vfio: Change default dirty pages tracking behavior during migration
[qemu.git] / hw / vfio / common.c
1 /*
2 * generic functions used by VFIO devices
3 *
4 * Copyright Red Hat, Inc. 2012
5 *
6 * Authors:
7 * Alex Williamson <alex.williamson@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 * Based on qemu-kvm device-assignment:
13 * Adapted for KVM by Qumranet.
14 * Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com)
15 * Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com)
16 * Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com)
17 * Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com)
18 * Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com)
19 */
20
21 #include "qemu/osdep.h"
22 #include <sys/ioctl.h>
23 #ifdef CONFIG_KVM
24 #include <linux/kvm.h>
25 #endif
26 #include <linux/vfio.h>
27
28 #include "hw/vfio/vfio-common.h"
29 #include "hw/vfio/vfio.h"
30 #include "exec/address-spaces.h"
31 #include "exec/memory.h"
32 #include "exec/ram_addr.h"
33 #include "hw/hw.h"
34 #include "qemu/error-report.h"
35 #include "qemu/main-loop.h"
36 #include "qemu/range.h"
37 #include "sysemu/kvm.h"
38 #include "sysemu/reset.h"
39 #include "trace.h"
40 #include "qapi/error.h"
41 #include "migration/migration.h"
42
43 VFIOGroupList vfio_group_list =
44 QLIST_HEAD_INITIALIZER(vfio_group_list);
45 static QLIST_HEAD(, VFIOAddressSpace) vfio_address_spaces =
46 QLIST_HEAD_INITIALIZER(vfio_address_spaces);
47
48 #ifdef CONFIG_KVM
49 /*
50 * We have a single VFIO pseudo device per KVM VM. Once created it lives
51 * for the life of the VM. Closing the file descriptor only drops our
52 * reference to it and the device's reference to kvm. Therefore once
53 * initialized, this file descriptor is only released on QEMU exit and
54 * we'll re-use it should another vfio device be attached before then.
55 */
56 static int vfio_kvm_device_fd = -1;
57 #endif
58
59 /*
60 * Common VFIO interrupt disable
61 */
62 void vfio_disable_irqindex(VFIODevice *vbasedev, int index)
63 {
64 struct vfio_irq_set irq_set = {
65 .argsz = sizeof(irq_set),
66 .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_TRIGGER,
67 .index = index,
68 .start = 0,
69 .count = 0,
70 };
71
72 ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set);
73 }
74
75 void vfio_unmask_single_irqindex(VFIODevice *vbasedev, int index)
76 {
77 struct vfio_irq_set irq_set = {
78 .argsz = sizeof(irq_set),
79 .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_UNMASK,
80 .index = index,
81 .start = 0,
82 .count = 1,
83 };
84
85 ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set);
86 }
87
88 void vfio_mask_single_irqindex(VFIODevice *vbasedev, int index)
89 {
90 struct vfio_irq_set irq_set = {
91 .argsz = sizeof(irq_set),
92 .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_MASK,
93 .index = index,
94 .start = 0,
95 .count = 1,
96 };
97
98 ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set);
99 }
100
101 static inline const char *action_to_str(int action)
102 {
103 switch (action) {
104 case VFIO_IRQ_SET_ACTION_MASK:
105 return "MASK";
106 case VFIO_IRQ_SET_ACTION_UNMASK:
107 return "UNMASK";
108 case VFIO_IRQ_SET_ACTION_TRIGGER:
109 return "TRIGGER";
110 default:
111 return "UNKNOWN ACTION";
112 }
113 }
114
115 static const char *index_to_str(VFIODevice *vbasedev, int index)
116 {
117 if (vbasedev->type != VFIO_DEVICE_TYPE_PCI) {
118 return NULL;
119 }
120
121 switch (index) {
122 case VFIO_PCI_INTX_IRQ_INDEX:
123 return "INTX";
124 case VFIO_PCI_MSI_IRQ_INDEX:
125 return "MSI";
126 case VFIO_PCI_MSIX_IRQ_INDEX:
127 return "MSIX";
128 case VFIO_PCI_ERR_IRQ_INDEX:
129 return "ERR";
130 case VFIO_PCI_REQ_IRQ_INDEX:
131 return "REQ";
132 default:
133 return NULL;
134 }
135 }
136
137 int vfio_set_irq_signaling(VFIODevice *vbasedev, int index, int subindex,
138 int action, int fd, Error **errp)
139 {
140 struct vfio_irq_set *irq_set;
141 int argsz, ret = 0;
142 const char *name;
143 int32_t *pfd;
144
145 argsz = sizeof(*irq_set) + sizeof(*pfd);
146
147 irq_set = g_malloc0(argsz);
148 irq_set->argsz = argsz;
149 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | action;
150 irq_set->index = index;
151 irq_set->start = subindex;
152 irq_set->count = 1;
153 pfd = (int32_t *)&irq_set->data;
154 *pfd = fd;
155
156 if (ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, irq_set)) {
157 ret = -errno;
158 }
159 g_free(irq_set);
160
161 if (!ret) {
162 return 0;
163 }
164
165 error_setg_errno(errp, -ret, "VFIO_DEVICE_SET_IRQS failure");
166
167 name = index_to_str(vbasedev, index);
168 if (name) {
169 error_prepend(errp, "%s-%d: ", name, subindex);
170 } else {
171 error_prepend(errp, "index %d-%d: ", index, subindex);
172 }
173 error_prepend(errp,
174 "Failed to %s %s eventfd signaling for interrupt ",
175 fd < 0 ? "tear down" : "set up", action_to_str(action));
176 return ret;
177 }
178
179 /*
180 * IO Port/MMIO - Beware of the endians, VFIO is always little endian
181 */
182 void vfio_region_write(void *opaque, hwaddr addr,
183 uint64_t data, unsigned size)
184 {
185 VFIORegion *region = opaque;
186 VFIODevice *vbasedev = region->vbasedev;
187 union {
188 uint8_t byte;
189 uint16_t word;
190 uint32_t dword;
191 uint64_t qword;
192 } buf;
193
194 switch (size) {
195 case 1:
196 buf.byte = data;
197 break;
198 case 2:
199 buf.word = cpu_to_le16(data);
200 break;
201 case 4:
202 buf.dword = cpu_to_le32(data);
203 break;
204 case 8:
205 buf.qword = cpu_to_le64(data);
206 break;
207 default:
208 hw_error("vfio: unsupported write size, %u bytes", size);
209 break;
210 }
211
212 if (pwrite(vbasedev->fd, &buf, size, region->fd_offset + addr) != size) {
213 error_report("%s(%s:region%d+0x%"HWADDR_PRIx", 0x%"PRIx64
214 ",%d) failed: %m",
215 __func__, vbasedev->name, region->nr,
216 addr, data, size);
217 }
218
219 trace_vfio_region_write(vbasedev->name, region->nr, addr, data, size);
220
221 /*
222 * A read or write to a BAR always signals an INTx EOI. This will
223 * do nothing if not pending (including not in INTx mode). We assume
224 * that a BAR access is in response to an interrupt and that BAR
225 * accesses will service the interrupt. Unfortunately, we don't know
226 * which access will service the interrupt, so we're potentially
227 * getting quite a few host interrupts per guest interrupt.
228 */
229 vbasedev->ops->vfio_eoi(vbasedev);
230 }
231
232 uint64_t vfio_region_read(void *opaque,
233 hwaddr addr, unsigned size)
234 {
235 VFIORegion *region = opaque;
236 VFIODevice *vbasedev = region->vbasedev;
237 union {
238 uint8_t byte;
239 uint16_t word;
240 uint32_t dword;
241 uint64_t qword;
242 } buf;
243 uint64_t data = 0;
244
245 if (pread(vbasedev->fd, &buf, size, region->fd_offset + addr) != size) {
246 error_report("%s(%s:region%d+0x%"HWADDR_PRIx", %d) failed: %m",
247 __func__, vbasedev->name, region->nr,
248 addr, size);
249 return (uint64_t)-1;
250 }
251 switch (size) {
252 case 1:
253 data = buf.byte;
254 break;
255 case 2:
256 data = le16_to_cpu(buf.word);
257 break;
258 case 4:
259 data = le32_to_cpu(buf.dword);
260 break;
261 case 8:
262 data = le64_to_cpu(buf.qword);
263 break;
264 default:
265 hw_error("vfio: unsupported read size, %u bytes", size);
266 break;
267 }
268
269 trace_vfio_region_read(vbasedev->name, region->nr, addr, size, data);
270
271 /* Same as write above */
272 vbasedev->ops->vfio_eoi(vbasedev);
273
274 return data;
275 }
276
277 const MemoryRegionOps vfio_region_ops = {
278 .read = vfio_region_read,
279 .write = vfio_region_write,
280 .endianness = DEVICE_LITTLE_ENDIAN,
281 .valid = {
282 .min_access_size = 1,
283 .max_access_size = 8,
284 },
285 .impl = {
286 .min_access_size = 1,
287 .max_access_size = 8,
288 },
289 };
290
291 /*
292 * Device state interfaces
293 */
294
295 bool vfio_mig_active(void)
296 {
297 VFIOGroup *group;
298 VFIODevice *vbasedev;
299
300 if (QLIST_EMPTY(&vfio_group_list)) {
301 return false;
302 }
303
304 QLIST_FOREACH(group, &vfio_group_list, next) {
305 QLIST_FOREACH(vbasedev, &group->device_list, next) {
306 if (vbasedev->migration_blocker) {
307 return false;
308 }
309 }
310 }
311 return true;
312 }
313
314 static bool vfio_devices_all_saving(VFIOContainer *container)
315 {
316 VFIOGroup *group;
317 VFIODevice *vbasedev;
318 MigrationState *ms = migrate_get_current();
319
320 if (!migration_is_setup_or_active(ms->state)) {
321 return false;
322 }
323
324 QLIST_FOREACH(group, &container->group_list, container_next) {
325 QLIST_FOREACH(vbasedev, &group->device_list, next) {
326 VFIOMigration *migration = vbasedev->migration;
327
328 if (!migration) {
329 return false;
330 }
331
332 if (migration->device_state & VFIO_DEVICE_STATE_SAVING) {
333 if ((vbasedev->pre_copy_dirty_page_tracking == ON_OFF_AUTO_OFF)
334 && (migration->device_state & VFIO_DEVICE_STATE_RUNNING)) {
335 return false;
336 }
337 continue;
338 } else {
339 return false;
340 }
341 }
342 }
343 return true;
344 }
345
346 static bool vfio_devices_all_running_and_saving(VFIOContainer *container)
347 {
348 VFIOGroup *group;
349 VFIODevice *vbasedev;
350 MigrationState *ms = migrate_get_current();
351
352 if (!migration_is_setup_or_active(ms->state)) {
353 return false;
354 }
355
356 QLIST_FOREACH(group, &container->group_list, container_next) {
357 QLIST_FOREACH(vbasedev, &group->device_list, next) {
358 VFIOMigration *migration = vbasedev->migration;
359
360 if (!migration) {
361 return false;
362 }
363
364 if ((migration->device_state & VFIO_DEVICE_STATE_SAVING) &&
365 (migration->device_state & VFIO_DEVICE_STATE_RUNNING)) {
366 continue;
367 } else {
368 return false;
369 }
370 }
371 }
372 return true;
373 }
374
375 static int vfio_dma_unmap_bitmap(VFIOContainer *container,
376 hwaddr iova, ram_addr_t size,
377 IOMMUTLBEntry *iotlb)
378 {
379 struct vfio_iommu_type1_dma_unmap *unmap;
380 struct vfio_bitmap *bitmap;
381 uint64_t pages = TARGET_PAGE_ALIGN(size) >> TARGET_PAGE_BITS;
382 int ret;
383
384 unmap = g_malloc0(sizeof(*unmap) + sizeof(*bitmap));
385
386 unmap->argsz = sizeof(*unmap) + sizeof(*bitmap);
387 unmap->iova = iova;
388 unmap->size = size;
389 unmap->flags |= VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP;
390 bitmap = (struct vfio_bitmap *)&unmap->data;
391
392 /*
393 * cpu_physical_memory_set_dirty_lebitmap() expects pages in bitmap of
394 * TARGET_PAGE_SIZE to mark those dirty. Hence set bitmap_pgsize to
395 * TARGET_PAGE_SIZE.
