Update version for v7.1.0-rc2 release
[qemu.git] / hw / ppc / ppc.c
1 /*
2 * QEMU generic PowerPC hardware System Emulator
3 *
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "hw/irq.h"
27 #include "hw/ppc/ppc.h"
28 #include "hw/ppc/ppc_e500.h"
29 #include "qemu/timer.h"
30 #include "sysemu/cpus.h"
31 #include "qemu/log.h"
32 #include "qemu/main-loop.h"
33 #include "qemu/error-report.h"
34 #include "sysemu/kvm.h"
35 #include "sysemu/runstate.h"
36 #include "kvm_ppc.h"
37 #include "migration/vmstate.h"
38 #include "trace.h"
39
40 static void cpu_ppc_tb_stop (CPUPPCState *env);
41 static void cpu_ppc_tb_start (CPUPPCState *env);
42
43 void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
44 {
45 CPUState *cs = CPU(cpu);
46 CPUPPCState *env = &cpu->env;
47 unsigned int old_pending;
48 bool locked = false;
49
50 /* We may already have the BQL if coming from the reset path */
51 if (!qemu_mutex_iothread_locked()) {
52 locked = true;
53 qemu_mutex_lock_iothread();
54 }
55
56 old_pending = env->pending_interrupts;
57
58 if (level) {
59 env->pending_interrupts |= 1 << n_IRQ;
60 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
61 } else {
62 env->pending_interrupts &= ~(1 << n_IRQ);
63 if (env->pending_interrupts == 0) {
64 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
65 }
66 }
67
68 if (old_pending != env->pending_interrupts) {
69 kvmppc_set_interrupt(cpu, n_IRQ, level);
70 }
71
72
73 trace_ppc_irq_set_exit(env, n_IRQ, level, env->pending_interrupts,
74 CPU(cpu)->interrupt_request);
75
76 if (locked) {
77 qemu_mutex_unlock_iothread();
78 }
79 }
80
81 /* PowerPC 6xx / 7xx internal IRQ controller */
82 static void ppc6xx_set_irq(void *opaque, int pin, int level)
83 {
84 PowerPCCPU *cpu = opaque;
85 CPUPPCState *env = &cpu->env;
86 int cur_level;
87
88 trace_ppc_irq_set(env, pin, level);
89
90 cur_level = (env->irq_input_state >> pin) & 1;
91 /* Don't generate spurious events */
92 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
93 CPUState *cs = CPU(cpu);
94
95 switch (pin) {
96 case PPC6xx_INPUT_TBEN:
97 /* Level sensitive - active high */
98 trace_ppc_irq_set_state("time base", level);
99 if (level) {
100 cpu_ppc_tb_start(env);
101 } else {
102 cpu_ppc_tb_stop(env);
103 }
104 break;
105 case PPC6xx_INPUT_INT:
106 /* Level sensitive - active high */
107 trace_ppc_irq_set_state("external IRQ", level);
108 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
109 break;
110 case PPC6xx_INPUT_SMI:
111 /* Level sensitive - active high */
112 trace_ppc_irq_set_state("SMI IRQ", level);
113 ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
114 break;
115 case PPC6xx_INPUT_MCP:
116 /* Negative edge sensitive */
117 /* XXX: TODO: actual reaction may depends on HID0 status
118 * 603/604/740/750: check HID0[EMCP]
119 */
120 if (cur_level == 1 && level == 0) {
121 trace_ppc_irq_set_state("machine check", 1);
122 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
123 }
124 break;
125 case PPC6xx_INPUT_CKSTP_IN:
126 /* Level sensitive - active low */
127 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
128 /* XXX: Note that the only way to restart the CPU is to reset it */
129 if (level) {
130 trace_ppc_irq_cpu("stop");
131 cs->halted = 1;
132 }
133 break;
134 case PPC6xx_INPUT_HRESET:
135 /* Level sensitive - active low */
136 if (level) {
137 trace_ppc_irq_reset("CPU");
138 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
139 }
140 break;
141 case PPC6xx_INPUT_SRESET:
142 trace_ppc_irq_set_state("RESET IRQ", level);
143 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
144 break;
145 default:
146 g_assert_not_reached();
147 }
148 if (level)
149 env->irq_input_state |= 1 << pin;
150 else
151 env->irq_input_state &= ~(1 << pin);
152 }
153 }
154
155 void ppc6xx_irq_init(PowerPCCPU *cpu)
156 {
157 CPUPPCState *env = &cpu->env;
158
159 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
160 PPC6xx_INPUT_NB);
161 }
162
163 #if defined(TARGET_PPC64)
164 /* PowerPC 970 internal IRQ controller */
165 static void ppc970_set_irq(void *opaque, int pin, int level)
166 {
167 PowerPCCPU *cpu = opaque;
168 CPUPPCState *env = &cpu->env;
169 int cur_level;
170
171 trace_ppc_irq_set(env, pin, level);
172
173 cur_level = (env->irq_input_state >> pin) & 1;
174 /* Don't generate spurious events */
175 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
176 CPUState *cs = CPU(cpu);
177
178 switch (pin) {
179 case PPC970_INPUT_INT:
180 /* Level sensitive - active high */
181 trace_ppc_irq_set_state("external IRQ", level);
182 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
183 break;
184 case PPC970_INPUT_THINT:
185 /* Level sensitive - active high */
186 trace_ppc_irq_set_state("SMI IRQ", level);
187 ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
188 break;
189 case PPC970_INPUT_MCP:
190 /* Negative edge sensitive */
191 /* XXX: TODO: actual reaction may depends on HID0 status
192 * 603/604/740/750: check HID0[EMCP]
193 */
194 if (cur_level == 1 && level == 0) {
195 trace_ppc_irq_set_state("machine check", 1);
196 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
197 }
