fuzz: Declare DMA Read callback function
[qemu.git] / include / exec / memory.h
1 /*
2 * Physical memory management API
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef MEMORY_H
15 #define MEMORY_H
16
17 #ifndef CONFIG_USER_ONLY
18
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/memop.h"
23 #include "exec/ramlist.h"
24 #include "qemu/bswap.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/notify.h"
28 #include "qom/object.h"
29 #include "qemu/rcu.h"
30
31 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
32
33 #define MAX_PHYS_ADDR_SPACE_BITS 62
34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
35
36 #define TYPE_MEMORY_REGION "qemu:memory-region"
37 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
38 TYPE_MEMORY_REGION)
39
40 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
41 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
42 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
43 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
44
45 #ifdef CONFIG_FUZZ
46 void fuzz_dma_read_cb(size_t addr,
47 size_t len,
48 MemoryRegion *mr,
49 bool is_write);
50 #else
51 static inline void fuzz_dma_read_cb(size_t addr,
52 size_t len,
53 MemoryRegion *mr,
54 bool is_write)
55 {
56 /* Do Nothing */
57 }
58 #endif
59
60 extern bool global_dirty_log;
61
62 typedef struct MemoryRegionOps MemoryRegionOps;
63
64 struct ReservedRegion {
65 hwaddr low;
66 hwaddr high;
67 unsigned type;
68 };
69
70 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
71
72 /* See address_space_translate: bit 0 is read, bit 1 is write. */
73 typedef enum {
74 IOMMU_NONE = 0,
75 IOMMU_RO = 1,
76 IOMMU_WO = 2,
77 IOMMU_RW = 3,
78 } IOMMUAccessFlags;
79
80 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
81
82 struct IOMMUTLBEntry {
83 AddressSpace *target_as;
84 hwaddr iova;
85 hwaddr translated_addr;
86 hwaddr addr_mask; /* 0xfff = 4k translation */
87 IOMMUAccessFlags perm;
88 };
89
90 /*
91 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
92 * register with one or multiple IOMMU Notifier capability bit(s).
93 */
94 typedef enum {
95 IOMMU_NOTIFIER_NONE = 0,
96 /* Notify cache invalidations */
97 IOMMU_NOTIFIER_UNMAP = 0x1,
98 /* Notify entry changes (newly created entries) */
99 IOMMU_NOTIFIER_MAP = 0x2,
100 } IOMMUNotifierFlag;
101
102 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
103
104 struct IOMMUNotifier;
105 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
106 IOMMUTLBEntry *data);
107
108 struct IOMMUNotifier {
109 IOMMUNotify notify;
110 IOMMUNotifierFlag notifier_flags;
111 /* Notify for address space range start <= addr <= end */
112 hwaddr start;
113 hwaddr end;
114 int iommu_idx;
115 QLIST_ENTRY(IOMMUNotifier) node;
116 };
117 typedef struct IOMMUNotifier IOMMUNotifier;
118
119 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
120 #define RAM_PREALLOC (1 << 0)
121
122 /* RAM is mmap-ed with MAP_SHARED */
123 #define RAM_SHARED (1 << 1)
124
125 /* Only a portion of RAM (used_length) is actually used, and migrated.
126 * This used_length size can change across reboots.
127 */
128 #define RAM_RESIZEABLE (1 << 2)
129
130 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
131 * zero the page and wake waiting processes.
132 * (Set during postcopy)
133 */
134 #define RAM_UF_ZEROPAGE (1 << 3)
135
136 /* RAM can be migrated */
137 #define RAM_MIGRATABLE (1 << 4)
138
139 /* RAM is a persistent kind memory */
140 #define RAM_PMEM (1 << 5)
141
142 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
143 IOMMUNotifierFlag flags,
144 hwaddr start, hwaddr end,
145 int iommu_idx)
146 {
147 n->notify = fn;
148 n->notifier_flags = flags;
149 n->start = start;
150 n->end = end;
151 n->iommu_idx = iommu_idx;
152 }
153
154 /*
155 * Memory region callbacks
156 */
157 struct MemoryRegionOps {
158 /* Read from the memory region. @addr is relative to @mr; @size is
159 * in bytes. */
160 uint64_t (*read)(void *opaque,
161 hwaddr addr,
162 unsigned size);
163 /* Write to the memory region. @addr is relative to @mr; @size is
164 * in bytes. */
165 void (*write)(void *opaque,
166 hwaddr addr,
167 uint64_t data,
168 unsigned size);
169
170 MemTxResult (*read_with_attrs)(void *opaque,
171 hwaddr addr,
172 uint64_t *data,
173 unsigned size,
174 MemTxAttrs attrs);
175 MemTxResult (*write_with_attrs)(void *opaque,
176 hwaddr addr,
177 uint64_t data,
178 unsigned size,
179 MemTxAttrs attrs);
180
181 enum device_endian endianness;
182 /* Guest-visible constraints: */
183 struct {
184 /* If nonzero, specify bounds on access sizes beyond which a machine
185 * check is thrown.
186 */
187 unsigned min_access_size;
188 unsigned max_access_size;
189 /* If true, unaligned accesses are supported. Otherwise unaligned
190 * accesses throw machine checks.
191 */
192 bool unaligned;
193 /*
194 * If present, and returns #false, the transaction is not accepted
195 * by the device (and results in machine dependent behaviour such
196 * as a machine check exception).
197 */
198 bool (*accepts)(void *opaque, hwaddr addr,
199 unsigned size, bool is_write,
200 MemTxAttrs attrs);
201 } valid;
202 /* Internal implementation constraints: */
203 struct {
204 /* If nonzero, specifies the minimum size implemented. Smaller sizes
205 * will be rounded upwards and a partial result will be returned.
206 */
207 unsigned min_access_size;
208 /* If nonzero, specifies the maximum size implemented. Larger sizes
209 * will be done as a series of accesses with smaller sizes.
210 */
211 unsigned max_access_size;
212 /* If true, unaligned accesses are supported. Otherwise all accesses
213 * are converted to (possibly multiple) naturally aligned accesses.
214 */
215 bool unaligned;
216 } impl;
217 };
218
219 typedef struct MemoryRegionClass {
220 /* private */
221 ObjectClass parent_class;
222 } MemoryRegionClass;
223
224
225 enum IOMMUMemoryRegionAttr {
226 IOMMU_ATTR_SPAPR_TCE_FD
227 };
228
229 /*
230 * IOMMUMemoryRegionClass:
231 *
232 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
233 * and provide an implementation of at least the @translate method here
234 * to handle requests to the memory region. Other methods are optional.
235 *
236 * The IOMMU implementation must use the IOMMU notifier infrastructure
237 * to report whenever mappings are changed, by calling
238 * memory_region_notify_iommu() (or, if necessary, by calling
239 * memory_region_notify_one() for each registered notifier).
240 *
241 * Conceptually an IOMMU provides a mapping from input address
242 * to an output TLB entry. If the IOMMU is aware of memory transaction
243 * attributes and the output TLB entry depends on the transaction
244 * attributes, we represent this using IOMMU indexes. Each index
245 * selects a particular translation table that the IOMMU has:
246 *
247 * @attrs_to_index returns the IOMMU index for a set of transaction attributes
248 *
249 * @translate takes an input address and an IOMMU index
250 *
251 * and the mapping returned can only depend on the input address and the
252 * IOMMU index.