396 */
397
398 bitmap->pgsize = TARGET_PAGE_SIZE;
399 bitmap->size = ROUND_UP(pages, sizeof(__u64) * BITS_PER_BYTE) /
400 BITS_PER_BYTE;
401
402 if (bitmap->size > container->max_dirty_bitmap_size) {
403 error_report("UNMAP: Size of bitmap too big 0x%"PRIx64,
404 (uint64_t)bitmap->size);
405 ret = -E2BIG;
406 goto unmap_exit;
407 }
408
409 bitmap->data = g_try_malloc0(bitmap->size);
410 if (!bitmap->data) {
411 ret = -ENOMEM;
412 goto unmap_exit;
413 }
414
415 ret = ioctl(container->fd, VFIO_IOMMU_UNMAP_DMA, unmap);
416 if (!ret) {
417 cpu_physical_memory_set_dirty_lebitmap((unsigned long *)bitmap->data,
418 iotlb->translated_addr, pages);
419 } else {
420 error_report("VFIO_UNMAP_DMA with DIRTY_BITMAP : %m");
421 }
422
423 g_free(bitmap->data);
424 unmap_exit:
425 g_free(unmap);
426 return ret;
427 }
428
429 /*
430 * DMA - Mapping and unmapping for the "type1" IOMMU interface used on x86
431 */
432 static int vfio_dma_unmap(VFIOContainer *container,
433 hwaddr iova, ram_addr_t size,
434 IOMMUTLBEntry *iotlb)
435 {
436 struct vfio_iommu_type1_dma_unmap unmap = {
437 .argsz = sizeof(unmap),
438 .flags = 0,
439 .iova = iova,
440 .size = size,
441 };
442
443 if (iotlb && container->dirty_pages_supported &&
444 vfio_devices_all_running_and_saving(container)) {
445 return vfio_dma_unmap_bitmap(container, iova, size, iotlb);
446 }
447
448 while (ioctl(container->fd, VFIO_IOMMU_UNMAP_DMA, &unmap)) {
449 /*
450 * The type1 backend has an off-by-one bug in the kernel (71a7d3d78e3c
451 * v4.15) where an overflow in its wrap-around check prevents us from
452 * unmapping the last page of the address space. Test for the error
453 * condition and re-try the unmap excluding the last page. The
454 * expectation is that we've never mapped the last page anyway and this
455 * unmap request comes via vIOMMU support which also makes it unlikely
456 * that this page is used. This bug was introduced well after type1 v2
457 * support was introduced, so we shouldn't need to test for v1. A fix
458 * is queued for kernel v5.0 so this workaround can be removed once
459 * affected kernels are sufficiently deprecated.
460 */
461 if (errno == EINVAL && unmap.size && !(unmap.iova + unmap.size) &&
462 container->iommu_type == VFIO_TYPE1v2_IOMMU) {
463 trace_vfio_dma_unmap_overflow_workaround();
464 unmap.size -= 1ULL << ctz64(container->pgsizes);
465 continue;
466 }
467 error_report("VFIO_UNMAP_DMA failed: %s", strerror(errno));
468 return -errno;
469 }
470
471 return 0;
472 }
473
474 static int vfio_dma_map(VFIOContainer *container, hwaddr iova,
475 ram_addr_t size, void *vaddr, bool readonly)
476 {
477 struct vfio_iommu_type1_dma_map map = {
478 .argsz = sizeof(map),
479 .flags = VFIO_DMA_MAP_FLAG_READ,
480 .vaddr = (__u64)(uintptr_t)vaddr,
481 .iova = iova,
482 .size = size,
483 };
484
485 if (!readonly) {
486 map.flags |= VFIO_DMA_MAP_FLAG_WRITE;
487 }
488
489 /*
490 * Try the mapping, if it fails with EBUSY, unmap the region and try
491 * again. This shouldn't be necessary, but we sometimes see it in
492 * the VGA ROM space.
493 */
494 if (ioctl(container->fd, VFIO_IOMMU_MAP_DMA, &map) == 0 ||
495 (errno == EBUSY && vfio_dma_unmap(container, iova, size, NULL) == 0 &&
496 ioctl(container->fd, VFIO_IOMMU_MAP_DMA, &map) == 0)) {
497 return 0;
498 }
499
500 error_report("VFIO_MAP_DMA failed: %s", strerror(errno));
501 return -errno;
502 }
503
504 static void vfio_host_win_add(VFIOContainer *container,
505 hwaddr min_iova, hwaddr max_iova,
506 uint64_t iova_pgsizes)
507 {
508 VFIOHostDMAWindow *hostwin;
509
510 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) {
511 if (ranges_overlap(hostwin->min_iova,
512 hostwin->max_iova - hostwin->min_iova + 1,
513 min_iova,
514 max_iova - min_iova + 1)) {
515 hw_error("%s: Overlapped IOMMU are not enabled", __func__);
516 }
517 }
518
519 hostwin = g_malloc0(sizeof(*hostwin));
520
521 hostwin->min_iova = min_iova;
522 hostwin->max_iova = max_iova;
523 hostwin->iova_pgsizes = iova_pgsizes;
524 QLIST_INSERT_HEAD(&container->hostwin_list, hostwin, hostwin_next);
525 }
526
527 static int vfio_host_win_del(VFIOContainer *container, hwaddr min_iova,
528 hwaddr max_iova)
529 {
530 VFIOHostDMAWindow *hostwin;
531
532 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) {
533 if (hostwin->min_iova == min_iova && hostwin->max_iova == max_iova) {
534 QLIST_REMOVE(hostwin, hostwin_next);
535 return 0;
536 }
537 }
538
539 return -1;
540 }
541
542 static bool vfio_listener_skipped_section(MemoryRegionSection *section)
543 {
544 return (!memory_region_is_ram(section->mr) &&
545 !memory_region_is_iommu(section->mr)) ||
546 /*
547 * Sizing an enabled 64-bit BAR can cause spurious mappings to
548 * addresses in the upper part of the 64-bit address space. These
549 * are never accessed by the CPU and beyond the address width of
550 * some IOMMU hardware. TODO: VFIO should tell us the IOMMU width.
551 */
552 section->offset_within_address_space & (1ULL << 63);
553 }
554
555 /* Called with rcu_read_lock held. */
556 static bool vfio_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
557 ram_addr_t *ram_addr, bool *read_only)
558 {
559 MemoryRegion *mr;
560 hwaddr xlat;
561 hwaddr len = iotlb->addr_mask + 1;
562 bool writable = iotlb->perm & IOMMU_WO;
563
564 /*
565 * The IOMMU TLB entry we have just covers translation through
566 * this IOMMU to its immediate target. We need to translate
567 * it the rest of the way through to memory.
568 */
569 mr = address_space_translate(&address_space_memory,
570 iotlb->translated_addr,
571 &xlat, &len, writable,
572 MEMTXATTRS_UNSPECIFIED);
573 if (!memory_region_is_ram(mr)) {
574 error_report("iommu map to non memory area %"HWADDR_PRIx"",
575 xlat);
576 return false;
577 }
578
579 /*
580 * Translation truncates length to the IOMMU page size,
581 * check that it did not truncate too much.