198 break;
199 case PPC970_INPUT_CKSTP:
200 /* Level sensitive - active low */
201 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
202 if (level) {
203 trace_ppc_irq_cpu("stop");
204 cs->halted = 1;
205 } else {
206 trace_ppc_irq_cpu("restart");
207 cs->halted = 0;
208 qemu_cpu_kick(cs);
209 }
210 break;
211 case PPC970_INPUT_HRESET:
212 /* Level sensitive - active low */
213 if (level) {
214 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
215 }
216 break;
217 case PPC970_INPUT_SRESET:
218 trace_ppc_irq_set_state("RESET IRQ", level);
219 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
220 break;
221 case PPC970_INPUT_TBEN:
222 trace_ppc_irq_set_state("TBEN IRQ", level);
223 /* XXX: TODO */
224 break;
225 default:
226 g_assert_not_reached();
227 }
228 if (level)
229 env->irq_input_state |= 1 << pin;
230 else
231 env->irq_input_state &= ~(1 << pin);
232 }
233 }
234
235 void ppc970_irq_init(PowerPCCPU *cpu)
236 {
237 CPUPPCState *env = &cpu->env;
238
239 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
240 PPC970_INPUT_NB);
241 }
242
243 /* POWER7 internal IRQ controller */
244 static void power7_set_irq(void *opaque, int pin, int level)
245 {
246 PowerPCCPU *cpu = opaque;
247
248 trace_ppc_irq_set(&cpu->env, pin, level);
249
250 switch (pin) {
251 case POWER7_INPUT_INT:
252 /* Level sensitive - active high */
253 trace_ppc_irq_set_state("external IRQ", level);
254 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
255 break;
256 default:
257 g_assert_not_reached();
258 }
259 }
260
261 void ppcPOWER7_irq_init(PowerPCCPU *cpu)
262 {
263 CPUPPCState *env = &cpu->env;
264
265 env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
266 POWER7_INPUT_NB);
267 }
268
269 /* POWER9 internal IRQ controller */
270 static void power9_set_irq(void *opaque, int pin, int level)
271 {
272 PowerPCCPU *cpu = opaque;
273
274 trace_ppc_irq_set(&cpu->env, pin, level);
275
276 switch (pin) {
277 case POWER9_INPUT_INT:
278 /* Level sensitive - active high */
279 trace_ppc_irq_set_state("external IRQ", level);
280 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
281 break;
282 case POWER9_INPUT_HINT:
283 /* Level sensitive - active high */
284 trace_ppc_irq_set_state("HV external IRQ", level);
285 ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level);
286 break;
287 default:
288 g_assert_not_reached();
289 return;
290 }
291 }
292
293 void ppcPOWER9_irq_init(PowerPCCPU *cpu)
294 {
295 CPUPPCState *env = &cpu->env;
296
297 env->irq_inputs = (void **)qemu_allocate_irqs(&power9_set_irq, cpu,
298 POWER9_INPUT_NB);
299 }
300 #endif /* defined(TARGET_PPC64) */
301
302 void ppc40x_core_reset(PowerPCCPU *cpu)
303 {
304 CPUPPCState *env = &cpu->env;
305 target_ulong dbsr;
306
307 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n");
308 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
309 dbsr = env->spr[SPR_40x_DBSR];
310 dbsr &= ~0x00000300;
311 dbsr |= 0x00000100;
312 env->spr[SPR_40x_DBSR] = dbsr;
313 }
314
315 void ppc40x_chip_reset(PowerPCCPU *cpu)
316 {
317 CPUPPCState *env = &cpu->env;
318 target_ulong dbsr;
319
320 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n");
321 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
322 /* XXX: TODO reset all internal peripherals */
323 dbsr = env->spr[SPR_40x_DBSR];
324 dbsr &= ~0x00000300;
325 dbsr |= 0x00000200;
326 env->spr[SPR_40x_DBSR] = dbsr;
327 }
328
329 void ppc40x_system_reset(PowerPCCPU *cpu)
330 {
331 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n");
332 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
333 }
334
335 void store_40x_dbcr0(CPUPPCState *env, uint32_t val)
336 {
337 PowerPCCPU *cpu = env_archcpu(env);
338
339 qemu_mutex_lock_iothread();
340
341 switch ((val >> 28) & 0x3) {
342 case 0x0:
343 /* No action */
344 break;
345 case 0x1:
346 /* Core reset */
347 ppc40x_core_reset(cpu);
348 break;
349 case 0x2:
350 /* Chip reset */
351 ppc40x_chip_reset(cpu);
352 break;
353 case 0x3:
354 /* System reset */
355 ppc40x_system_reset(cpu);
356 break;
357 }
358
359 qemu_mutex_unlock_iothread();
360 }
361
362 /* PowerPC 40x internal IRQ controller */
363 static void ppc40x_set_irq(void *opaque, int pin, int level)
364 {
365 PowerPCCPU *cpu = opaque;
366 CPUPPCState *env = &cpu->env;
367 int cur_level;
368
369 trace_ppc_irq_set(env, pin, level);
370
371 cur_level = (env->irq_input_state >> pin) & 1;
372 /* Don't generate spurious events */
373 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
374 CPUState *cs = CPU(cpu);
375
376 switch (pin) {
377 case PPC40x_INPUT_RESET_SYS:
378 if (level) {
379 trace_ppc_irq_reset("system");
380 ppc40x_system_reset(cpu);
381 }
382 break;
383 case PPC40x_INPUT_RESET_CHIP:
384 if (level) {
385 trace_ppc_irq_reset("chip");
386 ppc40x_chip_reset(cpu);
387 }
388 break;
389 case PPC40x_INPUT_RESET_CORE:
390 /* XXX: TODO: update DBSR[MRR] */
391 if (level) {
392 trace_ppc_irq_reset("core");
393 ppc40x_core_reset(cpu);
394 }
395 break;
396 case PPC40x_INPUT_CINT:
397 /* Level sensitive - active high */
398 trace_ppc_irq_set_state("critical IRQ", level);