253 *
254 * Most IOMMUs don't care about the transaction attributes and support
255 * only a single IOMMU index. A more complex IOMMU might have one index
256 * for secure transactions and one for non-secure transactions.
257 */
258 struct IOMMUMemoryRegionClass {
259 /* private: */
260 MemoryRegionClass parent_class;
261
262 /* public: */
263 /**
264 * @translate:
265 *
266 * Return a TLB entry that contains a given address.
267 *
268 * The IOMMUAccessFlags indicated via @flag are optional and may
269 * be specified as IOMMU_NONE to indicate that the caller needs
270 * the full translation information for both reads and writes. If
271 * the access flags are specified then the IOMMU implementation
272 * may use this as an optimization, to stop doing a page table
273 * walk as soon as it knows that the requested permissions are not
274 * allowed. If IOMMU_NONE is passed then the IOMMU must do the
275 * full page table walk and report the permissions in the returned
276 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
277 * return different mappings for reads and writes.)
278 *
279 * The returned information remains valid while the caller is
280 * holding the big QEMU lock or is inside an RCU critical section;
281 * if the caller wishes to cache the mapping beyond that it must
282 * register an IOMMU notifier so it can invalidate its cached
283 * information when the IOMMU mapping changes.
284 *
285 * @iommu: the IOMMUMemoryRegion
286 *
287 * @hwaddr: address to be translated within the memory region
288 *
289 * @flag: requested access permission
290 *
291 * @iommu_idx: IOMMU index for the translation
292 */
293 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
294 IOMMUAccessFlags flag, int iommu_idx);
295 /**
296 * @get_min_page_size:
297 *
298 * Returns minimum supported page size in bytes.
299 *
300 * If this method is not provided then the minimum is assumed to
301 * be TARGET_PAGE_SIZE.
302 *
303 * @iommu: the IOMMUMemoryRegion
304 */
305 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
306 /**
307 * @notify_flag_changed:
308 *
309 * Called when IOMMU Notifier flag changes (ie when the set of
310 * events which IOMMU users are requesting notification for changes).
311 * Optional method -- need not be provided if the IOMMU does not
312 * need to know exactly which events must be notified.
313 *
314 * @iommu: the IOMMUMemoryRegion
315 *
316 * @old_flags: events which previously needed to be notified
317 *
318 * @new_flags: events which now need to be notified
319 *
320 * Returns 0 on success, or a negative errno; in particular
321 * returns -EINVAL if the new flag bitmap is not supported by the
322 * IOMMU memory region. In case of failure, the error object
323 * must be created
324 */
325 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
326 IOMMUNotifierFlag old_flags,
327 IOMMUNotifierFlag new_flags,
328 Error **errp);
329 /**
330 * @replay:
331 *
332 * Called to handle memory_region_iommu_replay().
333 *
334 * The default implementation of memory_region_iommu_replay() is to
335 * call the IOMMU translate method for every page in the address space
336 * with flag == IOMMU_NONE and then call the notifier if translate
337 * returns a valid mapping. If this method is implemented then it
338 * overrides the default behaviour, and must provide the full semantics
339 * of memory_region_iommu_replay(), by calling @notifier for every
340 * translation present in the IOMMU.
341 *
342 * Optional method -- an IOMMU only needs to provide this method
343 * if the default is inefficient or produces undesirable side effects.
344 *
345 * Note: this is not related to record-and-replay functionality.
346 */
347 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
348
349 /**
350 * @get_attr:
351 *
352 * Get IOMMU misc attributes. This is an optional method that
353 * can be used to allow users of the IOMMU to get implementation-specific
354 * information. The IOMMU implements this method to handle calls
355 * by IOMMU users to memory_region_iommu_get_attr() by filling in
356 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
357 * the IOMMU supports. If the method is unimplemented then
358 * memory_region_iommu_get_attr() will always return -EINVAL.
359 *
360 * @iommu: the IOMMUMemoryRegion
361 *
362 * @attr: attribute being queried
363 *
364 * @data: memory to fill in with the attribute data
365 *
366 * Returns 0 on success, or a negative errno; in particular
367 * returns -EINVAL for unrecognized or unimplemented attribute types.
368 */
369 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
370 void *data);
371
372 /**
373 * @attrs_to_index:
374 *
375 * Return the IOMMU index to use for a given set of transaction attributes.
376 *
377 * Optional method: if an IOMMU only supports a single IOMMU index then
378 * the default implementation of memory_region_iommu_attrs_to_index()
379 * will return 0.
380 *
381 * The indexes supported by an IOMMU must be contiguous, starting at 0.
382 *
383 * @iommu: the IOMMUMemoryRegion
384 * @attrs: memory transaction attributes
385 */
386 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
387
388 /**
389 * @num_indexes:
390 *
391 * Return the number of IOMMU indexes this IOMMU supports.
392 *
393 * Optional method: if this method is not provided, then
394 * memory_region_iommu_num_indexes() will return 1, indicating that
395 * only a single IOMMU index is supported.
396 *
397 * @iommu: the IOMMUMemoryRegion
398 */
399 int (*num_indexes)(IOMMUMemoryRegion *iommu);
400 };
401
402 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
403 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
404
405 /** MemoryRegion:
406 *
407 * A struct representing a memory region.
408 */
409 struct MemoryRegion {
410 Object parent_obj;
411
412 /* private: */
413
414 /* The following fields should fit in a cache line */
415 bool romd_mode;
416 bool ram;
417 bool subpage;
418 bool readonly; /* For RAM regions */
419 bool nonvolatile;
420 bool rom_device;
421 bool flush_coalesced_mmio;
422 uint8_t dirty_log_mask;
423 bool is_iommu;
424 RAMBlock *ram_block;
425 Object *owner;
426
427 const MemoryRegionOps *ops;
428 void *opaque;
429 MemoryRegion *container;
430 Int128 size;
431 hwaddr addr;
432 void (*destructor)(MemoryRegion *mr);
433 uint64_t align;
434 bool terminates;
435 bool ram_device;
436 bool enabled;
437 bool warning_printed; /* For reservations */
438 uint8_t vga_logging_count;
439 MemoryRegion *alias;
440 hwaddr alias_offset;
441 int32_t priority;
442 QTAILQ_HEAD(, MemoryRegion) subregions;
443 QTAILQ_ENTRY(MemoryRegion) subregions_link;
444 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
445 const char *name;
446 unsigned ioeventfd_nb;
447 MemoryRegionIoeventfd *ioeventfds;
448 };
449
450 struct IOMMUMemoryRegion {
451 MemoryRegion parent_obj;
452
453 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
454 IOMMUNotifierFlag iommu_notify_flags;
455 };
456
457 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
458 QLIST_FOREACH((n), &(mr)->iommu_notify, node)
459
460 /**
461 * struct MemoryListener: callbacks structure for updates to the physical memory map
462 *
463 * Allows a component to adjust to changes in the guest-visible memory map.