582 */
583 if (len & iotlb->addr_mask) {
584 error_report("iommu has granularity incompatible with target AS");
585 return false;
586 }
587
588 if (vaddr) {
589 *vaddr = memory_region_get_ram_ptr(mr) + xlat;
590 }
591
592 if (ram_addr) {
593 *ram_addr = memory_region_get_ram_addr(mr) + xlat;
594 }
595
596 if (read_only) {
597 *read_only = !writable || mr->readonly;
598 }
599
600 return true;
601 }
602
603 static void vfio_iommu_map_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
604 {
605 VFIOGuestIOMMU *giommu = container_of(n, VFIOGuestIOMMU, n);
606 VFIOContainer *container = giommu->container;
607 hwaddr iova = iotlb->iova + giommu->iommu_offset;
608 void *vaddr;
609 int ret;
610
611 trace_vfio_iommu_map_notify(iotlb->perm == IOMMU_NONE ? "UNMAP" : "MAP",
612 iova, iova + iotlb->addr_mask);
613
614 if (iotlb->target_as != &address_space_memory) {
615 error_report("Wrong target AS \"%s\", only system memory is allowed",
616 iotlb->target_as->name ? iotlb->target_as->name : "none");
617 return;
618 }
619
620 rcu_read_lock();
621
622 if ((iotlb->perm & IOMMU_RW) != IOMMU_NONE) {
623 bool read_only;
624
625 if (!vfio_get_xlat_addr(iotlb, &vaddr, NULL, &read_only)) {
626 goto out;
627 }
628 /*
629 * vaddr is only valid until rcu_read_unlock(). But after
630 * vfio_dma_map has set up the mapping the pages will be
631 * pinned by the kernel. This makes sure that the RAM backend
632 * of vaddr will always be there, even if the memory object is
633 * destroyed and its backing memory munmap-ed.
634 */
635 ret = vfio_dma_map(container, iova,
636 iotlb->addr_mask + 1, vaddr,
637 read_only);
638 if (ret) {
639 error_report("vfio_dma_map(%p, 0x%"HWADDR_PRIx", "
640 "0x%"HWADDR_PRIx", %p) = %d (%m)",
641 container, iova,
642 iotlb->addr_mask + 1, vaddr, ret);
643 }
644 } else {
645 ret = vfio_dma_unmap(container, iova, iotlb->addr_mask + 1, iotlb);
646 if (ret) {
647 error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", "
648 "0x%"HWADDR_PRIx") = %d (%m)",
649 container, iova,
650 iotlb->addr_mask + 1, ret);
651 }
652 }
653 out:
654 rcu_read_unlock();
655 }
656
657 static void vfio_listener_region_add(MemoryListener *listener,
658 MemoryRegionSection *section)
659 {
660 VFIOContainer *container = container_of(listener, VFIOContainer, listener);
661 hwaddr iova, end;
662 Int128 llend, llsize;
663 void *vaddr;
664 int ret;
665 VFIOHostDMAWindow *hostwin;
666 bool hostwin_found;
667 Error *err = NULL;
668
669 if (vfio_listener_skipped_section(section)) {
670 trace_vfio_listener_region_add_skip(
671 section->offset_within_address_space,
672 section->offset_within_address_space +
673 int128_get64(int128_sub(section->size, int128_one())));
674 return;
675 }
676
677 if (unlikely((section->offset_within_address_space & ~TARGET_PAGE_MASK) !=
678 (section->offset_within_region & ~TARGET_PAGE_MASK))) {
679 error_report("%s received unaligned region", __func__);
680 return;
681 }
682
683 iova = TARGET_PAGE_ALIGN(section->offset_within_address_space);
684 llend = int128_make64(section->offset_within_address_space);
685 llend = int128_add(llend, section->size);
686 llend = int128_and(llend, int128_exts64(TARGET_PAGE_MASK));
687
688 if (int128_ge(int128_make64(iova), llend)) {
689 return;
690 }
691 end = int128_get64(int128_sub(llend, int128_one()));
692
693 if (container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) {
694 hwaddr pgsize = 0;
695
696 /* For now intersections are not allowed, we may relax this later */
697 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) {
698 if (ranges_overlap(hostwin->min_iova,
699 hostwin->max_iova - hostwin->min_iova + 1,
700 section->offset_within_address_space,
701 int128_get64(section->size))) {
702 error_setg(&err,
703 "region [0x%"PRIx64",0x%"PRIx64"] overlaps with existing"
704 "host DMA window [0x%"PRIx64",0x%"PRIx64"]",
705 section->offset_within_address_space,
706 section->offset_within_address_space +
707 int128_get64(section->size) - 1,
708 hostwin->min_iova, hostwin->max_iova);
709 goto fail;
710 }
711 }
712
713 ret = vfio_spapr_create_window(container, section, &pgsize);
714 if (ret) {
715 error_setg_errno(&err, -ret, "Failed to create SPAPR window");
716 goto fail;
717 }
718
719 vfio_host_win_add(container, section->offset_within_address_space,
720 section->offset_within_address_space +
721 int128_get64(section->size) - 1, pgsize);
722 #ifdef CONFIG_KVM
723 if (kvm_enabled()) {
724 VFIOGroup *group;
725 IOMMUMemoryRegion *iommu_mr = IOMMU_MEMORY_REGION(section->mr);
726 struct kvm_vfio_spapr_tce param;
727 struct kvm_device_attr attr = {
728 .group = KVM_DEV_VFIO_GROUP,
729 .attr = KVM_DEV_VFIO_GROUP_SET_SPAPR_TCE,
730 .addr = (uint64_t)(unsigned long)&param,
731 };
732
733 if (!memory_region_iommu_get_attr(iommu_mr, IOMMU_ATTR_SPAPR_TCE_FD,
734 &param.tablefd)) {
735 QLIST_FOREACH(group, &container->group_list, container_next) {
736 param.groupfd = group->fd;
737 if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) {
738 error_report("vfio: failed to setup fd %d "
739 "for a group with fd %d: %s",
740 param.tablefd, param.groupfd,
741 strerror(errno));
742 return;
743 }
744 trace_vfio_spapr_group_attach(param.groupfd, param.tablefd);
745 }
746 }
747 }
748 #endif
749 }
750
751 hostwin_found = false;
752 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) {
753 if (hostwin->min_iova <= iova && end <= hostwin->max_iova) {
754 hostwin_found = true;
755 break;
756 }
757 }
758
759 if (!hostwin_found) {
760 error_setg(&err, "Container %p can't map guest IOVA region"
761 " 0x%"HWADDR_PRIx"..0x%"HWADDR_PRIx, container, iova, end);
762 goto fail;
763 }
764
765 memory_region_ref(section->mr);
766
767 if (memory_region_is_iommu(section->mr)) {
768 VFIOGuestIOMMU *giommu;
769 IOMMUMemoryRegion *iommu_mr = IOMMU_MEMORY_REGION(section->mr);
770 int iommu_idx;
771
772 trace_vfio_listener_region_add_iommu(iova, end);
773 /*
774 * FIXME: For VFIO iommu types which have KVM acceleration to
775 * avoid bouncing all map/unmaps through qemu this way, this
776 * would be the right place to wire that up (tell the KVM
777 * device emulation the VFIO iommu handles to use).
778 */
779 giommu = g_malloc0(sizeof(*giommu));
780 giommu->iommu = iommu_mr;
781 giommu->iommu_offset = section->offset_within_address_space -
782 section->offset_within_region;
783 giommu->container = container;
784 llend = int128_add(int128_make64(section->offset_within_region),
785 section->size);
786 llend = int128_sub(llend, int128_one());
787 iommu_idx = memory_region_iommu_attrs_to_index(iommu_mr,
788 MEMTXATTRS_UNSPECIFIED);
789 iommu_notifier_init(&giommu->n, vfio_iommu_map_notify,
790 IOMMU_NOTIFIER_ALL,
791 section->offset_within_region,
792 int128_get64(llend),
793 iommu_idx);
794
795 ret = memory_region_iommu_set_page_size_mask(giommu->iommu,
796 container->pgsizes,
797 &err);
798 if (ret) {
799 g_free(giommu);
800 goto fail;
801 }
802
803 ret = memory_region_register_iommu_notifier(section->mr, &giommu->n,
804 &err);
805 if (ret) {
806 g_free(giommu);
807 goto fail;
808 }
809 QLIST_INSERT_HEAD(&container->giommu_list, giommu, giommu_next);
810 memory_region_iommu_replay(giommu->iommu, &giommu->n);
811
812 return;
813 }
814
815 /* Here we assume that memory_region_is_ram(section->mr)==true */
816
817 vaddr = memory_region_get_ram_ptr(section->mr) +
818 section->offset_within_region +
819 (iova - section->offset_within_address_space);
820
821 trace_vfio_listener_region_add_ram(iova, end, vaddr);
822
823 llsize = int128_sub(llend, int128_make64(iova));
824
825 if (memory_region_is_ram_device(section->mr)) {
826 hwaddr pgmask = (1ULL << ctz64(hostwin->iova_pgsizes)) - 1;
827
828 if ((iova & pgmask) || (int128_get64(llsize) & pgmask)) {
829 trace_vfio_listener_region_add_no_dma_map(
830 memory_region_name(section->mr),
831 section->offset_within_address_space,
832 int128_getlo(section->size),
833 pgmask + 1);
834 return;
835 }
836 }
837
838 ret = vfio_dma_map(container, iova, int128_get64(llsize),
839 vaddr, section->readonly);
840 if (ret) {
841 error_setg(&err, "vfio_dma_map(%p, 0x%"HWADDR_PRIx", "
842 "0x%"HWADDR_PRIx", %p) = %d (%m)",
843 container, iova, int128_get64(llsize), vaddr, ret);
844 if (memory_region_is_ram_device(section->mr)) {
845 /* Allow unexpected mappings not to be fatal for RAM devices */
846 error_report_err(err);
847 return;
848 }
849 goto fail;
850 }
851
852 return;
853
854 fail:
855 if (memory_region_is_ram_device(section->mr)) {
856 error_report("failed to vfio_dma_map. pci p2p may not work");
857 return;
858 }
859 /*
860 * On the initfn path, store the first error in the container so we
861 * can gracefully fail. Runtime, there's not much we can do other
862 * than throw a hardware error.
