c5c4e943a8453083e806156222f8c6bce35062e2
[qemu.git] / hw / xen / xen_pt_config_init.c
1 /*
2 * Copyright (c) 2007, Neocleus Corporation.
3 * Copyright (c) 2007, Intel Corporation.
4 *
5 * This work is licensed under the terms of the GNU GPL, version 2. See
6 * the COPYING file in the top-level directory.
7 *
8 * Alex Novik <alex@neocleus.com>
9 * Allen Kay <allen.m.kay@intel.com>
10 * Guy Zana <guy@neocleus.com>
11 *
12 * This file implements direct PCI assignment to a HVM guest
13 */
14
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include "qemu/timer.h"
18 #include "hw/xen/xen-legacy-backend.h"
19 #include "xen_pt.h"
20
21 #define XEN_PT_MERGE_VALUE(value, data, val_mask) \
22 (((value) & (val_mask)) | ((data) & ~(val_mask)))
23
24 #define XEN_PT_INVALID_REG 0xFFFFFFFF /* invalid register value */
25
26 /* prototype */
27
28 static int xen_pt_ptr_reg_init(XenPCIPassthroughState *s, XenPTRegInfo *reg,
29 uint32_t real_offset, uint32_t *data);
30
31
32 /* helper */
33
34 /* A return value of 1 means the capability should NOT be exposed to guest. */
35 static int xen_pt_hide_dev_cap(const XenHostPCIDevice *d, uint8_t grp_id)
36 {
37 switch (grp_id) {
38 case PCI_CAP_ID_EXP:
39 /* The PCI Express Capability Structure of the VF of Intel 82599 10GbE
40 * Controller looks trivial, e.g., the PCI Express Capabilities
41 * Register is 0. We should not try to expose it to guest.
42 *
43 * The datasheet is available at
44 * http://download.intel.com/design/network/datashts/82599_datasheet.pdf
45 *
46 * See 'Table 9.7. VF PCIe Configuration Space' of the datasheet, the
47 * PCI Express Capability Structure of the VF of Intel 82599 10GbE
48 * Controller looks trivial, e.g., the PCI Express Capabilities
49 * Register is 0, so the Capability Version is 0 and
50 * xen_pt_pcie_size_init() would fail.
51 */
52 if (d->vendor_id == PCI_VENDOR_ID_INTEL &&
53 d->device_id == PCI_DEVICE_ID_INTEL_82599_SFP_VF) {
54 return 1;
55 }
56 break;
57 }
58 return 0;
59 }
60
61 /* find emulate register group entry */
62 XenPTRegGroup *xen_pt_find_reg_grp(XenPCIPassthroughState *s, uint32_t address)
63 {
64 XenPTRegGroup *entry = NULL;
65
66 /* find register group entry */
67 QLIST_FOREACH(entry, &s->reg_grps, entries) {
68 /* check address */
69 if ((entry->base_offset <= address)
70 && ((entry->base_offset + entry->size) > address)) {
71 return entry;
72 }
73 }
74
75 /* group entry not found */
76 return NULL;
77 }
78
79 /* find emulate register entry */
80 XenPTReg *xen_pt_find_reg(XenPTRegGroup *reg_grp, uint32_t address)
81 {
82 XenPTReg *reg_entry = NULL;
83 XenPTRegInfo *reg = NULL;
84 uint32_t real_offset = 0;
85
86 /* find register entry */
87 QLIST_FOREACH(reg_entry, &reg_grp->reg_tbl_list, entries) {
88 reg = reg_entry->reg;
89 real_offset = reg_grp->base_offset + reg->offset;
90 /* check address */
91 if ((real_offset <= address)
92 && ((real_offset + reg->size) > address)) {
93 return reg_entry;
94 }
95 }
96
97 return NULL;
98 }
99
100 static uint32_t get_throughable_mask(const XenPCIPassthroughState *s,
101 XenPTRegInfo *reg, uint32_t valid_mask)
102 {
103 uint32_t throughable_mask = ~(reg->emu_mask | reg->ro_mask);
104
105 if (!s->permissive) {
106 throughable_mask &= ~reg->res_mask;
107 }
108
109 return throughable_mask & valid_mask;
110 }
111
112 /****************
113 * general register functions
114 */
115
116 /* register initialization function */
117
118 static int xen_pt_common_reg_init(XenPCIPassthroughState *s,
119 XenPTRegInfo *reg, uint32_t real_offset,
120 uint32_t *data)
121 {
122 *data = reg->init_val;
123 return 0;
124 }
125
126 /* Read register functions */
127
128 static int xen_pt_byte_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
129 uint8_t *value, uint8_t valid_mask)
130 {
131 XenPTRegInfo *reg = cfg_entry->reg;
132 uint8_t valid_emu_mask = 0;
133 uint8_t *data = cfg_entry->ptr.byte;
134
135 /* emulate byte register */
136 valid_emu_mask = reg->emu_mask & valid_mask;
137 *value = XEN_PT_MERGE_VALUE(*value, *data, ~valid_emu_mask);
138
139 return 0;
140 }
141 static int xen_pt_word_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
142 uint16_t *value, uint16_t valid_mask)
143 {
144 XenPTRegInfo *reg = cfg_entry->reg;
145 uint16_t valid_emu_mask = 0;
146 uint16_t *data = cfg_entry->ptr.half_word;
147
148 /* emulate word register */
149 valid_emu_mask = reg->emu_mask & valid_mask;
150 *value = XEN_PT_MERGE_VALUE(*value, *data, ~valid_emu_mask);
151
152 return 0;
153 }
154 static int xen_pt_long_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
155 uint32_t *value, uint32_t valid_mask)
156 {
157 XenPTRegInfo *reg = cfg_entry->reg;
158 uint32_t valid_emu_mask = 0;
159 uint32_t *data = cfg_entry->ptr.word;
160
161 /* emulate long register */
162 valid_emu_mask = reg->emu_mask & valid_mask;
163 *value = XEN_PT_MERGE_VALUE(*value, *data, ~valid_emu_mask);
164
165 return 0;
166 }
167
168 /* Write register functions */
169
170 static int xen_pt_byte_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
171 uint8_t *val, uint8_t dev_value,
172 uint8_t valid_mask)
173 {
174 XenPTRegInfo *reg = cfg_entry->reg;
175 uint8_t writable_mask = 0;
176 uint8_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
177 uint8_t *data = cfg_entry->ptr.byte;
178
179 /* modify emulate register */
180 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
181 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
182
183 /* create value for writing to I/O device register */
184 *val = XEN_PT_MERGE_VALUE(*val, dev_value & ~reg->rw1c_mask,
185 throughable_mask);
186
187 return 0;
188 }
189 static int xen_pt_word_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
190 uint16_t *val, uint16_t dev_value,
191 uint16_t valid_mask)
192 {
193 XenPTRegInfo *reg = cfg_entry->reg;
194 uint16_t writable_mask = 0;
195 uint16_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
196 uint16_t *data = cfg_entry->ptr.half_word;
197
198 /* modify emulate register */
199 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
200 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
201
202 /* create value for writing to I/O device register */
203 *val = XEN_PT_MERGE_VALUE(*val, dev_value & ~reg->rw1c_mask,
204 throughable_mask);
205
206 return 0;
207 }
208 static int xen_pt_long_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
209 uint32_t *val, uint32_t dev_value,
210 uint32_t valid_mask)
211 {
212 XenPTRegInfo *reg = cfg_entry->reg;
213 uint32_t writable_mask = 0;
214 uint32_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
215 uint32_t *data = cfg_entry->ptr.word;
216
217 /* modify emulate register */
218 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
219 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
220
221 /* create value for writing to I/O device register */
222 *val = XEN_PT_MERGE_VALUE(*val, dev_value & ~reg->rw1c_mask,
223 throughable_mask);
224
225 return 0;
226 }
227
228
229 /* XenPTRegInfo declaration
230 * - only for emulated register (either a part or whole bit).
231 * - for passthrough register that need special behavior (like interacting with
232 * other component), set emu_mask to all 0 and specify r/w func properly.
233 * - do NOT use ALL F for init_val, otherwise the tbl will not be registered.
234 */
235
236 /********************
237 * Header Type0
238 */
239
240 static int xen_pt_vendor_reg_init(XenPCIPassthroughState *s,
241 XenPTRegInfo *reg, uint32_t real_offset,
242 uint32_t *data)
243 {
244 *data = s->real_device.vendor_id;
245 return 0;
246 }
247 static int xen_pt_device_reg_init(XenPCIPassthroughState *s,
248 XenPTRegInfo *reg, uint32_t real_offset,
249 uint32_t *data)
250 {
251 *data = s->real_device.device_id;
252 return 0;
253 }
254 static int xen_pt_status_reg_init(XenPCIPassthroughState *s,
255 XenPTRegInfo *reg, uint32_t real_offset,
256 uint32_t *data)
257 {
258 XenPTRegGroup *reg_grp_entry = NULL;
259 XenPTReg *reg_entry = NULL;
260 uint32_t reg_field = 0;
261
262 /* find Header register group */
263 reg_grp_entry = xen_pt_find_reg_grp(s, PCI_CAPABILITY_LIST);
264 if (reg_grp_entry) {
265 /* find Capabilities Pointer register */
266 reg_entry = xen_pt_find_reg(reg_grp_entry, PCI_CAPABILITY_LIST);
267 if (reg_entry) {
268 /* check Capabilities Pointer register */
269 if (*reg_entry->ptr.half_word) {
270 reg_field |= PCI_STATUS_CAP_LIST;
271 } else {
272 reg_field &= ~PCI_STATUS_CAP_LIST;
273 }
274 } else {
275 xen_shutdown_fatal_error("Internal error: Couldn't find XenPTReg*"
276 " for Capabilities Pointer register."