464 * Use with memory_listener_register() and memory_listener_unregister().
465 */
466 struct MemoryListener {
467 /**
468 * @begin:
469 *
470 * Called at the beginning of an address space update transaction.
471 * Followed by calls to #MemoryListener.region_add(),
472 * #MemoryListener.region_del(), #MemoryListener.region_nop(),
473 * #MemoryListener.log_start() and #MemoryListener.log_stop() in
474 * increasing address order.
475 *
476 * @listener: The #MemoryListener.
477 */
478 void (*begin)(MemoryListener *listener);
479
480 /**
481 * @commit:
482 *
483 * Called at the end of an address space update transaction,
484 * after the last call to #MemoryListener.region_add(),
485 * #MemoryListener.region_del() or #MemoryListener.region_nop(),
486 * #MemoryListener.log_start() and #MemoryListener.log_stop().
487 *
488 * @listener: The #MemoryListener.
489 */
490 void (*commit)(MemoryListener *listener);
491
492 /**
493 * @region_add:
494 *
495 * Called during an address space update transaction,
496 * for a section of the address space that is new in this address space
497 * space since the last transaction.
498 *
499 * @listener: The #MemoryListener.
500 * @section: The new #MemoryRegionSection.
501 */
502 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
503
504 /**
505 * @region_del:
506 *
507 * Called during an address space update transaction,
508 * for a section of the address space that has disappeared in the address
509 * space since the last transaction.
510 *
511 * @listener: The #MemoryListener.
512 * @section: The old #MemoryRegionSection.
513 */
514 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
515
516 /**
517 * @region_nop:
518 *
519 * Called during an address space update transaction,
520 * for a section of the address space that is in the same place in the address
521 * space as in the last transaction.
522 *
523 * @listener: The #MemoryListener.
524 * @section: The #MemoryRegionSection.
525 */
526 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
527
528 /**
529 * @log_start:
530 *
531 * Called during an address space update transaction, after
532 * one of #MemoryListener.region_add(),#MemoryListener.region_del() or
533 * #MemoryListener.region_nop(), if dirty memory logging clients have
534 * become active since the last transaction.
535 *
536 * @listener: The #MemoryListener.
537 * @section: The #MemoryRegionSection.
538 * @old: A bitmap of dirty memory logging clients that were active in
539 * the previous transaction.
540 * @new: A bitmap of dirty memory logging clients that are active in
541 * the current transaction.
542 */
543 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
544 int old, int new);
545
546 /**
547 * @log_stop:
548 *
549 * Called during an address space update transaction, after
550 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
551 * #MemoryListener.region_nop() and possibly after
552 * #MemoryListener.log_start(), if dirty memory logging clients have
553 * become inactive since the last transaction.
554 *
555 * @listener: The #MemoryListener.
556 * @section: The #MemoryRegionSection.
557 * @old: A bitmap of dirty memory logging clients that were active in
558 * the previous transaction.
559 * @new: A bitmap of dirty memory logging clients that are active in
560 * the current transaction.
561 */
562 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
563 int old, int new);
564
565 /**
566 * @log_sync:
567 *
568 * Called by memory_region_snapshot_and_clear_dirty() and
569 * memory_global_dirty_log_sync(), before accessing QEMU's "official"
570 * copy of the dirty memory bitmap for a #MemoryRegionSection.
571 *
572 * @listener: The #MemoryListener.
573 * @section: The #MemoryRegionSection.
574 */
575 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
576
577 /**
578 * @log_clear:
579 *
580 * Called before reading the dirty memory bitmap for a
581 * #MemoryRegionSection.
582 *
583 * @listener: The #MemoryListener.
584 * @section: The #MemoryRegionSection.
585 */
586 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
587
588 /**
589 * @log_global_start:
590 *
591 * Called by memory_global_dirty_log_start(), which
592 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
593 * the address space. #MemoryListener.log_global_start() is also
594 * called when a #MemoryListener is added, if global dirty logging is
595 * active at that time.
596 *
597 * @listener: The #MemoryListener.
598 */
599 void (*log_global_start)(MemoryListener *listener);
600
601 /**
602 * @log_global_stop:
603 *
604 * Called by memory_global_dirty_log_stop(), which
605 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
606 * the address space.
607 *
608 * @listener: The #MemoryListener.
609 */
610 void (*log_global_stop)(MemoryListener *listener);
611
612 /**
613 * @log_global_after_sync:
614 *
615 * Called after reading the dirty memory bitmap
616 * for any #MemoryRegionSection.
617 *
618 * @listener: The #MemoryListener.
619 */
620 void (*log_global_after_sync)(MemoryListener *listener);
621
622 /**
623 * @eventfd_add:
624 *
625 * Called during an address space update transaction,
626 * for a section of the address space that has had a new ioeventfd
627 * registration since the last transaction.
628 *
629 * @listener: The #MemoryListener.
630 * @section: The new #MemoryRegionSection.
631 * @match_data: The @match_data parameter for the new ioeventfd.
632 * @data: The @data parameter for the new ioeventfd.
633 * @e: The #EventNotifier parameter for the new ioeventfd.
634 */
635 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
636 bool match_data, uint64_t data, EventNotifier *e);
637
638 /**
639 * @eventfd_del:
640 *
641 * Called during an address space update transaction,
642 * for a section of the address space that has dropped an ioeventfd
643 * registration since the last transaction.
644 *
645 * @listener: The #MemoryListener.
646 * @section: The new #MemoryRegionSection.
647 * @match_data: The @match_data parameter for the dropped ioeventfd.
648 * @data: The @data parameter for the dropped ioeventfd.
649 * @e: The #EventNotifier parameter for the dropped ioeventfd.
650 */
651 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
652 bool match_data, uint64_t data, EventNotifier *e);
653
654 /**
655 * @coalesced_io_add:
656 *
657 * Called during an address space update transaction,
658 * for a section of the address space that has had a new coalesced
659 * MMIO range registration since the last transaction.
660 *
661 * @listener: The #MemoryListener.
662 * @section: The new #MemoryRegionSection.
663 * @addr: The starting address for the coalesced MMIO range.
664 * @len: The length of the coalesced MMIO range.
665 */
666 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
667 hwaddr addr, hwaddr len);
668
669 /**
670 * @coalesced_io_del:
671 *
672 * Called during an address space update transaction,
673 * for a section of the address space that has dropped a coalesced
674 * MMIO range since the last transaction.
675 *
676 * @listener: The #MemoryListener.
677 * @section: The new #MemoryRegionSection.
678 * @addr: The starting address for the coalesced MMIO range.
679 * @len: The length of the coalesced MMIO range.
680 */
681 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
682 hwaddr addr, hwaddr len);
683 /**
684 * @priority:
685 *
686 * Govern the order in which memory listeners are invoked. Lower priorities
687 * are invoked earlier for "add" or "start" callbacks, and later for "delete"
688 * or "stop" callbacks.
