Update version for v6.2.0-rc3 release
[qemu.git] / hw / riscv / microchip_pfsoc.c
1 /*
2 * QEMU RISC-V Board Compatible with Microchip PolarFire SoC Icicle Kit
3 *
4 * Copyright (c) 2020 Wind River Systems, Inc.
5 *
6 * Author:
7 * Bin Meng <bin.meng@windriver.com>
8 *
9 * Provides a board compatible with the Microchip PolarFire SoC Icicle Kit
10 *
11 * 0) CLINT (Core Level Interruptor)
12 * 1) PLIC (Platform Level Interrupt Controller)
13 * 2) eNVM (Embedded Non-Volatile Memory)
14 * 3) MMUARTs (Multi-Mode UART)
15 * 4) Cadence eMMC/SDHC controller and an SD card connected to it
16 * 5) SiFive Platform DMA (Direct Memory Access Controller)
17 * 6) GEM (Gigabit Ethernet MAC Controller)
18 * 7) DMC (DDR Memory Controller)
19 * 8) IOSCB modules
20 *
21 * This board currently generates devicetree dynamically that indicates at least
22 * two harts and up to five harts.
23 *
24 * This program is free software; you can redistribute it and/or modify it
25 * under the terms and conditions of the GNU General Public License,
26 * version 2 or later, as published by the Free Software Foundation.
27 *
28 * This program is distributed in the hope it will be useful, but WITHOUT
29 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
30 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
31 * more details.
32 *
33 * You should have received a copy of the GNU General Public License along with
34 * this program. If not, see <http://www.gnu.org/licenses/>.
35 */
36
37 #include "qemu/osdep.h"
38 #include "qemu/error-report.h"
39 #include "qemu/units.h"
40 #include "qemu/cutils.h"
41 #include "qapi/error.h"
42 #include "hw/boards.h"
43 #include "hw/loader.h"
44 #include "hw/sysbus.h"
45 #include "chardev/char.h"
46 #include "hw/cpu/cluster.h"
47 #include "target/riscv/cpu.h"
48 #include "hw/misc/unimp.h"
49 #include "hw/riscv/boot.h"
50 #include "hw/riscv/riscv_hart.h"
51 #include "hw/riscv/microchip_pfsoc.h"
52 #include "hw/intc/sifive_clint.h"
53 #include "hw/intc/sifive_plic.h"
54 #include "sysemu/device_tree.h"
55 #include "sysemu/sysemu.h"
56
57 /*
58 * The BIOS image used by this machine is called Hart Software Services (HSS).
59 * See https://github.com/polarfire-soc/hart-software-services
60 */
61 #define BIOS_FILENAME "hss.bin"
62 #define RESET_VECTOR 0x20220000
63
64 /* CLINT timebase frequency */
65 #define CLINT_TIMEBASE_FREQ 1000000
66
67 /* GEM version */
68 #define GEM_REVISION 0x0107010c
69
70 /*
71 * The complete description of the whole PolarFire SoC memory map is scattered
72 * in different documents. There are several places to look at for memory maps:
73 *
74 * 1 Chapter 11 "MSS Memory Map", in the doc "UG0880: PolarFire SoC FPGA
75 * Microprocessor Subsystem (MSS) User Guide", which can be downloaded from
76 * https://www.microsemi.com/document-portal/doc_download/
77 * 1244570-ug0880-polarfire-soc-fpga-microprocessor-subsystem-mss-user-guide,
78 * describes the whole picture of the PolarFire SoC memory map.