277 " (%s)\n", __func__);
278 return -1;
279 }
280 } else {
281 xen_shutdown_fatal_error("Internal error: Couldn't find XenPTRegGroup"
282 " for Header. (%s)\n", __func__);
283 return -1;
284 }
285
286 *data = reg_field;
287 return 0;
288 }
289 static int xen_pt_header_type_reg_init(XenPCIPassthroughState *s,
290 XenPTRegInfo *reg, uint32_t real_offset,
291 uint32_t *data)
292 {
293 /* read PCI_HEADER_TYPE */
294 *data = reg->init_val | 0x80;
295 return 0;
296 }
297
298 /* initialize Interrupt Pin register */
299 static int xen_pt_irqpin_reg_init(XenPCIPassthroughState *s,
300 XenPTRegInfo *reg, uint32_t real_offset,
301 uint32_t *data)
302 {
303 if (s->real_device.irq) {
304 *data = xen_pt_pci_read_intx(s);
305 }
306 return 0;
307 }
308
309 /* Command register */
310 static int xen_pt_cmd_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
311 uint16_t *val, uint16_t dev_value,
312 uint16_t valid_mask)
313 {
314 XenPTRegInfo *reg = cfg_entry->reg;
315 uint16_t writable_mask = 0;
316 uint16_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
317 uint16_t *data = cfg_entry->ptr.half_word;
318
319 /* modify emulate register */
320 writable_mask = ~reg->ro_mask & valid_mask;
321 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
322
323 /* create value for writing to I/O device register */
324 if (*val & PCI_COMMAND_INTX_DISABLE) {
325 throughable_mask |= PCI_COMMAND_INTX_DISABLE;
326 } else {
327 if (s->machine_irq) {
328 throughable_mask |= PCI_COMMAND_INTX_DISABLE;
329 }
330 }
331
332 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
333
334 return 0;
335 }
336
337 /* BAR */
338 #define XEN_PT_BAR_MEM_RO_MASK 0x0000000F /* BAR ReadOnly mask(Memory) */
339 #define XEN_PT_BAR_MEM_EMU_MASK 0xFFFFFFF0 /* BAR emul mask(Memory) */
340 #define XEN_PT_BAR_IO_RO_MASK 0x00000003 /* BAR ReadOnly mask(I/O) */
341 #define XEN_PT_BAR_IO_EMU_MASK 0xFFFFFFFC /* BAR emul mask(I/O) */
342
343 static bool is_64bit_bar(PCIIORegion *r)
344 {
345 return !!(r->type & PCI_BASE_ADDRESS_MEM_TYPE_64);
346 }
347
348 static uint64_t xen_pt_get_bar_size(PCIIORegion *r)
349 {
350 if (is_64bit_bar(r)) {
351 uint64_t size64;
352 size64 = (r + 1)->size;
353 size64 <<= 32;
354 size64 += r->size;
355 return size64;
356 }
357 return r->size;
358 }
359
360 static XenPTBarFlag xen_pt_bar_reg_parse(XenPCIPassthroughState *s,
361 int index)
362 {
363 PCIDevice *d = PCI_DEVICE(s);
364 XenPTRegion *region = NULL;
365 PCIIORegion *r;
366
367 /* check 64bit BAR */
368 if ((0 < index) && (index < PCI_ROM_SLOT)) {
369 int type = s->real_device.io_regions[index - 1].type;
370
371 if ((type & XEN_HOST_PCI_REGION_TYPE_MEM)
372 && (type & XEN_HOST_PCI_REGION_TYPE_MEM_64)) {
373 region = &s->bases[index - 1];
374 if (region->bar_flag != XEN_PT_BAR_FLAG_UPPER) {
375 return XEN_PT_BAR_FLAG_UPPER;
376 }
377 }
378 }
379
380 /* check unused BAR */
381 r = &d->io_regions[index];
382 if (!xen_pt_get_bar_size(r)) {
383 return XEN_PT_BAR_FLAG_UNUSED;
384 }
385
386 /* for ExpROM BAR */
387 if (index == PCI_ROM_SLOT) {
388 return XEN_PT_BAR_FLAG_MEM;
389 }
390
391 /* check BAR I/O indicator */
392 if (s->real_device.io_regions[index].type & XEN_HOST_PCI_REGION_TYPE_IO) {
393 return XEN_PT_BAR_FLAG_IO;
394 } else {
395 return XEN_PT_BAR_FLAG_MEM;
396 }
397 }
398
399 static inline uint32_t base_address_with_flags(XenHostPCIIORegion *hr)
400 {
401 if (hr->type & XEN_HOST_PCI_REGION_TYPE_IO) {
402 return hr->base_addr | (hr->bus_flags & ~PCI_BASE_ADDRESS_IO_MASK);
403 } else {
404 return hr->base_addr | (hr->bus_flags & ~PCI_BASE_ADDRESS_MEM_MASK);
405 }
406 }
407
408 static int xen_pt_bar_reg_init(XenPCIPassthroughState *s, XenPTRegInfo *reg,
409 uint32_t real_offset, uint32_t *data)
410 {
411 uint32_t reg_field = 0;
412 int index;
413
414 index = xen_pt_bar_offset_to_index(reg->offset);
415 if (index < 0 || index >= PCI_NUM_REGIONS) {
416 XEN_PT_ERR(&s->dev, "Internal error: Invalid BAR index [%d].\n", index);
417 return -1;
418 }
419
420 /* set BAR flag */
421 s->bases[index].bar_flag = xen_pt_bar_reg_parse(s, index);
422 if (s->bases[index].bar_flag == XEN_PT_BAR_FLAG_UNUSED) {
423 reg_field = XEN_PT_INVALID_REG;
424 }
425
426 *data = reg_field;
427 return 0;
428 }
429 static int xen_pt_bar_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
430 uint32_t *value, uint32_t valid_mask)
431 {
432 XenPTRegInfo *reg = cfg_entry->reg;
433 uint32_t valid_emu_mask = 0;
434 uint32_t bar_emu_mask = 0;
435 int index;
436
437 /* get BAR index */
438 index = xen_pt_bar_offset_to_index(reg->offset);
439 if (index < 0 || index >= PCI_NUM_REGIONS - 1) {
440 XEN_PT_ERR(&s->dev, "Internal error: Invalid BAR index [%d].\n", index);
441 return -1;
442 }
443
444 /* use fixed-up value from kernel sysfs */
445 *value = base_address_with_flags(&s->real_device.io_regions[index]);
446
447 /* set emulate mask depend on BAR flag */
448 switch (s->bases[index].bar_flag) {
449 case XEN_PT_BAR_FLAG_MEM:
450 bar_emu_mask = XEN_PT_BAR_MEM_EMU_MASK;
451 break;
452 case XEN_PT_BAR_FLAG_IO:
453 bar_emu_mask = XEN_PT_BAR_IO_EMU_MASK;
454 break;
455 case XEN_PT_BAR_FLAG_UPPER:
456 bar_emu_mask = XEN_PT_BAR_ALLF;
457 break;
458 default:
459 break;
460 }
461
462 /* emulate BAR */
463 valid_emu_mask = bar_emu_mask & valid_mask;
464 *value = XEN_PT_MERGE_VALUE(*value, *cfg_entry->ptr.word, ~valid_emu_mask);
465
466 return 0;
467 }
468 static int xen_pt_bar_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
469 uint32_t *val, uint32_t dev_value,
470 uint32_t valid_mask)
471 {
472 XenPTRegInfo *reg = cfg_entry->reg;
473 XenPTRegion *base = NULL;
474 PCIDevice *d = PCI_DEVICE(s);
475 const PCIIORegion *r;
476 uint32_t writable_mask = 0;
477 uint32_t bar_emu_mask = 0;
478 uint32_t bar_ro_mask = 0;
479 uint32_t r_size = 0;
480 int index = 0;
481 uint32_t *data = cfg_entry->ptr.word;
482
483 index = xen_pt_bar_offset_to_index(reg->offset);
484 if (index < 0 || index >= PCI_NUM_REGIONS) {
485 XEN_PT_ERR(d, "Internal error: Invalid BAR index [%d].\n", index);
486 return -1;
487 }
488
489 r = &d->io_regions[index];
490 base = &s->bases[index];
491 r_size = xen_pt_get_emul_size(base->bar_flag, r->size);
492
493 /* set emulate mask and read-only mask values depend on the BAR flag */
494 switch (s->bases[index].bar_flag) {
495 case XEN_PT_BAR_FLAG_MEM:
496 bar_emu_mask = XEN_PT_BAR_MEM_EMU_MASK;
497 if (!r_size) {
498 /* low 32 bits mask for 64 bit bars */
499 bar_ro_mask = XEN_PT_BAR_ALLF;
500 } else {
501 bar_ro_mask = XEN_PT_BAR_MEM_RO_MASK | (r_size - 1);
502 }
503 break;
504 case XEN_PT_BAR_FLAG_IO:
505 bar_emu_mask = XEN_PT_BAR_IO_EMU_MASK;
506 bar_ro_mask = XEN_PT_BAR_IO_RO_MASK | (r_size - 1);
507 break;
508 case XEN_PT_BAR_FLAG_UPPER:
509 assert(index > 0);
510 r_size = d->io_regions[index - 1].size >> 32;
511 bar_emu_mask = XEN_PT_BAR_ALLF;
512 bar_ro_mask = r_size ? r_size - 1 : 0;
513 break;
514 default:
515 break;
516 }
517
518 /* modify emulate register */
519 writable_mask = bar_emu_mask & ~bar_ro_mask & valid_mask;
520 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
521
522 /* check whether we need to update the virtual region address or not */
523 switch (s->bases[index].bar_flag) {
524 case XEN_PT_BAR_FLAG_UPPER:
525 case XEN_PT_BAR_FLAG_MEM:
526 /* nothing to do */
527 break;
528 case XEN_PT_BAR_FLAG_IO:
529 /* nothing to do */
530 break;
531 default:
532 break;
533 }
534
535 /* create value for writing to I/O device register */
536 *val = XEN_PT_MERGE_VALUE(*val, dev_value, 0);
537
538 return 0;
539 }
540
541 /* write Exp ROM BAR */
542 static int xen_pt_exp_rom_bar_reg_write(XenPCIPassthroughState *s,
543 XenPTReg *cfg_entry, uint32_t *val,
544 uint32_t dev_value, uint32_t valid_mask)
545 {
546 XenPTRegInfo *reg = cfg_entry->reg;
547 XenPTRegion *base = NULL;