689 */
690 unsigned priority;
691
692 /* private: */
693 AddressSpace *address_space;
694 QTAILQ_ENTRY(MemoryListener) link;
695 QTAILQ_ENTRY(MemoryListener) link_as;
696 };
697
698 /**
699 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
700 */
701 struct AddressSpace {
702 /* private: */
703 struct rcu_head rcu;
704 char *name;
705 MemoryRegion *root;
706
707 /* Accessed via RCU. */
708 struct FlatView *current_map;
709
710 int ioeventfd_nb;
711 struct MemoryRegionIoeventfd *ioeventfds;
712 QTAILQ_HEAD(, MemoryListener) listeners;
713 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
714 };
715
716 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
717 typedef struct FlatRange FlatRange;
718
719 /* Flattened global view of current active memory hierarchy. Kept in sorted
720 * order.
721 */
722 struct FlatView {
723 struct rcu_head rcu;
724 unsigned ref;
725 FlatRange *ranges;
726 unsigned nr;
727 unsigned nr_allocated;
728 struct AddressSpaceDispatch *dispatch;
729 MemoryRegion *root;
730 };
731
732 static inline FlatView *address_space_to_flatview(AddressSpace *as)
733 {
734 return qatomic_rcu_read(&as->current_map);
735 }
736
737 typedef int (*flatview_cb)(Int128 start,
738 Int128 len,
739 const MemoryRegion*, void*);
740
741 void flatview_for_each_range(FlatView *fv, flatview_cb cb , void *opaque);
742
743 /**
744 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
745 *
746 * @mr: the region, or %NULL if empty
747 * @fv: the flat view of the address space the region is mapped in
748 * @offset_within_region: the beginning of the section, relative to @mr's start
749 * @size: the size of the section; will not exceed @mr's boundaries
750 * @offset_within_address_space: the address of the first byte of the section
751 * relative to the region's address space
752 * @readonly: writes to this section are ignored
753 * @nonvolatile: this section is non-volatile
754 */
755 struct MemoryRegionSection {
756 Int128 size;
757 MemoryRegion *mr;
758 FlatView *fv;
759 hwaddr offset_within_region;
760 hwaddr offset_within_address_space;
761 bool readonly;
762 bool nonvolatile;
763 };
764
765 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
766 MemoryRegionSection *b)
767 {
768 return a->mr == b->mr &&
769 a->fv == b->fv &&
770 a->offset_within_region == b->offset_within_region &&
771 a->offset_within_address_space == b->offset_within_address_space &&
772 int128_eq(a->size, b->size) &&
773 a->readonly == b->readonly &&
774 a->nonvolatile == b->nonvolatile;
775 }
776
777 /**
778 * memory_region_init: Initialize a memory region
779 *
780 * The region typically acts as a container for other memory regions. Use
781 * memory_region_add_subregion() to add subregions.
782 *
783 * @mr: the #MemoryRegion to be initialized
784 * @owner: the object that tracks the region's reference count
785 * @name: used for debugging; not visible to the user or ABI
786 * @size: size of the region; any subregions beyond this size will be clipped
787 */
788 void memory_region_init(MemoryRegion *mr,
789 struct Object *owner,
790 const char *name,
791 uint64_t size);
792
793 /**
794 * memory_region_ref: Add 1 to a memory region's reference count
795 *
796 * Whenever memory regions are accessed outside the BQL, they need to be
797 * preserved against hot-unplug. MemoryRegions actually do not have their
798 * own reference count; they piggyback on a QOM object, their "owner".
799 * This function adds a reference to the owner.
800 *
801 * All MemoryRegions must have an owner if they can disappear, even if the
802 * device they belong to operates exclusively under the BQL. This is because
803 * the region could be returned at any time by memory_region_find, and this
804 * is usually under guest control.
805 *
806 * @mr: the #MemoryRegion
807 */
808 void memory_region_ref(MemoryRegion *mr);
809
810 /**
811 * memory_region_unref: Remove 1 to a memory region's reference count
812 *
813 * Whenever memory regions are accessed outside the BQL, they need to be
814 * preserved against hot-unplug. MemoryRegions actually do not have their
815 * own reference count; they piggyback on a QOM object, their "owner".
816 * This function removes a reference to the owner and possibly destroys it.
817 *
818 * @mr: the #MemoryRegion
819 */
820 void memory_region_unref(MemoryRegion *mr);
821
822 /**
823 * memory_region_init_io: Initialize an I/O memory region.
824 *
825 * Accesses into the region will cause the callbacks in @ops to be called.
826 * if @size is nonzero, subregions will be clipped to @size.
827 *
828 * @mr: the #MemoryRegion to be initialized.
829 * @owner: the object that tracks the region's reference count
830 * @ops: a structure containing read and write callbacks to be used when
831 * I/O is performed on the region.
832 * @opaque: passed to the read and write callbacks of the @ops structure.
833 * @name: used for debugging; not visible to the user or ABI
834 * @size: size of the region.
835 */
836 void memory_region_init_io(MemoryRegion *mr,
837 struct Object *owner,
838 const MemoryRegionOps *ops,
839 void *opaque,
840 const char *name,
841 uint64_t size);
842
843 /**
844 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses
845 * into the region will modify memory
846 * directly.
847 *
848 * @mr: the #MemoryRegion to be initialized.
849 * @owner: the object that tracks the region's reference count
850 * @name: Region name, becomes part of RAMBlock name used in migration stream
851 * must be unique within any device
852 * @size: size of the region.
853 * @errp: pointer to Error*, to store an error if it happens.
854 *
855 * Note that this function does not do anything to cause the data in the
856 * RAM memory region to be migrated; that is the responsibility of the caller.
857 */
858 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
859 struct Object *owner,
860 const char *name,
861 uint64_t size,
862 Error **errp);
863
864 /**
865 * memory_region_init_ram_shared_nomigrate: Initialize RAM memory region.
866 * Accesses into the region will
867 * modify memory directly.
868 *
869 * @mr: the #MemoryRegion to be initialized.
870 * @owner: the object that tracks the region's reference count
871 * @name: Region name, becomes part of RAMBlock name used in migration stream
872 * must be unique within any device
873 * @size: size of the region.
874 * @share: allow remapping RAM to different addresses
875 * @errp: pointer to Error*, to store an error if it happens.
876 *
877 * Note that this function is similar to memory_region_init_ram_nomigrate.
878 * The only difference is part of the RAM region can be remapped.
879 */
880 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
881 struct Object *owner,
882 const char *name,
883 uint64_t size,
884 bool share,
885 Error **errp);
886
887 /**
888 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
889 * RAM. Accesses into the region will
890 * modify memory directly. Only an initial
891 * portion of this RAM is actually used.
892 * The used size can change across reboots.
893 *
894 * @mr: the #MemoryRegion to be initialized.
895 * @owner: the object that tracks the region's reference count
896 * @name: Region name, becomes part of RAMBlock name used in migration stream
897 * must be unique within any device
898 * @size: used size of the region.
899 * @max_size: max size of the region.
900 * @resized: callback to notify owner about used size change.
901 * @errp: pointer to Error*, to store an error if it happens.
902 *
903 * Note that this function does not do anything to cause the data in the
904 * RAM memory region to be migrated; that is the responsibility of the caller.