399 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
400 break;
401 case PPC40x_INPUT_INT:
402 /* Level sensitive - active high */
403 trace_ppc_irq_set_state("external IRQ", level);
404 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
405 break;
406 case PPC40x_INPUT_HALT:
407 /* Level sensitive - active low */
408 if (level) {
409 trace_ppc_irq_cpu("stop");
410 cs->halted = 1;
411 } else {
412 trace_ppc_irq_cpu("restart");
413 cs->halted = 0;
414 qemu_cpu_kick(cs);
415 }
416 break;
417 case PPC40x_INPUT_DEBUG:
418 /* Level sensitive - active high */
419 trace_ppc_irq_set_state("debug pin", level);
420 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
421 break;
422 default:
423 g_assert_not_reached();
424 }
425 if (level)
426 env->irq_input_state |= 1 << pin;
427 else
428 env->irq_input_state &= ~(1 << pin);
429 }
430 }
431
432 void ppc40x_irq_init(PowerPCCPU *cpu)
433 {
434 CPUPPCState *env = &cpu->env;
435
436 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
437 cpu, PPC40x_INPUT_NB);
438 }
439
440 /* PowerPC E500 internal IRQ controller */
441 static void ppce500_set_irq(void *opaque, int pin, int level)
442 {
443 PowerPCCPU *cpu = opaque;
444 CPUPPCState *env = &cpu->env;
445 int cur_level;
446
447 trace_ppc_irq_set(env, pin, level);
448
449 cur_level = (env->irq_input_state >> pin) & 1;
450 /* Don't generate spurious events */
451 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
452 switch (pin) {
453 case PPCE500_INPUT_MCK:
454 if (level) {
455 trace_ppc_irq_reset("system");
456 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
457 }
458 break;
459 case PPCE500_INPUT_RESET_CORE:
460 if (level) {
461 trace_ppc_irq_reset("core");
462 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
463 }
464 break;
465 case PPCE500_INPUT_CINT:
466 /* Level sensitive - active high */
467 trace_ppc_irq_set_state("critical IRQ", level);
468 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
469 break;
470 case PPCE500_INPUT_INT:
471 /* Level sensitive - active high */
472 trace_ppc_irq_set_state("core IRQ", level);
473 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
474 break;
475 case PPCE500_INPUT_DEBUG:
476 /* Level sensitive - active high */
477 trace_ppc_irq_set_state("debug pin", level);
478 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
479 break;
480 default:
481 g_assert_not_reached();
482 }
483 if (level)
484 env->irq_input_state |= 1 << pin;
485 else
486 env->irq_input_state &= ~(1 << pin);
487 }
488 }
489
490 void ppce500_irq_init(PowerPCCPU *cpu)
491 {
492 CPUPPCState *env = &cpu->env;
493
494 env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
495 cpu, PPCE500_INPUT_NB);
496 }
497
498 /* Enable or Disable the E500 EPR capability */
499 void ppce500_set_mpic_proxy(bool enabled)
500 {
501 CPUState *cs;
502
503 CPU_FOREACH(cs) {
504 PowerPCCPU *cpu = POWERPC_CPU(cs);
505
506 cpu->env.mpic_proxy = enabled;
507 if (kvm_enabled()) {
508 kvmppc_set_mpic_proxy(cpu, enabled);
509 }
510 }
511 }
512
513 /*****************************************************************************/
514 /* PowerPC time base and decrementer emulation */
515
516 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
517 {
518 /* TB time in tb periods */
519 return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset;
520 }
521
522 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
523 {
524 ppc_tb_t *tb_env = env->tb_env;
525 uint64_t tb;
526
527 if (kvm_enabled()) {
528 return env->spr[SPR_TBL];
529 }
530
531 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
532 trace_ppc_tb_load(tb);
533
534 return tb;
535 }
536
537 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
538 {
539 ppc_tb_t *tb_env = env->tb_env;
540 uint64_t tb;
541
542 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
543 trace_ppc_tb_load(tb);
544
545 return tb >> 32;
546 }
547
548 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
549 {
550 if (kvm_enabled()) {
551 return env->spr[SPR_TBU];
552 }
553
554 return _cpu_ppc_load_tbu(env);
555 }
556
557 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
558 int64_t *tb_offsetp, uint64_t value)
559 {
560 *tb_offsetp = value -
561 muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
562
563 trace_ppc_tb_store(value, *tb_offsetp);
564 }
565
566 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
567 {
568 ppc_tb_t *tb_env = env->tb_env;
569 uint64_t tb;
570
571 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
572 tb &= 0xFFFFFFFF00000000ULL;
573 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
574 &tb_env->tb_offset, tb | (uint64_t)value);
575 }
576
577 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
578 {
579 ppc_tb_t *tb_env = env->tb_env;
580 uint64_t tb;
581
582 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
583 tb &= 0x00000000FFFFFFFFULL;
584 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
585 &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
586 }
587
588 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
589 {
590 _cpu_ppc_store_tbu(env, value);
591 }
592
593 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
594 {
