2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
38 #include "hw/fw-path-provider.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "migration/blocker.h"
50 #include "mmu-hash64.h"
51 #include "mmu-book3s-v3.h"
52 #include "cpu-models.h"
53 #include "hw/core/cpu.h"
55 #include "hw/boards.h"
56 #include "hw/ppc/ppc.h"
57 #include "hw/loader.h"
59 #include "hw/ppc/fdt.h"
60 #include "hw/ppc/spapr.h"
61 #include "hw/ppc/spapr_vio.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/pci-host/spapr.h"
64 #include "hw/pci/msi.h"
66 #include "hw/pci/pci.h"
67 #include "hw/scsi/scsi.h"
68 #include "hw/virtio/virtio-scsi.h"
69 #include "hw/virtio/vhost-scsi-common.h"
71 #include "exec/address-spaces.h"
72 #include "exec/ram_addr.h"
74 #include "qemu/config-file.h"
75 #include "qemu/error-report.h"
78 #include "hw/intc/intc.h"
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83 #include "hw/ppc/spapr_nvdimm.h"
85 #include "monitor/monitor.h"
89 /* SLOF memory layout:
91 * SLOF raw image loaded at 0, copies its romfs right below the flat
92 * device-tree, then position SLOF itself 31M below that
94 * So we set FW_OVERHEAD to 40MB which should account for all of that
97 * We load our kernel at 4M, leaving space for SLOF initial image
99 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
100 #define FW_MAX_SIZE 0x400000
101 #define FW_FILE_NAME "slof.bin"
102 #define FW_OVERHEAD 0x2800000
103 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
105 #define MIN_RMA_SLOF (128 * MiB)
107 #define PHANDLE_INTC 0x00001111
109 /* These two functions implement the VCPU id numbering: one to compute them
110 * all and one to identify thread 0 of a VCORE. Any change to the first one
111 * is likely to have an impact on the second one, so let's keep them close.
113 static int spapr_vcpu_id(SpaprMachineState
*spapr
, int cpu_index
)
115 MachineState
*ms
= MACHINE(spapr
);
116 unsigned int smp_threads
= ms
->smp
.threads
;
120 (cpu_index
/ smp_threads
) * spapr
->vsmt
+ cpu_index
% smp_threads
;
122 static bool spapr_is_thread0_in_vcore(SpaprMachineState
*spapr
,
126 return spapr_get_vcpu_id(cpu
) % spapr
->vsmt
== 0;
129 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque
)
131 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
132 * and newer QEMUs don't even have them. In both cases, we don't want
133 * to send anything on the wire.
138 static const VMStateDescription pre_2_10_vmstate_dummy_icp
= {
139 .name
= "icp/server",
141 .minimum_version_id
= 1,
142 .needed
= pre_2_10_vmstate_dummy_icp_needed
,
143 .fields
= (VMStateField
[]) {
144 VMSTATE_UNUSED(4), /* uint32_t xirr */
145 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
146 VMSTATE_UNUSED(1), /* uint8_t mfrr */
147 VMSTATE_END_OF_LIST()
151 static void pre_2_10_vmstate_register_dummy_icp(int i
)
153 vmstate_register(NULL
, i
, &pre_2_10_vmstate_dummy_icp
,
154 (void *)(uintptr_t) i
);
157 static void pre_2_10_vmstate_unregister_dummy_icp(int i
)
159 vmstate_unregister(NULL
, &pre_2_10_vmstate_dummy_icp
,
160 (void *)(uintptr_t) i
);
163 int spapr_max_server_number(SpaprMachineState
*spapr
)
165 MachineState
*ms
= MACHINE(spapr
);
168 return DIV_ROUND_UP(ms
->smp
.max_cpus
* spapr
->vsmt
, ms
->smp
.threads
);
171 static int spapr_fixup_cpu_smt_dt(void *fdt
, int offset
, PowerPCCPU
*cpu
,
175 uint32_t servers_prop
[smt_threads
];
176 uint32_t gservers_prop
[smt_threads
* 2];
177 int index
= spapr_get_vcpu_id(cpu
);
179 if (cpu
->compat_pvr
) {
180 ret
= fdt_setprop_cell(fdt
, offset
, "cpu-version", cpu
->compat_pvr
);
186 /* Build interrupt servers and gservers properties */
187 for (i
= 0; i
< smt_threads
; i
++) {
188 servers_prop
[i
] = cpu_to_be32(index
+ i
);
189 /* Hack, direct the group queues back to cpu 0 */
190 gservers_prop
[i
*2] = cpu_to_be32(index
+ i
);
191 gservers_prop
[i
*2 + 1] = 0;
193 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-server#s",
194 servers_prop
, sizeof(servers_prop
));
198 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-gserver#s",
199 gservers_prop
, sizeof(gservers_prop
));
204 static int spapr_fixup_cpu_numa_dt(void *fdt
, int offset
, PowerPCCPU
*cpu
)
206 int index
= spapr_get_vcpu_id(cpu
);
207 uint32_t associativity
[] = {cpu_to_be32(0x5),
211 cpu_to_be32(cpu
->node_id
),
214 /* Advertise NUMA via ibm,associativity */
215 return fdt_setprop(fdt
, offset
, "ibm,associativity", associativity
,
216 sizeof(associativity
));
219 static void spapr_dt_pa_features(SpaprMachineState
*spapr
,
221 void *fdt
, int offset
)
223 uint8_t pa_features_206
[] = { 6, 0,
224 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
225 uint8_t pa_features_207
[] = { 24, 0,
226 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
227 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
228 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
230 uint8_t pa_features_300
[] = { 66, 0,
231 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
232 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
233 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
235 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
237 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
238 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
239 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
240 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
242 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
243 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
244 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
245 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
246 /* 42: PM, 44: PC RA, 46: SC vec'd */
247 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
248 /* 48: SIMD, 50: QP BFP, 52: String */
249 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
250 /* 54: DecFP, 56: DecI, 58: SHA */
251 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
252 /* 60: NM atomic, 62: RNG */
253 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
255 uint8_t *pa_features
= NULL
;
258 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_2_06
, 0, cpu
->compat_pvr
)) {
259 pa_features
= pa_features_206
;
260 pa_size
= sizeof(pa_features_206
);
262 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_2_07
, 0, cpu
->compat_pvr
)) {
263 pa_features
= pa_features_207
;
264 pa_size
= sizeof(pa_features_207
);
266 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_3_00
, 0, cpu
->compat_pvr
)) {
267 pa_features
= pa_features_300
;
268 pa_size
= sizeof(pa_features_300
);
274 if (ppc_hash64_has(cpu
, PPC_HASH64_CI_LARGEPAGE
)) {
276 * Note: we keep CI large pages off by default because a 64K capable
277 * guest provisioned with large pages might otherwise try to map a qemu
278 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
279 * even if that qemu runs on a 4k host.
280 * We dd this bit back here if we are confident this is not an issue
282 pa_features
[3] |= 0x20;
284 if ((spapr_get_cap(spapr
, SPAPR_CAP_HTM
) != 0) && pa_size
> 24) {
285 pa_features
[24] |= 0x80; /* Transactional memory support */
287 if (spapr
->cas_pre_isa3_guest
&& pa_size
> 40) {
288 /* Workaround for broken kernels that attempt (guest) radix
289 * mode when they can't handle it, if they see the radix bit set
290 * in pa-features. So hide it from them. */
291 pa_features
[40 + 2] &= ~0x80; /* Radix MMU */
294 _FDT((fdt_setprop(fdt
, offset
, "ibm,pa-features", pa_features
, pa_size
)));
297 static hwaddr
spapr_node0_size(MachineState
*machine
)
299 if (machine
->numa_state
->num_nodes
) {
301 for (i
= 0; i
< machine
->numa_state
->num_nodes
; ++i
) {
302 if (machine
->numa_state
->nodes
[i
].node_mem
) {
303 return MIN(pow2floor(machine
->numa_state
->nodes
[i
].node_mem
),
308 return machine
->ram_size
;
311 static void add_str(GString
*s
, const gchar
*s1
)
313 g_string_append_len(s
, s1
, strlen(s1
) + 1);
316 static int spapr_dt_memory_node(void *fdt
, int nodeid
, hwaddr start
,
319 uint32_t associativity
[] = {
320 cpu_to_be32(0x4), /* length */
321 cpu_to_be32(0x0), cpu_to_be32(0x0),
322 cpu_to_be32(0x0), cpu_to_be32(nodeid
)
325 uint64_t mem_reg_property
[2];
328 mem_reg_property
[0] = cpu_to_be64(start
);
329 mem_reg_property
[1] = cpu_to_be64(size
);
331 sprintf(mem_name
, "memory@%" HWADDR_PRIx
, start
);
332 off
= fdt_add_subnode(fdt
, 0, mem_name
);
334 _FDT((fdt_setprop_string(fdt
, off
, "device_type", "memory")));
335 _FDT((fdt_setprop(fdt
, off
, "reg", mem_reg_property
,
336 sizeof(mem_reg_property
))));
337 _FDT((fdt_setprop(fdt
, off
, "ibm,associativity", associativity
,
338 sizeof(associativity
))));
342 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList
*list
, ram_addr_t addr
)
344 MemoryDeviceInfoList
*info
;
346 for (info
= list
; info
; info
= info
->next
) {
347 MemoryDeviceInfo
*value
= info
->value
;
349 if (value
&& value
->type
== MEMORY_DEVICE_INFO_KIND_DIMM
) {
350 PCDIMMDeviceInfo
*pcdimm_info
= value
->u
.dimm
.data
;
352 if (addr
>= pcdimm_info
->addr
&&
353 addr
< (pcdimm_info
->addr
+ pcdimm_info
->size
)) {
354 return pcdimm_info
->node
;
362 struct sPAPRDrconfCellV2
{
370 typedef struct DrconfCellQueue
{
371 struct sPAPRDrconfCellV2 cell
;
372 QSIMPLEQ_ENTRY(DrconfCellQueue
) entry
;
375 static DrconfCellQueue
*
376 spapr_get_drconf_cell(uint32_t seq_lmbs
, uint64_t base_addr
,
377 uint32_t drc_index
, uint32_t aa_index
,
380 DrconfCellQueue
*elem
;
382 elem
= g_malloc0(sizeof(*elem
));
383 elem
->cell
.seq_lmbs
= cpu_to_be32(seq_lmbs
);
384 elem
->cell
.base_addr
= cpu_to_be64(base_addr
);
385 elem
->cell
.drc_index
= cpu_to_be32(drc_index
);
386 elem
->cell
.aa_index
= cpu_to_be32(aa_index
);
387 elem
->cell
.flags
= cpu_to_be32(flags
);
392 static int spapr_dt_dynamic_memory_v2(SpaprMachineState
*spapr
, void *fdt
,
393 int offset
, MemoryDeviceInfoList
*dimms
)
395 MachineState
*machine
= MACHINE(spapr
);
396 uint8_t *int_buf
, *cur_index
;
398 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
399 uint64_t addr
, cur_addr
, size
;
400 uint32_t nr_boot_lmbs
= (machine
->device_memory
->base
/ lmb_size
);
401 uint64_t mem_end
= machine
->device_memory
->base
+
402 memory_region_size(&machine
->device_memory
->mr
);
403 uint32_t node
, buf_len
, nr_entries
= 0;
405 DrconfCellQueue
*elem
, *next
;
406 MemoryDeviceInfoList
*info
;
407 QSIMPLEQ_HEAD(, DrconfCellQueue
) drconf_queue
408 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue
);
410 /* Entry to cover RAM and the gap area */
411 elem
= spapr_get_drconf_cell(nr_boot_lmbs
, 0, 0, -1,
412 SPAPR_LMB_FLAGS_RESERVED
|
413 SPAPR_LMB_FLAGS_DRC_INVALID
);
414 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
417 cur_addr
= machine
->device_memory
->base
;
418 for (info
= dimms
; info
; info
= info
->next
) {
419 PCDIMMDeviceInfo
*di
= info
->value
->u
.dimm
.data
;
426 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
427 * area is marked hotpluggable in the next iteration for the bigger
428 * chunk including the NVDIMM occupied area.