863 */
864 if (!container->initialized) {
865 if (!container->error) {
866 error_propagate_prepend(&container->error, err,
867 "Region %s: ",
868 memory_region_name(section->mr));
869 } else {
870 error_free(err);
871 }
872 } else {
873 error_report_err(err);
874 hw_error("vfio: DMA mapping failed, unable to continue");
875 }
876 }
877
878 static void vfio_listener_region_del(MemoryListener *listener,
879 MemoryRegionSection *section)
880 {
881 VFIOContainer *container = container_of(listener, VFIOContainer, listener);
882 hwaddr iova, end;
883 Int128 llend, llsize;
884 int ret;
885 bool try_unmap = true;
886
887 if (vfio_listener_skipped_section(section)) {
888 trace_vfio_listener_region_del_skip(
889 section->offset_within_address_space,
890 section->offset_within_address_space +
891 int128_get64(int128_sub(section->size, int128_one())));
892 return;
893 }
894
895 if (unlikely((section->offset_within_address_space & ~TARGET_PAGE_MASK) !=
896 (section->offset_within_region & ~TARGET_PAGE_MASK))) {
897 error_report("%s received unaligned region", __func__);
898 return;
899 }
900
901 if (memory_region_is_iommu(section->mr)) {
902 VFIOGuestIOMMU *giommu;
903
904 QLIST_FOREACH(giommu, &container->giommu_list, giommu_next) {
905 if (MEMORY_REGION(giommu->iommu) == section->mr &&
906 giommu->n.start == section->offset_within_region) {
907 memory_region_unregister_iommu_notifier(section->mr,
908 &giommu->n);
909 QLIST_REMOVE(giommu, giommu_next);
910 g_free(giommu);
911 break;
912 }
913 }
914
915 /*
916 * FIXME: We assume the one big unmap below is adequate to
917 * remove any individual page mappings in the IOMMU which
918 * might have been copied into VFIO. This works for a page table
919 * based IOMMU where a big unmap flattens a large range of IO-PTEs.
920 * That may not be true for all IOMMU types.
921 */
922 }
923
924 iova = TARGET_PAGE_ALIGN(section->offset_within_address_space);
925 llend = int128_make64(section->offset_within_address_space);
926 llend = int128_add(llend, section->size);
927 llend = int128_and(llend, int128_exts64(TARGET_PAGE_MASK));
928
929 if (int128_ge(int128_make64(iova), llend)) {
930 return;
931 }
932 end = int128_get64(int128_sub(llend, int128_one()));
933
934 llsize = int128_sub(llend, int128_make64(iova));
935
936 trace_vfio_listener_region_del(iova, end);
937
938 if (memory_region_is_ram_device(section->mr)) {
939 hwaddr pgmask;
940 VFIOHostDMAWindow *hostwin;
941 bool hostwin_found = false;
942
943 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) {
944 if (hostwin->min_iova <= iova && end <= hostwin->max_iova) {
945 hostwin_found = true;
946 break;
947 }
948 }
949 assert(hostwin_found); /* or region_add() would have failed */
950
951 pgmask = (1ULL << ctz64(hostwin->iova_pgsizes)) - 1;
952 try_unmap = !((iova & pgmask) || (int128_get64(llsize) & pgmask));
953 }
954
955 if (try_unmap) {
956 if (int128_eq(llsize, int128_2_64())) {
957 /* The unmap ioctl doesn't accept a full 64-bit span. */
958 llsize = int128_rshift(llsize, 1);
959 ret = vfio_dma_unmap(container, iova, int128_get64(llsize), NULL);
960 if (ret) {
961 error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", "
962 "0x%"HWADDR_PRIx") = %d (%m)",
963 container, iova, int128_get64(llsize), ret);
964 }
965 iova += int128_get64(llsize);
966 }
967 ret = vfio_dma_unmap(container, iova, int128_get64(llsize), NULL);
968 if (ret) {
969 error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", "
970 "0x%"HWADDR_PRIx") = %d (%m)",
971 container, iova, int128_get64(llsize), ret);
972 }
973 }
974
975 memory_region_unref(section->mr);
976
977 if (container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) {
978 vfio_spapr_remove_window(container,
979 section->offset_within_address_space);
980 if (vfio_host_win_del(container,
981 section->offset_within_address_space,
982 section->offset_within_address_space +
983 int128_get64(section->size) - 1) < 0) {
984 hw_error("%s: Cannot delete missing window at %"HWADDR_PRIx,
985 __func__, section->offset_within_address_space);
986 }
987 }
988 }
989
990 static int vfio_get_dirty_bitmap(VFIOContainer *container, uint64_t iova,
991 uint64_t size, ram_addr_t ram_addr)
992 {
993 struct vfio_iommu_type1_dirty_bitmap *dbitmap;
994 struct vfio_iommu_type1_dirty_bitmap_get *range;
995 uint64_t pages;
996 int ret;
997
998 dbitmap = g_malloc0(sizeof(*dbitmap) + sizeof(*range));
999
1000 dbitmap->argsz = sizeof(*dbitmap) + sizeof(*range);
1001 dbitmap->flags = VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP;
1002 range = (struct vfio_iommu_type1_dirty_bitmap_get *)&dbitmap->data;
1003 range->iova = iova;
1004 range->size = size;
1005
1006 /*
1007 * cpu_physical_memory_set_dirty_lebitmap() expects pages in bitmap of
1008 * TARGET_PAGE_SIZE to mark those dirty. Hence set bitmap's pgsize to
1009 * TARGET_PAGE_SIZE.
1010 */
1011 range->bitmap.pgsize = TARGET_PAGE_SIZE;
1012
1013 pages = TARGET_PAGE_ALIGN(range->size) >> TARGET_PAGE_BITS;
1014 range->bitmap.size = ROUND_UP(pages, sizeof(__u64) * BITS_PER_BYTE) /
1015 BITS_PER_BYTE;
1016 range->bitmap.data = g_try_malloc0(range->bitmap.size);
1017 if (!range->bitmap.data) {
1018 ret = -ENOMEM;
1019 goto err_out;
1020 }
1021
1022 ret = ioctl(container->fd, VFIO_IOMMU_DIRTY_PAGES, dbitmap);
1023 if (ret) {
1024 error_report("Failed to get dirty bitmap for iova: 0x%"PRIx64
1025 " size: 0x%"PRIx64" err: %d", (uint64_t)range->iova,
1026 (uint64_t)range->size, errno);
1027 goto err_out;
1028 }
1029
1030 cpu_physical_memory_set_dirty_lebitmap((unsigned long *)range->bitmap.data,
1031 ram_addr, pages);
1032
1033 trace_vfio_get_dirty_bitmap(container->fd, range->iova, range->size,
1034 range->bitmap.size, ram_addr);
1035 err_out:
1036 g_free(range->bitmap.data);
1037 g_free(dbitmap);
1038
1039 return ret;
1040 }
1041
1042 typedef struct {
1043 IOMMUNotifier n;
1044 VFIOGuestIOMMU *giommu;
1045 } vfio_giommu_dirty_notifier;
1046
1047 static void vfio_iommu_map_dirty_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
1048 {
1049 vfio_giommu_dirty_notifier *gdn = container_of(n,
1050 vfio_giommu_dirty_notifier, n);
1051 VFIOGuestIOMMU *giommu = gdn->giommu;
1052 VFIOContainer *container = giommu->container;
1053 hwaddr iova = iotlb->iova + giommu->iommu_offset;
1054 ram_addr_t translated_addr;
1055
1056 trace_vfio_iommu_map_dirty_notify(iova, iova + iotlb->addr_mask);
1057
1058 if (iotlb->target_as != &address_space_memory) {
1059 error_report("Wrong target AS \"%s\", only system memory is allowed",
1060 iotlb->target_as->name ? iotlb->target_as->name : "none");
1061 return;
1062 }
1063
1064 rcu_read_lock();
1065 if (vfio_get_xlat_addr(iotlb, NULL, &translated_addr, NULL)) {
1066 int ret;
1067
1068 ret = vfio_get_dirty_bitmap(container, iova, iotlb->addr_mask + 1,
1069 translated_addr);
1070 if (ret) {
1071 error_report("vfio_iommu_map_dirty_notify(%p, 0x%"HWADDR_PRIx", "
1072 "0x%"HWADDR_PRIx") = %d (%m)",
1073 container, iova,
1074 iotlb->addr_mask + 1, ret);
1075 }
1076 }
1077 rcu_read_unlock();
1078 }
1079
1080 static int vfio_sync_dirty_bitmap(VFIOContainer *container,
1081 MemoryRegionSection *section)
1082 {
1083 ram_addr_t ram_addr;
1084
1085 if (memory_region_is_iommu(section->mr)) {
1086 VFIOGuestIOMMU *giommu;
1087
1088 QLIST_FOREACH(giommu, &container->giommu_list, giommu_next) {
1089 if (MEMORY_REGION(giommu->iommu) == section->mr &&
1090 giommu->n.start == section->offset_within_region) {
1091 Int128 llend;
1092 vfio_giommu_dirty_notifier gdn = { .giommu = giommu };
1093 int idx = memory_region_iommu_attrs_to_index(giommu->iommu,
1094 MEMTXATTRS_UNSPECIFIED);
1095
1096 llend = int128_add(int128_make64(section->offset_within_region),
1097 section->size);
1098 llend = int128_sub(llend, int128_one());
1099
1100 iommu_notifier_init(&gdn.n,
1101 vfio_iommu_map_dirty_notify,
1102 IOMMU_NOTIFIER_MAP,
1103 section->offset_within_region,
1104 int128_get64(llend),
1105 idx);
1106 memory_region_iommu_replay(giommu->iommu, &gdn.n);
1107 break;
1108 }
1109 }
1110 return 0;
1111 }
1112