548 PCIDevice *d = PCI_DEVICE(s);
549 uint32_t writable_mask = 0;
550 uint32_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
551 pcibus_t r_size = 0;
552 uint32_t bar_ro_mask = 0;
553 uint32_t *data = cfg_entry->ptr.word;
554
555 r_size = d->io_regions[PCI_ROM_SLOT].size;
556 base = &s->bases[PCI_ROM_SLOT];
557 /* align memory type resource size */
558 r_size = xen_pt_get_emul_size(base->bar_flag, r_size);
559
560 /* set emulate mask and read-only mask */
561 bar_ro_mask = (reg->ro_mask | (r_size - 1)) & ~PCI_ROM_ADDRESS_ENABLE;
562
563 /* modify emulate register */
564 writable_mask = ~bar_ro_mask & valid_mask;
565 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
566
567 /* create value for writing to I/O device register */
568 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
569
570 return 0;
571 }
572
573 static int xen_pt_intel_opregion_read(XenPCIPassthroughState *s,
574 XenPTReg *cfg_entry,
575 uint32_t *value, uint32_t valid_mask)
576 {
577 *value = igd_read_opregion(s);
578 return 0;
579 }
580
581 static int xen_pt_intel_opregion_write(XenPCIPassthroughState *s,
582 XenPTReg *cfg_entry, uint32_t *value,
583 uint32_t dev_value, uint32_t valid_mask)
584 {
585 igd_write_opregion(s, *value);
586 return 0;
587 }
588
589 /* Header Type0 reg static information table */
590 static XenPTRegInfo xen_pt_emu_reg_header0[] = {
591 /* Vendor ID reg */
592 {
593 .offset = PCI_VENDOR_ID,
594 .size = 2,
595 .init_val = 0x0000,
596 .ro_mask = 0xFFFF,
597 .emu_mask = 0xFFFF,
598 .init = xen_pt_vendor_reg_init,
599 .u.w.read = xen_pt_word_reg_read,
600 .u.w.write = xen_pt_word_reg_write,
601 },
602 /* Device ID reg */
603 {
604 .offset = PCI_DEVICE_ID,
605 .size = 2,
606 .init_val = 0x0000,
607 .ro_mask = 0xFFFF,
608 .emu_mask = 0xFFFF,
609 .init = xen_pt_device_reg_init,
610 .u.w.read = xen_pt_word_reg_read,
611 .u.w.write = xen_pt_word_reg_write,
612 },
613 /* Command reg */
614 {
615 .offset = PCI_COMMAND,
616 .size = 2,
617 .init_val = 0x0000,
618 .res_mask = 0xF880,
619 .emu_mask = 0x0743,
620 .init = xen_pt_common_reg_init,
621 .u.w.read = xen_pt_word_reg_read,
622 .u.w.write = xen_pt_cmd_reg_write,
623 },
624 /* Capabilities Pointer reg */
625 {
626 .offset = PCI_CAPABILITY_LIST,
627 .size = 1,
628 .init_val = 0x00,
629 .ro_mask = 0xFF,
630 .emu_mask = 0xFF,
631 .init = xen_pt_ptr_reg_init,
632 .u.b.read = xen_pt_byte_reg_read,
633 .u.b.write = xen_pt_byte_reg_write,
634 },
635 /* Status reg */
636 /* use emulated Cap Ptr value to initialize,
637 * so need to be declared after Cap Ptr reg
638 */
639 {
640 .offset = PCI_STATUS,
641 .size = 2,
642 .init_val = 0x0000,
643 .res_mask = 0x0007,
644 .ro_mask = 0x06F8,
645 .rw1c_mask = 0xF900,
646 .emu_mask = 0x0010,
647 .init = xen_pt_status_reg_init,
648 .u.w.read = xen_pt_word_reg_read,
649 .u.w.write = xen_pt_word_reg_write,
650 },
651 /* Cache Line Size reg */
652 {
653 .offset = PCI_CACHE_LINE_SIZE,
654 .size = 1,
655 .init_val = 0x00,
656 .ro_mask = 0x00,
657 .emu_mask = 0xFF,
658 .init = xen_pt_common_reg_init,
659 .u.b.read = xen_pt_byte_reg_read,
660 .u.b.write = xen_pt_byte_reg_write,
661 },
662 /* Latency Timer reg */
663 {
664 .offset = PCI_LATENCY_TIMER,
665 .size = 1,
666 .init_val = 0x00,
667 .ro_mask = 0x00,
668 .emu_mask = 0xFF,
669 .init = xen_pt_common_reg_init,
670 .u.b.read = xen_pt_byte_reg_read,
671 .u.b.write = xen_pt_byte_reg_write,
672 },
673 /* Header Type reg */
674 {
675 .offset = PCI_HEADER_TYPE,
676 .size = 1,
677 .init_val = 0x00,
678 .ro_mask = 0xFF,
679 .emu_mask = 0x00,
680 .init = xen_pt_header_type_reg_init,
681 .u.b.read = xen_pt_byte_reg_read,
682 .u.b.write = xen_pt_byte_reg_write,
683 },
684 /* Interrupt Line reg */
685 {
686 .offset = PCI_INTERRUPT_LINE,
687 .size = 1,
688 .init_val = 0x00,
689 .ro_mask = 0x00,
690 .emu_mask = 0xFF,
691 .init = xen_pt_common_reg_init,
692 .u.b.read = xen_pt_byte_reg_read,
693 .u.b.write = xen_pt_byte_reg_write,
694 },
695 /* Interrupt Pin reg */
696 {
697 .offset = PCI_INTERRUPT_PIN,
698 .size = 1,
699 .init_val = 0x00,
700 .ro_mask = 0xFF,
701 .emu_mask = 0xFF,
702 .init = xen_pt_irqpin_reg_init,
703 .u.b.read = xen_pt_byte_reg_read,
704 .u.b.write = xen_pt_byte_reg_write,
705 },
706 /* BAR 0 reg */
707 /* mask of BAR need to be decided later, depends on IO/MEM type */
708 {
709 .offset = PCI_BASE_ADDRESS_0,
710 .size = 4,
711 .init_val = 0x00000000,
712 .init = xen_pt_bar_reg_init,
713 .u.dw.read = xen_pt_bar_reg_read,
714 .u.dw.write = xen_pt_bar_reg_write,
715 },
716 /* BAR 1 reg */
717 {
718 .offset = PCI_BASE_ADDRESS_1,
719 .size = 4,
720 .init_val = 0x00000000,
721 .init = xen_pt_bar_reg_init,
722 .u.dw.read = xen_pt_bar_reg_read,
723 .u.dw.write = xen_pt_bar_reg_write,
724 },
725 /* BAR 2 reg */
726 {
727 .offset = PCI_BASE_ADDRESS_2,
728 .size = 4,
729 .init_val = 0x00000000,
730 .init = xen_pt_bar_reg_init,
731 .u.dw.read = xen_pt_bar_reg_read,
732 .u.dw.write = xen_pt_bar_reg_write,
733 },
734 /* BAR 3 reg */
735 {
736 .offset = PCI_BASE_ADDRESS_3,
737 .size = 4,
738 .init_val = 0x00000000,
739 .init = xen_pt_bar_reg_init,
740 .u.dw.read = xen_pt_bar_reg_read,
741 .u.dw.write = xen_pt_bar_reg_write,
742 },
743 /* BAR 4 reg */
744 {
745 .offset = PCI_BASE_ADDRESS_4,
746 .size = 4,
747 .init_val = 0x00000000,
748 .init = xen_pt_bar_reg_init,
749 .u.dw.read = xen_pt_bar_reg_read,
750 .u.dw.write = xen_pt_bar_reg_write,
751 },
752 /* BAR 5 reg */
753 {
754 .offset = PCI_BASE_ADDRESS_5,
755 .size = 4,
756 .init_val = 0x00000000,
757 .init = xen_pt_bar_reg_init,
758 .u.dw.read = xen_pt_bar_reg_read,
759 .u.dw.write = xen_pt_bar_reg_write,
760 },
761 /* Expansion ROM BAR reg */
762 {
763 .offset = PCI_ROM_ADDRESS,
764 .size = 4,
765 .init_val = 0x00000000,
766 .ro_mask = ~PCI_ROM_ADDRESS_MASK & ~PCI_ROM_ADDRESS_ENABLE,
767 .emu_mask = (uint32_t)PCI_ROM_ADDRESS_MASK,
768 .init = xen_pt_bar_reg_init,
769 .u.dw.read = xen_pt_long_reg_read,
770 .u.dw.write = xen_pt_exp_rom_bar_reg_write,
771 },
772 {
773 .size = 0,
774 },
775 };
776
777
778 /*********************************
779 * Vital Product Data Capability
780 */
781
782 /* Vital Product Data Capability Structure reg static information table */
783 static XenPTRegInfo xen_pt_emu_reg_vpd[] = {
784 {
785 .offset = PCI_CAP_LIST_NEXT,
786 .size = 1,
787 .init_val = 0x00,
788 .ro_mask = 0xFF,
789 .emu_mask = 0xFF,
790 .init = xen_pt_ptr_reg_init,
791 .u.b.read = xen_pt_byte_reg_read,
792 .u.b.write = xen_pt_byte_reg_write,
793 },
794 {
795 .offset = PCI_VPD_ADDR,
796 .size = 2,
797 .ro_mask = 0x0003,
798 .emu_mask = 0x0003,
799 .init = xen_pt_common_reg_init,
800 .u.w.read = xen_pt_word_reg_read,
801 .u.w.write = xen_pt_word_reg_write,
802 },
803 {
804 .size = 0,
805 },
806 };
807
808
809 /**************************************
810 * Vendor Specific Capability
811 */
812
813 /* Vendor Specific Capability Structure reg static information table */
814 static XenPTRegInfo xen_pt_emu_reg_vendor[] = {
815 {
816 .offset = PCI_CAP_LIST_NEXT,
817 .size = 1,
818 .init_val = 0x00,
819 .ro_mask = 0xFF,
820 .emu_mask = 0xFF,
821 .init = xen_pt_ptr_reg_init,
822 .u.b.read = xen_pt_byte_reg_read,
823 .u.b.write = xen_pt_byte_reg_write,
824 },
825 {
826 .size = 0,
827 },
828 };
829
830
831 /*****************************
832 * PCI Express Capability
833 */
834
835 static inline uint8_t get_capability_version(XenPCIPassthroughState *s,
836 uint32_t offset)
837 {
838 uint8_t flag;
839 if (xen_host_pci_get_byte(&s->real_device, offset + PCI_EXP_FLAGS, &flag)) {
840 return 0;
841 }
842 return flag & PCI_EXP_FLAGS_VERS;
843 }
844
845 static inline uint8_t get_device_type(XenPCIPassthroughState *s,
846 uint32_t offset)
847 {
848 uint8_t flag;
849 if (xen_host_pci_get_byte(&s->real_device, offset + PCI_EXP_FLAGS, &flag)) {
