396
1397 /*****************************************************************************/
1398 /* Embedded PowerPC Device Control Registers */
1399 typedef struct ppc_dcrn_t ppc_dcrn_t;
1400 struct ppc_dcrn_t {
1401 dcr_read_cb dcr_read;
1402 dcr_write_cb dcr_write;
1403 void *opaque;
1404 };
1405
1406 /* XXX: on 460, DCR addresses are 32 bits wide,
1407 * using DCRIPR to get the 22 upper bits of the DCR address
1408 */
1409 #define DCRN_NB 1024
1410 struct ppc_dcr_t {
1411 ppc_dcrn_t dcrn[DCRN_NB];
1412 int (*read_error)(int dcrn);
1413 int (*write_error)(int dcrn);
1414 };
1415
1416 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1417 {
1418 ppc_dcrn_t *dcr;
1419
1420 if (dcrn < 0 || dcrn >= DCRN_NB)
1421 goto error;
1422 dcr = &dcr_env->dcrn[dcrn];
1423 if (dcr->dcr_read == NULL)
1424 goto error;
1425 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1426
1427 return 0;
1428
1429 error:
1430 if (dcr_env->read_error != NULL)
1431 return (*dcr_env->read_error)(dcrn);
1432
1433 return -1;
1434 }
1435
1436 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1437 {
1438 ppc_dcrn_t *dcr;
1439
1440 if (dcrn < 0 || dcrn >= DCRN_NB)
1441 goto error;
1442 dcr = &dcr_env->dcrn[dcrn];
1443 if (dcr->dcr_write == NULL)
1444 goto error;
1445 (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1446
1447 return 0;
1448
1449 error:
1450 if (dcr_env->write_error != NULL)
1451 return (*dcr_env->write_error)(dcrn);
1452
1453 return -1;
1454 }
1455
1456 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1457 dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1458 {
1459 ppc_dcr_t *dcr_env;
1460 ppc_dcrn_t *dcr;
1461
1462 dcr_env = env->dcr_env;
1463 if (dcr_env == NULL)
1464 return -1;
1465 if (dcrn < 0 || dcrn >= DCRN_NB)
1466 return -1;
1467 dcr = &dcr_env->dcrn[dcrn];
1468 if (dcr->opaque != NULL ||
1469 dcr->dcr_read != NULL ||
1470 dcr->dcr_write != NULL)
1471 return -1;
1472 dcr->opaque = opaque;
1473 dcr->dcr_read = dcr_read;
1474 dcr->dcr_write = dcr_write;
1475
1476 return 0;
1477 }
1478
1479 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1480 int (*write_error)(int dcrn))
1481 {
1482 ppc_dcr_t *dcr_env;
1483
1484 dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1485 dcr_env->read_error = read_error;
1486 dcr_env->write_error = write_error;
1487 env->dcr_env = dcr_env;
1488
1489 return 0;
1490 }
1491
1492 /*****************************************************************************/
1493
1494 int ppc_cpu_pir(PowerPCCPU *cpu)
1495 {
1496 CPUPPCState *env = &cpu->env;
1497 return env->spr_cb[SPR_PIR].default_value;
1498 }
1499
1500 PowerPCCPU *ppc_get_vcpu_by_pir(int pir)
1501 {
1502 CPUState *cs;
1503
1504 CPU_FOREACH(cs) {
1505 PowerPCCPU *cpu = POWERPC_CPU(cs);
1506
1507 if (ppc_cpu_pir(cpu) == pir) {
1508 return cpu;
1509 }
1510 }
1511
1512 return NULL;
1513 }
1514
1515 void ppc_irq_reset(PowerPCCPU *cpu)
1516 {
1517 CPUPPCState *env = &cpu->env;
1518
1519 env->irq_input_state = 0;
1520 kvmppc_set_interrupt(cpu, PPC_INTERRUPT_EXT, 0);
1521 }