79 *
80 * 2 A zip file for PolarFire soC memory map, which can be downloaded from
81 * https://www.microsemi.com/document-portal/doc_download/
82 * 1244581-polarfire-soc-register-map, contains the following 2 major parts:
83 * - Register Map/PF_SoC_RegMap_V1_1/pfsoc_regmap.htm
84 * describes the complete integrated peripherals memory map
85 * - Register Map/PF_SoC_RegMap_V1_1/MPFS250T/mpfs250t_ioscb_memmap_dri.htm
86 * describes the complete IOSCB modules memory maps
87 */
88 static const MemMapEntry microchip_pfsoc_memmap[] = {
89 [MICROCHIP_PFSOC_RSVD0] = { 0x0, 0x100 },
90 [MICROCHIP_PFSOC_DEBUG] = { 0x100, 0xf00 },
91 [MICROCHIP_PFSOC_E51_DTIM] = { 0x1000000, 0x2000 },
92 [MICROCHIP_PFSOC_BUSERR_UNIT0] = { 0x1700000, 0x1000 },
93 [MICROCHIP_PFSOC_BUSERR_UNIT1] = { 0x1701000, 0x1000 },
94 [MICROCHIP_PFSOC_BUSERR_UNIT2] = { 0x1702000, 0x1000 },
95 [MICROCHIP_PFSOC_BUSERR_UNIT3] = { 0x1703000, 0x1000 },
96 [MICROCHIP_PFSOC_BUSERR_UNIT4] = { 0x1704000, 0x1000 },
97 [MICROCHIP_PFSOC_CLINT] = { 0x2000000, 0x10000 },
98 [MICROCHIP_PFSOC_L2CC] = { 0x2010000, 0x1000 },
99 [MICROCHIP_PFSOC_DMA] = { 0x3000000, 0x100000 },
100 [MICROCHIP_PFSOC_L2LIM] = { 0x8000000, 0x2000000 },
101 [MICROCHIP_PFSOC_PLIC] = { 0xc000000, 0x4000000 },
102 [MICROCHIP_PFSOC_MMUART0] = { 0x20000000, 0x1000 },
103 [MICROCHIP_PFSOC_SYSREG] = { 0x20002000, 0x2000 },
104 [MICROCHIP_PFSOC_MPUCFG] = { 0x20005000, 0x1000 },
105 [MICROCHIP_PFSOC_DDR_SGMII_PHY] = { 0x20007000, 0x1000 },
106 [MICROCHIP_PFSOC_EMMC_SD] = { 0x20008000, 0x1000 },
107 [MICROCHIP_PFSOC_DDR_CFG] = { 0x20080000, 0x40000 },
108 [MICROCHIP_PFSOC_MMUART1] = { 0x20100000, 0x1000 },
109 [MICROCHIP_PFSOC_MMUART2] = { 0x20102000, 0x1000 },
110 [MICROCHIP_PFSOC_MMUART3] = { 0x20104000, 0x1000 },
111 [MICROCHIP_PFSOC_MMUART4] = { 0x20106000, 0x1000 },
112 [MICROCHIP_PFSOC_SPI0] = { 0x20108000, 0x1000 },
113 [MICROCHIP_PFSOC_SPI1] = { 0x20109000, 0x1000 },
114 [MICROCHIP_PFSOC_I2C1] = { 0x2010b000, 0x1000 },
115 [MICROCHIP_PFSOC_GEM0] = { 0x20110000, 0x2000 },
116 [MICROCHIP_PFSOC_GEM1] = { 0x20112000, 0x2000 },
117 [MICROCHIP_PFSOC_GPIO0] = { 0x20120000, 0x1000 },
118 [MICROCHIP_PFSOC_GPIO1] = { 0x20121000, 0x1000 },
119 [MICROCHIP_PFSOC_GPIO2] = { 0x20122000, 0x1000 },
120 [MICROCHIP_PFSOC_ENVM_CFG] = { 0x20200000, 0x1000 },
121 [MICROCHIP_PFSOC_ENVM_DATA] = { 0x20220000, 0x20000 },
122 [MICROCHIP_PFSOC_QSPI_XIP] = { 0x21000000, 0x1000000 },
123 [MICROCHIP_PFSOC_IOSCB] = { 0x30000000, 0x10000000 },
124 [MICROCHIP_PFSOC_EMMC_SD_MUX] = { 0x4f000000, 0x4 },
125 [MICROCHIP_PFSOC_DRAM_LO] = { 0x80000000, 0x40000000 },
126 [MICROCHIP_PFSOC_DRAM_LO_ALIAS] = { 0xc0000000, 0x40000000 },
127 [MICROCHIP_PFSOC_DRAM_HI] = { 0x1000000000, 0x0 },
128 [MICROCHIP_PFSOC_DRAM_HI_ALIAS] = { 0x1400000000, 0x0 },
129 };
130
131 static void microchip_pfsoc_soc_instance_init(Object *obj)
132 {
133 MachineState *ms = MACHINE(qdev_get_machine());