430 if (info
->value
->type
== MEMORY_DEVICE_INFO_KIND_NVDIMM
)
433 /* Entry for hot-pluggable area */
434 if (cur_addr
< addr
) {
435 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, cur_addr
/ lmb_size
);
437 elem
= spapr_get_drconf_cell((addr
- cur_addr
) / lmb_size
,
438 cur_addr
, spapr_drc_index(drc
), -1, 0);
439 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
444 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, addr
/ lmb_size
);
446 elem
= spapr_get_drconf_cell(size
/ lmb_size
, addr
,
447 spapr_drc_index(drc
), node
,
448 (SPAPR_LMB_FLAGS_ASSIGNED
|
449 SPAPR_LMB_FLAGS_HOTREMOVABLE
));
450 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
452 cur_addr
= addr
+ size
;
455 /* Entry for remaining hotpluggable area */
456 if (cur_addr
< mem_end
) {
457 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, cur_addr
/ lmb_size
);
459 elem
= spapr_get_drconf_cell((mem_end
- cur_addr
) / lmb_size
,
460 cur_addr
, spapr_drc_index(drc
), -1, 0);
461 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
465 buf_len
= nr_entries
* sizeof(struct sPAPRDrconfCellV2
) + sizeof(uint32_t);
466 int_buf
= cur_index
= g_malloc0(buf_len
);
467 *(uint32_t *)int_buf
= cpu_to_be32(nr_entries
);
468 cur_index
+= sizeof(nr_entries
);
470 QSIMPLEQ_FOREACH_SAFE(elem
, &drconf_queue
, entry
, next
) {
471 memcpy(cur_index
, &elem
->cell
, sizeof(elem
->cell
));
472 cur_index
+= sizeof(elem
->cell
);
473 QSIMPLEQ_REMOVE(&drconf_queue
, elem
, DrconfCellQueue
, entry
);
477 ret
= fdt_setprop(fdt
, offset
, "ibm,dynamic-memory-v2", int_buf
, buf_len
);
485 static int spapr_dt_dynamic_memory(SpaprMachineState
*spapr
, void *fdt
,
486 int offset
, MemoryDeviceInfoList
*dimms
)
488 MachineState
*machine
= MACHINE(spapr
);
490 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
491 uint32_t device_lmb_start
= machine
->device_memory
->base
/ lmb_size
;
492 uint32_t nr_lmbs
= (machine
->device_memory
->base
+
493 memory_region_size(&machine
->device_memory
->mr
)) /
495 uint32_t *int_buf
, *cur_index
, buf_len
;
498 * Allocate enough buffer size to fit in ibm,dynamic-memory
500 buf_len
= (nr_lmbs
* SPAPR_DR_LMB_LIST_ENTRY_SIZE
+ 1) * sizeof(uint32_t);
501 cur_index
= int_buf
= g_malloc0(buf_len
);
502 int_buf
[0] = cpu_to_be32(nr_lmbs
);
504 for (i
= 0; i
< nr_lmbs
; i
++) {
505 uint64_t addr
= i
* lmb_size
;
506 uint32_t *dynamic_memory
= cur_index
;
508 if (i
>= device_lmb_start
) {
511 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, i
);
514 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
515 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
516 dynamic_memory
[2] = cpu_to_be32(spapr_drc_index(drc
));
517 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
518 dynamic_memory
[4] = cpu_to_be32(spapr_pc_dimm_node(dimms
, addr
));
519 if (memory_region_present(get_system_memory(), addr
)) {
520 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED
);
522 dynamic_memory
[5] = cpu_to_be32(0);
526 * LMB information for RMA, boot time RAM and gap b/n RAM and
527 * device memory region -- all these are marked as reserved
528 * and as having no valid DRC.
530 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
531 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
532 dynamic_memory
[2] = cpu_to_be32(0);
533 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
534 dynamic_memory
[4] = cpu_to_be32(-1);
535 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED
|
536 SPAPR_LMB_FLAGS_DRC_INVALID
);
539 cur_index
+= SPAPR_DR_LMB_LIST_ENTRY_SIZE
;
541 ret
= fdt_setprop(fdt
, offset
, "ibm,dynamic-memory", int_buf
, buf_len
);
550 * Adds ibm,dynamic-reconfiguration-memory node.
551 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
552 * of this device tree node.
554 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState
*spapr
,
557 MachineState
*machine
= MACHINE(spapr
);
558 int nb_numa_nodes
= machine
->numa_state
->num_nodes
;
560 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
561 uint32_t prop_lmb_size
[] = {0, cpu_to_be32(lmb_size
)};
562 uint32_t *int_buf
, *cur_index
, buf_len
;
563 int nr_nodes
= nb_numa_nodes ? nb_numa_nodes
: 1;
564 MemoryDeviceInfoList
*dimms
= NULL
;
567 * Don't create the node if there is no device memory
569 if (machine
->ram_size
== machine
->maxram_size
) {
573 offset
= fdt_add_subnode(fdt
, 0, "ibm,dynamic-reconfiguration-memory");
575 ret
= fdt_setprop(fdt
, offset
, "ibm,lmb-size", prop_lmb_size
,
576 sizeof(prop_lmb_size
));
581 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-flags-mask", 0xff);
586 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-preservation-time", 0x0);
591 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
592 dimms
= qmp_memory_device_list();
593 if (spapr_ovec_test(spapr
->ov5_cas
, OV5_DRMEM_V2
)) {
594 ret
= spapr_dt_dynamic_memory_v2(spapr
, fdt
, offset
, dimms
);
596 ret
= spapr_dt_dynamic_memory(spapr
, fdt
, offset
, dimms
);
598 qapi_free_MemoryDeviceInfoList(dimms
);
604 /* ibm,associativity-lookup-arrays */
605 buf_len
= (nr_nodes
* 4 + 2) * sizeof(uint32_t);
606 cur_index
= int_buf
= g_malloc0(buf_len
);
607 int_buf
[0] = cpu_to_be32(nr_nodes
);
608 int_buf
[1] = cpu_to_be32(4); /* Number of entries per associativity list */
610 for (i
= 0; i
< nr_nodes
; i
++) {
611 uint32_t associativity
[] = {
617 memcpy(cur_index
, associativity
, sizeof(associativity
));
620 ret
= fdt_setprop(fdt
, offset
, "ibm,associativity-lookup-arrays", int_buf
,
621 (cur_index
- int_buf
) * sizeof(uint32_t));
627 static int spapr_dt_memory(SpaprMachineState
*spapr
, void *fdt
)
629 MachineState
*machine
= MACHINE(spapr
);
630 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
631 hwaddr mem_start
, node_size
;
632 int i
, nb_nodes
= machine
->numa_state
->num_nodes
;
633 NodeInfo
*nodes
= machine
->numa_state
->nodes
;
635 for (i
= 0, mem_start
= 0; i
< nb_nodes
; ++i
) {
636 if (!nodes
[i
].node_mem
) {
639 if (mem_start
>= machine
->ram_size
) {
642 node_size
= nodes
[i
].node_mem
;
643 if (node_size
> machine
->ram_size
- mem_start
) {
644 node_size
= machine
->ram_size
- mem_start
;
648 /* spapr_machine_init() checks for rma_size <= node0_size
650 spapr_dt_memory_node(fdt
, i
, 0, spapr
->rma_size
);
651 mem_start
+= spapr
->rma_size
;
652 node_size
-= spapr
->rma_size
;
654 for ( ; node_size
; ) {
655 hwaddr sizetmp
= pow2floor(node_size
);
657 /* mem_start != 0 here */
658 if (ctzl(mem_start
) < ctzl(sizetmp
)) {
659 sizetmp
= 1ULL << ctzl(mem_start
);
662 spapr_dt_memory_node(fdt
, i
, mem_start
, sizetmp
);
663 node_size
-= sizetmp
;
664 mem_start
+= sizetmp
;
668 /* Generate ibm,dynamic-reconfiguration-memory node if required */
669 if (spapr_ovec_test(spapr
->ov5_cas
, OV5_DRCONF_MEMORY
)) {
672 g_assert(smc
->dr_lmb_enabled
);
673 ret
= spapr_dt_dynamic_reconfiguration_memory(spapr
, fdt
);
682 static void spapr_dt_cpu(CPUState
*cs
, void *fdt
, int offset
,
683 SpaprMachineState
*spapr
)
685 MachineState
*ms
= MACHINE(spapr
);
686 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
687 CPUPPCState
*env
= &cpu
->env
;
688 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cs
);
689 int index
= spapr_get_vcpu_id(cpu
);
690 uint32_t segs
[] = {cpu_to_be32(28), cpu_to_be32(40),
691 0xffffffff, 0xffffffff};
692 uint32_t tbfreq
= kvm_enabled() ?
kvmppc_get_tbfreq()
693 : SPAPR_TIMEBASE_FREQ
;
694 uint32_t cpufreq
= kvm_enabled() ?
kvmppc_get_clockfreq() : 1000000000;
695 uint32_t page_sizes_prop
[64];
696 size_t page_sizes_prop_size
;
697 unsigned int smp_threads
= ms
->smp
.threads
;
698 uint32_t vcpus_per_socket
= smp_threads
* ms
->smp
.cores
;
699 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
700 int compat_smt
= MIN(smp_threads
, ppc_compat_max_vthreads(cpu
));
703 uint32_t radix_AP_encodings
[PPC_PAGE_SIZES_MAX_SZ
];
706 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
, index
);
708 drc_index
= spapr_drc_index(drc
);
709 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,my-drc-index", drc_index
)));
712 _FDT((fdt_setprop_cell(fdt
, offset
, "reg", index
)));
713 _FDT((fdt_setprop_string(fdt
, offset
, "device_type", "cpu")));
715 _FDT((fdt_setprop_cell(fdt
, offset
, "cpu-version", env
->spr
[SPR_PVR
])));
716 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-block-size",
717 env
->dcache_line_size
)));
718 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-line-size",
719 env
->dcache_line_size
)));
720 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-block-size",
721 env
->icache_line_size
)));
722 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-line-size",
723 env
->icache_line_size
)));
725 if (pcc
->l1_dcache_size
) {
726 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-size",
727 pcc
->l1_dcache_size
)));
729 warn_report("Unknown L1 dcache size for cpu");
731 if (pcc
->l1_icache_size
) {
732 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-size",
733 pcc
->l1_icache_size
)));
735 warn_report("Unknown L1 icache size for cpu");
738 _FDT((fdt_setprop_cell(fdt
, offset
, "timebase-frequency", tbfreq
)));
739 _FDT((fdt_setprop_cell(fdt
, offset
, "clock-frequency", cpufreq
)));
740 _FDT((fdt_setprop_cell(fdt
, offset
, "slb-size", cpu
->hash64_opts
->slb_size
)));
741 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,slb-size", cpu
->hash64_opts
->slb_size
)));
742 _FDT((fdt_setprop_string(fdt
, offset
, "status", "okay")));
743 _FDT((fdt_setprop(fdt
, offset
, "64-bit", NULL
, 0)));
745 if (env
->spr_cb
[SPR_PURR
].oea_read
) {
746 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,purr", 1)));
748 if (env
->spr_cb
[SPR_SPURR
].oea_read
) {
749 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,spurr", 1)));
752 if (ppc_hash64_has(cpu
, PPC_HASH64_1TSEG
)) {
753 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-segment-sizes",
754 segs
, sizeof(segs
))));
757 /* Advertise VSX (vector extensions) if available
758 * 1 == VMX / Altivec available
761 * Only CPUs for which we create core types in spapr_cpu_core.c
762 * are possible, and all of those have VMX */
763 if (spapr_get_cap(spapr
, SPAPR_CAP_VSX
) != 0) {
764 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", 2)));
766 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", 1)));
769 /* Advertise DFP (Decimal Floating Point) if available
770 * 0 / no property == no DFP
771 * 1 == DFP available */
772 if (spapr_get_cap(spapr
, SPAPR_CAP_DFP
) != 0) {
773 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,dfp", 1)));
776 page_sizes_prop_size
= ppc_create_page_sizes_prop(cpu
, page_sizes_prop
,
777 sizeof(page_sizes_prop
));
778 if (page_sizes_prop_size
) {
779 _FDT((fdt_setprop(fdt
, offset
, "ibm,segment-page-sizes",
780 page_sizes_prop
, page_sizes_prop_size
)));
783 spapr_dt_pa_features(spapr
, cpu
, fdt
, offset
);
785 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,chip-id",
786 cs
->cpu_index
/ vcpus_per_socket
)));
788 _FDT((fdt_setprop(fdt
, offset
, "ibm,pft-size",
789 pft_size_prop
, sizeof(pft_size_prop
))));
791 if (ms
->numa_state
->num_nodes
> 1) {
792 _FDT(spapr_fixup_cpu_numa_dt(fdt
, offset
, cpu
));
795 _FDT(spapr_fixup_cpu_smt_dt(fdt
, offset
, cpu
, compat_smt
));
797 if (pcc
->radix_page_info
) {
798 for (i
= 0; i
< pcc
->radix_page_info
->count
; i
++) {
799 radix_AP_encodings
[i
] =
800 cpu_to_be32(pcc
->radix_page_info
->entries
[i
]);
802 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-radix-AP-encodings",
804 pcc
->radix_page_info
->count
*
805 sizeof(radix_AP_encodings
[0]))));
809 * We set this property to let the guest know that it can use the large
810 * decrementer and its width in bits.
