tests: virtio-9p: code refactoring
[qemu.git] / include / exec / cpu-common.h
1 #ifndef CPU_COMMON_H
2 #define CPU_COMMON_H
3
4 /* CPU interfaces that are target independent. */
5
6 #ifndef CONFIG_USER_ONLY
7 #include "exec/hwaddr.h"
8 #endif
9
10 #include "qemu/bswap.h"
11 #include "qemu/queue.h"
12 #include "qemu/fprintf-fn.h"
13
14 /**
15 * CPUListState:
16 * @cpu_fprintf: Print function.
17 * @file: File to print to using @cpu_fprint.
18 *
19 * State commonly used for iterating over CPU models.
20 */
21 typedef struct CPUListState {
22 fprintf_function cpu_fprintf;
23 FILE *file;
24 } CPUListState;
25
26 /* The CPU list lock nests outside tb_lock/tb_unlock. */
27 void qemu_init_cpu_list(void);
28 void cpu_list_lock(void);
29 void cpu_list_unlock(void);
30
31 #if !defined(CONFIG_USER_ONLY)
32
33 enum device_endian {
34 DEVICE_NATIVE_ENDIAN,
35 DEVICE_BIG_ENDIAN,
36 DEVICE_LITTLE_ENDIAN,
37 };
38
39 /* address in the RAM (different from a physical address) */
40 #if defined(CONFIG_XEN_BACKEND)
41 typedef uint64_t ram_addr_t;
42 # define RAM_ADDR_MAX UINT64_MAX
43 # define RAM_ADDR_FMT "%" PRIx64
44 #else
45 typedef uintptr_t ram_addr_t;
46 # define RAM_ADDR_MAX UINTPTR_MAX
47 # define RAM_ADDR_FMT "%" PRIxPTR
48 #endif
49
50 extern ram_addr_t ram_size;
51
52 /* memory API */
53
54 typedef void CPUWriteMemoryFunc(void *opaque, hwaddr addr, uint32_t value);
55 typedef uint32_t CPUReadMemoryFunc(void *opaque, hwaddr addr);
56
57 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length);
58 /* This should not be used by devices. */
59 ram_addr_t qemu_ram_addr_from_host(void *ptr);
60 RAMBlock *qemu_ram_block_by_name(const char *name);
61 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
62 ram_addr_t *offset);
63 void qemu_ram_set_idstr(RAMBlock *block, const char *name, DeviceState *dev);
64 void qemu_ram_unset_idstr(RAMBlock *block);
65 const char *qemu_ram_get_idstr(RAMBlock *rb);
66 size_t qemu_ram_pagesize(RAMBlock *block);
67
68 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
69 int len, int is_write);
70 static inline void cpu_physical_memory_read(hwaddr addr,
71 void *buf, int len)
72 {
73 cpu_physical_memory_rw(addr, buf, len, 0);
74 }
75 static inline void cpu_physical_memory_write(hwaddr addr,
76 const void *buf, int len)
77 {
78 cpu_physical_memory_rw(addr, (void *)buf, len, 1);
79 }
80 void *cpu_physical_memory_map(hwaddr addr,
81 hwaddr *plen,
82 int is_write);
83 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
84 int is_write, hwaddr access_len);
85 void cpu_register_map_client(QEMUBH *bh);
86 void cpu_unregister_map_client(QEMUBH *bh);
87
88 bool cpu_physical_memory_is_io(hwaddr phys_addr);
89
90 /* Coalesced MMIO regions are areas where write operations can be reordered.
91 * This usually implies that write operations are side-effect free. This allows
92 * batching which can make a major impact on performance when using
93 * virtualization.
94 */
95 void qemu_flush_coalesced_mmio_buffer(void);
96
97 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
98 const uint8_t *buf, int len);
99 void cpu_flush_icache_range(hwaddr start, int len);
100
101 extern struct MemoryRegion io_mem_rom;
102 extern struct MemoryRegion io_mem_notdirty;
103
104 typedef int (RAMBlockIterFunc)(const char *block_name, void *host_addr,
105 ram_addr_t offset, ram_addr_t length, void *opaque);
106
107 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque);
108
109 #endif
110
111 #endif /* CPU_COMMON_H */