134 MicrochipPFSoCState *s = MICROCHIP_PFSOC(obj);
135
136 object_initialize_child(obj, "e-cluster", &s->e_cluster, TYPE_CPU_CLUSTER);
137 qdev_prop_set_uint32(DEVICE(&s->e_cluster), "cluster-id", 0);
138
139 object_initialize_child(OBJECT(&s->e_cluster), "e-cpus", &s->e_cpus,
140 TYPE_RISCV_HART_ARRAY);
141 qdev_prop_set_uint32(DEVICE(&s->e_cpus), "num-harts", 1);
142 qdev_prop_set_uint32(DEVICE(&s->e_cpus), "hartid-base", 0);
143 qdev_prop_set_string(DEVICE(&s->e_cpus), "cpu-type",
144 TYPE_RISCV_CPU_SIFIVE_E51);
145 qdev_prop_set_uint64(DEVICE(&s->e_cpus), "resetvec", RESET_VECTOR);
146
147 object_initialize_child(obj, "u-cluster", &s->u_cluster, TYPE_CPU_CLUSTER);
148 qdev_prop_set_uint32(DEVICE(&s->u_cluster), "cluster-id", 1);
149
150 object_initialize_child(OBJECT(&s->u_cluster), "u-cpus", &s->u_cpus,
151 TYPE_RISCV_HART_ARRAY);
152 qdev_prop_set_uint32(DEVICE(&s->u_cpus), "num-harts", ms->smp.cpus - 1);
153 qdev_prop_set_uint32(DEVICE(&s->u_cpus), "hartid-base", 1);
154 qdev_prop_set_string(DEVICE(&s->u_cpus), "cpu-type",
155 TYPE_RISCV_CPU_SIFIVE_U54);
156 qdev_prop_set_uint64(DEVICE(&s->u_cpus), "resetvec", RESET_VECTOR);
157
158 object_initialize_child(obj, "dma-controller", &s->dma,
159 TYPE_SIFIVE_PDMA);
160
161 object_initialize_child(obj, "sysreg", &s->sysreg,
162 TYPE_MCHP_PFSOC_SYSREG);
163
164 object_initialize_child(obj, "ddr-sgmii-phy", &s->ddr_sgmii_phy,
165 TYPE_MCHP_PFSOC_DDR_SGMII_PHY);
166 object_initialize_child(obj, "ddr-cfg", &s->ddr_cfg,
167 TYPE_MCHP_PFSOC_DDR_CFG);
168
169 object_initialize_child(obj, "gem0", &s->gem0, TYPE_CADENCE_GEM);
170 object_initialize_child(obj, "gem1", &s->gem1, TYPE_CADENCE_GEM);
171
172 object_initialize_child(obj, "sd-controller", &s->sdhci,
173 TYPE_CADENCE_SDHCI);
174
175 object_initialize_child(obj, "ioscb", &s->ioscb, TYPE_MCHP_PFSOC_IOSCB);
176 }
177
178 static void microchip_pfsoc_soc_realize(DeviceState *dev, Error **errp)
179 {
180 MachineState *ms = MACHINE(qdev_get_machine());
181 MicrochipPFSoCState *s = MICROCHIP_PFSOC(dev);
182 const MemMapEntry *memmap = microchip_pfsoc_memmap;
183 MemoryRegion *system_memory = get_system_memory();
184 MemoryRegion *rsvd0_mem = g_new(MemoryRegion, 1);
185 MemoryRegion *e51_dtim_mem = g_new(MemoryRegion, 1);
186 MemoryRegion *l2lim_mem = g_new(MemoryRegion, 1);
187 MemoryRegion *envm_data = g_new(MemoryRegion, 1);
188 MemoryRegion *qspi_xip_mem = g_new(MemoryRegion, 1);
189 char *plic_hart_config;
190 size_t plic_hart_config_len;
191 NICInfo *nd;
192 int i;
193
194 sysbus_realize(SYS_BUS_DEVICE(&s->e_cpus), &error_abort);
195 sysbus_realize(SYS_BUS_DEVICE(&s->u_cpus), &error_abort);
196 /*
197 * The cluster must be realized after the RISC-V hart array container,
198 * as the container's CPU object is only created on realize, and the
199 * CPU must exist and have been parented into the cluster before the
200 * cluster is realized.