1113 ram_addr = memory_region_get_ram_addr(section->mr) +
1114 section->offset_within_region;
1115
1116 return vfio_get_dirty_bitmap(container,
1117 TARGET_PAGE_ALIGN(section->offset_within_address_space),
1118 int128_get64(section->size), ram_addr);
1119 }
1120
1121 static void vfio_listerner_log_sync(MemoryListener *listener,
1122 MemoryRegionSection *section)
1123 {
1124 VFIOContainer *container = container_of(listener, VFIOContainer, listener);
1125
1126 if (vfio_listener_skipped_section(section) ||
1127 !container->dirty_pages_supported) {
1128 return;
1129 }
1130
1131 if (vfio_devices_all_saving(container)) {
1132 vfio_sync_dirty_bitmap(container, section);
1133 }
1134 }
1135
1136 static const MemoryListener vfio_memory_listener = {
1137 .region_add = vfio_listener_region_add,
1138 .region_del = vfio_listener_region_del,
1139 .log_sync = vfio_listerner_log_sync,
1140 };
1141
1142 static void vfio_listener_release(VFIOContainer *container)
1143 {
1144 memory_listener_unregister(&container->listener);
1145 if (container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) {
1146 memory_listener_unregister(&container->prereg_listener);
1147 }
1148 }
1149
1150 static struct vfio_info_cap_header *
1151 vfio_get_cap(void *ptr, uint32_t cap_offset, uint16_t id)
1152 {
1153 struct vfio_info_cap_header *hdr;
1154
1155 for (hdr = ptr + cap_offset; hdr != ptr; hdr = ptr + hdr->next) {
1156 if (hdr->id == id) {
1157 return hdr;
1158 }
1159 }
1160
1161 return NULL;
1162 }
1163
1164 struct vfio_info_cap_header *
1165 vfio_get_region_info_cap(struct vfio_region_info *info, uint16_t id)
1166 {
1167 if (!(info->flags & VFIO_REGION_INFO_FLAG_CAPS)) {
1168 return NULL;
1169 }
1170
1171 return vfio_get_cap((void *)info, info->cap_offset, id);
1172 }
1173
1174 static struct vfio_info_cap_header *
1175 vfio_get_iommu_type1_info_cap(struct vfio_iommu_type1_info *info, uint16_t id)
1176 {
1177 if (!(info->flags & VFIO_IOMMU_INFO_CAPS)) {
1178 return NULL;
1179 }
1180
1181 return vfio_get_cap((void *)info, info->cap_offset, id);
1182 }
1183
1184 struct vfio_info_cap_header *
1185 vfio_get_device_info_cap(struct vfio_device_info *info, uint16_t id)
1186 {
1187 if (!(info->flags & VFIO_DEVICE_FLAGS_CAPS)) {
1188 return NULL;
1189 }
1190
1191 return vfio_get_cap((void *)info, info->cap_offset, id);
1192 }
1193
1194 bool vfio_get_info_dma_avail(struct vfio_iommu_type1_info *info,
1195 unsigned int *avail)
1196 {
1197 struct vfio_info_cap_header *hdr;
1198 struct vfio_iommu_type1_info_dma_avail *cap;
1199
1200 /* If the capability cannot be found, assume no DMA limiting */
1201 hdr = vfio_get_iommu_type1_info_cap(info,
1202 VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL);
1203 if (hdr == NULL) {
1204 return false;
1205 }
1206
1207 if (avail != NULL) {
1208 cap = (void *) hdr;
1209 *avail = cap->avail;
1210 }
1211
1212 return true;
1213 }
1214
1215 static int vfio_setup_region_sparse_mmaps(VFIORegion *region,
1216 struct vfio_region_info *info)
1217 {
1218 struct vfio_info_cap_header *hdr;
1219 struct vfio_region_info_cap_sparse_mmap *sparse;
1220 int i, j;
1221
1222 hdr = vfio_get_region_info_cap(info, VFIO_REGION_INFO_CAP_SPARSE_MMAP);
1223 if (!hdr) {
1224 return -ENODEV;
1225 }
1226
1227 sparse = container_of(hdr, struct vfio_region_info_cap_sparse_mmap, header);
1228
1229 trace_vfio_region_sparse_mmap_header(region->vbasedev->name,
1230 region->nr, sparse->nr_areas);
1231
1232 region->mmaps = g_new0(VFIOMmap, sparse->nr_areas);
1233
1234 for (i = 0, j = 0; i < sparse->nr_areas; i++) {
1235 trace_vfio_region_sparse_mmap_entry(i, sparse->areas[i].offset,
1236 sparse->areas[i].offset +
1237 sparse->areas[i].size);
1238
1239 if (sparse->areas[i].size) {
1240 region->mmaps[j].offset = sparse->areas[i].offset;
1241 region->mmaps[j].size = sparse->areas[i].size;
1242 j++;
1243 }
1244 }
1245
1246 region->nr_mmaps = j;
1247 region->mmaps = g_realloc(region->mmaps, j * sizeof(VFIOMmap));
1248
1249 return 0;
1250 }
1251
1252 int vfio_region_setup(Object *obj, VFIODevice *vbasedev, VFIORegion *region,
1253 int index, const char *name)
1254 {
1255 struct vfio_region_info *info;
1256 int ret;
1257
1258 ret = vfio_get_region_info(vbasedev, index, &info);
1259 if (ret) {
1260 return ret;
1261 }
1262
1263 region->vbasedev = vbasedev;
1264 region->flags = info->flags;
1265 region->size = info->size;
1266 region->fd_offset = info->offset;
1267 region->nr = index;
1268
1269 if (region->size) {
1270 region->mem = g_new0(MemoryRegion, 1);
1271 memory_region_init_io(region->mem, obj, &vfio_region_ops,
1272 region, name, region->size);
1273
1274 if (!vbasedev->no_mmap &&
1275 region->flags & VFIO_REGION_INFO_FLAG_MMAP) {
1276
1277 ret = vfio_setup_region_sparse_mmaps(region, info);
1278
1279 if (ret) {
1280 region->nr_mmaps = 1;
1281 region->mmaps = g_new0(VFIOMmap, region->nr_mmaps);
1282 region->mmaps[0].offset = 0;
1283 region->mmaps[0].size = region->size;
1284 }
1285 }
1286 }
1287
1288 g_free(info);
1289
1290 trace_vfio_region_setup(vbasedev->name, index, name,
1291 region->flags, region->fd_offset, region->size);
1292 return 0;
1293 }
1294
1295 static void vfio_subregion_unmap(VFIORegion *region, int index)
1296 {
1297 trace_vfio_region_unmap(memory_region_name(&region->mmaps[index].mem),
1298 region->mmaps[index].offset,
1299 region->mmaps[index].offset +
1300 region->mmaps[index].size - 1);
1301 memory_region_del_subregion(region->mem, &region->mmaps[index].mem);
1302 munmap(region->mmaps[index].mmap, region->mmaps[index].size);
1303 object_unparent(OBJECT(&region->mmaps[index].mem));
1304 region->mmaps[index].mmap = NULL;
1305 }
1306
1307 int vfio_region_mmap(VFIORegion *region)
1308 {
1309 int i, prot = 0;
1310 char *name;
1311
1312 if (!region->mem) {
1313 return 0;
1314 }
1315
1316 prot |= region->flags & VFIO_REGION_INFO_FLAG_READ ? PROT_READ : 0;
1317 prot |= region->flags & VFIO_REGION_INFO_FLAG_WRITE ? PROT_WRITE : 0;
1318
1319 for (i = 0; i < region->nr_mmaps; i++) {
1320 region->mmaps[i].mmap = mmap(NULL, region->mmaps[i].size, prot,
1321 MAP_SHARED, region->vbasedev->fd,
1322 region->fd_offset +
1323 region->mmaps[i].offset);
1324 if (region->mmaps[i].mmap == MAP_FAILED) {
1325 int ret = -errno;
1326
1327 trace_vfio_region_mmap_fault(memory_region_name(region->mem), i,
1328 region->fd_offset +
1329 region->mmaps[i].offset,
1330 region->fd_offset +
1331 region->mmaps[i].offset +
1332 region->mmaps[i].size - 1, ret);
1333
1334 region->mmaps[i].mmap = NULL;
1335
1336 for (i--; i >= 0; i--) {
1337 vfio_subregion_unmap(region, i);
1338 }
1339
1340 return ret;
1341 }
1342
1343 name = g_strdup_printf("%s mmaps[%d]",
1344 memory_region_name(region->mem), i);
1345 memory_region_init_ram_device_ptr(&region->mmaps[i].mem,
1346 memory_region_owner(region->mem),
1347 name, region->mmaps[i].size,
1348 region->mmaps[i].mmap);
1349 g_free(name);
1350 memory_region_add_subregion(region->mem, region->mmaps[i].offset,
1351 &region->mmaps[i].mem);
1352
1353 trace_vfio_region_mmap(memory_region_name(&region->mmaps[i].mem),
1354 region->mmaps[i].offset,
1355 region->mmaps[i].offset +
1356 region->mmaps[i].size - 1);
1357 }
1358
1359 return 0;
1360 }
1361
1362 void vfio_region_unmap(VFIORegion *region)
1363 {
1364 int i;
1365
1366 if (!region->mem) {
1367 return;
1368 }
1369
1370 for (i = 0; i < region->nr_mmaps; i++) {
1371 if (region->mmaps[i].mmap) {
1372 vfio_subregion_unmap(region, i);
1373 }
1374 }
1375 }
1376
1377 void vfio_region_exit(VFIORegion *region)
1378 {
1379 int i;
1380
1381 if (!region->mem) {
1382 return;
1383 }
1384
1385 for (i = 0; i < region->nr_mmaps; i++) {
1386 if (region->mmaps[i].mmap) {
1387 memory_region_del_subregion(region->mem, &region->mmaps[i].mem);
1388 }
1389 }
1390
1391 trace_vfio_region_exit(region->vbasedev->name, region->nr);
1392 }
1393
1394 void vfio_region_finalize(VFIORegion *region)
1395 {
1396 int i;
1397
1398 if (!region->mem) {
1399 return;
1400 }
1401
1402 for (i = 0; i < region->nr_mmaps; i++) {
1403 if (region->mmaps[i].mmap) {