850 return 0;
851 }
852 return (flag & PCI_EXP_FLAGS_TYPE) >> 4;
853 }
854
855 /* initialize Link Control register */
856 static int xen_pt_linkctrl_reg_init(XenPCIPassthroughState *s,
857 XenPTRegInfo *reg, uint32_t real_offset,
858 uint32_t *data)
859 {
860 uint8_t cap_ver = get_capability_version(s, real_offset - reg->offset);
861 uint8_t dev_type = get_device_type(s, real_offset - reg->offset);
862
863 /* no need to initialize in case of Root Complex Integrated Endpoint
864 * with cap_ver 1.x
865 */
866 if ((dev_type == PCI_EXP_TYPE_RC_END) && (cap_ver == 1)) {
867 *data = XEN_PT_INVALID_REG;
868 }
869
870 *data = reg->init_val;
871 return 0;
872 }
873 /* initialize Device Control 2 register */
874 static int xen_pt_devctrl2_reg_init(XenPCIPassthroughState *s,
875 XenPTRegInfo *reg, uint32_t real_offset,
876 uint32_t *data)
877 {
878 uint8_t cap_ver = get_capability_version(s, real_offset - reg->offset);
879
880 /* no need to initialize in case of cap_ver 1.x */
881 if (cap_ver == 1) {
882 *data = XEN_PT_INVALID_REG;
883 }
884
885 *data = reg->init_val;
886 return 0;
887 }
888 /* initialize Link Control 2 register */
889 static int xen_pt_linkctrl2_reg_init(XenPCIPassthroughState *s,
890 XenPTRegInfo *reg, uint32_t real_offset,
891 uint32_t *data)
892 {
893 uint8_t cap_ver = get_capability_version(s, real_offset - reg->offset);
894 uint32_t reg_field = 0;
895
896 /* no need to initialize in case of cap_ver 1.x */
897 if (cap_ver == 1) {
898 reg_field = XEN_PT_INVALID_REG;
899 } else {
900 /* set Supported Link Speed */
901 uint8_t lnkcap;
902 int rc;
903 rc = xen_host_pci_get_byte(&s->real_device,
904 real_offset - reg->offset + PCI_EXP_LNKCAP,
905 &lnkcap);
906 if (rc) {
907 return rc;
908 }
909 reg_field |= PCI_EXP_LNKCAP_SLS & lnkcap;
910 }
911
912 *data = reg_field;
913 return 0;
914 }
915
916 /* PCI Express Capability Structure reg static information table */
917 static XenPTRegInfo xen_pt_emu_reg_pcie[] = {
918 /* Next Pointer reg */
919 {
920 .offset = PCI_CAP_LIST_NEXT,
921 .size = 1,
922 .init_val = 0x00,
923 .ro_mask = 0xFF,
924 .emu_mask = 0xFF,
925 .init = xen_pt_ptr_reg_init,
926 .u.b.read = xen_pt_byte_reg_read,
927 .u.b.write = xen_pt_byte_reg_write,
928 },
929 /* Device Capabilities reg */
930 {
931 .offset = PCI_EXP_DEVCAP,
932 .size = 4,
933 .init_val = 0x00000000,
934 .ro_mask = 0xFFFFFFFF,
935 .emu_mask = 0x10000000,
936 .init = xen_pt_common_reg_init,
937 .u.dw.read = xen_pt_long_reg_read,
938 .u.dw.write = xen_pt_long_reg_write,
939 },
940 /* Device Control reg */
941 {
942 .offset = PCI_EXP_DEVCTL,
943 .size = 2,
944 .init_val = 0x2810,
945 .ro_mask = 0x8400,
946 .emu_mask = 0xFFFF,
947 .init = xen_pt_common_reg_init,
948 .u.w.read = xen_pt_word_reg_read,
949 .u.w.write = xen_pt_word_reg_write,
950 },
951 /* Device Status reg */
952 {
953 .offset = PCI_EXP_DEVSTA,
954 .size = 2,
955 .res_mask = 0xFFC0,
956 .ro_mask = 0x0030,
957 .rw1c_mask = 0x000F,
958 .init = xen_pt_common_reg_init,
959 .u.w.read = xen_pt_word_reg_read,
960 .u.w.write = xen_pt_word_reg_write,
961 },
962 /* Link Control reg */
963 {
964 .offset = PCI_EXP_LNKCTL,
965 .size = 2,
966 .init_val = 0x0000,
967 .ro_mask = 0xFC34,
968 .emu_mask = 0xFFFF,
969 .init = xen_pt_linkctrl_reg_init,
970 .u.w.read = xen_pt_word_reg_read,
971 .u.w.write = xen_pt_word_reg_write,
972 },
973 /* Link Status reg */
974 {
975 .offset = PCI_EXP_LNKSTA,
976 .size = 2,
977 .ro_mask = 0x3FFF,
978 .rw1c_mask = 0xC000,
979 .init = xen_pt_common_reg_init,
980 .u.w.read = xen_pt_word_reg_read,
981 .u.w.write = xen_pt_word_reg_write,
982 },
983 /* Device Control 2 reg */
984 {
985 .offset = 0x28,
986 .size = 2,
987 .init_val = 0x0000,
988 .ro_mask = 0xFFE0,
989 .emu_mask = 0xFFFF,
990 .init = xen_pt_devctrl2_reg_init,
991 .u.w.read = xen_pt_word_reg_read,
992 .u.w.write = xen_pt_word_reg_write,
993 },
994 /* Link Control 2 reg */
995 {
996 .offset = 0x30,
997 .size = 2,
998 .init_val = 0x0000,
999 .ro_mask = 0xE040,
1000 .emu_mask = 0xFFFF,
1001 .init = xen_pt_linkctrl2_reg_init,
1002 .u.w.read = xen_pt_word_reg_read,
1003 .u.w.write = xen_pt_word_reg_write,
1004 },
1005 {
1006 .size = 0,
1007 },
1008 };
1009
1010
1011 /*********************************
1012 * Power Management Capability
1013 */
1014
1015 /* Power Management Capability reg static information table */
1016 static XenPTRegInfo xen_pt_emu_reg_pm[] = {
1017 /* Next Pointer reg */
1018 {
1019 .offset = PCI_CAP_LIST_NEXT,
1020 .size = 1,
1021 .init_val = 0x00,
1022 .ro_mask = 0xFF,
1023 .emu_mask = 0xFF,
1024 .init = xen_pt_ptr_reg_init,
1025 .u.b.read = xen_pt_byte_reg_read,
1026 .u.b.write = xen_pt_byte_reg_write,
1027 },
1028 /* Power Management Capabilities reg */
1029 {
1030 .offset = PCI_CAP_FLAGS,
1031 .size = 2,
1032 .init_val = 0x0000,
1033 .ro_mask = 0xFFFF,
1034 .emu_mask = 0xF9C8,
1035 .init = xen_pt_common_reg_init,
1036 .u.w.read = xen_pt_word_reg_read,
1037 .u.w.write = xen_pt_word_reg_write,
1038 },
1039 /* PCI Power Management Control/Status reg */
1040 {
1041 .offset = PCI_PM_CTRL,
1042 .size = 2,
1043 .init_val = 0x0008,
1044 .res_mask = 0x00F0,
1045 .ro_mask = 0x610C,
1046 .rw1c_mask = 0x8000,
1047 .emu_mask = 0x810B,
1048 .init = xen_pt_common_reg_init,
1049 .u.w.read = xen_pt_word_reg_read,
1050 .u.w.write = xen_pt_word_reg_write,
1051 },
1052 {
1053 .size = 0,
1054 },
1055 };
1056
1057
1058 /********************************
1059 * MSI Capability
1060 */
1061
1062 /* Helper */
1063 #define xen_pt_msi_check_type(offset, flags, what) \
1064 ((offset) == ((flags) & PCI_MSI_FLAGS_64BIT ? \
1065 PCI_MSI_##what##_64 : PCI_MSI_##what##_32))
1066
1067 /* Message Control register */
1068 static int xen_pt_msgctrl_reg_init(XenPCIPassthroughState *s,
1069 XenPTRegInfo *reg, uint32_t real_offset,
1070 uint32_t *data)
1071 {
1072 XenPTMSI *msi = s->msi;
1073 uint16_t reg_field;
1074 int rc;
1075
1076 /* use I/O device register's value as initial value */
1077 rc = xen_host_pci_get_word(&s->real_device, real_offset, &reg_field);
1078 if (rc) {
1079 return rc;
1080 }
1081 if (reg_field & PCI_MSI_FLAGS_ENABLE) {
1082 XEN_PT_LOG(&s->dev, "MSI already enabled, disabling it first\n");
1083 xen_host_pci_set_word(&s->real_device, real_offset,
1084 reg_field & ~PCI_MSI_FLAGS_ENABLE);
1085 }
1086 msi->flags |= reg_field;
1087 msi->ctrl_offset = real_offset;
1088 msi->initialized = false;
1089 msi->mapped = false;
1090
1091 *data = reg->init_val;
1092 return 0;
1093 }
1094 static int xen_pt_msgctrl_reg_write(XenPCIPassthroughState *s,
1095 XenPTReg *cfg_entry, uint16_t *val,
1096 uint16_t dev_value, uint16_t valid_mask)
1097 {
1098 XenPTRegInfo *reg = cfg_entry->reg;
1099 XenPTMSI *msi = s->msi;
1100 uint16_t writable_mask = 0;
1101 uint16_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
1102 uint16_t *data = cfg_entry->ptr.half_word;
1103
1104 /* Currently no support for multi-vector */
1105 if (*val & PCI_MSI_FLAGS_QSIZE) {
1106 XEN_PT_WARN(&s->dev, "Tries to set more than 1 vector ctrl %x\n", *val);
1107 }
1108
1109 /* modify emulate register */
1110 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1111 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
1112 msi->flags |= *data & ~PCI_MSI_FLAGS_ENABLE;
1113
1114 /* create value for writing to I/O device register */
1115 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
1116
1117 /* update MSI */
1118 if (*val & PCI_MSI_FLAGS_ENABLE) {
1119 /* setup MSI pirq for the first time */
1120 if (!msi->initialized) {
1121 /* Init physical one */
1122 XEN_PT_LOG(&s->dev, "setup MSI (register: %x).\n", *val);
1123 if (xen_pt_msi_setup(s)) {
1124 /* We do not broadcast the error to the framework code, so
1125 * that MSI errors are contained in MSI emulation code and
1126 * QEMU can go on running.