812 if (spapr_get_cap(spapr
, SPAPR_CAP_LARGE_DECREMENTER
) != SPAPR_CAP_OFF
)
813 _FDT((fdt_setprop_u32(fdt
, offset
, "ibm,dec-bits",
814 pcc
->lrg_decr_bits
)));
817 static void spapr_dt_cpus(void *fdt
, SpaprMachineState
*spapr
)
826 cpus_offset
= fdt_add_subnode(fdt
, 0, "cpus");
828 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#address-cells", 0x1)));
829 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#size-cells", 0x0)));
832 * We walk the CPUs in reverse order to ensure that CPU DT nodes
833 * created by fdt_add_subnode() end up in the right order in FDT
834 * for the guest kernel the enumerate the CPUs correctly.
836 * The CPU list cannot be traversed in reverse order, so we need
842 rev
= g_renew(CPUState
*, rev
, n_cpus
+ 1);
846 for (i
= n_cpus
- 1; i
>= 0; i
--) {
847 CPUState
*cs
= rev
[i
];
848 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
849 int index
= spapr_get_vcpu_id(cpu
);
850 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
853 if (!spapr_is_thread0_in_vcore(spapr
, cpu
)) {
857 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, index
);
858 offset
= fdt_add_subnode(fdt
, cpus_offset
, nodename
);
861 spapr_dt_cpu(cs
, fdt
, offset
, spapr
);
867 static int spapr_dt_rng(void *fdt
)
872 node
= qemu_fdt_add_subnode(fdt
, "/ibm,platform-facilities");
876 ret
= fdt_setprop_string(fdt
, node
, "device_type",
877 "ibm,platform-facilities");
878 ret
|= fdt_setprop_cell(fdt
, node
, "#address-cells", 0x1);
879 ret
|= fdt_setprop_cell(fdt
, node
, "#size-cells", 0x0);
881 node
= fdt_add_subnode(fdt
, node
, "ibm,random-v1");
885 ret
|= fdt_setprop_string(fdt
, node
, "compatible", "ibm,random");
890 static void spapr_dt_rtas(SpaprMachineState
*spapr
, void *fdt
)
892 MachineState
*ms
= MACHINE(spapr
);
893 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(ms
);
895 GString
*hypertas
= g_string_sized_new(256);
896 GString
*qemu_hypertas
= g_string_sized_new(256);
897 uint32_t refpoints
[] = {
902 uint32_t nr_refpoints
= ARRAY_SIZE(refpoints
);
903 uint64_t max_device_addr
= MACHINE(spapr
)->device_memory
->base
+
904 memory_region_size(&MACHINE(spapr
)->device_memory
->mr
);
905 uint32_t lrdr_capacity
[] = {
906 cpu_to_be32(max_device_addr
>> 32),
907 cpu_to_be32(max_device_addr
& 0xffffffff),
908 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE
),
909 cpu_to_be32(ms
->smp
.max_cpus
/ ms
->smp
.threads
),
911 uint32_t maxdomain
= cpu_to_be32(spapr
->gpu_numa_id
> 1 ?
1 : 0);
912 uint32_t maxdomains
[] = {
917 cpu_to_be32(spapr
->gpu_numa_id
),
920 _FDT(rtas
= fdt_add_subnode(fdt
, 0, "rtas"));
923 add_str(hypertas
, "hcall-pft");
924 add_str(hypertas
, "hcall-term");
925 add_str(hypertas
, "hcall-dabr");
926 add_str(hypertas
, "hcall-interrupt");
927 add_str(hypertas
, "hcall-tce");
928 add_str(hypertas
, "hcall-vio");
929 add_str(hypertas
, "hcall-splpar");
930 add_str(hypertas
, "hcall-join");
931 add_str(hypertas
, "hcall-bulk");
932 add_str(hypertas
, "hcall-set-mode");
933 add_str(hypertas
, "hcall-sprg0");
934 add_str(hypertas
, "hcall-copy");
935 add_str(hypertas
, "hcall-debug");
936 add_str(hypertas
, "hcall-vphn");
937 add_str(qemu_hypertas
, "hcall-memop1");
939 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
940 add_str(hypertas
, "hcall-multi-tce");
943 if (spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) {
944 add_str(hypertas
, "hcall-hpt-resize");
947 _FDT(fdt_setprop(fdt
, rtas
, "ibm,hypertas-functions",
948 hypertas
->str
, hypertas
->len
));
949 g_string_free(hypertas
, TRUE
);
950 _FDT(fdt_setprop(fdt
, rtas
, "qemu,hypertas-functions",
951 qemu_hypertas
->str
, qemu_hypertas
->len
));
952 g_string_free(qemu_hypertas
, TRUE
);
954 if (smc
->pre_5_1_assoc_refpoints
) {
958 _FDT(fdt_setprop(fdt
, rtas
, "ibm,associativity-reference-points",
959 refpoints
, nr_refpoints
* sizeof(refpoints
[0])));
961 _FDT(fdt_setprop(fdt
, rtas
, "ibm,max-associativity-domains",
962 maxdomains
, sizeof(maxdomains
)));
965 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
966 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
968 * The system reset requirements are driven by existing Linux and PowerVM
969 * implementation which (contrary to PAPR) saves r3 in the error log
970 * structure like machine check, so Linux expects to find the saved r3
971 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
972 * does not look at the error value).
974 * System reset interrupts are not subject to interlock like machine
975 * check, so this memory area could be corrupted if the sreset is
976 * interrupted by a machine check (or vice versa) if it was shared. To
977 * prevent this, system reset uses per-CPU areas for the sreset save
978 * area. A system reset that interrupts a system reset handler could
979 * still overwrite this area, but Linux doesn't try to recover in that
982 * The extra 8 bytes is required because Linux's FWNMI error log check
985 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-size", RTAS_ERROR_LOG_MAX
+
986 ms
->smp
.max_cpus
* sizeof(uint64_t)*2 + sizeof(uint64_t)));
987 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-error-log-max",
988 RTAS_ERROR_LOG_MAX
));
989 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-event-scan-rate",
990 RTAS_EVENT_SCAN_RATE
));
992 g_assert(msi_nonbroken
);
993 _FDT(fdt_setprop(fdt
, rtas
, "ibm,change-msix-capable", NULL
, 0));
996 * According to PAPR, rtas ibm,os-term does not guarantee a return
997 * back to the guest cpu.
999 * While an additional ibm,extended-os-term property indicates
1000 * that rtas call return will always occur. Set this property.
1002 _FDT(fdt_setprop(fdt
, rtas
, "ibm,extended-os-term", NULL
, 0));
1004 _FDT(fdt_setprop(fdt
, rtas
, "ibm,lrdr-capacity",
1005 lrdr_capacity
, sizeof(lrdr_capacity
)));
1007 spapr_dt_rtas_tokens(fdt
, rtas
);
1011 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1012 * and the XIVE features that the guest may request and thus the valid
1013 * values for bytes 23..26 of option vector 5:
1015 static void spapr_dt_ov5_platform_support(SpaprMachineState
*spapr
, void *fdt
,
1018 PowerPCCPU
*first_ppc_cpu
= POWERPC_CPU(first_cpu
);
1021 23, 0x00, /* XICS / XIVE mode */
1022 24, 0x00, /* Hash/Radix, filled in below. */
1023 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1024 26, 0x40, /* Radix options: GTSE == yes. */
1027 if (spapr
->irq
->xics
&& spapr
->irq
->xive
) {
1028 val
[1] = SPAPR_OV5_XIVE_BOTH
;
1029 } else if (spapr
->irq
->xive
) {
1030 val
[1] = SPAPR_OV5_XIVE_EXPLOIT
;
1032 assert(spapr
->irq
->xics
);
1033 val
[1] = SPAPR_OV5_XIVE_LEGACY
;
1036 if (!ppc_check_compat(first_ppc_cpu
, CPU_POWERPC_LOGICAL_3_00
, 0,
1037 first_ppc_cpu
->compat_pvr
)) {
1039 * If we're in a pre POWER9 compat mode then the guest should
1040 * do hash and use the legacy interrupt mode
1042 val
[1] = SPAPR_OV5_XIVE_LEGACY
; /* XICS */
1043 val
[3] = 0x00; /* Hash */
1044 } else if (kvm_enabled()) {
1045 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1046 val
[3] = 0x80; /* OV5_MMU_BOTH */
1047 } else if (kvmppc_has_cap_mmu_radix()) {
1048 val
[3] = 0x40; /* OV5_MMU_RADIX_300 */
1050 val
[3] = 0x00; /* Hash */
1053 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1056 _FDT(fdt_setprop(fdt
, chosen
, "ibm,arch-vec-5-platform-support",
1060 static void spapr_dt_chosen(SpaprMachineState
*spapr
, void *fdt
, bool reset
)
1062 MachineState
*machine
= MACHINE(spapr
);
1063 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
1066 _FDT(chosen
= fdt_add_subnode(fdt
, 0, "chosen"));
1069 const char *boot_device
= machine
->boot_order
;
1070 char *stdout_path
= spapr_vio_stdout_path(spapr
->vio_bus
);
1072 char *bootlist
= get_boot_devices_list(&cb
);
1074 if (machine
->kernel_cmdline
&& machine
->kernel_cmdline
[0]) {
1075 _FDT(fdt_setprop_string(fdt
, chosen
, "bootargs",
1076 machine
->kernel_cmdline
));
1079 if (spapr
->initrd_size
) {
1080 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-start",
1081 spapr
->initrd_base
));
1082 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-end",
1083 spapr
->initrd_base
+ spapr
->initrd_size
));
1086 if (spapr
->kernel_size
) {
1087 uint64_t kprop
[2] = { cpu_to_be64(spapr
->kernel_addr
),
1088 cpu_to_be64(spapr
->kernel_size
) };
1090 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel",
1091 &kprop
, sizeof(kprop
)));
1092 if (spapr
->kernel_le
) {
1093 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel-le", NULL
, 0));
1097 _FDT((fdt_setprop_cell(fdt
, chosen
, "qemu,boot-menu", boot_menu
)));
1099 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-width", graphic_width
));
1100 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-height", graphic_height
));
1101 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-depth", graphic_depth
));
1103 if (cb
&& bootlist
) {
1106 for (i
= 0; i
< cb
; i
++) {
1107 if (bootlist
[i
] == '\n') {
1111 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-list", bootlist
));
1114 if (boot_device
&& strlen(boot_device
)) {
1115 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-device", boot_device
));
1118 if (!spapr
->has_graphics
&& stdout_path
) {
1120 * "linux,stdout-path" and "stdout" properties are
1121 * deprecated by linux kernel. New platforms should only
1122 * use the "stdout-path" property. Set the new property
1123 * and continue using older property to remain compatible
1124 * with the existing firmware.
1126 _FDT(fdt_setprop_string(fdt
, chosen
, "linux,stdout-path", stdout_path
));
1127 _FDT(fdt_setprop_string(fdt
, chosen
, "stdout-path", stdout_path
));
1131 * We can deal with BAR reallocation just fine, advertise it
1134 if (smc
->linux_pci_probe
) {
1135 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,pci-probe-only", 0));
1138 spapr_dt_ov5_platform_support(spapr
, fdt
, chosen
);
1140 g_free(stdout_path
);
1144 _FDT(spapr_dt_ovec(fdt
, chosen
, spapr
->ov5_cas
, "ibm,architecture-vec-5"));
1147 static void spapr_dt_hypervisor(SpaprMachineState
*spapr
, void *fdt
)
1149 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1150 * KVM to work under pHyp with some guest co-operation */
1152 uint8_t hypercall
[16];
1154 _FDT(hypervisor
= fdt_add_subnode(fdt
, 0, "hypervisor"));
1155 /* indicate KVM hypercall interface */
1156 _FDT(fdt_setprop_string(fdt
, hypervisor
, "compatible", "linux,kvm"));
1157 if (kvmppc_has_cap_fixup_hcalls()) {
1159 * Older KVM versions with older guest kernels were broken
1160 * with the magic page, don't allow the guest to map it.