201 */
202 qdev_realize(DEVICE(&s->e_cluster), NULL, &error_abort);
203 qdev_realize(DEVICE(&s->u_cluster), NULL, &error_abort);
204
205 /* Reserved Memory at address 0 */
206 memory_region_init_ram(rsvd0_mem, NULL, "microchip.pfsoc.rsvd0_mem",
207 memmap[MICROCHIP_PFSOC_RSVD0].size, &error_fatal);
208 memory_region_add_subregion(system_memory,
209 memmap[MICROCHIP_PFSOC_RSVD0].base,
210 rsvd0_mem);
211
212 /* E51 DTIM */
213 memory_region_init_ram(e51_dtim_mem, NULL, "microchip.pfsoc.e51_dtim_mem",
214 memmap[MICROCHIP_PFSOC_E51_DTIM].size, &error_fatal);
215 memory_region_add_subregion(system_memory,
216 memmap[MICROCHIP_PFSOC_E51_DTIM].base,
217 e51_dtim_mem);
218
219 /* Bus Error Units */
220 create_unimplemented_device("microchip.pfsoc.buserr_unit0_mem",
221 memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].base,
222 memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].size);
223 create_unimplemented_device("microchip.pfsoc.buserr_unit1_mem",
224 memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].base,
225 memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].size);
226 create_unimplemented_device("microchip.pfsoc.buserr_unit2_mem",
227 memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].base,
228 memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].size);
229 create_unimplemented_device("microchip.pfsoc.buserr_unit3_mem",
230 memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].base,
231 memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].size);
232 create_unimplemented_device("microchip.pfsoc.buserr_unit4_mem",
233 memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].base,
234 memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].size);
235
236 /* CLINT */
237 sifive_clint_create(memmap[MICROCHIP_PFSOC_CLINT].base,
238 memmap[MICROCHIP_PFSOC_CLINT].size, 0, ms->smp.cpus,
239 SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE,
240 CLINT_TIMEBASE_FREQ, false);
241
242 /* L2 cache controller */
243 create_unimplemented_device("microchip.pfsoc.l2cc",
244 memmap[MICROCHIP_PFSOC_L2CC].base, memmap[MICROCHIP_PFSOC_L2CC].size);
245
246 /*
247 * Add L2-LIM at reset size.
248 * This should be reduced in size as the L2 Cache Controller WayEnable
249 * register is incremented. Unfortunately I don't see a nice (or any) way
250 * to handle reducing or blocking out the L2 LIM while still allowing it
251 * be re returned to all enabled after a reset. For the time being, just
252 * leave it enabled all the time. This won't break anything, but will be
253 * too generous to misbehaving guests.
254 */
255 memory_region_init_ram(l2lim_mem, NULL, "microchip.pfsoc.l2lim",
256 memmap[MICROCHIP_PFSOC_L2LIM].size, &error_fatal);
257 memory_region_add_subregion(system_memory,
258 memmap[MICROCHIP_PFSOC_L2LIM].base,
259 l2lim_mem);
260
261 /* create PLIC hart topology configuration string */
262 plic_hart_config_len = (strlen(MICROCHIP_PFSOC_PLIC_HART_CONFIG) + 1) *
263 ms->smp.cpus;
264 plic_hart_config = g_malloc0(plic_hart_config_len);
265 for (i = 0; i < ms->smp.cpus; i++) {
266 if (i != 0) {
267 strncat(plic_hart_config, "," MICROCHIP_PFSOC_PLIC_HART_CONFIG,