1127 * Guest MSI would be actually not working.
1128 */
1129 *val &= ~PCI_MSI_FLAGS_ENABLE;
1130 XEN_PT_WARN(&s->dev, "Can not map MSI (register: %x)!\n", *val);
1131 return 0;
1132 }
1133 if (xen_pt_msi_update(s)) {
1134 *val &= ~PCI_MSI_FLAGS_ENABLE;
1135 XEN_PT_WARN(&s->dev, "Can not bind MSI (register: %x)!\n", *val);
1136 return 0;
1137 }
1138 msi->initialized = true;
1139 msi->mapped = true;
1140 }
1141 msi->flags |= PCI_MSI_FLAGS_ENABLE;
1142 } else if (msi->mapped) {
1143 xen_pt_msi_disable(s);
1144 }
1145
1146 return 0;
1147 }
1148
1149 /* initialize Message Upper Address register */
1150 static int xen_pt_msgaddr64_reg_init(XenPCIPassthroughState *s,
1151 XenPTRegInfo *reg, uint32_t real_offset,
1152 uint32_t *data)
1153 {
1154 /* no need to initialize in case of 32 bit type */
1155 if (!(s->msi->flags & PCI_MSI_FLAGS_64BIT)) {
1156 *data = XEN_PT_INVALID_REG;
1157 } else {
1158 *data = reg->init_val;
1159 }
1160
1161 return 0;
1162 }
1163 /* this function will be called twice (for 32 bit and 64 bit type) */
1164 /* initialize Message Data register */
1165 static int xen_pt_msgdata_reg_init(XenPCIPassthroughState *s,
1166 XenPTRegInfo *reg, uint32_t real_offset,
1167 uint32_t *data)
1168 {
1169 uint32_t flags = s->msi->flags;
1170 uint32_t offset = reg->offset;
1171
1172 /* check the offset whether matches the type or not */
1173 if (xen_pt_msi_check_type(offset, flags, DATA)) {
1174 *data = reg->init_val;
1175 } else {
1176 *data = XEN_PT_INVALID_REG;
1177 }
1178 return 0;
1179 }
1180
1181 /* this function will be called twice (for 32 bit and 64 bit type) */
1182 /* initialize Mask register */
1183 static int xen_pt_mask_reg_init(XenPCIPassthroughState *s,
1184 XenPTRegInfo *reg, uint32_t real_offset,
1185 uint32_t *data)
1186 {
1187 uint32_t flags = s->msi->flags;
1188
1189 /* check the offset whether matches the type or not */
1190 if (!(flags & PCI_MSI_FLAGS_MASKBIT)) {
1191 *data = XEN_PT_INVALID_REG;
1192 } else if (xen_pt_msi_check_type(reg->offset, flags, MASK)) {
1193 *data = reg->init_val;
1194 } else {
1195 *data = XEN_PT_INVALID_REG;
1196 }
1197 return 0;
1198 }
1199
1200 /* this function will be called twice (for 32 bit and 64 bit type) */
1201 /* initialize Pending register */
1202 static int xen_pt_pending_reg_init(XenPCIPassthroughState *s,
1203 XenPTRegInfo *reg, uint32_t real_offset,
1204 uint32_t *data)
1205 {
1206 uint32_t flags = s->msi->flags;
1207
1208 /* check the offset whether matches the type or not */
1209 if (!(flags & PCI_MSI_FLAGS_MASKBIT)) {
1210 *data = XEN_PT_INVALID_REG;
1211 } else if (xen_pt_msi_check_type(reg->offset, flags, PENDING)) {
1212 *data = reg->init_val;
1213 } else {
1214 *data = XEN_PT_INVALID_REG;
1215 }
1216 return 0;
1217 }
1218
1219 /* write Message Address register */
1220 static int xen_pt_msgaddr32_reg_write(XenPCIPassthroughState *s,
1221 XenPTReg *cfg_entry, uint32_t *val,
1222 uint32_t dev_value, uint32_t valid_mask)
1223 {
1224 XenPTRegInfo *reg = cfg_entry->reg;
1225 uint32_t writable_mask = 0;
1226 uint32_t old_addr = *cfg_entry->ptr.word;
1227 uint32_t *data = cfg_entry->ptr.word;
1228
1229 /* modify emulate register */
1230 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1231 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
1232 s->msi->addr_lo = *data;
1233
1234 /* create value for writing to I/O device register */
1235 *val = XEN_PT_MERGE_VALUE(*val, dev_value, 0);
1236
1237 /* update MSI */
1238 if (*data != old_addr) {
1239 if (s->msi->mapped) {
1240 xen_pt_msi_update(s);
1241 }
1242 }
1243
1244 return 0;
1245 }
1246 /* write Message Upper Address register */
1247 static int xen_pt_msgaddr64_reg_write(XenPCIPassthroughState *s,
1248 XenPTReg *cfg_entry, uint32_t *val,
1249 uint32_t dev_value, uint32_t valid_mask)
1250 {
1251 XenPTRegInfo *reg = cfg_entry->reg;
1252 uint32_t writable_mask = 0;
1253 uint32_t old_addr = *cfg_entry->ptr.word;
1254 uint32_t *data = cfg_entry->ptr.word;
1255
1256 /* check whether the type is 64 bit or not */
1257 if (!(s->msi->flags & PCI_MSI_FLAGS_64BIT)) {
1258 XEN_PT_ERR(&s->dev,
1259 "Can't write to the upper address without 64 bit support\n");
1260 return -1;
1261 }
1262
1263 /* modify emulate register */
1264 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1265 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
1266 /* update the msi_info too */
1267 s->msi->addr_hi = *data;
1268
1269 /* create value for writing to I/O device register */
1270 *val = XEN_PT_MERGE_VALUE(*val, dev_value, 0);
1271
1272 /* update MSI */
1273 if (*data != old_addr) {
1274 if (s->msi->mapped) {
1275 xen_pt_msi_update(s);
1276 }
1277 }
1278
1279 return 0;
1280 }
1281
1282
1283 /* this function will be called twice (for 32 bit and 64 bit type) */
1284 /* write Message Data register */
1285 static int xen_pt_msgdata_reg_write(XenPCIPassthroughState *s,
1286 XenPTReg *cfg_entry, uint16_t *val,
1287 uint16_t dev_value, uint16_t valid_mask)
1288 {
1289 XenPTRegInfo *reg = cfg_entry->reg;
1290 XenPTMSI *msi = s->msi;
1291 uint16_t writable_mask = 0;
1292 uint16_t old_data = *cfg_entry->ptr.half_word;
1293 uint32_t offset = reg->offset;
1294 uint16_t *data = cfg_entry->ptr.half_word;
1295
1296 /* check the offset whether matches the type or not */
1297 if (!xen_pt_msi_check_type(offset, msi->flags, DATA)) {
1298 /* exit I/O emulator */
1299 XEN_PT_ERR(&s->dev, "the offset does not match the 32/64 bit type!\n");
1300 return -1;
1301 }
1302
1303 /* modify emulate register */
1304 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1305 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
1306 /* update the msi_info too */
1307 msi->data = *data;
1308
1309 /* create value for writing to I/O device register */
1310 *val = XEN_PT_MERGE_VALUE(*val, dev_value, 0);
1311
1312 /* update MSI */
1313 if (*data != old_data) {
1314 if (msi->mapped) {
1315 xen_pt_msi_update(s);
1316 }
1317 }
1318
1319 return 0;
1320 }
1321
1322 static int xen_pt_mask_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
1323 uint32_t *val, uint32_t dev_value,
1324 uint32_t valid_mask)
1325 {
1326 int rc;
1327
1328 rc = xen_pt_long_reg_write(s, cfg_entry, val, dev_value, valid_mask);
1329 if (rc) {
1330 return rc;
1331 }
1332
1333 s->msi->mask = *val;
1334
1335 return 0;
1336 }
1337
1338 /* MSI Capability Structure reg static information table */
1339 static XenPTRegInfo xen_pt_emu_reg_msi[] = {
1340 /* Next Pointer reg */
1341 {
1342 .offset = PCI_CAP_LIST_NEXT,
1343 .size = 1,
1344 .init_val = 0x00,
1345 .ro_mask = 0xFF,
1346 .emu_mask = 0xFF,
1347 .init = xen_pt_ptr_reg_init,
1348 .u.b.read = xen_pt_byte_reg_read,
1349 .u.b.write = xen_pt_byte_reg_write,
1350 },
1351 /* Message Control reg */
1352 {
1353 .offset = PCI_MSI_FLAGS,
1354 .size = 2,
1355 .init_val = 0x0000,
1356 .res_mask = 0xFE00,
1357 .ro_mask = 0x018E,
1358 .emu_mask = 0x017E,
1359 .init = xen_pt_msgctrl_reg_init,
1360 .u.w.read = xen_pt_word_reg_read,
1361 .u.w.write = xen_pt_msgctrl_reg_write,
1362 },
1363 /* Message Address reg */
1364 {
1365 .offset = PCI_MSI_ADDRESS_LO,
1366 .size = 4,
1367 .init_val = 0x00000000,
1368 .ro_mask = 0x00000003,
1369 .emu_mask = 0xFFFFFFFF,
1370 .init = xen_pt_common_reg_init,
1371 .u.dw.read = xen_pt_long_reg_read,