595 ppc_tb_t *tb_env = env->tb_env;
596 uint64_t tb;
597
598 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
599 trace_ppc_tb_load(tb);
600
601 return tb;
602 }
603
604 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
605 {
606 ppc_tb_t *tb_env = env->tb_env;
607 uint64_t tb;
608
609 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
610 trace_ppc_tb_load(tb);
611
612 return tb >> 32;
613 }
614
615 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
616 {
617 ppc_tb_t *tb_env = env->tb_env;
618 uint64_t tb;
619
620 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
621 tb &= 0xFFFFFFFF00000000ULL;
622 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
623 &tb_env->atb_offset, tb | (uint64_t)value);
624 }
625
626 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
627 {
628 ppc_tb_t *tb_env = env->tb_env;
629 uint64_t tb;
630
631 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
632 tb &= 0x00000000FFFFFFFFULL;
633 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
634 &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
635 }
636
637 uint64_t cpu_ppc_load_vtb(CPUPPCState *env)
638 {
639 ppc_tb_t *tb_env = env->tb_env;
640
641 return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
642 tb_env->vtb_offset);
643 }
644
645 void cpu_ppc_store_vtb(CPUPPCState *env, uint64_t value)
646 {
647 ppc_tb_t *tb_env = env->tb_env;
648
649 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
650 &tb_env->vtb_offset, value);
651 }
652
653 void cpu_ppc_store_tbu40(CPUPPCState *env, uint64_t value)
654 {
655 ppc_tb_t *tb_env = env->tb_env;
656 uint64_t tb;
657
658 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
659 tb_env->tb_offset);
660 tb &= 0xFFFFFFUL;
661 tb |= (value & ~0xFFFFFFUL);
662 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
663 &tb_env->tb_offset, tb);
664 }
665
666 static void cpu_ppc_tb_stop (CPUPPCState *env)
667 {
668 ppc_tb_t *tb_env = env->tb_env;
669 uint64_t tb, atb, vmclk;
670
671 /* If the time base is already frozen, do nothing */
672 if (tb_env->tb_freq != 0) {
673 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
674 /* Get the time base */
675 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
676 /* Get the alternate time base */
677 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
678 /* Store the time base value (ie compute the current offset) */
679 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
680 /* Store the alternate time base value (compute the current offset) */
681 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
682 /* Set the time base frequency to zero */
683 tb_env->tb_freq = 0;
684 /* Now, the time bases are frozen to tb_offset / atb_offset value */
685 }
686 }
687
688 static void cpu_ppc_tb_start (CPUPPCState *env)
689 {
690 ppc_tb_t *tb_env = env->tb_env;
691 uint64_t tb, atb, vmclk;
692
693 /* If the time base is not frozen, do nothing */
694 if (tb_env->tb_freq == 0) {
695 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
696 /* Get the time base from tb_offset */
697 tb = tb_env->tb_offset;
698 /* Get the alternate time base from atb_offset */
699 atb = tb_env->atb_offset;
700 /* Restore the tb frequency from the decrementer frequency */
701 tb_env->tb_freq = tb_env->decr_freq;
702 /* Store the time base value */
703 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
704 /* Store the alternate time base value */
705 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
706 }
707 }
708
709 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
710 {
711 ppc_tb_t *tb_env = env->tb_env;
712 int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
713 return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
714 }
715
716 static inline int64_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
717 {
718 ppc_tb_t *tb_env = env->tb_env;
719 int64_t decr, diff;
720
721 diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
722 if (diff >= 0) {
723 decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
724 } else if (tb_env->flags & PPC_TIMER_BOOKE) {
725 decr = 0;
726 } else {
727 decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
728 }
729 trace_ppc_decr_load(decr);
730
731 return decr;
732 }
733
734 target_ulong cpu_ppc_load_decr(CPUPPCState *env)
735 {
736 ppc_tb_t *tb_env = env->tb_env;
737 uint64_t decr;
738
739 if (kvm_enabled()) {
740 return env->spr[SPR_DECR];
741 }
742
743 decr = _cpu_ppc_load_decr(env, tb_env->decr_next);
744
745 /*
746 * If large decrementer is enabled then the decrementer is signed extened
747 * to 64 bits, otherwise it is a 32 bit value.
748 */
749 if (env->spr[SPR_LPCR] & LPCR_LD) {
750 return decr;
751 }
752 return (uint32_t) decr;
753 }
754
755 target_ulong cpu_ppc_load_hdecr(CPUPPCState *env)
756 {
757 PowerPCCPU *cpu = env_archcpu(env);
758 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
759 ppc_tb_t *tb_env = env->tb_env;
760 uint64_t hdecr;
761
762 hdecr = _cpu_ppc_load_decr(env, tb_env->hdecr_next);
763
764 /*
765 * If we have a large decrementer (POWER9 or later) then hdecr is sign
766 * extended to 64 bits, otherwise it is 32 bits.