268 plic_hart_config_len);
269 } else {
270 strncat(plic_hart_config, "M", plic_hart_config_len);
271 }
272 plic_hart_config_len -= (strlen(MICROCHIP_PFSOC_PLIC_HART_CONFIG) + 1);
273 }
274
275 /* PLIC */
276 s->plic = sifive_plic_create(memmap[MICROCHIP_PFSOC_PLIC].base,
277 plic_hart_config, 0,
278 MICROCHIP_PFSOC_PLIC_NUM_SOURCES,
279 MICROCHIP_PFSOC_PLIC_NUM_PRIORITIES,
280 MICROCHIP_PFSOC_PLIC_PRIORITY_BASE,
281 MICROCHIP_PFSOC_PLIC_PENDING_BASE,
282 MICROCHIP_PFSOC_PLIC_ENABLE_BASE,
283 MICROCHIP_PFSOC_PLIC_ENABLE_STRIDE,
284 MICROCHIP_PFSOC_PLIC_CONTEXT_BASE,
285 MICROCHIP_PFSOC_PLIC_CONTEXT_STRIDE,
286 memmap[MICROCHIP_PFSOC_PLIC].size);
287 g_free(plic_hart_config);
288
289 /* DMA */
290 sysbus_realize(SYS_BUS_DEVICE(&s->dma), errp);
291 sysbus_mmio_map(SYS_BUS_DEVICE(&s->dma), 0,
292 memmap[MICROCHIP_PFSOC_DMA].base);
293 for (i = 0; i < SIFIVE_PDMA_IRQS; i++) {
294 sysbus_connect_irq(SYS_BUS_DEVICE(&s->dma), i,
295 qdev_get_gpio_in(DEVICE(s->plic),
296 MICROCHIP_PFSOC_DMA_IRQ0 + i));
297 }
298
299 /* SYSREG */
300 sysbus_realize(SYS_BUS_DEVICE(&s->sysreg), errp);
301 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysreg), 0,
302 memmap[MICROCHIP_PFSOC_SYSREG].base);
303
304 /* MPUCFG */
305 create_unimplemented_device("microchip.pfsoc.mpucfg",
306 memmap[MICROCHIP_PFSOC_MPUCFG].base,
307 memmap[MICROCHIP_PFSOC_MPUCFG].size);
308
309 /* DDR SGMII PHY */
310 sysbus_realize(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), errp);
311 sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), 0,
312 memmap[MICROCHIP_PFSOC_DDR_SGMII_PHY].base);
313
314 /* DDR CFG */
315 sysbus_realize(SYS_BUS_DEVICE(&s->ddr_cfg), errp);
316 sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_cfg), 0,
317 memmap[MICROCHIP_PFSOC_DDR_CFG].base);
318
319 /* SDHCI */
320 sysbus_realize(SYS_BUS_DEVICE(&s->sdhci), errp);
321 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sdhci), 0,
322 memmap[MICROCHIP_PFSOC_EMMC_SD].base);
323 sysbus_connect_irq(SYS_BUS_DEVICE(&s->sdhci), 0,
324 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_EMMC_SD_IRQ));
325
326 /* MMUARTs */
327 s->serial0 = mchp_pfsoc_mmuart_create(system_memory,
328 memmap[MICROCHIP_PFSOC_MMUART0].base,
329 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART0_IRQ),
330 serial_hd(0));
331 s->serial1 = mchp_pfsoc_mmuart_create(system_memory,
332 memmap[MICROCHIP_PFSOC_MMUART1].base,
333 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART1_IRQ),
334 serial_hd(1));
335 s->serial2 = mchp_pfsoc_mmuart_create(system_memory,
336 memmap[MICROCHIP_PFSOC_MMUART2].base,
337 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART2_IRQ),
338 serial_hd(2));
339 s->serial3 = mchp_pfsoc_mmuart_create(system_memory,
340 memmap[MICROCHIP_PFSOC_MMUART3].base,
341 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART3_IRQ),
342 serial_hd(3));
343 s->serial4 = mchp_pfsoc_mmuart_create(system_memory,
344 memmap[MICROCHIP_PFSOC_MMUART4].base,
345 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART4_IRQ),
346 serial_hd(4));
347
348 /* SPI */
349 create_unimplemented_device("microchip.pfsoc.spi0",
350 memmap[MICROCHIP_PFSOC_SPI0].base,