1372 .u.dw.write = xen_pt_msgaddr32_reg_write,
1373 },
1374 /* Message Upper Address reg (if PCI_MSI_FLAGS_64BIT set) */
1375 {
1376 .offset = PCI_MSI_ADDRESS_HI,
1377 .size = 4,
1378 .init_val = 0x00000000,
1379 .ro_mask = 0x00000000,
1380 .emu_mask = 0xFFFFFFFF,
1381 .init = xen_pt_msgaddr64_reg_init,
1382 .u.dw.read = xen_pt_long_reg_read,
1383 .u.dw.write = xen_pt_msgaddr64_reg_write,
1384 },
1385 /* Message Data reg (16 bits of data for 32-bit devices) */
1386 {
1387 .offset = PCI_MSI_DATA_32,
1388 .size = 2,
1389 .init_val = 0x0000,
1390 .ro_mask = 0x0000,
1391 .emu_mask = 0xFFFF,
1392 .init = xen_pt_msgdata_reg_init,
1393 .u.w.read = xen_pt_word_reg_read,
1394 .u.w.write = xen_pt_msgdata_reg_write,
1395 },
1396 /* Message Data reg (16 bits of data for 64-bit devices) */
1397 {
1398 .offset = PCI_MSI_DATA_64,
1399 .size = 2,
1400 .init_val = 0x0000,
1401 .ro_mask = 0x0000,
1402 .emu_mask = 0xFFFF,
1403 .init = xen_pt_msgdata_reg_init,
1404 .u.w.read = xen_pt_word_reg_read,
1405 .u.w.write = xen_pt_msgdata_reg_write,
1406 },
1407 /* Mask reg (if PCI_MSI_FLAGS_MASKBIT set, for 32-bit devices) */
1408 {
1409 .offset = PCI_MSI_MASK_32,
1410 .size = 4,
1411 .init_val = 0x00000000,
1412 .ro_mask = 0xFFFFFFFF,
1413 .emu_mask = 0xFFFFFFFF,
1414 .init = xen_pt_mask_reg_init,
1415 .u.dw.read = xen_pt_long_reg_read,
1416 .u.dw.write = xen_pt_mask_reg_write,
1417 },
1418 /* Mask reg (if PCI_MSI_FLAGS_MASKBIT set, for 64-bit devices) */
1419 {
1420 .offset = PCI_MSI_MASK_64,
1421 .size = 4,
1422 .init_val = 0x00000000,
1423 .ro_mask = 0xFFFFFFFF,
1424 .emu_mask = 0xFFFFFFFF,
1425 .init = xen_pt_mask_reg_init,
1426 .u.dw.read = xen_pt_long_reg_read,
1427 .u.dw.write = xen_pt_mask_reg_write,
1428 },
1429 /* Pending reg (if PCI_MSI_FLAGS_MASKBIT set, for 32-bit devices) */
1430 {
1431 .offset = PCI_MSI_MASK_32 + 4,
1432 .size = 4,
1433 .init_val = 0x00000000,
1434 .ro_mask = 0xFFFFFFFF,
1435 .emu_mask = 0x00000000,
1436 .init = xen_pt_pending_reg_init,
1437 .u.dw.read = xen_pt_long_reg_read,
1438 .u.dw.write = xen_pt_long_reg_write,
1439 },
1440 /* Pending reg (if PCI_MSI_FLAGS_MASKBIT set, for 64-bit devices) */
1441 {
1442 .offset = PCI_MSI_MASK_64 + 4,
1443 .size = 4,
1444 .init_val = 0x00000000,
1445 .ro_mask = 0xFFFFFFFF,
1446 .emu_mask = 0x00000000,
1447 .init = xen_pt_pending_reg_init,
1448 .u.dw.read = xen_pt_long_reg_read,
1449 .u.dw.write = xen_pt_long_reg_write,
1450 },
1451 {
1452 .size = 0,
1453 },
1454 };
1455
1456
1457 /**************************************
1458 * MSI-X Capability
1459 */
1460
1461 /* Message Control register for MSI-X */
1462 static int xen_pt_msixctrl_reg_init(XenPCIPassthroughState *s,
1463 XenPTRegInfo *reg, uint32_t real_offset,
1464 uint32_t *data)
1465 {
1466 uint16_t reg_field;
1467 int rc;
1468
1469 /* use I/O device register's value as initial value */
1470 rc = xen_host_pci_get_word(&s->real_device, real_offset, &reg_field);
1471 if (rc) {
1472 return rc;
1473 }
1474 if (reg_field & PCI_MSIX_FLAGS_ENABLE) {
1475 XEN_PT_LOG(&s->dev, "MSIX already enabled, disabling it first\n");
1476 xen_host_pci_set_word(&s->real_device, real_offset,
1477 reg_field & ~PCI_MSIX_FLAGS_ENABLE);
1478 }
1479
1480 s->msix->ctrl_offset = real_offset;
1481
1482 *data = reg->init_val;
1483 return 0;
1484 }
1485 static int xen_pt_msixctrl_reg_write(XenPCIPassthroughState *s,
1486 XenPTReg *cfg_entry, uint16_t *val,
1487 uint16_t dev_value, uint16_t valid_mask)
1488 {
1489 XenPTRegInfo *reg = cfg_entry->reg;
1490 uint16_t writable_mask = 0;
1491 uint16_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
1492 int debug_msix_enabled_old;
1493 uint16_t *data = cfg_entry->ptr.half_word;
1494
1495 /* modify emulate register */
1496 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1497 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
1498
1499 /* create value for writing to I/O device register */
1500 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
1501
1502 /* update MSI-X */
1503 if ((*val & PCI_MSIX_FLAGS_ENABLE)
1504 && !(*val & PCI_MSIX_FLAGS_MASKALL)) {
1505 xen_pt_msix_update(s);
1506 } else if (!(*val & PCI_MSIX_FLAGS_ENABLE) && s->msix->enabled) {
1507 xen_pt_msix_disable(s);
1508 }
1509
1510 s->msix->maskall = *val & PCI_MSIX_FLAGS_MASKALL;
1511
1512 debug_msix_enabled_old = s->msix->enabled;
1513 s->msix->enabled = !!(*val & PCI_MSIX_FLAGS_ENABLE);
1514 if (s->msix->enabled != debug_msix_enabled_old) {
1515 XEN_PT_LOG(&s->dev, "%s MSI-X\n",
1516 s->msix->enabled ? "enable" : "disable");
1517 }
1518
1519 return 0;
1520 }
1521
1522 /* MSI-X Capability Structure reg static information table */
1523 static XenPTRegInfo xen_pt_emu_reg_msix[] = {
1524 /* Next Pointer reg */
1525 {
1526 .offset = PCI_CAP_LIST_NEXT,
1527 .size = 1,
1528 .init_val = 0x00,
1529 .ro_mask = 0xFF,
1530 .emu_mask = 0xFF,
1531 .init = xen_pt_ptr_reg_init,
1532 .u.b.read = xen_pt_byte_reg_read,
1533 .u.b.write = xen_pt_byte_reg_write,
1534 },
1535 /* Message Control reg */
1536 {
1537 .offset = PCI_MSI_FLAGS,
1538 .size = 2,
1539 .init_val = 0x0000,
1540 .res_mask = 0x3800,
1541 .ro_mask = 0x07FF,
1542 .emu_mask = 0x0000,
1543 .init = xen_pt_msixctrl_reg_init,
1544 .u.w.read = xen_pt_word_reg_read,
1545 .u.w.write = xen_pt_msixctrl_reg_write,
1546 },
1547 {
1548 .size = 0,
1549 },
1550 };
1551
1552 static XenPTRegInfo xen_pt_emu_reg_igd_opregion[] = {
1553 /* Intel IGFX OpRegion reg */
1554 {
1555 .offset = 0x0,
1556 .size = 4,
1557 .init_val = 0,
1558 .emu_mask = 0xFFFFFFFF,
1559 .u.dw.read = xen_pt_intel_opregion_read,
1560 .u.dw.write = xen_pt_intel_opregion_write,
1561 },
1562 {
1563 .size = 0,
1564 },
1565 };
1566
1567 /****************************
1568 * Capabilities
1569 */
1570
1571 /* capability structure register group size functions */
1572
1573 static int xen_pt_reg_grp_size_init(XenPCIPassthroughState *s,
1574 const XenPTRegGroupInfo *grp_reg,
1575 uint32_t base_offset, uint8_t *size)
1576 {
1577 *size = grp_reg->grp_size;
1578 return 0;
1579 }
1580 /* get Vendor Specific Capability Structure register group size */
1581 static int xen_pt_vendor_size_init(XenPCIPassthroughState *s,
1582 const XenPTRegGroupInfo *grp_reg,
1583 uint32_t base_offset, uint8_t *size)
1584 {
1585 return xen_host_pci_get_byte(&s->real_device, base_offset + 0x02, size);
1586 }
1587 /* get PCI Express Capability Structure register group size */
1588 static int xen_pt_pcie_size_init(XenPCIPassthroughState *s,
1589 const XenPTRegGroupInfo *grp_reg,
1590 uint32_t base_offset, uint8_t *size)
1591 {
1592 PCIDevice *d = PCI_DEVICE(s);
1593 uint8_t version = get_capability_version(s, base_offset);
1594 uint8_t type = get_device_type(s, base_offset);
1595 uint8_t pcie_size = 0;
1596
1597
1598 /* calculate size depend on capability version and device/port type */
1599 /* in case of PCI Express Base Specification Rev 1.x */
1600 if (version == 1) {
1601 /* The PCI Express Capabilities, Device Capabilities, and Device
1602 * Status/Control registers are required for all PCI Express devices.
1603 * The Link Capabilities and Link Status/Control are required for all
1604 * Endpoints that are not Root Complex Integrated Endpoints. Endpoints
1605 * are not required to implement registers other than those listed
1606 * above and terminate the capability structure.