905 */
906 void memory_region_init_resizeable_ram(MemoryRegion *mr,
907 struct Object *owner,
908 const char *name,
909 uint64_t size,
910 uint64_t max_size,
911 void (*resized)(const char*,
912 uint64_t length,
913 void *host),
914 Error **errp);
915 #ifdef CONFIG_POSIX
916
917 /**
918 * memory_region_init_ram_from_file: Initialize RAM memory region with a
919 * mmap-ed backend.
920 *
921 * @mr: the #MemoryRegion to be initialized.
922 * @owner: the object that tracks the region's reference count
923 * @name: Region name, becomes part of RAMBlock name used in migration stream
924 * must be unique within any device
925 * @size: size of the region.
926 * @align: alignment of the region base address; if 0, the default alignment
927 * (getpagesize()) will be used.
928 * @ram_flags: Memory region features:
929 * - RAM_SHARED: memory must be mmaped with the MAP_SHARED flag
930 * - RAM_PMEM: the memory is persistent memory
931 * Other bits are ignored now.
932 * @path: the path in which to allocate the RAM.
933 * @errp: pointer to Error*, to store an error if it happens.
934 *
935 * Note that this function does not do anything to cause the data in the
936 * RAM memory region to be migrated; that is the responsibility of the caller.
937 */
938 void memory_region_init_ram_from_file(MemoryRegion *mr,
939 struct Object *owner,
940 const char *name,
941 uint64_t size,
942 uint64_t align,
943 uint32_t ram_flags,
944 const char *path,
945 Error **errp);
946
947 /**
948 * memory_region_init_ram_from_fd: Initialize RAM memory region with a
949 * mmap-ed backend.
950 *
951 * @mr: the #MemoryRegion to be initialized.
952 * @owner: the object that tracks the region's reference count
953 * @name: the name of the region.
954 * @size: size of the region.
955 * @share: %true if memory must be mmaped with the MAP_SHARED flag
956 * @fd: the fd to mmap.
957 * @errp: pointer to Error*, to store an error if it happens.
958 *
959 * Note that this function does not do anything to cause the data in the
960 * RAM memory region to be migrated; that is the responsibility of the caller.
961 */
962 void memory_region_init_ram_from_fd(MemoryRegion *mr,
963 struct Object *owner,
964 const char *name,
965 uint64_t size,
966 bool share,
967 int fd,
968 Error **errp);
969 #endif
970
971 /**
972 * memory_region_init_ram_ptr: Initialize RAM memory region from a
973 * user-provided pointer. Accesses into the
974 * region will modify memory directly.
975 *
976 * @mr: the #MemoryRegion to be initialized.
977 * @owner: the object that tracks the region's reference count
978 * @name: Region name, becomes part of RAMBlock name used in migration stream
979 * must be unique within any device
980 * @size: size of the region.
981 * @ptr: memory to be mapped; must contain at least @size bytes.
982 *
983 * Note that this function does not do anything to cause the data in the
984 * RAM memory region to be migrated; that is the responsibility of the caller.
985 */
986 void memory_region_init_ram_ptr(MemoryRegion *mr,
987 struct Object *owner,
988 const char *name,
989 uint64_t size,
990 void *ptr);
991
992 /**
993 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
994 * a user-provided pointer.
995 *
996 * A RAM device represents a mapping to a physical device, such as to a PCI
997 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
998 * into the VM address space and access to the region will modify memory
999 * directly. However, the memory region should not be included in a memory
1000 * dump (device may not be enabled/mapped at the time of the dump), and
1001 * operations incompatible with manipulating MMIO should be avoided. Replaces
1002 * skip_dump flag.
1003 *
1004 * @mr: the #MemoryRegion to be initialized.
1005 * @owner: the object that tracks the region's reference count
1006 * @name: the name of the region.
1007 * @size: size of the region.
1008 * @ptr: memory to be mapped; must contain at least @size bytes.
1009 *
1010 * Note that this function does not do anything to cause the data in the
1011 * RAM memory region to be migrated; that is the responsibility of the caller.
1012 * (For RAM device memory regions, migrating the contents rarely makes sense.)
1013 */
1014 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1015 struct Object *owner,
1016 const char *name,
1017 uint64_t size,
1018 void *ptr);
1019
1020 /**
1021 * memory_region_init_alias: Initialize a memory region that aliases all or a
1022 * part of another memory region.
1023 *
1024 * @mr: the #MemoryRegion to be initialized.
1025 * @owner: the object that tracks the region's reference count
1026 * @name: used for debugging; not visible to the user or ABI
1027 * @orig: the region to be referenced; @mr will be equivalent to
1028 * @orig between @offset and @offset + @size - 1.
1029 * @offset: start of the section in @orig to be referenced.
1030 * @size: size of the region.
1031 */
1032 void memory_region_init_alias(MemoryRegion *mr,
1033 struct Object *owner,
1034 const char *name,
1035 MemoryRegion *orig,
1036 hwaddr offset,
1037 uint64_t size);
1038
1039 /**
1040 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1041 *
1042 * This has the same effect as calling memory_region_init_ram_nomigrate()
1043 * and then marking the resulting region read-only with
1044 * memory_region_set_readonly().
1045 *
1046 * Note that this function does not do anything to cause the data in the
1047 * RAM side of the memory region to be migrated; that is the responsibility
1048 * of the caller.
1049 *
1050 * @mr: the #MemoryRegion to be initialized.
1051 * @owner: the object that tracks the region's reference count
1052 * @name: Region name, becomes part of RAMBlock name used in migration stream
1053 * must be unique within any device
1054 * @size: size of the region.
1055 * @errp: pointer to Error*, to store an error if it happens.
1056 */
1057 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1058 struct Object *owner,
1059 const char *name,
1060 uint64_t size,
1061 Error **errp);
1062
1063 /**
1064 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region.
1065 * Writes are handled via callbacks.
1066 *
1067 * Note that this function does not do anything to cause the data in the
1068 * RAM side of the memory region to be migrated; that is the responsibility
1069 * of the caller.
1070 *
1071 * @mr: the #MemoryRegion to be initialized.
1072 * @owner: the object that tracks the region's reference count
1073 * @ops: callbacks for write access handling (must not be NULL).
1074 * @opaque: passed to the read and write callbacks of the @ops structure.
1075 * @name: Region name, becomes part of RAMBlock name used in migration stream
1076 * must be unique within any device
1077 * @size: size of the region.
1078 * @errp: pointer to Error*, to store an error if it happens.
1079 */
1080 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1081 struct Object *owner,
1082 const MemoryRegionOps *ops,
1083 void *opaque,
1084 const char *name,
1085 uint64_t size,
1086 Error **errp);
1087
1088 /**
1089 * memory_region_init_iommu: Initialize a memory region of a custom type
1090 * that translates addresses
1091 *
1092 * An IOMMU region translates addresses and forwards accesses to a target
1093 * memory region.