1404 munmap(region->mmaps[i].mmap, region->mmaps[i].size);
1405 object_unparent(OBJECT(&region->mmaps[i].mem));
1406 }
1407 }
1408
1409 object_unparent(OBJECT(region->mem));
1410
1411 g_free(region->mem);
1412 g_free(region->mmaps);
1413
1414 trace_vfio_region_finalize(region->vbasedev->name, region->nr);
1415
1416 region->mem = NULL;
1417 region->mmaps = NULL;
1418 region->nr_mmaps = 0;
1419 region->size = 0;
1420 region->flags = 0;
1421 region->nr = 0;
1422 }
1423
1424 void vfio_region_mmaps_set_enabled(VFIORegion *region, bool enabled)
1425 {
1426 int i;
1427
1428 if (!region->mem) {
1429 return;
1430 }
1431
1432 for (i = 0; i < region->nr_mmaps; i++) {
1433 if (region->mmaps[i].mmap) {
1434 memory_region_set_enabled(&region->mmaps[i].mem, enabled);
1435 }
1436 }
1437
1438 trace_vfio_region_mmaps_set_enabled(memory_region_name(region->mem),
1439 enabled);
1440 }
1441
1442 void vfio_reset_handler(void *opaque)
1443 {
1444 VFIOGroup *group;
1445 VFIODevice *vbasedev;
1446
1447 QLIST_FOREACH(group, &vfio_group_list, next) {
1448 QLIST_FOREACH(vbasedev, &group->device_list, next) {
1449 if (vbasedev->dev->realized) {
1450 vbasedev->ops->vfio_compute_needs_reset(vbasedev);
1451 }
1452 }
1453 }
1454
1455 QLIST_FOREACH(group, &vfio_group_list, next) {
1456 QLIST_FOREACH(vbasedev, &group->device_list, next) {
1457 if (vbasedev->dev->realized && vbasedev->needs_reset) {
1458 vbasedev->ops->vfio_hot_reset_multi(vbasedev);
1459 }
1460 }
1461 }
1462 }
1463
1464 static void vfio_kvm_device_add_group(VFIOGroup *group)
1465 {
1466 #ifdef CONFIG_KVM
1467 struct kvm_device_attr attr = {
1468 .group = KVM_DEV_VFIO_GROUP,
1469 .attr = KVM_DEV_VFIO_GROUP_ADD,
1470 .addr = (uint64_t)(unsigned long)&group->fd,
1471 };
1472
1473 if (!kvm_enabled()) {
1474 return;
1475 }
1476
1477 if (vfio_kvm_device_fd < 0) {
1478 struct kvm_create_device cd = {
1479 .type = KVM_DEV_TYPE_VFIO,
1480 };
1481
1482 if (kvm_vm_ioctl(kvm_state, KVM_CREATE_DEVICE, &cd)) {
1483 error_report("Failed to create KVM VFIO device: %m");
1484 return;
1485 }
1486
1487 vfio_kvm_device_fd = cd.fd;
1488 }
1489
1490 if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) {
1491 error_report("Failed to add group %d to KVM VFIO device: %m",
1492 group->groupid);
1493 }
1494 #endif
1495 }
1496
1497 static void vfio_kvm_device_del_group(VFIOGroup *group)
1498 {
1499 #ifdef CONFIG_KVM
1500 struct kvm_device_attr attr = {
1501 .group = KVM_DEV_VFIO_GROUP,
1502 .attr = KVM_DEV_VFIO_GROUP_DEL,
1503 .addr = (uint64_t)(unsigned long)&group->fd,
1504 };
1505
1506 if (vfio_kvm_device_fd < 0) {
1507 return;
1508 }
1509
1510 if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) {
1511 error_report("Failed to remove group %d from KVM VFIO device: %m",
1512 group->groupid);
1513 }
1514 #endif
1515 }
1516
1517 static VFIOAddressSpace *vfio_get_address_space(AddressSpace *as)
1518 {
1519 VFIOAddressSpace *space;
1520
1521 QLIST_FOREACH(space, &vfio_address_spaces, list) {
1522 if (space->as == as) {
1523 return space;
1524 }
1525 }
1526
1527 /* No suitable VFIOAddressSpace, create a new one */
1528 space = g_malloc0(sizeof(*space));
1529 space->as = as;
1530 QLIST_INIT(&space->containers);
1531
1532 QLIST_INSERT_HEAD(&vfio_address_spaces, space, list);
1533
1534 return space;
1535 }
1536
1537 static void vfio_put_address_space(VFIOAddressSpace *space)
1538 {
1539 if (QLIST_EMPTY(&space->containers)) {
1540 QLIST_REMOVE(space, list);
1541 g_free(space);
1542 }
1543 }
1544
1545 /*
1546 * vfio_get_iommu_type - selects the richest iommu_type (v2 first)
1547 */
1548 static int vfio_get_iommu_type(VFIOContainer *container,
1549 Error **errp)
1550 {
1551 int iommu_types[] = { VFIO_TYPE1v2_IOMMU, VFIO_TYPE1_IOMMU,
1552 VFIO_SPAPR_TCE_v2_IOMMU, VFIO_SPAPR_TCE_IOMMU };
1553 int i;
1554
1555 for (i = 0; i < ARRAY_SIZE(iommu_types); i++) {
1556 if (ioctl(container->fd, VFIO_CHECK_EXTENSION, iommu_types[i])) {
1557 return iommu_types[i];
1558 }
1559 }
1560 error_setg(errp, "No available IOMMU models");
1561 return -EINVAL;
1562 }
1563
1564 static int vfio_init_container(VFIOContainer *container, int group_fd,
1565 Error **errp)
1566 {
1567 int iommu_type, ret;
1568
1569 iommu_type = vfio_get_iommu_type(container, errp);
1570 if (iommu_type < 0) {
1571 return iommu_type;
1572 }
1573
1574 ret = ioctl(group_fd, VFIO_GROUP_SET_CONTAINER, &container->fd);
1575 if (ret) {
1576 error_setg_errno(errp, errno, "Failed to set group container");
1577 return -errno;
1578 }
1579
1580 while (ioctl(container->fd, VFIO_SET_IOMMU, iommu_type)) {
1581 if (iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) {
1582 /*
1583 * On sPAPR, despite the IOMMU subdriver always advertises v1 and
1584 * v2, the running platform may not support v2 and there is no
1585 * way to guess it until an IOMMU group gets added to the container.
1586 * So in case it fails with v2, try v1 as a fallback.
1587 */
1588 iommu_type = VFIO_SPAPR_TCE_IOMMU;
1589 continue;
1590 }
1591 error_setg_errno(errp, errno, "Failed to set iommu for container");
1592 return -errno;
1593 }
1594
1595 container->iommu_type = iommu_type;
1596 return 0;
1597 }
1598
1599 static int vfio_get_iommu_info(VFIOContainer *container,
1600 struct vfio_iommu_type1_info **info)
1601 {
1602
1603 size_t argsz = sizeof(struct vfio_iommu_type1_info);
1604
1605 *info = g_new0(struct vfio_iommu_type1_info, 1);
1606 again:
1607 (*info)->argsz = argsz;
1608
1609 if (ioctl(container->fd, VFIO_IOMMU_GET_INFO, *info)) {
1610 g_free(*info);
1611 *info = NULL;
1612 return -errno;
1613 }
1614
1615 if (((*info)->argsz > argsz)) {
1616 argsz = (*info)->argsz;
1617 *info = g_realloc(*info, argsz);
1618 goto again;
1619 }
1620
1621 return 0;
1622 }
1623
1624 static struct vfio_info_cap_header *
1625 vfio_get_iommu_info_cap(struct vfio_iommu_type1_info *info, uint16_t id)
1626 {
1627 struct vfio_info_cap_header *hdr;
1628 void *ptr = info;
1629
1630 if (!(info->flags & VFIO_IOMMU_INFO_CAPS)) {
1631 return NULL;
1632 }
1633
1634 for (hdr = ptr + info->cap_offset; hdr != ptr; hdr = ptr + hdr->next) {
1635 if (hdr->id == id) {
1636 return hdr;
1637 }
1638 }
1639
1640 return NULL;
1641 }
1642
1643 static void vfio_get_iommu_info_migration(VFIOContainer *container,
1644 struct vfio_iommu_type1_info *info)
1645 {
1646 struct vfio_info_cap_header *hdr;
1647 struct vfio_iommu_type1_info_cap_migration *cap_mig;
1648
1649 hdr = vfio_get_iommu_info_cap(info, VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION);
1650 if (!hdr) {
1651 return;
1652 }
1653
1654 cap_mig = container_of(hdr, struct vfio_iommu_type1_info_cap_migration,
1655 header);
1656
1657 /*
1658 * cpu_physical_memory_set_dirty_lebitmap() expects pages in bitmap of
1659 * TARGET_PAGE_SIZE to mark those dirty.
1660 */
1661 if (cap_mig->pgsize_bitmap & TARGET_PAGE_SIZE) {
1662 container->dirty_pages_supported = true;
1663 container->max_dirty_bitmap_size = cap_mig->max_dirty_bitmap_size;
1664 container->dirty_pgsizes = cap_mig->pgsize_bitmap;
1665 }
1666 }
1667
1668 static int vfio_connect_container(VFIOGroup *group, AddressSpace *as,
1669 Error **errp)
1670 {
1671 VFIOContainer *container;
1672 int ret, fd;
1673 VFIOAddressSpace *space;
1674
1675 space = vfio_get_address_space(as);
1676
1677 /*
1678 * VFIO is currently incompatible with discarding of RAM insofar as the
1679 * madvise to purge (zap) the page from QEMU's address space does not
1680 * interact with the memory API and therefore leaves stale virtual to
1681 * physical mappings in the IOMMU if the page was previously pinned. We
1682 * therefore set discarding broken for each group added to a container,
1683 * whether the container is used individually or shared. This provides
1684 * us with options to allow devices within a group to opt-in and allow
1685 * discarding, so long as it is done consistently for a group (for instance
1686 * if the device is an mdev device where it is known that the host vendor
1687 * driver will never pin pages outside of the working set of the guest
1688 * driver, which would thus not be discarding candidates).