767 */
768 if (pcc->lrg_decr_bits > 32) {
769 return hdecr;
770 }
771 return (uint32_t) hdecr;
772 }
773
774 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
775 {
776 ppc_tb_t *tb_env = env->tb_env;
777
778 return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
779 tb_env->purr_offset);
780 }
781
782 /* When decrementer expires,
783 * all we need to do is generate or queue a CPU exception
784 */
785 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
786 {
787 /* Raise it */
788 trace_ppc_decr_excp("raise");
789 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
790 }
791
792 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
793 {
794 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
795 }
796
797 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
798 {
799 CPUPPCState *env = &cpu->env;
800
801 /* Raise it */
802 trace_ppc_decr_excp("raise HV");
803
804 /* The architecture specifies that we don't deliver HDEC
805 * interrupts in a PM state. Not only they don't cause a
806 * wakeup but they also get effectively discarded.
807 */
808 if (!env->resume_as_sreset) {
809 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
810 }
811 }
812
813 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
814 {
815 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
816 }
817
818 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
819 QEMUTimer *timer,
820 void (*raise_excp)(void *),
821 void (*lower_excp)(PowerPCCPU *),
822 target_ulong decr, target_ulong value,
823 int nr_bits)
824 {
825 CPUPPCState *env = &cpu->env;
826 ppc_tb_t *tb_env = env->tb_env;
827 uint64_t now, next;
828 int64_t signed_value;
829 int64_t signed_decr;
830
831 /* Truncate value to decr_width and sign extend for simplicity */
832 signed_value = sextract64(value, 0, nr_bits);
833 signed_decr = sextract64(decr, 0, nr_bits);
834
835 trace_ppc_decr_store(nr_bits, decr, value);
836
837 if (kvm_enabled()) {
838 /* KVM handles decrementer exceptions, we don't need our own timer */
839 return;
840 }
841
842 /*
843 * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
844 * interrupt.
845 *
846 * If we get a really small DEC value, we can assume that by the time we
847 * handled it we should inject an interrupt already.
848 *
849 * On MSB level based DEC implementations the MSB always means the interrupt
850 * is pending, so raise it on those.
851 *
852 * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
853 * an edge interrupt, so raise it here too.
854 */
855 if ((value < 3) ||
856 ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && signed_value < 0) ||
857 ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && signed_value < 0
858 && signed_decr >= 0)) {
859 (*raise_excp)(cpu);
860 return;
861 }
862
863 /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
864 if (signed_value >= 0 && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
865 (*lower_excp)(cpu);
866 }
867
868 /* Calculate the next timer event */
869 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
870 next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
871 *nextp = next;
872
873 /* Adjust timer */
874 timer_mod(timer, next);
875 }
876
877 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, target_ulong decr,
878 target_ulong value, int nr_bits)
879 {
880 ppc_tb_t *tb_env = cpu->env.tb_env;
881
882 __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
883 tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
884 value, nr_bits);
885 }
886
887 void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value)
888 {
889 PowerPCCPU *cpu = env_archcpu(env);
890 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
891 int nr_bits = 32;
892
893 if (env->spr[SPR_LPCR] & LPCR_LD) {
894 nr_bits = pcc->lrg_decr_bits;
895 }
896
897 _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, nr_bits);
898 }
899
900 static void cpu_ppc_decr_cb(void *opaque)
901 {
902 PowerPCCPU *cpu = opaque;
903
904 cpu_ppc_decr_excp(cpu);
905 }
906
907 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, target_ulong hdecr,
908 target_ulong value, int nr_bits)
909 {
910 ppc_tb_t *tb_env = cpu->env.tb_env;
911
912 if (tb_env->hdecr_timer != NULL) {
913 __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
914 tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
915 hdecr, value, nr_bits);
916 }
917 }
918
919 void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value)
920 {
921 PowerPCCPU *cpu = env_archcpu(env);
922 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
923
924 _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value,
925 pcc->lrg_decr_bits);
926 }
927
928 static void cpu_ppc_hdecr_cb(void *opaque)
929 {
930 PowerPCCPU *cpu = opaque;
931
932 cpu_ppc_hdecr_excp(cpu);
933 }
934
935 void cpu_ppc_store_purr(CPUPPCState *env, uint64_t value)
936 {
937 ppc_tb_t *tb_env = env->tb_env;
938
939 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
940 &tb_env->purr_offset, value);
941 }
942
943 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
944 {
945 CPUPPCState *env = opaque;
946 PowerPCCPU *cpu = env_archcpu(env);
947 ppc_tb_t *tb_env = env->tb_env;
948
949 tb_env->tb_freq = freq;
950 tb_env->decr_freq = freq;
951 /* There is a bug in Linux 2.4 kernels:
952 * if a decrementer exception is pending when it enables msr_ee at startup,
953 * it's not ready to handle it...