351 memmap[MICROCHIP_PFSOC_SPI0].size);
352 create_unimplemented_device("microchip.pfsoc.spi1",
353 memmap[MICROCHIP_PFSOC_SPI1].base,
354 memmap[MICROCHIP_PFSOC_SPI1].size);
355
356 /* I2C1 */
357 create_unimplemented_device("microchip.pfsoc.i2c1",
358 memmap[MICROCHIP_PFSOC_I2C1].base,
359 memmap[MICROCHIP_PFSOC_I2C1].size);
360
361 /* GEMs */
362
363 nd = &nd_table[0];
364 if (nd->used) {
365 qemu_check_nic_model(nd, TYPE_CADENCE_GEM);
366 qdev_set_nic_properties(DEVICE(&s->gem0), nd);
367 }
368 nd = &nd_table[1];
369 if (nd->used) {
370 qemu_check_nic_model(nd, TYPE_CADENCE_GEM);
371 qdev_set_nic_properties(DEVICE(&s->gem1), nd);
372 }
373
374 object_property_set_int(OBJECT(&s->gem0), "revision", GEM_REVISION, errp);
375 object_property_set_int(OBJECT(&s->gem0), "phy-addr", 8, errp);
376 sysbus_realize(SYS_BUS_DEVICE(&s->gem0), errp);
377 sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem0), 0,
378 memmap[MICROCHIP_PFSOC_GEM0].base);
379 sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem0), 0,
380 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM0_IRQ));
381
382 object_property_set_int(OBJECT(&s->gem1), "revision", GEM_REVISION, errp);
383 object_property_set_int(OBJECT(&s->gem1), "phy-addr", 9, errp);
384 sysbus_realize(SYS_BUS_DEVICE(&s->gem1), errp);
385 sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem1), 0,
386 memmap[MICROCHIP_PFSOC_GEM1].base);
387 sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem1), 0,
388 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM1_IRQ));
389
390 /* GPIOs */
391 create_unimplemented_device("microchip.pfsoc.gpio0",
392 memmap[MICROCHIP_PFSOC_GPIO0].base,
393 memmap[MICROCHIP_PFSOC_GPIO0].size);
394 create_unimplemented_device("microchip.pfsoc.gpio1",
395 memmap[MICROCHIP_PFSOC_GPIO1].base,
396 memmap[MICROCHIP_PFSOC_GPIO1].size);
397 create_unimplemented_device("microchip.pfsoc.gpio2",
398 memmap[MICROCHIP_PFSOC_GPIO2].base,
399 memmap[MICROCHIP_PFSOC_GPIO2].size);
400
401 /* eNVM */
402 memory_region_init_rom(envm_data, OBJECT(dev), "microchip.pfsoc.envm.data",
403 memmap[MICROCHIP_PFSOC_ENVM_DATA].size,
404 &error_fatal);
405 memory_region_add_subregion(system_memory,
406 memmap[MICROCHIP_PFSOC_ENVM_DATA].base,
407 envm_data);
408
409 /* IOSCB */
410 sysbus_realize(SYS_BUS_DEVICE(&s->ioscb), errp);
411 sysbus_mmio_map(SYS_BUS_DEVICE(&s->ioscb), 0,
412 memmap[MICROCHIP_PFSOC_IOSCB].base);
413
414 /* eMMC/SD mux */
415 create_unimplemented_device("microchip.pfsoc.emmc_sd_mux",
416 memmap[MICROCHIP_PFSOC_EMMC_SD_MUX].base,
417 memmap[MICROCHIP_PFSOC_EMMC_SD_MUX].size);
418
419 /* QSPI Flash */
420 memory_region_init_rom(qspi_xip_mem, OBJECT(dev),
421 "microchip.pfsoc.qspi_xip",
422 memmap[MICROCHIP_PFSOC_QSPI_XIP].size,
423 &error_fatal);
424 memory_region_add_subregion(system_memory,
425 memmap[MICROCHIP_PFSOC_QSPI_XIP].base,
426 qspi_xip_mem);
427 }
428
429 static void microchip_pfsoc_soc_class_init(ObjectClass *oc, void *data)
430 {
431 DeviceClass *dc = DEVICE_CLASS(oc);
432
433 dc->realize = microchip_pfsoc_soc_realize;
434 /* Reason: Uses serial_hds in realize function, thus can't be used twice */
435 dc->user_creatable = false;
436 }