1689 *
1690 * The first opportunity to induce pinning occurs here where we attempt to
1691 * attach the group to existing containers within the AddressSpace. If any
1692 * pages are already zapped from the virtual address space, such as from
1693 * previous discards, new pinning will cause valid mappings to be
1694 * re-established. Likewise, when the overall MemoryListener for a new
1695 * container is registered, a replay of mappings within the AddressSpace
1696 * will occur, re-establishing any previously zapped pages as well.
1697 *
1698 * Especially virtio-balloon is currently only prevented from discarding
1699 * new memory, it will not yet set ram_block_discard_set_required() and
1700 * therefore, neither stops us here or deals with the sudden memory
1701 * consumption of inflated memory.
1702 */
1703 ret = ram_block_discard_disable(true);
1704 if (ret) {
1705 error_setg_errno(errp, -ret, "Cannot set discarding of RAM broken");
1706 return ret;
1707 }
1708
1709 QLIST_FOREACH(container, &space->containers, next) {
1710 if (!ioctl(group->fd, VFIO_GROUP_SET_CONTAINER, &container->fd)) {
1711 group->container = container;
1712 QLIST_INSERT_HEAD(&container->group_list, group, container_next);
1713 vfio_kvm_device_add_group(group);
1714 return 0;
1715 }
1716 }
1717
1718 fd = qemu_open_old("/dev/vfio/vfio", O_RDWR);
1719 if (fd < 0) {
1720 error_setg_errno(errp, errno, "failed to open /dev/vfio/vfio");
1721 ret = -errno;
1722 goto put_space_exit;
1723 }
1724
1725 ret = ioctl(fd, VFIO_GET_API_VERSION);
1726 if (ret != VFIO_API_VERSION) {
1727 error_setg(errp, "supported vfio version: %d, "
1728 "reported version: %d", VFIO_API_VERSION, ret);
1729 ret = -EINVAL;
1730 goto close_fd_exit;
1731 }
1732
1733 container = g_malloc0(sizeof(*container));
1734 container->space = space;
1735 container->fd = fd;
1736 container->error = NULL;
1737 container->dirty_pages_supported = false;
1738 QLIST_INIT(&container->giommu_list);
1739 QLIST_INIT(&container->hostwin_list);
1740
1741 ret = vfio_init_container(container, group->fd, errp);
1742 if (ret) {
1743 goto free_container_exit;
1744 }
1745
1746 switch (container->iommu_type) {
1747 case VFIO_TYPE1v2_IOMMU:
1748 case VFIO_TYPE1_IOMMU:
1749 {
1750 struct vfio_iommu_type1_info *info;
1751
1752 /*
1753 * FIXME: This assumes that a Type1 IOMMU can map any 64-bit
1754 * IOVA whatsoever. That's not actually true, but the current
1755 * kernel interface doesn't tell us what it can map, and the
1756 * existing Type1 IOMMUs generally support any IOVA we're
1757 * going to actually try in practice.
1758 */
1759 ret = vfio_get_iommu_info(container, &info);
1760
1761 if (ret || !(info->flags & VFIO_IOMMU_INFO_PGSIZES)) {
1762 /* Assume 4k IOVA page size */
1763 info->iova_pgsizes = 4096;
1764 }
1765 vfio_host_win_add(container, 0, (hwaddr)-1, info->iova_pgsizes);
1766 container->pgsizes = info->iova_pgsizes;
1767
1768 if (!ret) {
1769 vfio_get_iommu_info_migration(container, info);
1770 }
1771 g_free(info);
1772 break;
1773 }
1774 case VFIO_SPAPR_TCE_v2_IOMMU:
1775 case VFIO_SPAPR_TCE_IOMMU:
1776 {
1777 struct vfio_iommu_spapr_tce_info info;
1778 bool v2 = container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU;
1779
1780 /*
1781 * The host kernel code implementing VFIO_IOMMU_DISABLE is called
1782 * when container fd is closed so we do not call it explicitly
1783 * in this file.
1784 */
1785 if (!v2) {
1786 ret = ioctl(fd, VFIO_IOMMU_ENABLE);
1787 if (ret) {
1788 error_setg_errno(errp, errno, "failed to enable container");
1789 ret = -errno;
1790 goto free_container_exit;
1791 }
1792 } else {
1793 container->prereg_listener = vfio_prereg_listener;
1794
1795 memory_listener_register(&container->prereg_listener,
1796 &address_space_memory);
1797 if (container->error) {
1798 memory_listener_unregister(&container->prereg_listener);
1799 ret = -1;
1800 error_propagate_prepend(errp, container->error,
1801 "RAM memory listener initialization failed: ");
1802 goto free_container_exit;
1803 }
1804 }
1805
1806 info.argsz = sizeof(info);
1807 ret = ioctl(fd, VFIO_IOMMU_SPAPR_TCE_GET_INFO, &info);
1808 if (ret) {
1809 error_setg_errno(errp, errno,
1810 "VFIO_IOMMU_SPAPR_TCE_GET_INFO failed");
1811 ret = -errno;
1812 if (v2) {
1813 memory_listener_unregister(&container->prereg_listener);
1814 }
1815 goto free_container_exit;
1816 }
1817
1818 if (v2) {
1819 container->pgsizes = info.ddw.pgsizes;
1820 /*
1821 * There is a default window in just created container.
1822 * To make region_add/del simpler, we better remove this
1823 * window now and let those iommu_listener callbacks
1824 * create/remove them when needed.
1825 */
1826 ret = vfio_spapr_remove_window(container, info.dma32_window_start);
1827 if (ret) {
1828 error_setg_errno(errp, -ret,
1829 "failed to remove existing window");
1830 goto free_container_exit;
1831 }
1832 } else {
1833 /* The default table uses 4K pages */
1834 container->pgsizes = 0x1000;
1835 vfio_host_win_add(container, info.dma32_window_start,
1836 info.dma32_window_start +
1837 info.dma32_window_size - 1,
1838 0x1000);
1839 }
1840 }
1841 }
1842
1843 vfio_kvm_device_add_group(group);
1844
1845 QLIST_INIT(&container->group_list);
1846 QLIST_INSERT_HEAD(&space->containers, container, next);
1847
1848 group->container = container;
1849 QLIST_INSERT_HEAD(&container->group_list, group, container_next);
1850
1851 container->listener = vfio_memory_listener;
1852
1853 memory_listener_register(&container->listener, container->space->as);
1854
1855 if (container->error) {
1856 ret = -1;
1857 error_propagate_prepend(errp, container->error,
1858 "memory listener initialization failed: ");
1859 goto listener_release_exit;
1860 }
1861
1862 container->initialized = true;
1863
1864 return 0;
1865 listener_release_exit:
1866 QLIST_REMOVE(group, container_next);
1867 QLIST_REMOVE(container, next);
1868 vfio_kvm_device_del_group(group);
1869 vfio_listener_release(container);
1870
1871 free_container_exit:
1872 g_free(container);
1873
1874 close_fd_exit:
1875 close(fd);
1876
1877 put_space_exit:
1878 ram_block_discard_disable(false);
1879 vfio_put_address_space(space);
1880
1881 return ret;
1882 }
1883
1884 static void vfio_disconnect_container(VFIOGroup *group)
1885 {
1886 VFIOContainer *container = group->container;
1887
1888 QLIST_REMOVE(group, container_next);
1889 group->container = NULL;
1890
1891 /*
1892 * Explicitly release the listener first before unset container,
1893 * since unset may destroy the backend container if it's the last
1894 * group.