1094 *
1095 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1096 * @_iommu_mr should be a pointer to enough memory for an instance of
1097 * that subclass, @instance_size is the size of that subclass, and
1098 * @mrtypename is its name. This function will initialize @_iommu_mr as an
1099 * instance of the subclass, and its methods will then be called to handle
1100 * accesses to the memory region. See the documentation of
1101 * #IOMMUMemoryRegionClass for further details.
1102 *
1103 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1104 * @instance_size: the IOMMUMemoryRegion subclass instance size
1105 * @mrtypename: the type name of the #IOMMUMemoryRegion
1106 * @owner: the object that tracks the region's reference count
1107 * @name: used for debugging; not visible to the user or ABI
1108 * @size: size of the region.
1109 */
1110 void memory_region_init_iommu(void *_iommu_mr,
1111 size_t instance_size,
1112 const char *mrtypename,
1113 Object *owner,
1114 const char *name,
1115 uint64_t size);
1116
1117 /**
1118 * memory_region_init_ram - Initialize RAM memory region. Accesses into the
1119 * region will modify memory directly.
1120 *
1121 * @mr: the #MemoryRegion to be initialized
1122 * @owner: the object that tracks the region's reference count (must be
1123 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1124 * @name: name of the memory region
1125 * @size: size of the region in bytes
1126 * @errp: pointer to Error*, to store an error if it happens.
1127 *
1128 * This function allocates RAM for a board model or device, and
1129 * arranges for it to be migrated (by calling vmstate_register_ram()
1130 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1131 * @owner is NULL).
1132 *
1133 * TODO: Currently we restrict @owner to being either NULL (for
1134 * global RAM regions with no owner) or devices, so that we can
1135 * give the RAM block a unique name for migration purposes.
1136 * We should lift this restriction and allow arbitrary Objects.
1137 * If you pass a non-NULL non-device @owner then we will assert.
1138 */
1139 void memory_region_init_ram(MemoryRegion *mr,
1140 struct Object *owner,
1141 const char *name,
1142 uint64_t size,
1143 Error **errp);
1144
1145 /**
1146 * memory_region_init_rom: Initialize a ROM memory region.
1147 *
1148 * This has the same effect as calling memory_region_init_ram()
1149 * and then marking the resulting region read-only with
1150 * memory_region_set_readonly(). This includes arranging for the
1151 * contents to be migrated.
1152 *
1153 * TODO: Currently we restrict @owner to being either NULL (for
1154 * global RAM regions with no owner) or devices, so that we can
1155 * give the RAM block a unique name for migration purposes.
1156 * We should lift this restriction and allow arbitrary Objects.
1157 * If you pass a non-NULL non-device @owner then we will assert.
1158 *
1159 * @mr: the #MemoryRegion to be initialized.
1160 * @owner: the object that tracks the region's reference count
1161 * @name: Region name, becomes part of RAMBlock name used in migration stream
1162 * must be unique within any device
1163 * @size: size of the region.
1164 * @errp: pointer to Error*, to store an error if it happens.
1165 */
1166 void memory_region_init_rom(MemoryRegion *mr,
1167 struct Object *owner,
1168 const char *name,
1169 uint64_t size,
1170 Error **errp);
1171
1172 /**
1173 * memory_region_init_rom_device: Initialize a ROM memory region.
1174 * Writes are handled via callbacks.
1175 *
1176 * This function initializes a memory region backed by RAM for reads
1177 * and callbacks for writes, and arranges for the RAM backing to
1178 * be migrated (by calling vmstate_register_ram()
1179 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1180 * @owner is NULL).
1181 *
1182 * TODO: Currently we restrict @owner to being either NULL (for
1183 * global RAM regions with no owner) or devices, so that we can
1184 * give the RAM block a unique name for migration purposes.
1185 * We should lift this restriction and allow arbitrary Objects.
1186 * If you pass a non-NULL non-device @owner then we will assert.
1187 *
1188 * @mr: the #MemoryRegion to be initialized.
1189 * @owner: the object that tracks the region's reference count
1190 * @ops: callbacks for write access handling (must not be NULL).
1191 * @opaque: passed to the read and write callbacks of the @ops structure.
1192 * @name: Region name, becomes part of RAMBlock name used in migration stream
1193 * must be unique within any device
1194 * @size: size of the region.
1195 * @errp: pointer to Error*, to store an error if it happens.
1196 */
1197 void memory_region_init_rom_device(MemoryRegion *mr,
1198 struct Object *owner,
1199 const MemoryRegionOps *ops,
1200 void *opaque,
1201 const char *name,
1202 uint64_t size,
1203 Error **errp);
1204
1205
1206 /**
1207 * memory_region_owner: get a memory region's owner.
1208 *
1209 * @mr: the memory region being queried.
1210 */
1211 struct Object *memory_region_owner(MemoryRegion *mr);
1212
1213 /**
1214 * memory_region_size: get a memory region's size.
1215 *
1216 * @mr: the memory region being queried.
1217 */
1218 uint64_t memory_region_size(MemoryRegion *mr);
1219
1220 /**
1221 * memory_region_is_ram: check whether a memory region is random access
1222 *
1223 * Returns %true if a memory region is random access.
1224 *
1225 * @mr: the memory region being queried
1226 */
1227 static inline bool memory_region_is_ram(MemoryRegion *mr)
1228 {
1229 return mr->ram;
1230 }
1231
1232 /**
1233 * memory_region_is_ram_device: check whether a memory region is a ram device
1234 *
1235 * Returns %true if a memory region is a device backed ram region
1236 *
1237 * @mr: the memory region being queried
1238 */
1239 bool memory_region_is_ram_device(MemoryRegion *mr);
1240
1241 /**
1242 * memory_region_is_romd: check whether a memory region is in ROMD mode
1243 *
1244 * Returns %true if a memory region is a ROM device and currently set to allow
1245 * direct reads.
1246 *
1247 * @mr: the memory region being queried
1248 */
1249 static inline bool memory_region_is_romd(MemoryRegion *mr)
1250 {
1251 return mr->rom_device && mr->romd_mode;
1252 }
1253
1254 /**
1255 * memory_region_get_iommu: check whether a memory region is an iommu
1256 *
1257 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1258 * otherwise NULL.
1259 *
1260 * @mr: the memory region being queried
1261 */
1262 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1263 {
1264 if (mr->alias) {
1265 return memory_region_get_iommu(mr->alias);
1266 }
1267 if (mr->is_iommu) {
1268 return (IOMMUMemoryRegion *) mr;
1269 }
1270 return NULL;
1271 }
1272
1273 /**
1274 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1275 * if an iommu or NULL if not
1276 *
1277 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1278 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1279 *
1280 * @iommu_mr: the memory region being queried
1281 */
1282 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1283 IOMMUMemoryRegion *iommu_mr)
1284 {
1285 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1286 }
1287
1288 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1289
1290 /**
1291 * memory_region_iommu_get_min_page_size: get minimum supported page size
1292 * for an iommu
1293 *
1294 * Returns minimum supported page size for an iommu.
1295 *
1296 * @iommu_mr: the memory region being queried
1297 */
1298 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1299
1300 /**
1301 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1302 *
1303 * The notification type will be decided by entry.perm bits:
1304 *
1305 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
1306 * - For MAP (newly added entry) notifies: set entry.perm to the
1307 * permission of the page (which is definitely !IOMMU_NONE).