1162 if (!kvmppc_get_hypercall(first_cpu
->env_ptr
, hypercall
,
1163 sizeof(hypercall
))) {
1164 _FDT(fdt_setprop(fdt
, hypervisor
, "hcall-instructions",
1165 hypercall
, sizeof(hypercall
)));
1170 void *spapr_build_fdt(SpaprMachineState
*spapr
, bool reset
, size_t space
)
1172 MachineState
*machine
= MACHINE(spapr
);
1173 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
1174 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
1180 fdt
= g_malloc0(space
);
1181 _FDT((fdt_create_empty_tree(fdt
, space
)));
1184 _FDT(fdt_setprop_string(fdt
, 0, "device_type", "chrp"));
1185 _FDT(fdt_setprop_string(fdt
, 0, "model", "IBM pSeries (emulated by qemu)"));
1186 _FDT(fdt_setprop_string(fdt
, 0, "compatible", "qemu,pseries"));
1188 /* Guest UUID & Name*/
1189 buf
= qemu_uuid_unparse_strdup(&qemu_uuid
);
1190 _FDT(fdt_setprop_string(fdt
, 0, "vm,uuid", buf
));
1191 if (qemu_uuid_set
) {
1192 _FDT(fdt_setprop_string(fdt
, 0, "system-id", buf
));
1196 if (qemu_get_vm_name()) {
1197 _FDT(fdt_setprop_string(fdt
, 0, "ibm,partition-name",
1198 qemu_get_vm_name()));
1201 /* Host Model & Serial Number */
1202 if (spapr
->host_model
) {
1203 _FDT(fdt_setprop_string(fdt
, 0, "host-model", spapr
->host_model
));
1204 } else if (smc
->broken_host_serial_model
&& kvmppc_get_host_model(&buf
)) {
1205 _FDT(fdt_setprop_string(fdt
, 0, "host-model", buf
));
1209 if (spapr
->host_serial
) {
1210 _FDT(fdt_setprop_string(fdt
, 0, "host-serial", spapr
->host_serial
));
1211 } else if (smc
->broken_host_serial_model
&& kvmppc_get_host_serial(&buf
)) {
1212 _FDT(fdt_setprop_string(fdt
, 0, "host-serial", buf
));
1216 _FDT(fdt_setprop_cell(fdt
, 0, "#address-cells", 2));
1217 _FDT(fdt_setprop_cell(fdt
, 0, "#size-cells", 2));
1219 /* /interrupt controller */
1220 spapr_irq_dt(spapr
, spapr_max_server_number(spapr
), fdt
, PHANDLE_INTC
);
1222 ret
= spapr_dt_memory(spapr
, fdt
);
1224 error_report("couldn't setup memory nodes in fdt");
1229 spapr_dt_vdevice(spapr
->vio_bus
, fdt
);
1231 if (object_resolve_path_type("", TYPE_SPAPR_RNG
, NULL
)) {
1232 ret
= spapr_dt_rng(fdt
);
1234 error_report("could not set up rng device in the fdt");
1239 QLIST_FOREACH(phb
, &spapr
->phbs
, list
) {
1240 ret
= spapr_dt_phb(spapr
, phb
, PHANDLE_INTC
, fdt
, NULL
);
1242 error_report("couldn't setup PCI devices in fdt");
1247 spapr_dt_cpus(fdt
, spapr
);
1249 if (smc
->dr_lmb_enabled
) {
1250 _FDT(spapr_dt_drc(fdt
, 0, NULL
, SPAPR_DR_CONNECTOR_TYPE_LMB
));
1253 if (mc
->has_hotpluggable_cpus
) {
1254 int offset
= fdt_path_offset(fdt
, "/cpus");
1255 ret
= spapr_dt_drc(fdt
, offset
, NULL
, SPAPR_DR_CONNECTOR_TYPE_CPU
);
1257 error_report("Couldn't set up CPU DR device tree properties");
1262 /* /event-sources */
1263 spapr_dt_events(spapr
, fdt
);
1266 spapr_dt_rtas(spapr
, fdt
);
1269 spapr_dt_chosen(spapr
, fdt
, reset
);
1272 if (kvm_enabled()) {
1273 spapr_dt_hypervisor(spapr
, fdt
);
1276 /* Build memory reserve map */
1278 if (spapr
->kernel_size
) {
1279 _FDT((fdt_add_mem_rsv(fdt
, spapr
->kernel_addr
,
1280 spapr
->kernel_size
)));
1282 if (spapr
->initrd_size
) {
1283 _FDT((fdt_add_mem_rsv(fdt
, spapr
->initrd_base
,
1284 spapr
->initrd_size
)));
1288 if (smc
->dr_phb_enabled
) {
1289 ret
= spapr_dt_drc(fdt
, 0, NULL
, SPAPR_DR_CONNECTOR_TYPE_PHB
);
1291 error_report("Couldn't set up PHB DR device tree properties");
1296 /* NVDIMM devices */
1297 if (mc
->nvdimm_supported
) {
1298 spapr_dt_persistent_memory(fdt
);
1304 static uint64_t translate_kernel_address(void *opaque
, uint64_t addr
)
1306 SpaprMachineState
*spapr
= opaque
;
1308 return (addr
& 0x0fffffff) + spapr
->kernel_addr
;
1311 static void emulate_spapr_hypercall(PPCVirtualHypervisor
*vhyp
,
1314 CPUPPCState
*env
= &cpu
->env
;
1316 /* The TCG path should also be holding the BQL at this point */
1317 g_assert(qemu_mutex_iothread_locked());
1320 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1321 env
->gpr
[3] = H_PRIVILEGE
;
1323 env
->gpr
[3] = spapr_hypercall(cpu
, env
->gpr
[3], &env
->gpr
[4]);
1327 struct LPCRSyncState
{
1332 static void do_lpcr_sync(CPUState
*cs
, run_on_cpu_data arg
)
1334 struct LPCRSyncState
*s
= arg
.host_ptr
;
1335 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
1336 CPUPPCState
*env
= &cpu
->env
;
1339 cpu_synchronize_state(cs
);
1340 lpcr
= env
->spr
[SPR_LPCR
];
1343 ppc_store_lpcr(cpu
, lpcr
);
1346 void spapr_set_all_lpcrs(target_ulong value
, target_ulong mask
)
1349 struct LPCRSyncState s
= {
1354 run_on_cpu(cs
, do_lpcr_sync
, RUN_ON_CPU_HOST_PTR(&s
));
1358 static void spapr_get_pate(PPCVirtualHypervisor
*vhyp
, ppc_v3_pate_t
*entry
)
1360 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1362 /* Copy PATE1:GR into PATE0:HR */
1363 entry
->dw0
= spapr
->patb_entry
& PATE0_HR
;
1364 entry
->dw1
= spapr
->patb_entry
;
1367 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1368 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1369 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1370 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1371 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1374 * Get the fd to access the kernel htab, re-opening it if necessary
1376 static int get_htab_fd(SpaprMachineState
*spapr
)
1378 Error
*local_err
= NULL
;
1380 if (spapr
->htab_fd
>= 0) {
1381 return spapr
->htab_fd
;
1384 spapr
->htab_fd
= kvmppc_get_htab_fd(false, 0, &local_err
);
1385 if (spapr
->htab_fd
< 0) {
1386 error_report_err(local_err
);
1389 return spapr
->htab_fd
;
1392 void close_htab_fd(SpaprMachineState
*spapr
)
1394 if (spapr
->htab_fd
>= 0) {
1395 close(spapr
->htab_fd
);
1397 spapr
->htab_fd
= -1;
1400 static hwaddr
spapr_hpt_mask(PPCVirtualHypervisor
*vhyp
)
1402 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1404 return HTAB_SIZE(spapr
) / HASH_PTEG_SIZE_64
- 1;
1407 static target_ulong
spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor
*vhyp
)
1409 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1411 assert(kvm_enabled());
1417 return (target_ulong
)(uintptr_t)spapr
->htab
| (spapr
->htab_shift
- 18);
1420 static const ppc_hash_pte64_t
*spapr_map_hptes(PPCVirtualHypervisor
*vhyp
,
1423 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1424 hwaddr pte_offset
= ptex
* HASH_PTE_SIZE_64
;
1428 * HTAB is controlled by KVM. Fetch into temporary buffer
1430 ppc_hash_pte64_t
*hptes
= g_malloc(n
* HASH_PTE_SIZE_64
);
1431 kvmppc_read_hptes(hptes
, ptex
, n
);
1436 * HTAB is controlled by QEMU. Just point to the internally
1439 return (const ppc_hash_pte64_t
*)(spapr
->htab
+ pte_offset
);
1442 static void spapr_unmap_hptes(PPCVirtualHypervisor
*vhyp
,
1443 const ppc_hash_pte64_t
*hptes
,
1446 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1449 g_free((void *)hptes
);
1452 /* Nothing to do for qemu managed HPT */
1455 void spapr_store_hpte(PowerPCCPU
*cpu
, hwaddr ptex
,
1456 uint64_t pte0
, uint64_t pte1
)
1458 SpaprMachineState
*spapr
= SPAPR_MACHINE(cpu
->vhyp
);
1459 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
;
1462 kvmppc_write_hpte(ptex
, pte0
, pte1
);
1464 if (pte0
& HPTE64_V_VALID
) {
1465 stq_p(spapr
->htab
+ offset
+ HASH_PTE_SIZE_64
/ 2, pte1
);
1467 * When setting valid, we write PTE1 first. This ensures
1468 * proper synchronization with the reading code in
1469 * ppc_hash64_pteg_search()
1472 stq_p(spapr
->htab
+ offset
, pte0
);
1474 stq_p(spapr
->htab
+ offset
, pte0
);
1476 * When clearing it we set PTE0 first. This ensures proper
1477 * synchronization with the reading code in
1478 * ppc_hash64_pteg_search()
1481 stq_p(spapr
->htab
+ offset
+ HASH_PTE_SIZE_64
/ 2, pte1
);
1486 static void spapr_hpte_set_c(PPCVirtualHypervisor
*vhyp
, hwaddr ptex
,
1489 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
+ 15;
1490 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1493 /* There should always be a hash table when this is called */
1494 error_report("spapr_hpte_set_c called with no hash table !");
1498 /* The HW performs a non-atomic byte update */
1499 stb_p(spapr
->htab
+ offset
, (pte1
& 0xff) | 0x80);
1502 static void spapr_hpte_set_r(PPCVirtualHypervisor
*vhyp
, hwaddr ptex
,
1505 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
+ 14;
1506 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1509 /* There should always be a hash table when this is called */
1510 error_report("spapr_hpte_set_r called with no hash table !");
1514 /* The HW performs a non-atomic byte update */
1515 stb_p(spapr
->htab
+ offset
, ((pte1
>> 8) & 0xff) | 0x01);
1518 int spapr_hpt_shift_for_ramsize(uint64_t ramsize
)
1522 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1523 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1524 * that's much more than is needed for Linux guests */
1525 shift
= ctz64(pow2ceil(ramsize
)) - 7;
1526 shift
= MAX(shift
, 18); /* Minimum architected size */
1527 shift
= MIN(shift
, 46); /* Maximum architected size */
1531 void spapr_free_hpt(SpaprMachineState
*spapr
)
1533 g_free(spapr
->htab
);
1535 spapr
->htab_shift
= 0;
1536 close_htab_fd(spapr
);
1539 void spapr_reallocate_hpt(SpaprMachineState
*spapr
, int shift
,
1544 /* Clean up any HPT info from a previous boot */
1545 spapr_free_hpt(spapr
);
1547 rc
= kvmppc_reset_htab(shift
);
1549 /* kernel-side HPT needed, but couldn't allocate one */
1550 error_setg_errno(errp
, errno
,
1551 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1553 /* This is almost certainly fatal, but if the caller really
1554 * wants to carry on with shift == 0, it's welcome to try */
1555 } else if (rc
> 0) {
1556 /* kernel-side HPT allocated */
1559 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1563 spapr
->htab_shift
= shift
;
1566 /* kernel-side HPT not needed, allocate in userspace instead */
1567 size_t size
= 1ULL << shift
;
1570 spapr
->htab
= qemu_memalign(size
, size
);
1572 error_setg_errno(errp
, errno
,
1573 "Could not allocate HPT of order %d", shift
);
1577 memset(spapr
->htab
, 0, size
);
1578 spapr
->htab_shift
= shift
;
1580 for (i
= 0; i
< size
/ HASH_PTE_SIZE_64
; i
++) {
1581 DIRTY_HPTE(HPTE(spapr
->htab
, i
));
1584 /* We're setting up a hash table, so that means we're not radix */
1585 spapr
->patb_entry
= 0;
1586 spapr_set_all_lpcrs(0, LPCR_HR
| LPCR_UPRT
);
1589 void spapr_setup_hpt(SpaprMachineState
*spapr
)
1593 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DISABLED
) {
1594 hpt_shift
= spapr_hpt_shift_for_ramsize(MACHINE(spapr
)->maxram_size
);
1596 uint64_t current_ram_size
;
1598 current_ram_size
= MACHINE(spapr
)->ram_size
+ get_plugged_memory_size();
1599 hpt_shift
= spapr_hpt_shift_for_ramsize(current_ram_size
);
1601 spapr_reallocate_hpt(spapr
, hpt_shift
, &error_fatal
);
1603 if (kvm_enabled()) {
1604 hwaddr vrma_limit
= kvmppc_vrma_limit(spapr
->htab_shift
);
1606 /* Check our RMA fits in the possible VRMA */
1607 if (vrma_limit
< spapr
->rma_size
) {
1608 error_report("Unable to create %" HWADDR_PRIu
1609 "MiB RMA (VRMA only allows %" HWADDR_PRIu
"MiB",
1610 spapr
->rma_size
/ MiB
, vrma_limit
/ MiB
);
1616 static int spapr_reset_drcs(Object
*child
, void *opaque
)
1619 (SpaprDrc
*) object_dynamic_cast(child
,
1620 TYPE_SPAPR_DR_CONNECTOR
);
1623 spapr_drc_reset(drc
);
1629 static void spapr_machine_reset(MachineState
*machine
)
1631 SpaprMachineState
*spapr
= SPAPR_MACHINE(machine
);
1632 PowerPCCPU
*first_ppc_cpu
;
1637 kvmppc_svm_off(&error_fatal
);
1638 spapr_caps_apply(spapr
);
1640 first_ppc_cpu
= POWERPC_CPU(first_cpu
);
1641 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1642 ppc_type_check_compat(machine
->cpu_type
, CPU_POWERPC_LOGICAL_3_00
, 0,
1643 spapr
->max_compat_pvr
)) {
1645 * If using KVM with radix mode available, VCPUs can be started
1646 * without a HPT because KVM will start them in radix mode.