954 */
955 _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
956 _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
957 cpu_ppc_store_purr(env, 0x0000000000000000ULL);
958 }
959
960 static void timebase_save(PPCTimebase *tb)
961 {
962 uint64_t ticks = cpu_get_host_ticks();
963 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
964
965 if (!first_ppc_cpu->env.tb_env) {
966 error_report("No timebase object");
967 return;
968 }
969
970 /* not used anymore, we keep it for compatibility */
971 tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
972 /*
973 * tb_offset is only expected to be changed by QEMU so
974 * there is no need to update it from KVM here
975 */
976 tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
977
978 tb->runstate_paused =
979 runstate_check(RUN_STATE_PAUSED) || runstate_check(RUN_STATE_SAVE_VM);
980 }
981
982 static void timebase_load(PPCTimebase *tb)
983 {
984 CPUState *cpu;
985 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
986 int64_t tb_off_adj, tb_off;
987 unsigned long freq;
988
989 if (!first_ppc_cpu->env.tb_env) {
990 error_report("No timebase object");
991 return;
992 }
993
994 freq = first_ppc_cpu->env.tb_env->tb_freq;
995
996 tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
997
998 tb_off = first_ppc_cpu->env.tb_env->tb_offset;
999 trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
1000 (tb_off_adj - tb_off) / freq);
1001
1002 /* Set new offset to all CPUs */
1003 CPU_FOREACH(cpu) {
1004 PowerPCCPU *pcpu = POWERPC_CPU(cpu);
1005 pcpu->env.tb_env->tb_offset = tb_off_adj;
1006 kvmppc_set_reg_tb_offset(pcpu, pcpu->env.tb_env->tb_offset);
1007 }
1008 }
1009
1010 void cpu_ppc_clock_vm_state_change(void *opaque, bool running,
1011 RunState state)
1012 {
1013 PPCTimebase *tb = opaque;
1014
1015 if (running) {
1016 timebase_load(tb);
1017 } else {
1018 timebase_save(tb);
1019 }
1020 }
1021
1022 /*
1023 * When migrating a running guest, read the clock just
1024 * before migration, so that the guest clock counts
1025 * during the events between:
1026 *
1027 * * vm_stop()
1028 * *
1029 * * pre_save()
1030 *
1031 * This reduces clock difference on migration from 5s
1032 * to 0.1s (when max_downtime == 5s), because sending the
1033 * final pages of memory (which happens between vm_stop()
1034 * and pre_save()) takes max_downtime.
1035 */
1036 static int timebase_pre_save(void *opaque)
1037 {
1038 PPCTimebase *tb = opaque;
1039
1040 /* guest_timebase won't be overridden in case of paused guest or savevm */
1041 if (!tb->runstate_paused) {
1042 timebase_save(tb);
1043 }
1044
1045 return 0;
1046 }
1047
1048 const VMStateDescription vmstate_ppc_timebase = {
1049 .name = "timebase",
1050 .version_id = 1,
1051 .minimum_version_id = 1,
1052 .pre_save = timebase_pre_save,
1053 .fields = (VMStateField []) {
1054 VMSTATE_UINT64(guest_timebase, PPCTimebase),
1055 VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
1056 VMSTATE_END_OF_LIST()
1057 },
1058 };
1059
1060 /* Set up (once) timebase frequency (in Hz) */
1061 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
1062 {
1063 PowerPCCPU *cpu = env_archcpu(env);
1064 ppc_tb_t *tb_env;
1065
1066 tb_env = g_new0(ppc_tb_t, 1);
1067 env->tb_env = tb_env;
1068 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1069 if (is_book3s_arch2x(env)) {
1070 /* All Book3S 64bit CPUs implement level based DEC logic */
1071 tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
1072 }
1073 /* Create new timer */
1074 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
1075 if (env->has_hv_mode && !cpu->vhyp) {
1076 tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
1077 cpu);
1078 } else {
1079 tb_env->hdecr_timer = NULL;
1080 }
1081 cpu_ppc_set_tb_clk(env, freq);
1082
1083 return &cpu_ppc_set_tb_clk;
1084 }
1085
1086 void cpu_ppc_tb_free(CPUPPCState *env)
1087 {
1088 timer_free(env->tb_env->decr_timer);
1089 timer_free(env->tb_env->hdecr_timer);
1090 g_free(env->tb_env);
1091 }
1092
1093 /* cpu_ppc_hdecr_init may be used if the timer is not used by HDEC emulation */
1094 void cpu_ppc_hdecr_init(CPUPPCState *env)
1095 {
1096 PowerPCCPU *cpu = env_archcpu(env);
1097
1098 assert(env->tb_env->hdecr_timer == NULL);
1099
1100 env->tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
1101 &cpu_ppc_hdecr_cb, cpu);
1102 }
1103
1104 void cpu_ppc_hdecr_exit(CPUPPCState *env)
1105 {
1106 PowerPCCPU *cpu = env_archcpu(env);
1107
1108 timer_free(env->tb_env->hdecr_timer);
1109 env->tb_env->hdecr_timer = NULL;
1110
1111 cpu_ppc_hdecr_lower(cpu);
1112 }
1113
1114 /*****************************************************************************/
1115 /* PowerPC 40x timers */
1116
1117 /* PIT, FIT & WDT */
1118 typedef struct ppc40x_timer_t ppc40x_timer_t;
1119 struct ppc40x_timer_t {
1120 uint64_t pit_reload; /* PIT auto-reload value */
1121 uint64_t fit_next; /* Tick for next FIT interrupt */
1122 QEMUTimer *fit_timer;
1123 uint64_t wdt_next; /* Tick for next WDT interrupt */