1308 *
1309 * Note: for any IOMMU implementation, an in-place mapping change
1310 * should be notified with an UNMAP followed by a MAP.
1311 *
1312 * @iommu_mr: the memory region that was changed
1313 * @iommu_idx: the IOMMU index for the translation table which has changed
1314 * @entry: the new entry in the IOMMU translation table. The entry
1315 * replaces all old entries for the same virtual I/O address range.
1316 * Deleted entries have .@perm == 0.
1317 */
1318 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1319 int iommu_idx,
1320 IOMMUTLBEntry entry);
1321
1322 /**
1323 * memory_region_notify_one: notify a change in an IOMMU translation
1324 * entry to a single notifier
1325 *
1326 * This works just like memory_region_notify_iommu(), but it only
1327 * notifies a specific notifier, not all of them.
1328 *
1329 * @notifier: the notifier to be notified
1330 * @entry: the new entry in the IOMMU translation table. The entry
1331 * replaces all old entries for the same virtual I/O address range.
1332 * Deleted entries have .@perm == 0.
1333 */
1334 void memory_region_notify_one(IOMMUNotifier *notifier,
1335 IOMMUTLBEntry *entry);
1336
1337 /**
1338 * memory_region_register_iommu_notifier: register a notifier for changes to
1339 * IOMMU translation entries.
1340 *
1341 * Returns 0 on success, or a negative errno otherwise. In particular,
1342 * -EINVAL indicates that at least one of the attributes of the notifier
1343 * is not supported (flag/range) by the IOMMU memory region. In case of error
1344 * the error object must be created.
1345 *
1346 * @mr: the memory region to observe
1347 * @n: the IOMMUNotifier to be added; the notify callback receives a
1348 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1349 * ceases to be valid on exit from the notifier.
1350 * @errp: pointer to Error*, to store an error if it happens.
1351 */
1352 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1353 IOMMUNotifier *n, Error **errp);
1354
1355 /**
1356 * memory_region_iommu_replay: replay existing IOMMU translations to
1357 * a notifier with the minimum page granularity returned by
1358 * mr->iommu_ops->get_page_size().
1359 *
1360 * Note: this is not related to record-and-replay functionality.
1361 *
1362 * @iommu_mr: the memory region to observe
1363 * @n: the notifier to which to replay iommu mappings
1364 */
1365 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1366
1367 /**
1368 * memory_region_unregister_iommu_notifier: unregister a notifier for
1369 * changes to IOMMU translation entries.
1370 *
1371 * @mr: the memory region which was observed and for which notity_stopped()
1372 * needs to be called
1373 * @n: the notifier to be removed.
1374 */
1375 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1376 IOMMUNotifier *n);
1377
1378 /**
1379 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1380 * defined on the IOMMU.
1381 *
1382 * Returns 0 on success, or a negative errno otherwise. In particular,
1383 * -EINVAL indicates that the IOMMU does not support the requested
1384 * attribute.
1385 *
1386 * @iommu_mr: the memory region
1387 * @attr: the requested attribute
1388 * @data: a pointer to the requested attribute data
1389 */
1390 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1391 enum IOMMUMemoryRegionAttr attr,
1392 void *data);
1393
1394 /**
1395 * memory_region_iommu_attrs_to_index: return the IOMMU index to
1396 * use for translations with the given memory transaction attributes.
1397 *
1398 * @iommu_mr: the memory region
1399 * @attrs: the memory transaction attributes
1400 */
1401 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1402 MemTxAttrs attrs);
1403
1404 /**
1405 * memory_region_iommu_num_indexes: return the total number of IOMMU
1406 * indexes that this IOMMU supports.
1407 *
1408 * @iommu_mr: the memory region
1409 */
1410 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1411
1412 /**
1413 * memory_region_name: get a memory region's name
1414 *
1415 * Returns the string that was used to initialize the memory region.
1416 *
1417 * @mr: the memory region being queried
1418 */
1419 const char *memory_region_name(const MemoryRegion *mr);
1420
1421 /**
1422 * memory_region_is_logging: return whether a memory region is logging writes
1423 *
1424 * Returns %true if the memory region is logging writes for the given client
1425 *
1426 * @mr: the memory region being queried
1427 * @client: the client being queried
1428 */
1429 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1430
1431 /**
1432 * memory_region_get_dirty_log_mask: return the clients for which a
1433 * memory region is logging writes.
1434 *
1435 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1436 * are the bit indices.
1437 *
1438 * @mr: the memory region being queried
1439 */
1440 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1441
1442 /**
1443 * memory_region_is_rom: check whether a memory region is ROM
1444 *
1445 * Returns %true if a memory region is read-only memory.
1446 *
1447 * @mr: the memory region being queried
1448 */
1449 static inline bool memory_region_is_rom(MemoryRegion *mr)
1450 {
1451 return mr->ram && mr->readonly;
1452 }
1453
1454 /**
1455 * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1456 *
1457 * Returns %true is a memory region is non-volatile memory.
1458 *
1459 * @mr: the memory region being queried
1460 */
1461 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1462 {
1463 return mr->nonvolatile;
1464 }
1465
1466 /**
1467 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1468 *
1469 * Returns a file descriptor backing a file-based RAM memory region,
1470 * or -1 if the region is not a file-based RAM memory region.
1471 *
1472 * @mr: the RAM or alias memory region being queried.
1473 */
1474 int memory_region_get_fd(MemoryRegion *mr);
1475
1476 /**
1477 * memory_region_from_host: Convert a pointer into a RAM memory region
1478 * and an offset within it.
1479 *
1480 * Given a host pointer inside a RAM memory region (created with
1481 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1482 * the MemoryRegion and the offset within it.
1483 *
1484 * Use with care; by the time this function returns, the returned pointer is
1485 * not protected by RCU anymore. If the caller is not within an RCU critical
1486 * section and does not hold the iothread lock, it must have other means of
1487 * protecting the pointer, such as a reference to the region that includes
1488 * the incoming ram_addr_t.
1489 *
1490 * @ptr: the host pointer to be converted
1491 * @offset: the offset within memory region
1492 */
1493 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1494
1495 /**
1496 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1497 *
1498 * Returns a host pointer to a RAM memory region (created with
1499 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1500 *
1501 * Use with care; by the time this function returns, the returned pointer is
1502 * not protected by RCU anymore. If the caller is not within an RCU critical
1503 * section and does not hold the iothread lock, it must have other means of
1504 * protecting the pointer, such as a reference to the region that includes
1505 * the incoming ram_addr_t.
1506 *
1507 * @mr: the memory region being queried.
1508 */
1509 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1510
1511 /* memory_region_ram_resize: Resize a RAM region.
1512 *
1513 * Only legal before guest might have detected the memory size: e.g. on
1514 * incoming migration, or right after reset.
1515 *
1516 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1517 * @newsize: the new size the region
1518 * @errp: pointer to Error*, to store an error if it happens.