1647 * Set the GR bit in PATE so that we know there is no HPT.
1649 spapr
->patb_entry
= PATE1_GR
;
1650 spapr_set_all_lpcrs(LPCR_HR
| LPCR_UPRT
, LPCR_HR
| LPCR_UPRT
);
1652 spapr_setup_hpt(spapr
);
1655 qemu_devices_reset();
1657 spapr_ovec_cleanup(spapr
->ov5_cas
);
1658 spapr
->ov5_cas
= spapr_ovec_new();
1660 ppc_set_compat_all(spapr
->max_compat_pvr
, &error_fatal
);
1663 * This is fixing some of the default configuration of the XIVE
1664 * devices. To be called after the reset of the machine devices.
1666 spapr_irq_reset(spapr
, &error_fatal
);
1669 * There is no CAS under qtest. Simulate one to please the code that
1670 * depends on spapr->ov5_cas. This is especially needed to test device
1671 * unplug, so we do that before resetting the DRCs.
1673 if (qtest_enabled()) {
1674 spapr_ovec_cleanup(spapr
->ov5_cas
);
1675 spapr
->ov5_cas
= spapr_ovec_clone(spapr
->ov5
);
1678 /* DRC reset may cause a device to be unplugged. This will cause troubles
1679 * if this device is used by another device (eg, a running vhost backend
1680 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1681 * situations, we reset DRCs after all devices have been reset.
1683 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs
, NULL
);
1685 spapr_clear_pending_events(spapr
);
1688 * We place the device tree and RTAS just below either the top of the RMA,
1689 * or just below 2GB, whichever is lower, so that it can be
1690 * processed with 32-bit real mode code if necessary
1692 fdt_addr
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
) - FDT_MAX_SIZE
;
1694 fdt
= spapr_build_fdt(spapr
, true, FDT_MAX_SIZE
);
1698 /* Should only fail if we've built a corrupted tree */
1702 qemu_fdt_dumpdtb(fdt
, fdt_totalsize(fdt
));
1703 cpu_physical_memory_write(fdt_addr
, fdt
, fdt_totalsize(fdt
));
1704 g_free(spapr
->fdt_blob
);
1705 spapr
->fdt_size
= fdt_totalsize(fdt
);
1706 spapr
->fdt_initial_size
= spapr
->fdt_size
;
1707 spapr
->fdt_blob
= fdt
;
1709 /* Set up the entry state */
1710 spapr_cpu_set_entry_state(first_ppc_cpu
, SPAPR_ENTRY_POINT
, 0, fdt_addr
, 0);
1711 first_ppc_cpu
->env
.gpr
[5] = 0;
1713 spapr
->fwnmi_system_reset_addr
= -1;
1714 spapr
->fwnmi_machine_check_addr
= -1;
1715 spapr
->fwnmi_machine_check_interlock
= -1;
1717 /* Signal all vCPUs waiting on this condition */
1718 qemu_cond_broadcast(&spapr
->fwnmi_machine_check_interlock_cond
);
1720 migrate_del_blocker(spapr
->fwnmi_migration_blocker
);
1723 static void spapr_create_nvram(SpaprMachineState
*spapr
)
1725 DeviceState
*dev
= qdev_new("spapr-nvram");
1726 DriveInfo
*dinfo
= drive_get(IF_PFLASH
, 0, 0);
1729 qdev_prop_set_drive_err(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
1733 qdev_realize_and_unref(dev
, &spapr
->vio_bus
->bus
, &error_fatal
);
1735 spapr
->nvram
= (struct SpaprNvram
*)dev
;
1738 static void spapr_rtc_create(SpaprMachineState
*spapr
)
1740 object_initialize_child_with_props(OBJECT(spapr
), "rtc", &spapr
->rtc
,
1741 sizeof(spapr
->rtc
), TYPE_SPAPR_RTC
,
1742 &error_fatal
, NULL
);
1743 qdev_realize(DEVICE(&spapr
->rtc
), NULL
, &error_fatal
);
1744 object_property_add_alias(OBJECT(spapr
), "rtc-time", OBJECT(&spapr
->rtc
),
1748 /* Returns whether we want to use VGA or not */
1749 static bool spapr_vga_init(PCIBus
*pci_bus
, Error
**errp
)
1751 switch (vga_interface_type
) {
1759 return pci_vga_init(pci_bus
) != NULL
;
1762 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1767 static int spapr_pre_load(void *opaque
)
1771 rc
= spapr_caps_pre_load(opaque
);
1779 static int spapr_post_load(void *opaque
, int version_id
)
1781 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1784 err
= spapr_caps_post_migration(spapr
);
1790 * In earlier versions, there was no separate qdev for the PAPR
1791 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1792 * So when migrating from those versions, poke the incoming offset
1793 * value into the RTC device
1795 if (version_id
< 3) {
1796 err
= spapr_rtc_import_offset(&spapr
->rtc
, spapr
->rtc_offset
);
1802 if (kvm_enabled() && spapr
->patb_entry
) {
1803 PowerPCCPU
*cpu
= POWERPC_CPU(first_cpu
);
1804 bool radix
= !!(spapr
->patb_entry
& PATE1_GR
);
1805 bool gtse
= !!(cpu
->env
.spr
[SPR_LPCR
] & LPCR_GTSE
);
1808 * Update LPCR:HR and UPRT as they may not be set properly in
1811 spapr_set_all_lpcrs(radix ?
(LPCR_HR
| LPCR_UPRT
) : 0,
1812 LPCR_HR
| LPCR_UPRT
);
1814 err
= kvmppc_configure_v3_mmu(cpu
, radix
, gtse
, spapr
->patb_entry
);
1816 error_report("Process table config unsupported by the host");
1821 err
= spapr_irq_post_load(spapr
, version_id
);
1829 static int spapr_pre_save(void *opaque
)
1833 rc
= spapr_caps_pre_save(opaque
);
1841 static bool version_before_3(void *opaque
, int version_id
)
1843 return version_id
< 3;
1846 static bool spapr_pending_events_needed(void *opaque
)
1848 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1849 return !QTAILQ_EMPTY(&spapr
->pending_events
);
1852 static const VMStateDescription vmstate_spapr_event_entry
= {
1853 .name
= "spapr_event_log_entry",
1855 .minimum_version_id
= 1,
1856 .fields
= (VMStateField
[]) {
1857 VMSTATE_UINT32(summary
, SpaprEventLogEntry
),
1858 VMSTATE_UINT32(extended_length
, SpaprEventLogEntry
),
1859 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log
, SpaprEventLogEntry
, 0,
1860 NULL
, extended_length
),
1861 VMSTATE_END_OF_LIST()
1865 static const VMStateDescription vmstate_spapr_pending_events
= {
1866 .name
= "spapr_pending_events",
1868 .minimum_version_id
= 1,
1869 .needed
= spapr_pending_events_needed
,
1870 .fields
= (VMStateField
[]) {
1871 VMSTATE_QTAILQ_V(pending_events
, SpaprMachineState
, 1,
1872 vmstate_spapr_event_entry
, SpaprEventLogEntry
, next
),
1873 VMSTATE_END_OF_LIST()
1877 static bool spapr_ov5_cas_needed(void *opaque
)
1879 SpaprMachineState
*spapr
= opaque
;
1880 SpaprOptionVector
*ov5_mask
= spapr_ovec_new();
1883 /* Prior to the introduction of SpaprOptionVector, we had two option
1884 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1885 * Both of these options encode machine topology into the device-tree
1886 * in such a way that the now-booted OS should still be able to interact
1887 * appropriately with QEMU regardless of what options were actually
1888 * negotiatied on the source side.
1890 * As such, we can avoid migrating the CAS-negotiated options if these
1891 * are the only options available on the current machine/platform.
1892 * Since these are the only options available for pseries-2.7 and
1893 * earlier, this allows us to maintain old->new/new->old migration
1896 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1897 * via default pseries-2.8 machines and explicit command-line parameters.
1898 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1899 * of the actual CAS-negotiated values to continue working properly. For
1900 * example, availability of memory unplug depends on knowing whether
1901 * OV5_HP_EVT was negotiated via CAS.
1903 * Thus, for any cases where the set of available CAS-negotiatable
1904 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1905 * include the CAS-negotiated options in the migration stream, unless
1906 * if they affect boot time behaviour only.
1908 spapr_ovec_set(ov5_mask
, OV5_FORM1_AFFINITY
);
1909 spapr_ovec_set(ov5_mask
, OV5_DRCONF_MEMORY
);
1910 spapr_ovec_set(ov5_mask
, OV5_DRMEM_V2
);
1912 /* We need extra information if we have any bits outside the mask
1914 cas_needed
= !spapr_ovec_subset(spapr
->ov5
, ov5_mask
);
1916 spapr_ovec_cleanup(ov5_mask
);
1921 static const VMStateDescription vmstate_spapr_ov5_cas
= {
1922 .name
= "spapr_option_vector_ov5_cas",
1924 .minimum_version_id
= 1,
1925 .needed
= spapr_ov5_cas_needed
,
1926 .fields
= (VMStateField
[]) {
1927 VMSTATE_STRUCT_POINTER_V(ov5_cas
, SpaprMachineState
, 1,
1928 vmstate_spapr_ovec
, SpaprOptionVector
),
1929 VMSTATE_END_OF_LIST()
1933 static bool spapr_patb_entry_needed(void *opaque
)
1935 SpaprMachineState
*spapr
= opaque
;
1937 return !!spapr
->patb_entry
;
1940 static const VMStateDescription vmstate_spapr_patb_entry
= {
1941 .name
= "spapr_patb_entry",
1943 .minimum_version_id
= 1,
1944 .needed
= spapr_patb_entry_needed
,
1945 .fields
= (VMStateField
[]) {
1946 VMSTATE_UINT64(patb_entry
, SpaprMachineState
),
1947 VMSTATE_END_OF_LIST()
1951 static bool spapr_irq_map_needed(void *opaque
)
1953 SpaprMachineState
*spapr
= opaque
;
1955 return spapr
->irq_map
&& !bitmap_empty(spapr
->irq_map
, spapr
->irq_map_nr
);
1958 static const VMStateDescription vmstate_spapr_irq_map
= {
1959 .name
= "spapr_irq_map",
1961 .minimum_version_id
= 1,
1962 .needed
= spapr_irq_map_needed
,
1963 .fields
= (VMStateField
[]) {
1964 VMSTATE_BITMAP(irq_map
, SpaprMachineState
, 0, irq_map_nr
),
1965 VMSTATE_END_OF_LIST()
1969 static bool spapr_dtb_needed(void *opaque
)
1971 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(opaque
);
1973 return smc
->update_dt_enabled
;
1976 static int spapr_dtb_pre_load(void *opaque
)
1978 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1980 g_free(spapr
->fdt_blob
);
1981 spapr
->fdt_blob
= NULL
;
1982 spapr
->fdt_size
= 0;
1987 static const VMStateDescription vmstate_spapr_dtb
= {
1988 .name
= "spapr_dtb",
1990 .minimum_version_id
= 1,
1991 .needed
= spapr_dtb_needed
,
1992 .pre_load
= spapr_dtb_pre_load
,
1993 .fields
= (VMStateField
[]) {
1994 VMSTATE_UINT32(fdt_initial_size
, SpaprMachineState
),
1995 VMSTATE_UINT32(fdt_size
, SpaprMachineState
),
1996 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob
, SpaprMachineState
, 0, NULL
,
1998 VMSTATE_END_OF_LIST()
2002 static bool spapr_fwnmi_needed(void *opaque
)
2004 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
2006 return spapr
->fwnmi_machine_check_addr
!= -1;
2009 static int spapr_fwnmi_pre_save(void *opaque
)
2011 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
2014 * Check if machine check handling is in progress and print a
2017 if (spapr
->fwnmi_machine_check_interlock
!= -1) {
2018 warn_report("A machine check is being handled during migration. The"
2019 "handler may run and log hardware error on the destination");
2025 static const VMStateDescription vmstate_spapr_fwnmi
= {
2026 .name
= "spapr_fwnmi",
2028 .minimum_version_id
= 1,
2029 .needed
= spapr_fwnmi_needed
,
2030 .pre_save
= spapr_fwnmi_pre_save
,
2031 .fields
= (VMStateField
[]) {
2032 VMSTATE_UINT64(fwnmi_system_reset_addr
, SpaprMachineState
),
2033 VMSTATE_UINT64(fwnmi_machine_check_addr
, SpaprMachineState
),
2034 VMSTATE_INT32(fwnmi_machine_check_interlock
, SpaprMachineState
),
2035 VMSTATE_END_OF_LIST()
2039 static const VMStateDescription vmstate_spapr
= {
2042 .minimum_version_id
= 1,
2043 .pre_load
= spapr_pre_load
,
2044 .post_load