1607 */
1608 switch (type) {
1609 case PCI_EXP_TYPE_ENDPOINT:
1610 case PCI_EXP_TYPE_LEG_END:
1611 pcie_size = 0x14;
1612 break;
1613 case PCI_EXP_TYPE_RC_END:
1614 /* has no link */
1615 pcie_size = 0x0C;
1616 break;
1617 /* only EndPoint passthrough is supported */
1618 case PCI_EXP_TYPE_ROOT_PORT:
1619 case PCI_EXP_TYPE_UPSTREAM:
1620 case PCI_EXP_TYPE_DOWNSTREAM:
1621 case PCI_EXP_TYPE_PCI_BRIDGE:
1622 case PCI_EXP_TYPE_PCIE_BRIDGE:
1623 case PCI_EXP_TYPE_RC_EC:
1624 default:
1625 XEN_PT_ERR(d, "Unsupported device/port type 0x%x.\n", type);
1626 return -1;
1627 }
1628 }
1629 /* in case of PCI Express Base Specification Rev 2.0 */
1630 else if (version == 2) {
1631 switch (type) {
1632 case PCI_EXP_TYPE_ENDPOINT:
1633 case PCI_EXP_TYPE_LEG_END:
1634 case PCI_EXP_TYPE_RC_END:
1635 /* For Functions that do not implement the registers,
1636 * these spaces must be hardwired to 0b.
1637 */
1638 pcie_size = 0x3C;
1639 break;
1640 /* only EndPoint passthrough is supported */
1641 case PCI_EXP_TYPE_ROOT_PORT:
1642 case PCI_EXP_TYPE_UPSTREAM:
1643 case PCI_EXP_TYPE_DOWNSTREAM:
1644 case PCI_EXP_TYPE_PCI_BRIDGE:
1645 case PCI_EXP_TYPE_PCIE_BRIDGE:
1646 case PCI_EXP_TYPE_RC_EC:
1647 default:
1648 XEN_PT_ERR(d, "Unsupported device/port type 0x%x.\n", type);
1649 return -1;
1650 }
1651 } else {
1652 XEN_PT_ERR(d, "Unsupported capability version 0x%x.\n", version);
1653 return -1;
1654 }
1655
1656 *size = pcie_size;
1657 return 0;
1658 }
1659 /* get MSI Capability Structure register group size */
1660 static int xen_pt_msi_size_init(XenPCIPassthroughState *s,
1661 const XenPTRegGroupInfo *grp_reg,
1662 uint32_t base_offset, uint8_t *size)
1663 {
1664 uint16_t msg_ctrl = 0;
1665 uint8_t msi_size = 0xa;
1666 int rc;
1667
1668 rc = xen_host_pci_get_word(&s->real_device, base_offset + PCI_MSI_FLAGS,
1669 &msg_ctrl);
1670 if (rc) {
1671 return rc;
1672 }
1673 /* check if 64-bit address is capable of per-vector masking */
1674 if (msg_ctrl & PCI_MSI_FLAGS_64BIT) {
1675 msi_size += 4;
1676 }
1677 if (msg_ctrl & PCI_MSI_FLAGS_MASKBIT) {
1678 msi_size += 10;
1679 }
1680
1681 s->msi = g_new0(XenPTMSI, 1);
1682 s->msi->pirq = XEN_PT_UNASSIGNED_PIRQ;
1683
1684 *size = msi_size;
1685 return 0;
1686 }
1687 /* get MSI-X Capability Structure register group size */
1688 static int xen_pt_msix_size_init(XenPCIPassthroughState *s,
1689 const XenPTRegGroupInfo *grp_reg,
1690 uint32_t base_offset, uint8_t *size)
1691 {
1692 int rc = 0;
1693
1694 rc = xen_pt_msix_init(s, base_offset);
1695
1696 if (rc < 0) {
1697 XEN_PT_ERR(&s->dev, "Internal error: Invalid xen_pt_msix_init.\n");
1698 return rc;
1699 }
1700
1701 *size = grp_reg->grp_size;
1702 return 0;
1703 }
1704
1705
1706 static const XenPTRegGroupInfo xen_pt_emu_reg_grps[] = {
1707 /* Header Type0 reg group */
1708 {
1709 .grp_id = 0xFF,
1710 .grp_type = XEN_PT_GRP_TYPE_EMU,
1711 .grp_size = 0x40,
1712 .size_init = xen_pt_reg_grp_size_init,
1713 .emu_regs = xen_pt_emu_reg_header0,
1714 },
1715 /* PCI PowerManagement Capability reg group */
1716 {
1717 .grp_id = PCI_CAP_ID_PM,
1718 .grp_type = XEN_PT_GRP_TYPE_EMU,
1719 .grp_size = PCI_PM_SIZEOF,
1720 .size_init = xen_pt_reg_grp_size_init,
1721 .emu_regs = xen_pt_emu_reg_pm,
1722 },
1723 /* AGP Capability Structure reg group */
1724 {
1725 .grp_id = PCI_CAP_ID_AGP,
1726 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1727 .grp_size = 0x30,
1728 .size_init = xen_pt_reg_grp_size_init,
1729 },
1730 /* Vital Product Data Capability Structure reg group */
1731 {
1732 .grp_id = PCI_CAP_ID_VPD,
1733 .grp_type = XEN_PT_GRP_TYPE_EMU,
1734 .grp_size = 0x08,
1735 .size_init = xen_pt_reg_grp_size_init,
1736 .emu_regs = xen_pt_emu_reg_vpd,
1737 },
1738 /* Slot Identification reg group */
1739 {
1740 .grp_id = PCI_CAP_ID_SLOTID,
1741 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1742 .grp_size = 0x04,
1743 .size_init = xen_pt_reg_grp_size_init,
1744 },
1745 /* MSI Capability Structure reg group */
1746 {
1747 .grp_id = PCI_CAP_ID_MSI,
1748 .grp_type = XEN_PT_GRP_TYPE_EMU,
1749 .grp_size = 0xFF,
1750 .size_init = xen_pt_msi_size_init,
1751 .emu_regs = xen_pt_emu_reg_msi,
1752 },
1753 /* PCI-X Capabilities List Item reg group */
1754 {
1755 .grp_id = PCI_CAP_ID_PCIX,
1756 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1757 .grp_size = 0x18,
1758 .size_init = xen_pt_reg_grp_size_init,
1759 },
1760 /* Vendor Specific Capability Structure reg group */
1761 {
1762 .grp_id = PCI_CAP_ID_VNDR,
1763 .grp_type = XEN_PT_GRP_TYPE_EMU,
1764 .grp_size = 0xFF,
1765 .size_init = xen_pt_vendor_size_init,
1766 .emu_regs = xen_pt_emu_reg_vendor,
1767 },
1768 /* SHPC Capability List Item reg group */
1769 {
1770 .grp_id = PCI_CAP_ID_SHPC,
1771 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1772 .grp_size = 0x08,
1773 .size_init = xen_pt_reg_grp_size_init,
1774 },
1775 /* Subsystem ID and Subsystem Vendor ID Capability List Item reg group */
1776 {
1777 .grp_id = PCI_CAP_ID_SSVID,
1778 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1779 .grp_size = 0x08,
1780 .size_init = xen_pt_reg_grp_size_init,
1781 },
1782 /* AGP 8x Capability Structure reg group */
1783 {
1784 .grp_id = PCI_CAP_ID_AGP3,
1785 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1786 .grp_size = 0x30,
1787 .size_init = xen_pt_reg_grp_size_init,
1788 },
1789 /* PCI Express Capability Structure reg group */
1790 {
1791 .grp_id = PCI_CAP_ID_EXP,
1792 .grp_type = XEN_PT_GRP_TYPE_EMU,
1793 .grp_size = 0xFF,
1794 .size_init = xen_pt_pcie_size_init,
1795 .emu_regs = xen_pt_emu_reg_pcie,
1796 },
1797 /* MSI-X Capability Structure reg group */
1798 {
1799 .grp_id = PCI_CAP_ID_MSIX,
1800 .grp_type = XEN_PT_GRP_TYPE_EMU,
1801 .grp_size = 0x0C,
1802 .size_init = xen_pt_msix_size_init,
1803 .emu_regs = xen_pt_emu_reg_msix,
1804 },
1805 /* Intel IGD Opregion group */
1806 {
1807 .grp_id = XEN_PCI_INTEL_OPREGION,
1808 .grp_type = XEN_PT_GRP_TYPE_EMU,
1809 .grp_size = 0x4,
1810 .size_init = xen_pt_reg_grp_size_init,
1811 .emu_regs = xen_pt_emu_reg_igd_opregion,
1812 },
1813 {
1814 .grp_size = 0,
1815 },
1816 };
1817
1818 /* initialize Capabilities Pointer or Next Pointer register */
1819 static int xen_pt_ptr_reg_init(XenPCIPassthroughState *s,
1820 XenPTRegInfo *reg, uint32_t real_offset,
1821 uint32_t *data)
1822 {
1823 int i, rc;
1824 uint8_t reg_field;
1825 uint8_t cap_id = 0;
1826
1827 rc = xen_host_pci_get_byte(&s->real_device, real_offset, &reg_field);
1828 if (rc) {
1829 return rc;
1830 }
1831 /* find capability offset */
1832 while (reg_field) {
1833 for (i = 0; xen_pt_emu_reg_grps[i].grp_size != 0; i++) {
1834 if (xen_pt_hide_dev_cap(&s->real_device,
1835 xen_pt_emu_reg_grps[i].grp_id)) {
1836 continue;
1837 }
1838
1839 rc = xen_host_pci_get_byte(&s->real_device,
1840 reg_field + PCI_CAP_LIST_ID, &cap_id);
1841 if (rc) {
1842 XEN_PT_ERR(&s->dev, "Failed to read capability @0x%x (rc:%d)\n",
1843 reg_field + PCI_CAP_LIST_ID, rc);
1844 return rc;
1845 }
1846 if (xen_pt_emu_reg_grps[i].grp_id == cap_id) {
1847 if (xen_pt_emu_reg_grps[i].grp_type == XEN_PT_GRP_TYPE_EMU) {
1848 goto out;
1849 }
1850 /* ignore the 0 hardwired capability, find next one */
1851 break;
1852 }
1853 }
1854
1855 /* next capability */
1856 rc = xen_host_pci_get_byte(&s->real_device,
1857 reg_field + PCI_CAP_LIST_NEXT, &reg_field);
1858 if (rc) {