1124 QEMUTimer *wdt_timer;
1125
1126 /* 405 have the PIT, 440 have a DECR. */
1127 unsigned int decr_excp;
1128 };
1129
1130 /* Fixed interval timer */
1131 static void cpu_4xx_fit_cb (void *opaque)
1132 {
1133 PowerPCCPU *cpu = opaque;
1134 CPUPPCState *env = &cpu->env;
1135 ppc_tb_t *tb_env;
1136 ppc40x_timer_t *ppc40x_timer;
1137 uint64_t now, next;
1138
1139 tb_env = env->tb_env;
1140 ppc40x_timer = tb_env->opaque;
1141 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1142 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1143 case 0:
1144 next = 1 << 9;
1145 break;
1146 case 1:
1147 next = 1 << 13;
1148 break;
1149 case 2:
1150 next = 1 << 17;
1151 break;
1152 case 3:
1153 next = 1 << 21;
1154 break;
1155 default:
1156 /* Cannot occur, but makes gcc happy */
1157 return;
1158 }
1159 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq);
1160 if (next == now)
1161 next++;
1162 timer_mod(ppc40x_timer->fit_timer, next);
1163 env->spr[SPR_40x_TSR] |= 1 << 26;
1164 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1165 ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1166 }
1167 trace_ppc4xx_fit((int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1168 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1169 }
1170
1171 /* Programmable interval timer */
1172 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1173 {
1174 ppc40x_timer_t *ppc40x_timer;
1175 uint64_t now, next;
1176
1177 ppc40x_timer = tb_env->opaque;
1178 if (ppc40x_timer->pit_reload <= 1 ||
1179 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1180 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1181 /* Stop PIT */
1182 trace_ppc4xx_pit_stop();
1183 timer_del(tb_env->decr_timer);
1184 } else {
1185 trace_ppc4xx_pit_start(ppc40x_timer->pit_reload);
1186 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1187 next = now + muldiv64(ppc40x_timer->pit_reload,
1188 NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1189 if (is_excp)
1190 next += tb_env->decr_next - now;
1191 if (next == now)
1192 next++;
1193 timer_mod(tb_env->decr_timer, next);
1194 tb_env->decr_next = next;
1195 }
1196 }
1197
1198 static void cpu_4xx_pit_cb (void *opaque)
1199 {
1200 PowerPCCPU *cpu = opaque;
1201 CPUPPCState *env = &cpu->env;
1202 ppc_tb_t *tb_env;
1203 ppc40x_timer_t *ppc40x_timer;
1204
1205 tb_env = env->tb_env;
1206 ppc40x_timer = tb_env->opaque;
1207 env->spr[SPR_40x_TSR] |= 1 << 27;
1208 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1209 ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1210 }
1211 start_stop_pit(env, tb_env, 1);
1212 trace_ppc4xx_pit((int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1213 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1214 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1215 ppc40x_timer->pit_reload);
1216 }
1217
1218 /* Watchdog timer */
1219 static void cpu_4xx_wdt_cb (void *opaque)
1220 {
1221 PowerPCCPU *cpu = opaque;
1222 CPUPPCState *env = &cpu->env;
1223 ppc_tb_t *tb_env;
1224 ppc40x_timer_t *ppc40x_timer;
1225 uint64_t now, next;
1226
1227 tb_env = env->tb_env;
1228 ppc40x_timer = tb_env->opaque;
1229 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1230 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1231 case 0:
1232 next = 1 << 17;
1233 break;
1234 case 1:
1235 next = 1 << 21;
1236 break;
1237 case 2:
1238 next = 1 << 25;
1239 break;
1240 case 3:
1241 next = 1 << 29;
1242 break;
1243 default:
1244 /* Cannot occur, but makes gcc happy */
1245 return;
1246 }
1247 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1248 if (next == now)
1249 next++;
1250 trace_ppc4xx_wdt(env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1251 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1252 case 0x0:
1253 case 0x1:
1254 timer_mod(ppc40x_timer->wdt_timer, next);
1255 ppc40x_timer->wdt_next = next;
1256 env->spr[SPR_40x_TSR] |= 1U << 31;
1257 break;
1258 case 0x2:
1259 timer_mod(ppc40x_timer->wdt_timer, next);
1260 ppc40x_timer->wdt_next = next;
1261 env->spr[SPR_40x_TSR] |= 1 << 30;
1262 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1263 ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1264 }
1265 break;
1266 case 0x3:
1267 env->spr[SPR_40x_TSR] &= ~0x30000000;
1268 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1269 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1270 case 0x0:
1271 /* No reset */
1272 break;
1273 case 0x1: /* Core reset */
1274 ppc40x_core_reset(cpu);
1275 break;
1276 case 0x2: /* Chip reset */
1277 ppc40x_chip_reset(cpu);
1278 break;
1279 case 0x3: /* System reset */
1280 ppc40x_system_reset(cpu);
1281 break;
1282 }
1283 }
1284 }
1285
1286 void store_40x_pit (CPUPPCState *env, target_ulong val)
1287 {
1288 ppc_tb_t *tb_env;
1289 ppc40x_timer_t *ppc40x_timer;
1290
1291 tb_env = env->tb_env;
1292 ppc40x_timer = tb_env->opaque;
1293 trace_ppc40x_store_pit(val);
1294 ppc40x_timer->pit_reload = val;
1295 start_stop_pit(env, tb_env, 0);
1296 }
1297
1298 target_ulong load_40x_pit (CPUPPCState *env)