= spapr_post_load
,
2045 .pre_save
= spapr_pre_save
,
2046 .fields
= (VMStateField
[]) {
2047 /* used to be @next_irq */
2048 VMSTATE_UNUSED_BUFFER(version_before_3
, 0, 4),
2051 VMSTATE_UINT64_TEST(rtc_offset
, SpaprMachineState
, version_before_3
),
2053 VMSTATE_PPC_TIMEBASE_V(tb
, SpaprMachineState
, 2),
2054 VMSTATE_END_OF_LIST()
2056 .subsections
= (const VMStateDescription
*[]) {
2057 &vmstate_spapr_ov5_cas
,
2058 &vmstate_spapr_patb_entry
,
2059 &vmstate_spapr_pending_events
,
2060 &vmstate_spapr_cap_htm
,
2061 &vmstate_spapr_cap_vsx
,
2062 &vmstate_spapr_cap_dfp
,
2063 &vmstate_spapr_cap_cfpc
,
2064 &vmstate_spapr_cap_sbbc
,
2065 &vmstate_spapr_cap_ibs
,
2066 &vmstate_spapr_cap_hpt_maxpagesize
,
2067 &vmstate_spapr_irq_map
,
2068 &vmstate_spapr_cap_nested_kvm_hv
,
2070 &vmstate_spapr_cap_large_decr
,
2071 &vmstate_spapr_cap_ccf_assist
,
2072 &vmstate_spapr_cap_fwnmi
,
2073 &vmstate_spapr_fwnmi
,
2078 static int htab_save_setup(QEMUFile
*f
, void *opaque
)
2080 SpaprMachineState
*spapr
= opaque
;
2082 /* "Iteration" header */
2083 if (!spapr
->htab_shift
) {
2084 qemu_put_be32(f
, -1);
2086 qemu_put_be32(f
, spapr
->htab_shift
);
2090 spapr
->htab_save_index
= 0;
2091 spapr
->htab_first_pass
= true;
2093 if (spapr
->htab_shift
) {
2094 assert(kvm_enabled());
2102 static void htab_save_chunk(QEMUFile
*f
, SpaprMachineState
*spapr
,
2103 int chunkstart
, int n_valid
, int n_invalid
)
2105 qemu_put_be32(f
, chunkstart
);
2106 qemu_put_be16(f
, n_valid
);
2107 qemu_put_be16(f
, n_invalid
);
2108 qemu_put_buffer(f
, HPTE(spapr
->htab
, chunkstart
),
2109 HASH_PTE_SIZE_64
* n_valid
);
2112 static void htab_save_end_marker(QEMUFile
*f
)
2114 qemu_put_be32(f
, 0);
2115 qemu_put_be16(f
, 0);
2116 qemu_put_be16(f
, 0);
2119 static void htab_save_first_pass(QEMUFile
*f
, SpaprMachineState
*spapr
,
2122 bool has_timeout
= max_ns
!= -1;
2123 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
2124 int index
= spapr
->htab_save_index
;
2125 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
2127 assert(spapr
->htab_first_pass
);
2132 /* Consume invalid HPTEs */
2133 while ((index
< htabslots
)
2134 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2135 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2139 /* Consume valid HPTEs */
2141 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
2142 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2143 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2147 if (index
> chunkstart
) {
2148 int n_valid
= index
- chunkstart
;
2150 htab_save_chunk(f
, spapr
, chunkstart
, n_valid
, 0);
2153 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
2157 } while ((index
< htabslots
) && !qemu_file_rate_limit(f
));
2159 if (index
>= htabslots
) {
2160 assert(index
== htabslots
);
2162 spapr
->htab_first_pass
= false;
2164 spapr
->htab_save_index
= index
;
2167 static int htab_save_later_pass(QEMUFile
*f
, SpaprMachineState
*spapr
,
2170 bool final
= max_ns
< 0;
2171 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
2172 int examined
= 0, sent
= 0;
2173 int index
= spapr
->htab_save_index
;
2174 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
2176 assert(!spapr
->htab_first_pass
);
2179 int chunkstart
, invalidstart
;
2181 /* Consume non-dirty HPTEs */
2182 while ((index
< htabslots
)
2183 && !HPTE_DIRTY(HPTE(spapr
->htab
, index
))) {
2189 /* Consume valid dirty HPTEs */
2190 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
2191 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
2192 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2193 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2198 invalidstart
= index
;
2199 /* Consume invalid dirty HPTEs */
2200 while ((index
< htabslots
) && (index
- invalidstart
< USHRT_MAX
)
2201 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
2202 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2203 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2208 if (index
> chunkstart
) {
2209 int n_valid
= invalidstart
- chunkstart
;
2210 int n_invalid
= index
- invalidstart
;
2212 htab_save_chunk(f
, spapr
, chunkstart
, n_valid
, n_invalid
);
2213 sent
+= index
- chunkstart
;
2215 if (!final
&& (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
2220 if (examined
>= htabslots
) {
2224 if (index
>= htabslots
) {
2225 assert(index
== htabslots
);
2228 } while ((examined
< htabslots
) && (!qemu_file_rate_limit(f
) || final
));
2230 if (index
>= htabslots
) {
2231 assert(index
== htabslots
);
2235 spapr
->htab_save_index
= index
;
2237 return (examined
>= htabslots
) && (sent
== 0) ?
1 : 0;
2240 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2241 #define MAX_KVM_BUF_SIZE 2048
2243 static int htab_save_iterate(QEMUFile
*f
, void *opaque
)
2245 SpaprMachineState
*spapr
= opaque
;
2249 /* Iteration header */
2250 if (!spapr
->htab_shift
) {
2251 qemu_put_be32(f
, -1);
2254 qemu_put_be32(f
, 0);
2258 assert(kvm_enabled());
2260 fd
= get_htab_fd(spapr
);
2265 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, MAX_ITERATION_NS
);
2269 } else if (spapr
->htab_first_pass
) {
2270 htab_save_first_pass(f
, spapr
, MAX_ITERATION_NS
);
2272 rc
= htab_save_later_pass(f
, spapr
, MAX_ITERATION_NS
);
2275 htab_save_end_marker(f
);
2280 static int htab_save_complete(QEMUFile
*f
, void *opaque
)
2282 SpaprMachineState
*spapr
= opaque
;
2285 /* Iteration header */
2286 if (!spapr
->htab_shift
) {
2287 qemu_put_be32(f
, -1);
2290 qemu_put_be32(f
, 0);
2296 assert(kvm_enabled());
2298 fd
= get_htab_fd(spapr
);
2303 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, -1);
2308 if (spapr
->htab_first_pass
) {
2309 htab_save_first_pass(f
, spapr
, -1);
2311 htab_save_later_pass(f
, spapr
, -1);
2315 htab_save_end_marker(f
);
2320 static int htab_load(QEMUFile
*f
, void *opaque
, int version_id
)
2322 SpaprMachineState
*spapr
= opaque
;
2323 uint32_t section_hdr
;
2325 Error
*local_err
= NULL
;
2327 if (version_id
< 1 || version_id
> 1) {
2328 error_report("htab_load() bad version");
2332 section_hdr
= qemu_get_be32(f
);
2334 if (section_hdr
== -1) {
2335 spapr_free_hpt(spapr
);
2340 /* First section gives the htab size */
2341 spapr_reallocate_hpt(spapr
, section_hdr
, &local_err
);
2343 error_report_err(local_err
);
2350 assert(kvm_enabled());
2352 fd
= kvmppc_get_htab_fd(true, 0, &local_err
);
2354 error_report_err(local_err
);
2361 uint16_t n_valid
, n_invalid
;
2363 index
= qemu_get_be32(f
);
2364 n_valid
= qemu_get_be16(f
);
2365 n_invalid
= qemu_get_be16(f
);
2367 if ((index
== 0) && (n_valid
== 0) && (n_invalid
== 0)) {
2372 if ((index
+ n_valid
+ n_invalid
) >
2373 (HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
)) {
2374 /* Bad index in stream */
2376 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2377 index
, n_valid
, n_invalid
, spapr
->htab_shift
);
2383 qemu_get_buffer(f
, HPTE(spapr
->htab
, index
),
2384 HASH_PTE_SIZE_64
* n_valid
);
2387 memset(HPTE(spapr
->htab
, index
+ n_valid
), 0,
2388 HASH_PTE_SIZE_64
* n_invalid
);
2395 rc
= kvmppc_load_htab_chunk(f
, fd
, index
, n_valid
, n_invalid
);
2410 static void htab_save_cleanup(void *opaque
)
2412 SpaprMachineState
*spapr
= opaque
;
2414 close_htab_fd(spapr
);
2417 static SaveVMHandlers savevm_htab_handlers
= {
2418 .save_setup
= htab_save_setup
,
2419 .save_live_iterate
= htab_save_iterate
,
2420 .save_live_complete_precopy
= htab_save_complete
,
2421 .save_cleanup
= htab_save_cleanup
,
2422 .load_state
= htab_load
,
2425 static void spapr_boot_set(void *opaque
, const char *boot_device
,
2428 MachineState
*machine
= MACHINE(opaque
);
2429 machine
->boot_order
= g_strdup(boot_device
);
2432 static void spapr_create_lmb_dr_connectors(SpaprMachineState
*spapr
)
2434 MachineState
*machine
= MACHINE(spapr
);
2435 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
2436 uint32_t nr_lmbs
= (machine
->maxram_size
- machine
->ram_size
)/lmb_size
;
2439 for (i
= 0; i
< nr_lmbs
; i
++) {
2442 addr
= i
* lmb_size
+ machine
->device_memory
->base
;
2443 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_LMB
,
2449 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2450 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2451 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2453 static void spapr_validate_node_memory(MachineState
*machine
, Error
**errp
)
2457 if (machine
->ram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2458 error_setg(errp
, "Memory size 0x" RAM_ADDR_FMT
2459 " is not aligned to %" PRIu64
" MiB",
2461 SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
2465 if (machine
->maxram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2466 error_setg(errp
, "Maximum memory size 0x" RAM_ADDR_FMT
2467 " is not aligned to %" PRIu64
" MiB",
2469 SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
2473 for (i
= 0; i
< machine
->numa_state
->num_nodes
; i
++) {
2474 if (machine
->numa_state
->nodes
[i
].node_mem
% SPAPR_MEMORY_BLOCK_SIZE
) {
2476 "Node %d memory size 0x%" PRIx64
2477 " is not aligned to %" PRIu64
" MiB",
2478 i
, machine
->numa_state
->nodes
[i
].node_mem
,
2479 SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
2485 /* find cpu slot in machine->possible_cpus by core_id */
2486 static CPUArchId
*spapr_find_cpu_slot(MachineState
*ms
, uint32_t id
, int *idx
)
2488 int index
= id
/ ms
->smp
.threads
;
2490 if (index
>= ms
->possible_cpus
->len
) {
2496 return &ms
->possible_cpus
->cpus
[index
];
2499 static void spapr_set_vsmt_mode(SpaprMachineState
*spapr
, Error
**errp
)
2501 MachineState
*ms
= MACHINE(spapr
);
2502 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
2503 Error
*local_err
= NULL
;
2504 bool vsmt_user
= !!spapr
->vsmt
;
2505 int kvm_smt
= kvmppc_smt_threads();
2507 unsigned int smp_threads
= ms
->smp
.threads
;
2509 if (!kvm_enabled() && (smp_threads
> 1)) {
2510 error_setg(errp
, "TCG cannot support more than 1 thread/core "
2511 "on a pseries machine");
2514 if (!is_power_of_2(smp_threads
)) {
2515 error_setg(errp
, "Cannot support %d threads/core on a pseries "
2516 "machine because it must be a power of 2", smp_threads
);
2520 /* Detemine the VSMT mode to use: */
2522 if (spapr
->vsmt
< smp_threads
) {
2523 error_setg(errp
, "Cannot support VSMT mode %d"
2524 " because it must be >= threads/core (%d)",
2525 spapr
->vsmt
, smp_threads
);
2528 /* In this case, spapr->vsmt has been set by the command line */
2529 } else if (!smc
->smp_threads_vsmt
) {
2531 * Default VSMT value is tricky, because we need it to be as
2532 * consistent as possible (for migration), but this requires
2533 * changing it for at least some existing cases. We pick 8 as
2534 * the value that we'd get with KVM on POWER8, the
2535 * overwhelmingly common case in production systems.