1895 */
1896 if (QLIST_EMPTY(&container->group_list)) {
1897 vfio_listener_release(container);
1898 }
1899
1900 if (ioctl(group->fd, VFIO_GROUP_UNSET_CONTAINER, &container->fd)) {
1901 error_report("vfio: error disconnecting group %d from container",
1902 group->groupid);
1903 }
1904
1905 if (QLIST_EMPTY(&container->group_list)) {
1906 VFIOAddressSpace *space = container->space;
1907 VFIOGuestIOMMU *giommu, *tmp;
1908
1909 QLIST_REMOVE(container, next);
1910
1911 QLIST_FOREACH_SAFE(giommu, &container->giommu_list, giommu_next, tmp) {
1912 memory_region_unregister_iommu_notifier(
1913 MEMORY_REGION(giommu->iommu), &giommu->n);
1914 QLIST_REMOVE(giommu, giommu_next);
1915 g_free(giommu);
1916 }
1917
1918 trace_vfio_disconnect_container(container->fd);
1919 close(container->fd);
1920 g_free(container);
1921
1922 vfio_put_address_space(space);
1923 }
1924 }
1925
1926 VFIOGroup *vfio_get_group(int groupid, AddressSpace *as, Error **errp)
1927 {
1928 VFIOGroup *group;
1929 char path[32];
1930 struct vfio_group_status status = { .argsz = sizeof(status) };
1931
1932 QLIST_FOREACH(group, &vfio_group_list, next) {
1933 if (group->groupid == groupid) {
1934 /* Found it. Now is it already in the right context? */
1935 if (group->container->space->as == as) {
1936 return group;
1937 } else {
1938 error_setg(errp, "group %d used in multiple address spaces",
1939 group->groupid);
1940 return NULL;
1941 }
1942 }
1943 }
1944
1945 group = g_malloc0(sizeof(*group));
1946
1947 snprintf(path, sizeof(path), "/dev/vfio/%d", groupid);
1948 group->fd = qemu_open_old(path, O_RDWR);
1949 if (group->fd < 0) {
1950 error_setg_errno(errp, errno, "failed to open %s", path);
1951 goto free_group_exit;
1952 }
1953
1954 if (ioctl(group->fd, VFIO_GROUP_GET_STATUS, &status)) {
1955 error_setg_errno(errp, errno, "failed to get group %d status", groupid);
1956 goto close_fd_exit;
1957 }
1958
1959 if (!(status.flags & VFIO_GROUP_FLAGS_VIABLE)) {
1960 error_setg(errp, "group %d is not viable", groupid);
1961 error_append_hint(errp,
1962 "Please ensure all devices within the iommu_group "
1963 "are bound to their vfio bus driver.\n");
1964 goto close_fd_exit;
1965 }
1966
1967 group->groupid = groupid;
1968 QLIST_INIT(&group->device_list);
1969
1970 if (vfio_connect_container(group, as, errp)) {
1971 error_prepend(errp, "failed to setup container for group %d: ",
1972 groupid);
1973 goto close_fd_exit;
1974 }
1975
1976 if (QLIST_EMPTY(&vfio_group_list)) {
1977 qemu_register_reset(vfio_reset_handler, NULL);
1978 }
1979
1980 QLIST_INSERT_HEAD(&vfio_group_list, group, next);
1981
1982 return group;
1983
1984 close_fd_exit:
1985 close(group->fd);
1986
1987 free_group_exit:
1988 g_free(group);
1989
1990 return NULL;
1991 }
1992
1993 void vfio_put_group(VFIOGroup *group)
1994 {
1995 if (!group || !QLIST_EMPTY(&group->device_list)) {
1996 return;
1997 }
1998
1999 if (!group->ram_block_discard_allowed) {
2000 ram_block_discard_disable(false);
2001 }
2002 vfio_kvm_device_del_group(group);
2003 vfio_disconnect_container(group);
2004 QLIST_REMOVE(group, next);
2005 trace_vfio_put_group(group->fd);
2006 close(group->fd);
2007 g_free(group);
2008
2009 if (QLIST_EMPTY(&vfio_group_list)) {
2010 qemu_unregister_reset(vfio_reset_handler, NULL);
2011 }
2012 }
2013
2014 int vfio_get_device(VFIOGroup *group, const char *name,
2015 VFIODevice *vbasedev, Error **errp)
2016 {
2017 struct vfio_device_info dev_info = { .argsz = sizeof(dev_info) };
2018 int ret, fd;
2019
2020 fd = ioctl(group->fd, VFIO_GROUP_GET_DEVICE_FD, name);
2021 if (fd < 0) {
2022 error_setg_errno(errp, errno, "error getting device from group %d",
2023 group->groupid);
2024 error_append_hint(errp,
2025 "Verify all devices in group %d are bound to vfio-<bus> "
2026 "or pci-stub and not already in use\n", group->groupid);
2027 return fd;
2028 }
2029
2030 ret = ioctl(fd, VFIO_DEVICE_GET_INFO, &dev_info);
2031 if (ret) {
2032 error_setg_errno(errp, errno, "error getting device info");
2033 close(fd);
2034 return ret;
2035 }
2036
2037 /*
2038 * Set discarding of RAM as not broken for this group if the driver knows
2039 * the device operates compatibly with discarding. Setting must be
2040 * consistent per group, but since compatibility is really only possible
2041 * with mdev currently, we expect singleton groups.
2042 */
2043 if (vbasedev->ram_block_discard_allowed !=
2044 group->ram_block_discard_allowed) {
2045 if (!QLIST_EMPTY(&group->device_list)) {
2046 error_setg(errp, "Inconsistent setting of support for discarding "
2047 "RAM (e.g., balloon) within group");
2048 close(fd);
2049 return -1;
2050 }
2051
2052 if (!group->ram_block_discard_allowed) {
2053 group->ram_block_discard_allowed = true;
2054 ram_block_discard_disable(false);
2055 }
2056 }
2057
2058 vbasedev->fd = fd;
2059 vbasedev->group = group;
2060 QLIST_INSERT_HEAD(&group->device_list, vbasedev, next);
2061
2062 vbasedev->num_irqs = dev_info.num_irqs;
2063 vbasedev->num_regions = dev_info.num_regions;
2064 vbasedev->flags = dev_info.flags;
2065
2066 trace_vfio_get_device(name, dev_info.flags, dev_info.num_regions,
2067 dev_info.num_irqs);
2068
2069 vbasedev->reset_works = !!(dev_info.flags & VFIO_DEVICE_FLAGS_RESET);
2070 return 0;
2071 }
2072
2073 void vfio_put_base_device(VFIODevice *vbasedev)
2074 {
2075 if (!vbasedev->group) {
2076 return;
2077 }
2078 QLIST_REMOVE(vbasedev, next);
2079 vbasedev->group = NULL;
2080 trace_vfio_put_base_device(vbasedev->fd);
2081 close(vbasedev->fd);
2082 }
2083
2084 int vfio_get_region_info(VFIODevice *vbasedev, int index,
2085 struct vfio_region_info **info)
2086 {
2087 size_t argsz = sizeof(struct vfio_region_info);
2088
2089 *info = g_malloc0(argsz);
2090
2091 (*info)->index = index;
2092 retry:
2093 (*info)->argsz = argsz;
2094
2095 if (ioctl(vbasedev->fd, VFIO_DEVICE_GET_REGION_INFO, *info)) {
2096 g_free(*info);
2097 *info = NULL;
2098 return -errno;
2099 }
2100
2101 if ((*info)->argsz > argsz) {
2102 argsz = (*info)->argsz;
2103 *info = g_realloc(*info, argsz);
2104
2105 goto retry;
2106 }
2107
2108 return 0;
2109 }
2110
2111 int vfio_get_dev_region_info(VFIODevice *vbasedev, uint32_t type,
2112 uint32_t subtype, struct vfio_region_info **info)
2113 {
2114 int i;
2115
2116 for (i = 0; i < vbasedev->num_regions; i++) {
2117 struct vfio_info_cap_header *hdr;
2118 struct vfio_region_info_cap_type *cap_type;
2119
2120 if (vfio_get_region_info(vbasedev, i, info)) {
2121 continue;
2122 }
2123
2124 hdr = vfio_get_region_info_cap(*info, VFIO_REGION_INFO_CAP_TYPE);
2125 if (!hdr) {
2126 g_free(*info);
2127 continue;
2128 }
2129
2130 cap_type = container_of(hdr, struct vfio_region_info_cap_type, header);
2131
2132 trace_vfio_get_dev_region(vbasedev->name, i,
2133 cap_type->type, cap_type->subtype);
2134
2135 if (cap_type->type == type && cap_type->subtype == subtype) {
2136 return 0;
2137 }
2138
2139 g_free(*info);
2140 }
2141
2142 *info = NULL;
2143 return -ENODEV;
2144 }
2145
2146 bool vfio_has_region_cap(VFIODevice *vbasedev, int region, uint16_t cap_type)
2147 {
2148 struct vfio_region_info *info = NULL;
2149 bool ret = false;
2150
2151 if (!vfio_get_region_info(vbasedev, region, &info)) {
2152 if (vfio_get_region_info_cap(info, cap_type)) {
2153 ret = true;
2154 }
2155 g_free(info);
2156 }
2157
2158 return ret;
2159 }
2160
2161 /*
2162 * Interfaces for IBM EEH (Enhanced Error Handling)
2163 */
2164 static bool vfio_eeh_container_ok(VFIOContainer *container)
2165 {
2166 /*
2167 * As of 2016-03-04 (linux-4.5) the host kernel EEH/VFIO
2168 * implementation is broken if there are multiple groups in a
2169 * container. The hardware works in units of Partitionable
2170 * Endpoints (== IOMMU groups) and the EEH operations naively
2171 * iterate across all groups in the container, without any logic
2172 * to make sure the groups have their state synchronized. For
2173 * certain operations (ENABLE) that might be ok, until an error
2174 * occurs, but for others (GET_STATE) it's clearly broken.
2175 */
2176
2177 /*
2178 * XXX Once fixed kernels exist, test for them here
2179 */
2180
2181 if (QLIST_EMPTY(&container->group_list)) {
2182 return false;
2183 }
2184
2185 if (QLIST_NEXT(QLIST_FIRST(&container->group_list), container_next)) {
2186 return false;
2187 }
2188
2189 return true;
2190 }
2191
2192 static int vfio_eeh_container_op(VFIOContainer *container, uint32_t op)
2193 {
2194 struct vfio_eeh_pe_op pe_op = {
2195 .argsz = sizeof(pe_op),
2196 .op = op,
2197 };
2198 int ret;
2199
2200 if (!vfio_eeh_container_ok(container)) {
2201 error_report("vfio/eeh: EEH_PE_OP 0x%x: "
2202 "kernel requires a container with exactly one group", op);
2203 return -EPERM;
2204 }
2205
2206 ret = ioctl(container->fd, VFIO_EEH_PE_OP, &pe_op);
2207 if (ret < 0) {
2208 error_report("vfio/eeh: EEH_PE_OP 0x%x failed: %m", op);
2209 return -errno;
2210 }
2211
2212 return ret;
2213 }
2214
2215 static VFIOContainer *vfio_eeh_as_container(AddressSpace *as)
2216 {
2217 VFIOAddressSpace *space = vfio_get_address_space(as);
2218 VFIOContainer *container = NULL;
2219
2220 if (QLIST_EMPTY(&space->containers)) {
2221 /* No containers to act on */
2222 goto out;
2223 }
2224
2225 container = QLIST_FIRST(&space->containers);
2226
2227 if (QLIST_NEXT(container, next)) {
2228 /* We don't yet have logic to synchronize EEH state across
2229 * multiple containers */
2230 container = NULL;
2231 goto out;
2232 }
2233
2234 out:
2235 vfio_put_address_space(space);
2236 return container;
2237 }
2238
2239 bool vfio_eeh_as_ok(AddressSpace *as)
2240 {
2241 VFIOContainer *container = vfio_eeh_as_container(as);
2242
2243 return (container != NULL) && vfio_eeh_container_ok(container);
2244 }
2245
2246 int vfio_eeh_as_op(AddressSpace *as, uint32_t op)
2247 {
2248 VFIOContainer *container = vfio_eeh_as_container(as);
2249
2250 if (!container) {
2251 return -ENODEV;
2252 }
2253 return vfio_eeh_container_op(container, op);
2254 }