1859 return rc;
1860 }
1861 }
1862
1863 out:
1864 *data = reg_field;
1865 return 0;
1866 }
1867
1868
1869 /*************
1870 * Main
1871 */
1872
1873 static uint8_t find_cap_offset(XenPCIPassthroughState *s, uint8_t cap)
1874 {
1875 uint8_t id;
1876 unsigned max_cap = XEN_PCI_CAP_MAX;
1877 uint8_t pos = PCI_CAPABILITY_LIST;
1878 uint8_t status = 0;
1879
1880 if (xen_host_pci_get_byte(&s->real_device, PCI_STATUS, &status)) {
1881 return 0;
1882 }
1883 if ((status & PCI_STATUS_CAP_LIST) == 0) {
1884 return 0;
1885 }
1886
1887 while (max_cap--) {
1888 if (xen_host_pci_get_byte(&s->real_device, pos, &pos)) {
1889 break;
1890 }
1891 if (pos < PCI_CONFIG_HEADER_SIZE) {
1892 break;
1893 }
1894
1895 pos &= ~3;
1896 if (xen_host_pci_get_byte(&s->real_device,
1897 pos + PCI_CAP_LIST_ID, &id)) {
1898 break;
1899 }
1900
1901 if (id == 0xff) {
1902 break;
1903 }
1904 if (id == cap) {
1905 return pos;
1906 }
1907
1908 pos += PCI_CAP_LIST_NEXT;
1909 }
1910 return 0;
1911 }
1912
1913 static void xen_pt_config_reg_init(XenPCIPassthroughState *s,
1914 XenPTRegGroup *reg_grp, XenPTRegInfo *reg,
1915 Error **errp)
1916 {
1917 XenPTReg *reg_entry;
1918 uint32_t data = 0;
1919 int rc = 0;
1920
1921 reg_entry = g_new0(XenPTReg, 1);
1922 reg_entry->reg = reg;
1923
1924 if (reg->init) {
1925 uint32_t host_mask, size_mask;
1926 unsigned int offset;
1927 uint32_t val;
1928
1929 /* initialize emulate register */
1930 rc = reg->init(s, reg_entry->reg,
1931 reg_grp->base_offset + reg->offset, &data);
1932 if (rc < 0) {
1933 g_free(reg_entry);
1934 error_setg(errp, "Init emulate register fail");
1935 return;
1936 }
1937 if (data == XEN_PT_INVALID_REG) {
1938 /* free unused BAR register entry */
1939 g_free(reg_entry);
1940 return;
1941 }
1942 /* Sync up the data to dev.config */
1943 offset = reg_grp->base_offset + reg->offset;
1944 size_mask = 0xFFFFFFFF >> ((4 - reg->size) << 3);
1945
1946 switch (reg->size) {
1947 case 1: rc = xen_host_pci_get_byte(&s->real_device, offset, (uint8_t *)&val);
1948 break;
1949 case 2: rc = xen_host_pci_get_word(&s->real_device, offset, (uint16_t *)&val);
1950 break;
1951 case 4: rc = xen_host_pci_get_long(&s->real_device, offset, &val);
1952 break;
1953 default: abort();
1954 }
1955 if (rc) {
1956 /* Serious issues when we cannot read the host values! */
1957 g_free(reg_entry);
1958 error_setg(errp, "Cannot read host values");
1959 return;
1960 }
1961 /* Set bits in emu_mask are the ones we emulate. The dev.config shall
1962 * contain the emulated view of the guest - therefore we flip the mask
1963 * to mask out the host values (which dev.config initially has) . */
1964 host_mask = size_mask & ~reg->emu_mask;
1965
1966 if ((data & host_mask) != (val & host_mask)) {
1967 uint32_t new_val;
1968
1969 /* Mask out host (including past size). */
1970 new_val = val & host_mask;
1971 /* Merge emulated ones (excluding the non-emulated ones). */
1972 new_val |= data & host_mask;
1973 /* Leave intact host and emulated values past the size - even though
1974 * we do not care as we write per reg->size granularity, but for the
1975 * logging below lets have the proper value. */
1976 new_val |= ((val | data)) & ~size_mask;
1977 XEN_PT_LOG(&s->dev,"Offset 0x%04x mismatch! Emulated=0x%04x, host=0x%04x, syncing to 0x%04x.\n",
1978 offset, data, val, new_val);
1979 val = new_val;
1980 } else
1981 val = data;
1982
1983 if (val & ~size_mask) {
1984 error_setg(errp, "Offset 0x%04x:0x%04x expands past"
1985 " register size (%d)", offset, val, reg->size);
1986 g_free(reg_entry);
1987 return;
1988 }
1989 /* This could be just pci_set_long as we don't modify the bits
1990 * past reg->size, but in case this routine is run in parallel or the
1991 * init value is larger, we do not want to over-write registers. */
1992 switch (reg->size) {
1993 case 1: pci_set_byte(s->dev.config + offset, (uint8_t)val);
1994 break;
1995 case 2: pci_set_word(s->dev.config + offset, (uint16_t)val);
1996 break;
1997 case 4: pci_set_long(s->dev.config + offset, val);
1998 break;
1999 default: abort();
2000 }
2001 /* set register value pointer to the data. */
2002 reg_entry->ptr.byte = s->dev.config + offset;
2003
2004 }
2005 /* list add register entry */
2006 QLIST_INSERT_HEAD(&reg_grp->reg_tbl_list, reg_entry, entries);
2007 }
2008
2009 void xen_pt_config_init(XenPCIPassthroughState *s, Error **errp)
2010 {
2011 ERRP_GUARD();
2012 int i, rc;
2013
2014 QLIST_INIT(&s->reg_grps);
2015
2016 for (i = 0; xen_pt_emu_reg_grps[i].grp_size != 0; i++) {
2017 uint32_t reg_grp_offset = 0;
2018 XenPTRegGroup *reg_grp_entry = NULL;
2019
2020 if (xen_pt_emu_reg_grps[i].grp_id != 0xFF
2021 && xen_pt_emu_reg_grps[i].grp_id != XEN_PCI_INTEL_OPREGION) {
2022 if (xen_pt_hide_dev_cap(&s->real_device,
2023 xen_pt_emu_reg_grps[i].grp_id)) {
2024 continue;
2025 }
2026
2027 reg_grp_offset = find_cap_offset(s, xen_pt_emu_reg_grps[i].grp_id);
2028
2029 if (!reg_grp_offset) {
2030 continue;
2031 }
2032 }
2033
2034 /*
2035 * By default we will trap up to 0x40 in the cfg space.
2036 * If an intel device is pass through we need to trap 0xfc,
2037 * therefore the size should be 0xff.
2038 */
2039 if (xen_pt_emu_reg_grps[i].grp_id == XEN_PCI_INTEL_OPREGION) {
2040 reg_grp_offset = XEN_PCI_INTEL_OPREGION;
2041 }
2042
2043 reg_grp_entry = g_new0(XenPTRegGroup, 1);
2044 QLIST_INIT(&reg_grp_entry->reg_tbl_list);
2045 QLIST_INSERT_HEAD(&s->reg_grps, reg_grp_entry, entries);
2046
2047 reg_grp_entry->base_offset = reg_grp_offset;
2048 reg_grp_entry->reg_grp = xen_pt_emu_reg_grps + i;
2049 if (xen_pt_emu_reg_grps[i].size_init) {
2050 /* get register group size */
2051 rc = xen_pt_emu_reg_grps[i].size_init(s, reg_grp_entry->reg_grp,
2052 reg_grp_offset,
2053 &reg_grp_entry->size);
2054 if (rc < 0) {
2055 error_setg(errp, "Failed to initialize %d/%zu, type = 0x%x,"
2056 " rc: %d", i, ARRAY_SIZE(xen_pt_emu_reg_grps),
2057 xen_pt_emu_reg_grps[i].grp_type, rc);
2058 xen_pt_config_delete(s);
2059 return;
2060 }
2061 }
2062
2063 if (xen_pt_emu_reg_grps[i].grp_type == XEN_PT_GRP_TYPE_EMU) {
2064 if (xen_pt_emu_reg_grps[i].emu_regs) {
2065 int j = 0;
2066 XenPTRegInfo *regs = xen_pt_emu_reg_grps[i].emu_regs;
2067
2068 /* initialize capability register */
2069 for (j = 0; regs->size != 0; j++, regs++) {
2070 xen_pt_config_reg_init(s, reg_grp_entry, regs, errp);
2071 if (*errp) {
2072 error_append_hint(errp, "Failed to init register %d"
2073 " offsets 0x%x in grp_type = 0x%x (%d/%zu)",
2074 j,
2075 regs->offset,
2076 xen_pt_emu_reg_grps[i].grp_type,
2077 i, ARRAY_SIZE(xen_pt_emu_reg_grps));
2078 xen_pt_config_delete(s);
2079 return;
2080 }
2081 }
2082 }
2083 }
2084 }
2085 }
2086
2087 /* delete all emulate register */
2088 void xen_pt_config_delete(XenPCIPassthroughState *s)
2089 {
2090 struct XenPTRegGroup *reg_group, *next_grp;
2091 struct XenPTReg *reg, *next_reg;
2092
2093 /* free MSI/MSI-X info table */
2094 if (s->msix) {
2095 xen_pt_msix_unmap(s);
2096 }
2097 g_free(s->msi);
2098
2099 /* free all register group entry */
2100 QLIST_FOREACH_SAFE(reg_group, &s->reg_grps, entries, next_grp) {
2101 /* free all register entry */
2102 QLIST_FOREACH_SAFE(reg, &reg_group->reg_tbl_list, entries, next_reg) {
2103 QLIST_REMOVE(reg, entries);
2104 g_free(reg);
2105 }
2106
2107 QLIST_REMOVE(reg_group, entries);
2108 g_free(reg_group);
2109 }
2110 }