437
438 static const TypeInfo microchip_pfsoc_soc_type_info = {
439 .name = TYPE_MICROCHIP_PFSOC,
440 .parent = TYPE_DEVICE,
441 .instance_size = sizeof(MicrochipPFSoCState),
442 .instance_init = microchip_pfsoc_soc_instance_init,
443 .class_init = microchip_pfsoc_soc_class_init,
444 };
445
446 static void microchip_pfsoc_soc_register_types(void)
447 {
448 type_register_static(&microchip_pfsoc_soc_type_info);
449 }
450
451 type_init(microchip_pfsoc_soc_register_types)
452
453 static void microchip_icicle_kit_machine_init(MachineState *machine)
454 {
455 MachineClass *mc = MACHINE_GET_CLASS(machine);
456 const MemMapEntry *memmap = microchip_pfsoc_memmap;
457 MicrochipIcicleKitState *s = MICROCHIP_ICICLE_KIT_MACHINE(machine);
458 MemoryRegion *system_memory = get_system_memory();
459 MemoryRegion *mem_low = g_new(MemoryRegion, 1);
460 MemoryRegion *mem_low_alias = g_new(MemoryRegion, 1);
461 MemoryRegion *mem_high = g_new(MemoryRegion, 1);
462 MemoryRegion *mem_high_alias = g_new(MemoryRegion, 1);
463 uint64_t mem_high_size;
464 hwaddr firmware_load_addr;
465 const char *firmware_name;
466 bool kernel_as_payload = false;
467 target_ulong firmware_end_addr, kernel_start_addr;
468 uint64_t kernel_entry;
469 uint32_t fdt_load_addr;
470 DriveInfo *dinfo = drive_get_next(IF_SD);
471
472 /* Sanity check on RAM size */
473 if (machine->ram_size < mc->default_ram_size) {
474 char *sz = size_to_str(mc->default_ram_size);
475 error_report("Invalid RAM size, should be bigger than %s", sz);
476 g_free(sz);
477 exit(EXIT_FAILURE);
478 }
479
480 /* Initialize SoC */
481 object_initialize_child(OBJECT(machine), "soc", &s->soc,
482 TYPE_MICROCHIP_PFSOC);
483 qdev_realize(DEVICE(&s->soc), NULL, &error_abort);
484
485 /* Register RAM */
486 memory_region_init_ram(mem_low, NULL, "microchip.icicle.kit.ram_low",
487 memmap[MICROCHIP_PFSOC_DRAM_LO].size,
488 &error_fatal);
489 memory_region_init_alias(mem_low_alias, NULL,
490 "microchip.icicle.kit.ram_low.alias",
491 mem_low, 0,
492 memmap[MICROCHIP_PFSOC_DRAM_LO_ALIAS].size);
493 memory_region_add_subregion(system_memory,
494 memmap[MICROCHIP_PFSOC_DRAM_LO].base,
495 mem_low);
496 memory_region_add_subregion(system_memory,
497 memmap[MICROCHIP_PFSOC_DRAM_LO_ALIAS].base,
498 mem_low_alias);
499
500 mem_high_size = machine->ram_size - 1 * GiB;
501
502 memory_region_init_ram(mem_high, NULL, "microchip.icicle.kit.ram_high",
503 mem_high_size, &error_fatal);
504 memory_region_init_alias(mem_high_alias, NULL,
505 "microchip.icicle.kit.ram_high.alias",
506 mem_high, 0, mem_high_size);
507 memory_region_add_subregion(system_memory,
508 memmap[MICROCHIP_PFSOC_DRAM_HI].base,
509 mem_high);
510 memory_region_add_subregion(system_memory,
511 memmap[MICROCHIP_PFSOC_DRAM_HI_ALIAS].base,
512 mem_high_alias);
513
514 /* Attach an SD card */
515 if (dinfo) {
516 CadenceSDHCIState *sdhci = &(s->soc.sdhci);
517 DeviceState *card = qdev_new(TYPE_SD_CARD);
518
519 qdev_prop_set_drive_err(card, "drive", blk_by_legacy_dinfo(dinfo),
520 &error_fatal);
521 qdev_realize_and_unref(card, sdhci->bus, &error_fatal);
522 }
523
524 /*
525 * We follow the following table to select which payload we execute.