2537 spapr
->vsmt
= MAX(8, smp_threads
);
2539 spapr
->vsmt
= smp_threads
;
2542 /* KVM: If necessary, set the SMT mode: */
2543 if (kvm_enabled() && (spapr
->vsmt
!= kvm_smt
)) {
2544 ret
= kvmppc_set_smt_threads(spapr
->vsmt
);
2546 /* Looks like KVM isn't able to change VSMT mode */
2547 error_setg(&local_err
,
2548 "Failed to set KVM's VSMT mode to %d (errno %d)",
2550 /* We can live with that if the default one is big enough
2551 * for the number of threads, and a submultiple of the one
2552 * we want. In this case we'll waste some vcpu ids, but
2553 * behaviour will be correct */
2554 if ((kvm_smt
>= smp_threads
) && ((spapr
->vsmt
% kvm_smt
) == 0)) {
2555 warn_report_err(local_err
);
2558 error_append_hint(&local_err
,
2559 "On PPC, a VM with %d threads/core"
2560 " on a host with %d threads/core"
2561 " requires the use of VSMT mode %d.\n",
2562 smp_threads
, kvm_smt
, spapr
->vsmt
);
2564 kvmppc_error_append_smt_possible_hint(&local_err
);
2565 error_propagate(errp
, local_err
);
2569 /* else TCG: nothing to do currently */
2572 static void spapr_init_cpus(SpaprMachineState
*spapr
)
2574 MachineState
*machine
= MACHINE(spapr
);
2575 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
2576 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
2577 const char *type
= spapr_get_cpu_core_type(machine
->cpu_type
);
2578 const CPUArchIdList
*possible_cpus
;
2579 unsigned int smp_cpus
= machine
->smp
.cpus
;
2580 unsigned int smp_threads
= machine
->smp
.threads
;
2581 unsigned int max_cpus
= machine
->smp
.max_cpus
;
2582 int boot_cores_nr
= smp_cpus
/ smp_threads
;
2585 possible_cpus
= mc
->possible_cpu_arch_ids(machine
);
2586 if (mc
->has_hotpluggable_cpus
) {
2587 if (smp_cpus
% smp_threads
) {
2588 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2589 smp_cpus
, smp_threads
);
2592 if (max_cpus
% smp_threads
) {
2593 error_report("max_cpus (%u) must be multiple of threads (%u)",
2594 max_cpus
, smp_threads
);
2598 if (max_cpus
!= smp_cpus
) {
2599 error_report("This machine version does not support CPU hotplug");
2602 boot_cores_nr
= possible_cpus
->len
;
2605 if (smc
->pre_2_10_has_unused_icps
) {
2608 for (i
= 0; i
< spapr_max_server_number(spapr
); i
++) {
2609 /* Dummy entries get deregistered when real ICPState objects
2610 * are registered during CPU core hotplug.
2612 pre_2_10_vmstate_register_dummy_icp(i
);
2616 for (i
= 0; i
< possible_cpus
->len
; i
++) {
2617 int core_id
= i
* smp_threads
;
2619 if (mc
->has_hotpluggable_cpus
) {
2620 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_CPU
,
2621 spapr_vcpu_id(spapr
, core_id
));
2624 if (i
< boot_cores_nr
) {
2625 Object
*core
= object_new(type
);
2626 int nr_threads
= smp_threads
;
2628 /* Handle the partially filled core for older machine types */
2629 if ((i
+ 1) * smp_threads
>= smp_cpus
) {
2630 nr_threads
= smp_cpus
- i
* smp_threads
;
2633 object_property_set_int(core
, "nr-threads", nr_threads
,
2635 object_property_set_int(core
, CPU_CORE_PROP_CORE_ID
, core_id
,
2637 qdev_realize(DEVICE(core
), NULL
, &error_fatal
);
2644 static PCIHostState
*spapr_create_default_phb(void)
2648 dev
= qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE
);
2649 qdev_prop_set_uint32(dev
, "index", 0);
2650 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
2652 return PCI_HOST_BRIDGE(dev
);
2655 static hwaddr
spapr_rma_size(SpaprMachineState
*spapr
, Error
**errp
)
2657 MachineState
*machine
= MACHINE(spapr
);
2658 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
2659 hwaddr rma_size
= machine
->ram_size
;
2660 hwaddr node0_size
= spapr_node0_size(machine
);
2662 /* RMA has to fit in the first NUMA node */
2663 rma_size
= MIN(rma_size
, node0_size
);
2666 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2669 rma_size
= MIN(rma_size
, 1 * TiB
);
2672 * Clamp the RMA size based on machine type. This is for
2673 * migration compatibility with older qemu versions, which limited
2674 * the RMA size for complicated and mostly bad reasons.
2676 if (smc
->rma_limit
) {
2677 rma_size
= MIN(rma_size
, smc
->rma_limit
);
2680 if (rma_size
< MIN_RMA_SLOF
) {
2682 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2683 "ldMiB guest RMA (Real Mode Area memory)",
2684 MIN_RMA_SLOF
/ MiB
);
2691 /* pSeries LPAR / sPAPR hardware init */
2692 static void spapr_machine_init(MachineState
*machine
)
2694 SpaprMachineState
*spapr
= SPAPR_MACHINE(machine
);
2695 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
2696 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
2697 const char *kernel_filename
= machine
->kernel_filename
;
2698 const char *initrd_filename
= machine
->initrd_filename
;
2701 MemoryRegion
*sysmem
= get_system_memory();
2702 long load_limit
, fw_size
;
2704 Error
*resize_hpt_err
= NULL
;
2706 msi_nonbroken
= true;
2708 QLIST_INIT(&spapr
->phbs
);
2709 QTAILQ_INIT(&spapr
->pending_dimm_unplugs
);
2711 /* Determine capabilities to run with */
2712 spapr_caps_init(spapr
);
2714 kvmppc_check_papr_resize_hpt(&resize_hpt_err
);
2715 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DEFAULT
) {
2717 * If the user explicitly requested a mode we should either
2718 * supply it, or fail completely (which we do below). But if
2719 * it's not set explicitly, we reset our mode to something
2722 if (resize_hpt_err
) {
2723 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DISABLED
;
2724 error_free(resize_hpt_err
);
2725 resize_hpt_err
= NULL
;
2727 spapr
->resize_hpt
= smc
->resize_hpt_default
;
2731 assert(spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DEFAULT
);
2733 if ((spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) && resize_hpt_err
) {
2735 * User requested HPT resize, but this host can't supply it. Bail out
2737 error_report_err(resize_hpt_err
);
2740 error_free(resize_hpt_err
);
2742 spapr
->rma_size
= spapr_rma_size(spapr
, &error_fatal
);
2744 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2745 load_limit
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
) - FW_OVERHEAD
;
2748 * VSMT must be set in order to be able to compute VCPU ids, ie to
2749 * call spapr_max_server_number() or spapr_vcpu_id().
2751 spapr_set_vsmt_mode(spapr
, &error_fatal
);
2753 /* Set up Interrupt Controller before we create the VCPUs */
2754 spapr_irq_init(spapr
, &error_fatal
);
2756 /* Set up containers for ibm,client-architecture-support negotiated options
2758 spapr
->ov5
= spapr_ovec_new();
2759 spapr
->ov5_cas
= spapr_ovec_new();
2761 if (smc
->dr_lmb_enabled
) {
2762 spapr_ovec_set(spapr
->ov5
, OV5_DRCONF_MEMORY
);
2763 spapr_validate_node_memory(machine
, &error_fatal
);
2766 spapr_ovec_set(spapr
->ov5
, OV5_FORM1_AFFINITY
);
2768 /* advertise support for dedicated HP event source to guests */
2769 if (spapr
->use_hotplug_event_source
) {
2770 spapr_ovec_set(spapr
->ov5
, OV5_HP_EVT
);
2773 /* advertise support for HPT resizing */
2774 if (spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) {
2775 spapr_ovec_set(spapr
->ov5
, OV5_HPT_RESIZE
);
2778 /* advertise support for ibm,dyamic-memory-v2 */
2779 spapr_ovec_set(spapr
->ov5
, OV5_DRMEM_V2
);
2781 /* advertise XIVE on POWER9 machines */
2782 if (spapr
->irq
->xive
) {
2783 spapr_ovec_set(spapr
->ov5
, OV5_XIVE_EXPLOIT
);
2787 spapr_init_cpus(spapr
);
2790 * check we don't have a memory-less/cpu-less NUMA node
2791 * Firmware relies on the existing memory/cpu topology to provide the
2792 * NUMA topology to the kernel.
2793 * And the linux kernel needs to know the NUMA topology at start
2794 * to be able to hotplug CPUs later.
2796 if (machine
->numa_state
->num_nodes
) {
2797 for (i
= 0; i
< machine
->numa_state
->num_nodes
; ++i
) {
2798 /* check for memory-less node */
2799 if (machine
->numa_state
->nodes
[i
].node_mem
== 0) {
2802 /* check for cpu-less node */
2804 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
2805 if (cpu
->node_id
== i
) {
2810 /* memory-less and cpu-less node */
2813 "Memory-less/cpu-less nodes are not supported (node %d)",
2823 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2824 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2825 * called from vPHB reset handler so we initialize the counter here.
2826 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2827 * must be equally distant from any other node.
2828 * The final value of spapr->gpu_numa_id is going to be written to
2829 * max-associativity-domains in spapr_build_fdt().
2831 spapr
->gpu_numa_id
= MAX(1, machine
->numa_state
->num_nodes
);
2833 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2834 ppc_type_check_compat(machine
->cpu_type
, CPU_POWERPC_LOGICAL_3_00
, 0,
2835 spapr
->max_compat_pvr
)) {
2836 spapr_ovec_set(spapr
->ov5
, OV5_MMU_RADIX_300
);
2837 /* KVM and TCG always allow GTSE with radix... */
2838 spapr_ovec_set(spapr
->ov5
, OV5_MMU_RADIX_GTSE
);
2840 /* ... but not with hash (currently). */
2842 if (kvm_enabled()) {
2843 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2844 kvmppc_enable_logical_ci_hcalls();
2845 kvmppc_enable_set_mode_hcall();
2847 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2848 kvmppc_enable_clear_ref_mod_hcalls();
2850 /* Enable H_PAGE_INIT */
2851 kvmppc_enable_h_page_init();
2855 memory_region_add_subregion(sysmem
, 0, machine
->ram
);
2857 /* always allocate the device memory information */
2858 machine
->device_memory
= g_malloc0(sizeof(*machine
->device_memory
));
2860 /* initialize hotplug memory address space */
2861 if (machine
->ram_size
< machine
->maxram_size
) {
2862 ram_addr_t device_mem_size
= machine
->maxram_size
- machine
->ram_size
;
2864 * Limit the number of hotpluggable memory slots to half the number
2865 * slots that KVM supports, leaving the other half for PCI and other
2866 * devices. However ensure that number of slots doesn't drop below 32.
2868 int max_memslots
= kvm_enabled() ?
kvm_get_max_memslots() / 2 :
2869 SPAPR_MAX_RAM_SLOTS
;
2871 if (max_memslots
< SPAPR_MAX_RAM_SLOTS
) {
2872 max_memslots
= SPAPR_MAX_RAM_SLOTS
;
2874 if (machine
->ram_slots
> max_memslots
) {
2875 error_report("Specified number of memory slots %"
2876 PRIu64
" exceeds max supported %d",
2877 machine
->ram_slots
, max_memslots
);
2881 machine
->device_memory
->base
= ROUND_UP(machine
->ram_size
,
2882 SPAPR_DEVICE_MEM_ALIGN
);
2883 memory_region_init(&machine
->device_memory
->mr
, OBJECT(spapr
),
2884 "device-memory", device_mem_size
);
2885 memory_region_add_subregion(sysmem
, machine
->device_memory
->base
,
2886 &machine
->device_memory
->mr
);
2889 if (smc
->dr_lmb_enabled
) {
2890 spapr_create_lmb_dr_connectors(spapr
);
2893 if (spapr_get_cap(spapr
, SPAPR_CAP_FWNMI
) == SPAPR_CAP_ON
) {
2894 /* Create the error string for live migration blocker */
2895 error_setg(&spapr
->fwnmi_migration_blocker
,
2896 "A machine check is being handled during migration. The handler"
2897 "may run and log hardware error on the destination");
2900 if (mc
->nvdimm_supported
) {
2901 spapr_create_nvdimm_dr_connectors(spapr
);
2904 /* Set up RTAS event infrastructure */
2905 spapr_events_init(spapr
);
2907 /* Set up the RTC RTAS interfaces */
2908 spapr_rtc_create(spapr
);
2910 /* Set up VIO bus */
2911 spapr
->vio_bus
= spapr_vio_bus_init();
2913 for (i
= 0; i
< serial_max_hds(); i
++) {
2915 spapr_vty_create(spapr
->vio_bus
, serial_hd(i
));
2919 /* We always have at least the nvram device on VIO */
2920 spapr_create_nvram(spapr
);
2923 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2924 * connectors (described in root DT node's "ibm,drc-types" property)
2925 * are pre-initialized here. additional child connectors (such as
2926 * connectors for a PHBs PCI slots) are added as needed during their
2927 * parent's realization.