1299 {
1300 return cpu_ppc_load_decr(env);
1301 }
1302
1303 void store_40x_tsr(CPUPPCState *env, target_ulong val)
1304 {
1305 PowerPCCPU *cpu = env_archcpu(env);
1306
1307 trace_ppc40x_store_tcr(val);
1308
1309 env->spr[SPR_40x_TSR] &= ~(val & 0xFC000000);
1310 if (val & 0x80000000) {
1311 ppc_set_irq(cpu, PPC_INTERRUPT_PIT, 0);
1312 }
1313 }
1314
1315 void store_40x_tcr(CPUPPCState *env, target_ulong val)
1316 {
1317 PowerPCCPU *cpu = env_archcpu(env);
1318 ppc_tb_t *tb_env;
1319
1320 trace_ppc40x_store_tsr(val);
1321
1322 tb_env = env->tb_env;
1323 env->spr[SPR_40x_TCR] = val & 0xFFC00000;
1324 start_stop_pit(env, tb_env, 1);
1325 cpu_4xx_wdt_cb(cpu);
1326 }
1327
1328 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1329 {
1330 CPUPPCState *env = opaque;
1331 ppc_tb_t *tb_env = env->tb_env;
1332
1333 trace_ppc40x_set_tb_clk(freq);
1334 tb_env->tb_freq = freq;
1335 tb_env->decr_freq = freq;
1336 /* XXX: we should also update all timers */
1337 }
1338
1339 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1340 unsigned int decr_excp)
1341 {
1342 ppc_tb_t *tb_env;
1343 ppc40x_timer_t *ppc40x_timer;
1344 PowerPCCPU *cpu = env_archcpu(env);
1345
1346 trace_ppc40x_timers_init(freq);
1347
1348 tb_env = g_new0(ppc_tb_t, 1);
1349 ppc40x_timer = g_new0(ppc40x_timer_t, 1);
1350
1351 env->tb_env = tb_env;
1352 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1353 tb_env->tb_freq = freq;
1354 tb_env->decr_freq = freq;
1355 tb_env->opaque = ppc40x_timer;
1356
1357 /* We use decr timer for PIT */
1358 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, cpu);
1359 ppc40x_timer->fit_timer =
1360 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, cpu);
1361 ppc40x_timer->wdt_timer =
1362 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, cpu);
1363 ppc40x_timer->decr_excp = decr_excp;
1364
1365 return &ppc_40x_set_tb_clk;
1366 }
1367
1368 /*****************************************************************************/
1369 /* Embedded PowerPC Device Control Registers */
1370 typedef struct ppc_dcrn_t ppc_dcrn_t;
1371 struct ppc_dcrn_t {
1372 dcr_read_cb dcr_read;
1373 dcr_write_cb dcr_write;
1374 void *opaque;
1375 };
1376
1377 /* XXX: on 460, DCR addresses are 32 bits wide,
1378 * using DCRIPR to get the 22 upper bits of the DCR address
1379 */
1380 #define DCRN_NB 1024
1381 struct ppc_dcr_t {
1382 ppc_dcrn_t dcrn[DCRN_NB];
1383 int (*read_error)(int dcrn);
1384 int (*write_error)(int dcrn);
1385 };
1386
1387 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1388 {
1389 ppc_dcrn_t *dcr;
1390
1391 if (dcrn < 0 || dcrn >= DCRN_NB)
1392 goto error;
1393 dcr = &dcr_env->dcrn[dcrn];
1394 if (dcr->dcr_read == NULL)
1395 goto error;
1396 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1397 trace_ppc_dcr_read(dcrn, *valp);
1398
1399 return 0;
1400
1401 error:
1402 if (dcr_env->read_error != NULL)
1403 return (*dcr_env->read_error)(dcrn);
1404
1405 return -1;
1406 }
1407
1408 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1409 {
1410 ppc_dcrn_t *dcr;
1411
1412 if (dcrn < 0 || dcrn >= DCRN_NB)
1413 goto error;
1414 dcr = &dcr_env->dcrn[dcrn];
1415 if (dcr->dcr_write == NULL)
1416 goto error;
1417 trace_ppc_dcr_write(dcrn, val);
1418 (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1419
1420 return 0;
1421
1422 error:
1423 if (dcr_env->write_error != NULL)
1424 return (*dcr_env->write_error)(dcrn);
1425
1426 return -1;
1427 }
1428
1429 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1430 dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1431 {
1432 ppc_dcr_t *dcr_env;
1433 ppc_dcrn_t *dcr;
1434
1435 dcr_env = env->dcr_env;
1436 if (dcr_env == NULL)
1437 return -1;
1438 if (dcrn < 0 || dcrn >= DCRN_NB)
1439 return -1;
1440 dcr = &dcr_env->dcrn[dcrn];
1441 if (dcr->opaque != NULL ||
1442 dcr->dcr_read != NULL ||
1443 dcr->dcr_write != NULL)
1444 return -1;
1445 dcr->opaque = opaque;
1446 dcr->dcr_read = dcr_read;
1447 dcr->dcr_write = dcr_write;
1448
1449 return 0;
1450 }
1451
1452 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1453 int (*write_error)(int dcrn))
1454 {
1455 ppc_dcr_t *dcr_env;
1456
1457 dcr_env = g_new0(ppc_dcr_t, 1);
1458 dcr_env->read_error = read_error;
1459 dcr_env->write_error = write_error;
1460 env->dcr_env = dcr_env;
1461
1462 return 0;
1463 }
1464
1465 /*****************************************************************************/
1466
1467 int ppc_cpu_pir(PowerPCCPU *cpu)
1468 {
1469 CPUPPCState *env = &cpu->env;
1470 return env->spr_cb[SPR_PIR].default_value;
1471 }
1472
1473 PowerPCCPU *ppc_get_vcpu_by_pir(int pir)
1474 {
1475 CPUState *cs;
1476
1477 CPU_FOREACH(cs) {
1478 PowerPCCPU *cpu = POWERPC_CPU(cs);
1479
1480 if (ppc_cpu_pir(cpu) == pir) {
1481 return cpu;
1482 }
1483 }
1484
1485 return NULL;
1486 }
1487
1488 void ppc_irq_reset(PowerPCCPU *cpu)
1489 {
1490 CPUPPCState *env = &cpu->env;
1491
1492 env->irq_input_state = 0;
1493 kvmppc_set_interrupt(cpu, PPC_INTERRUPT_EXT, 0);
1494 }