526 *
527 * -bios | -kernel | payload
528 * -------+------------+--------
529 * N | N | HSS
530 * Y | don't care | HSS
531 * N | Y | kernel
532 *
533 * This ensures backwards compatibility with how we used to expose -bios
534 * to users but allows them to run through direct kernel booting as well.
535 *
536 * When -kernel is used for direct boot, -dtb must be present to provide
537 * a valid device tree for the board, as we don't generate device tree.
538 */
539
540 if (machine->kernel_filename && machine->dtb) {
541 int fdt_size;
542 machine->fdt = load_device_tree(machine->dtb, &fdt_size);
543 if (!machine->fdt) {
544 error_report("load_device_tree() failed");
545 exit(1);
546 }
547
548 firmware_name = RISCV64_BIOS_BIN;
549 firmware_load_addr = memmap[MICROCHIP_PFSOC_DRAM_LO].base;
550 kernel_as_payload = true;
551 }
552
553 if (!kernel_as_payload) {
554 firmware_name = BIOS_FILENAME;
555 firmware_load_addr = RESET_VECTOR;
556 }
557
558 /* Load the firmware */
559 firmware_end_addr = riscv_find_and_load_firmware(machine, firmware_name,
560 firmware_load_addr, NULL);
561
562 if (kernel_as_payload) {
563 kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc.u_cpus,
564 firmware_end_addr);
565
566 kernel_entry = riscv_load_kernel(machine->kernel_filename,
567 kernel_start_addr, NULL);
568
569 if (machine->initrd_filename) {
570 hwaddr start;
571 hwaddr end = riscv_load_initrd(machine->initrd_filename,
572 machine->ram_size, kernel_entry,
573 &start);
574 qemu_fdt_setprop_cell(machine->fdt, "/chosen",
575 "linux,initrd-start", start);
576 qemu_fdt_setprop_cell(machine->fdt, "/chosen",
577 "linux,initrd-end", end);
578 }
579
580 if (machine->kernel_cmdline) {
581 qemu_fdt_setprop_string(machine->fdt, "/chosen",
582 "bootargs", machine->kernel_cmdline);
583 }
584
585 /* Compute the fdt load address in dram */
586 fdt_load_addr = riscv_load_fdt(memmap[MICROCHIP_PFSOC_DRAM_LO].base,
587 machine->ram_size, machine->fdt);
588 /* Load the reset vector */
589 riscv_setup_rom_reset_vec(machine, &s->soc.u_cpus, firmware_load_addr,
590 memmap[MICROCHIP_PFSOC_ENVM_DATA].base,
591 memmap[MICROCHIP_PFSOC_ENVM_DATA].size,
592 kernel_entry, fdt_load_addr, machine->fdt);
593 }
594 }
595
596 static void microchip_icicle_kit_machine_class_init(ObjectClass *oc, void *data)
597 {
598 MachineClass *mc = MACHINE_CLASS(oc);
599
600 mc->desc = "Microchip PolarFire SoC Icicle Kit";
601 mc->init = microchip_icicle_kit_machine_init;
602 mc->max_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT +
603 MICROCHIP_PFSOC_COMPUTE_CPU_COUNT;
604 mc->min_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT + 1;
605 mc->default_cpus = mc->min_cpus;
606
607 /*
608 * Map 513 MiB high memory, the mimimum required high memory size, because
609 * HSS will do memory test against the high memory address range regardless
610 * of physical memory installed.
611 *
612 * See memory_tests() in mss_ddr.c in the HSS source code.
613 */
614 mc->default_ram_size = 1537 * MiB;
615 }
616
617 static const TypeInfo microchip_icicle_kit_machine_typeinfo = {
618 .name = MACHINE_TYPE_NAME("microchip-icicle-kit"),
619 .parent = TYPE_MACHINE,
620 .class_init = microchip_icicle_kit_machine_class_init,
621 .instance_size = sizeof(MicrochipIcicleKitState),
622 };
623
624 static void microchip_icicle_kit_machine_init_register_types(void)
625 {
626 type_register_static(&microchip_icicle_kit_machine_typeinfo);
627 }
628
629 type_init(microchip_icicle_kit_machine_init_register_types)