2929 if (smc
->dr_phb_enabled
) {
2930 for (i
= 0; i
< SPAPR_MAX_PHBS
; i
++) {
2931 spapr_dr_connector_new(OBJECT(machine
), TYPE_SPAPR_DRC_PHB
, i
);
2936 spapr_pci_rtas_init();
2938 phb
= spapr_create_default_phb();
2940 for (i
= 0; i
< nb_nics
; i
++) {
2941 NICInfo
*nd
= &nd_table
[i
];
2944 nd
->model
= g_strdup("spapr-vlan");
2947 if (g_str_equal(nd
->model
, "spapr-vlan") ||
2948 g_str_equal(nd
->model
, "ibmveth")) {
2949 spapr_vlan_create(spapr
->vio_bus
, nd
);
2951 pci_nic_init_nofail(&nd_table
[i
], phb
->bus
, nd
->model
, NULL
);
2955 for (i
= 0; i
<= drive_get_max_bus(IF_SCSI
); i
++) {
2956 spapr_vscsi_create(spapr
->vio_bus
);
2960 if (spapr_vga_init(phb
->bus
, &error_fatal
)) {
2961 spapr
->has_graphics
= true;
2962 machine
->usb
|= defaults_enabled() && !machine
->usb_disabled
;
2966 if (smc
->use_ohci_by_default
) {
2967 pci_create_simple(phb
->bus
, -1, "pci-ohci");
2969 pci_create_simple(phb
->bus
, -1, "nec-usb-xhci");
2972 if (spapr
->has_graphics
) {
2973 USBBus
*usb_bus
= usb_bus_find(-1);
2975 usb_create_simple(usb_bus
, "usb-kbd");
2976 usb_create_simple(usb_bus
, "usb-mouse");
2980 if (kernel_filename
) {
2981 uint64_t lowaddr
= 0;
2983 spapr
->kernel_size
= load_elf(kernel_filename
, NULL
,
2984 translate_kernel_address
, spapr
,
2985 NULL
, &lowaddr
, NULL
, NULL
, 1,
2986 PPC_ELF_MACHINE
, 0, 0);
2987 if (spapr
->kernel_size
== ELF_LOAD_WRONG_ENDIAN
) {
2988 spapr
->kernel_size
= load_elf(kernel_filename
, NULL
,
2989 translate_kernel_address
, spapr
, NULL
,
2990 &lowaddr
, NULL
, NULL
, 0,
2993 spapr
->kernel_le
= spapr
->kernel_size
> 0;
2995 if (spapr
->kernel_size
< 0) {
2996 error_report("error loading %s: %s", kernel_filename
,
2997 load_elf_strerror(spapr
->kernel_size
));
3002 if (initrd_filename
) {
3003 /* Try to locate the initrd in the gap between the kernel
3004 * and the firmware. Add a bit of space just in case
3006 spapr
->initrd_base
= (spapr
->kernel_addr
+ spapr
->kernel_size
3007 + 0x1ffff) & ~0xffff;
3008 spapr
->initrd_size
= load_image_targphys(initrd_filename
,
3011 - spapr
->initrd_base
);
3012 if (spapr
->initrd_size
< 0) {
3013 error_report("could not load initial ram disk '%s'",
3020 if (bios_name
== NULL
) {
3021 bios_name
= FW_FILE_NAME
;
3023 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
3025 error_report("Could not find LPAR firmware '%s'", bios_name
);
3028 fw_size
= load_image_targphys(filename
, 0, FW_MAX_SIZE
);
3030 error_report("Could not load LPAR firmware '%s'", filename
);
3035 /* FIXME: Should register things through the MachineState's qdev
3036 * interface, this is a legacy from the sPAPREnvironment structure
3037 * which predated MachineState but had a similar function */
3038 vmstate_register(NULL
, 0, &vmstate_spapr
, spapr
);
3039 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY
, 1,
3040 &savevm_htab_handlers
, spapr
);
3042 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine
));
3044 qemu_register_boot_set(spapr_boot_set
, spapr
);
3047 * Nothing needs to be done to resume a suspended guest because
3048 * suspending does not change the machine state, so no need for
3049 * a ->wakeup method.
3051 qemu_register_wakeup_support();
3053 if (kvm_enabled()) {
3054 /* to stop and start vmclock */
3055 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change
,
3058 kvmppc_spapr_enable_inkernel_multitce();
3061 qemu_cond_init(&spapr
->fwnmi_machine_check_interlock_cond
);
3064 static int spapr_kvm_type(MachineState
*machine
, const char *vm_type
)
3070 if (!strcmp(vm_type
, "HV")) {
3074 if (!strcmp(vm_type
, "PR")) {
3078 error_report("Unknown kvm-type specified '%s'", vm_type
);
3083 * Implementation of an interface to adjust firmware path
3084 * for the bootindex property handling.
3086 static char *spapr_get_fw_dev_path(FWPathProvider
*p
, BusState
*bus
,
3089 #define CAST(type, obj, name) \
3090 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3091 SCSIDevice
*d
= CAST(SCSIDevice
, dev
, TYPE_SCSI_DEVICE
);
3092 SpaprPhbState
*phb
= CAST(SpaprPhbState
, dev
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
3093 VHostSCSICommon
*vsc
= CAST(VHostSCSICommon
, dev
, TYPE_VHOST_SCSI_COMMON
);
3096 void *spapr
= CAST(void, bus
->parent
, "spapr-vscsi");
3097 VirtIOSCSI
*virtio
= CAST(VirtIOSCSI
, bus
->parent
, TYPE_VIRTIO_SCSI
);
3098 USBDevice
*usb
= CAST(USBDevice
, bus
->parent
, TYPE_USB_DEVICE
);
3102 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3103 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3104 * 0x8000 | (target << 8) | (bus << 5) | lun
3105 * (see the "Logical unit addressing format" table in SAM5)
3107 unsigned id
= 0x8000 | (d
->id
<< 8) | (d
->channel
<< 5) | d
->lun
;
3108 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
3109 (uint64_t)id
<< 48);
3110 } else if (virtio
) {
3112 * We use SRP luns of the form 01000000 | (target << 8) | lun
3113 * in the top 32 bits of the 64-bit LUN
3114 * Note: the quote above is from SLOF and it is wrong,
3115 * the actual binding is:
3116 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3118 unsigned id
= 0x1000000 | (d
->id
<< 16) | d
->lun
;
3119 if (d
->lun
>= 256) {
3120 /* Use the LUN "flat space addressing method" */
3123 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
3124 (uint64_t)id
<< 32);
3127 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3128 * in the top 32 bits of the 64-bit LUN
3130 unsigned usb_port
= atoi(usb
->port
->path
);
3131 unsigned id
= 0x1000000 | (usb_port
<< 16) | d
->lun
;
3132 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
3133 (uint64_t)id
<< 32);
3138 * SLOF probes the USB devices, and if it recognizes that the device is a
3139 * storage device, it changes its name to "storage" instead of "usb-host",
3140 * and additionally adds a child node for the SCSI LUN, so the correct
3141 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3143 if (strcmp("usb-host", qdev_fw_name(dev
)) == 0) {
3144 USBDevice
*usbdev
= CAST(USBDevice
, dev
, TYPE_USB_DEVICE
);
3145 if (usb_host_dev_is_scsi_storage(usbdev
)) {
3146 return g_strdup_printf("storage@%s/disk", usbdev
->port
->path
);
3151 /* Replace "pci" with "pci@800000020000000" */
3152 return g_strdup_printf("pci@%"PRIX64
, phb
->buid
);
3156 /* Same logic as virtio above */
3157 unsigned id
= 0x1000000 | (vsc
->target
<< 16) | vsc
->lun
;
3158 return g_strdup_printf("disk@%"PRIX64
, (uint64_t)id
<< 32);
3161 if (g_str_equal("pci-bridge", qdev_fw_name(dev
))) {
3162 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3163 PCIDevice
*pcidev
= CAST(PCIDevice
, dev
, TYPE_PCI_DEVICE
);
3164 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev
->devfn
));
3170 static char *spapr_get_kvm_type(Object
*obj
, Error
**errp
)
3172 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3174 return g_strdup(spapr
->kvm_type
);
3177 static void spapr_set_kvm_type(Object
*obj
, const char *value
, Error
**errp
)
3179 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3181 g_free(spapr
->kvm_type
);
3182 spapr
->kvm_type
= g_strdup(value
);
3185 static bool spapr_get_modern_hotplug_events(Object
*obj
, Error
**errp
)
3187 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3189 return spapr
->use_hotplug_event_source
;
3192 static void spapr_set_modern_hotplug_events(Object
*obj
, bool value
,
3195 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3197 spapr
->use_hotplug_event_source
= value
;
3200 static bool spapr_get_msix_emulation(Object
*obj
, Error
**errp
)
3205 static char *spapr_get_resize_hpt(Object
*obj
, Error
**errp
)
3207 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3209 switch (spapr
->resize_hpt
) {
3210 case SPAPR_RESIZE_HPT_DEFAULT
:
3211 return g_strdup("default");
3212 case SPAPR_RESIZE_HPT_DISABLED
:
3213 return g_strdup("disabled");
3214 case SPAPR_RESIZE_HPT_ENABLED
:
3215 return g_strdup("enabled");
3216 case SPAPR_RESIZE_HPT_REQUIRED
:
3217 return g_strdup("required");
3219 g_assert_not_reached();
3222 static void spapr_set_resize_hpt(Object
*obj
, const char *value
, Error
**errp
)
3224 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3226 if (strcmp(value
, "default") == 0) {
3227 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DEFAULT
;
3228 } else if (strcmp(value
, "disabled") == 0) {
3229 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DISABLED
;
3230 } else if (strcmp(value
, "enabled") == 0) {
3231 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_ENABLED
;
3232 } else if (strcmp(value
, "required") == 0) {
3233 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_REQUIRED
;
3235 error_setg(errp
, "Bad value for \"resize-hpt\" property");
3239 static char *spapr_get_ic_mode(Object
*obj
, Error
**errp
)
3241 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3243 if (spapr
->irq
== &spapr_irq_xics_legacy
) {
3244 return g_strdup("legacy");
3245 } else if (spapr
->irq
== &spapr_irq_xics
) {
3246 return g_strdup("xics");
3247 } else if (spapr
->irq
== &spapr_irq_xive
) {
3248 return g_strdup("xive");
3249 } else if (spapr
->irq
== &spapr_irq_dual
) {
3250 return g_strdup("dual");
3252 g_assert_not_reached();
3255 static void spapr_set_ic_mode(Object
*obj
, const char *value
, Error
**errp
)
3257 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3259 if (SPAPR_MACHINE_GET_CLASS(spapr
)->legacy_irq_allocation
) {
3260 error_setg(errp
, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3264 /* The legacy IRQ backend can not be set */
3265 if (strcmp(value
, "xics") == 0) {
3266 spapr
->irq
= &spapr_irq_xics
;
3267 } else if (strcmp(value
, "xive") == 0) {
3268 spapr
->irq
= &spapr_irq_xive
;
3269 } else if (strcmp(value
, "dual") == 0) {
3270 spapr
->irq
= &spapr_irq_dual
;
3272 error_setg(errp
, "Bad value for \"ic-mode\" property");
3276 static char *spapr_get_host_model(Object
*obj
, Error
**errp
)
3278 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3280 return g_strdup(spapr
->host_model
);
3283 static void spapr_set_host_model(Object
*obj
, const char *value
, Error
**errp
)
3285 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3287 g_free(spapr
->host_model
);
3288 spapr
->host_model
= g_strdup(value
);
3291 static char *spapr_get_host_serial(Object
*obj
, Error
**errp
)
3293 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3295 return g_strdup(spapr
->host_serial
);
3298 static void spapr_set_host_serial(Object
*obj
, const char *value
, Error
**errp
)
3300 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3302 g_free(spapr
->host_serial
);
3303 spapr
->host_serial
= g_strdup(value
);
3306 static void spapr_instance_init(Object
*obj
)
3308 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3309 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
3311 spapr
->htab_fd
= -1;
3312 spapr
->use_hotplug_event_source
= true;
3313 object_property_add_str(obj
, "kvm-type",
3314 spapr_get_kvm_type
, spapr_set_kvm_type
);
3315 object_property_set_description(obj
, "kvm-type",
3316 "Specifies the KVM virtualization mode (HV, PR)");
3317 object_property_add_bool(obj
, "modern-hotplug-events",
3318 spapr_get_modern_hotplug_events
,
3319 spapr_set_modern_hotplug_events
);