1519 */
1520 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1521 Error **errp);
1522
1523 /**
1524 * memory_region_msync: Synchronize selected address range of
1525 * a memory mapped region
1526 *
1527 * @mr: the memory region to be msync
1528 * @addr: the initial address of the range to be sync
1529 * @size: the size of the range to be sync
1530 */
1531 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
1532
1533 /**
1534 * memory_region_writeback: Trigger cache writeback for
1535 * selected address range
1536 *
1537 * @mr: the memory region to be updated
1538 * @addr: the initial address of the range to be written back
1539 * @size: the size of the range to be written back
1540 */
1541 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
1542
1543 /**
1544 * memory_region_set_log: Turn dirty logging on or off for a region.
1545 *
1546 * Turns dirty logging on or off for a specified client (display, migration).
1547 * Only meaningful for RAM regions.
1548 *
1549 * @mr: the memory region being updated.
1550 * @log: whether dirty logging is to be enabled or disabled.
1551 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1552 */
1553 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1554
1555 /**
1556 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1557 *
1558 * Marks a range of bytes as dirty, after it has been dirtied outside
1559 * guest code.
1560 *
1561 * @mr: the memory region being dirtied.
1562 * @addr: the address (relative to the start of the region) being dirtied.
1563 * @size: size of the range being dirtied.
1564 */
1565 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1566 hwaddr size);
1567
1568 /**
1569 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
1570 *
1571 * This function is called when the caller wants to clear the remote
1572 * dirty bitmap of a memory range within the memory region. This can
1573 * be used by e.g. KVM to manually clear dirty log when
1574 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
1575 * kernel.
1576 *
1577 * @mr: the memory region to clear the dirty log upon
1578 * @start: start address offset within the memory region
1579 * @len: length of the memory region to clear dirty bitmap
1580 */
1581 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
1582 hwaddr len);
1583
1584 /**
1585 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1586 * bitmap and clear it.
1587 *
1588 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1589 * returns the snapshot. The snapshot can then be used to query dirty
1590 * status, using memory_region_snapshot_get_dirty. Snapshotting allows
1591 * querying the same page multiple times, which is especially useful for
1592 * display updates where the scanlines often are not page aligned.
1593 *
1594 * The dirty bitmap region which gets copyed into the snapshot (and
1595 * cleared afterwards) can be larger than requested. The boundaries
1596 * are rounded up/down so complete bitmap longs (covering 64 pages on
1597 * 64bit hosts) can be copied over into the bitmap snapshot. Which
1598 * isn't a problem for display updates as the extra pages are outside
1599 * the visible area, and in case the visible area changes a full
1600 * display redraw is due anyway. Should other use cases for this
1601 * function emerge we might have to revisit this implementation
1602 * detail.
1603 *
1604 * Use g_free to release DirtyBitmapSnapshot.
1605 *
1606 * @mr: the memory region being queried.
1607 * @addr: the address (relative to the start of the region) being queried.
1608 * @size: the size of the range being queried.
1609 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1610 */
1611 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1612 hwaddr addr,
1613 hwaddr size,
1614 unsigned client);
1615
1616 /**
1617 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1618 * in the specified dirty bitmap snapshot.
1619 *
1620 * @mr: the memory region being queried.
1621 * @snap: the dirty bitmap snapshot
1622 * @addr: the address (relative to the start of the region) being queried.
1623 * @size: the size of the range being queried.
1624 */
1625 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1626 DirtyBitmapSnapshot *snap,
1627 hwaddr addr, hwaddr size);
1628
1629 /**
1630 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1631 * client.
1632 *
1633 * Marks a range of pages as no longer dirty.
1634 *
1635 * @mr: the region being updated.
1636 * @addr: the start of the subrange being cleaned.
1637 * @size: the size of the subrange being cleaned.
1638 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1639 * %DIRTY_MEMORY_VGA.
1640 */
1641 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1642 hwaddr size, unsigned client);
1643
1644 /**
1645 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
1646 * TBs (for self-modifying code).
1647 *
1648 * The MemoryRegionOps->write() callback of a ROM device must use this function
1649 * to mark byte ranges that have been modified internally, such as by directly
1650 * accessing the memory returned by memory_region_get_ram_ptr().
1651 *
1652 * This function marks the range dirty and invalidates TBs so that TCG can
1653 * detect self-modifying code.
1654 *
1655 * @mr: the region being flushed.
1656 * @addr: the start, relative to the start of the region, of the range being
1657 * flushed.
1658 * @size: the size, in bytes, of the range being flushed.
1659 */
1660 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
1661
1662 /**
1663 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1664 *
1665 * Allows a memory region to be marked as read-only (turning it into a ROM).
1666 * only useful on RAM regions.
1667 *
1668 * @mr: the region being updated.
1669 * @readonly: whether rhe region is to be ROM or RAM.
1670 */
1671 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1672
1673 /**
1674 * memory_region_set_nonvolatile: Turn a memory region non-volatile
1675 *
1676 * Allows a memory region to be marked as non-volatile.
1677 * only useful on RAM regions.
1678 *
1679 * @mr: the region being updated.
1680 * @nonvolatile: whether rhe region is to be non-volatile.
1681 */
1682 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
1683
1684 /**
1685 * memory_region_rom_device_set_romd: enable/disable ROMD mode
1686 *
1687 * Allows a ROM device (initialized with memory_region_init_rom_device() to
1688 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
1689 * device is mapped to guest memory and satisfies read access directly.
1690 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1691 * Writes are always handled by the #MemoryRegion.write function.
1692 *
1693 * @mr: the memory region to be updated
1694 * @romd_mode: %true to put the region into ROMD mode
1695 */
1696 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1697
1698 /**
1699 * memory_region_set_coalescing: Enable memory coalescing for the region.
1700 *
1701 * Enabled writes to a region to be queued for later processing. MMIO ->write
1702 * callbacks may be delayed until a non-coalesced MMIO is issued.
1703 * Only useful for IO regions. Roughly similar to write-combining hardware.
1704 *
1705 * @mr: the memory region to be write coalesced
1706 */
1707 void memory_region_set_coalescing(MemoryRegion *mr);
1708
1709 /**
1710 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1711 * a region.
1712 *
1713 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1714 * Multiple calls can be issued coalesced disjoint ranges.
1715 *
1716 * @mr: the memory region to be updated.
1717 * @offset: the start of the range within the region to be coalesced.
1718 * @size: the size of the subrange to be coalesced.
1719 */
1720 void memory_region_add_coalescing(MemoryRegion *mr,
1721 hwaddr offset,
1722 uint64_t size);
1723
1724 /**
1725 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1726 *
1727 * Disables any coalescing caused by memory_region_set_coalescing() or
1728 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
1729 * hardware.
1730 *
1731 * @mr: the memory region to be updated.
1732 */
1733 void memory_region_clear_coalescing(MemoryRegion *mr);
1734
1735 /**
1736 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1737 * accesses.
1738 *
1739 * Ensure that pending coalesced MMIO request are flushed before the memory
1740 * region is accessed. This property is automatically enabled for all regions
1741 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1742 *
1743 * @mr: the memory region to be updated.
1744 */
1745 void memory_region_set_flush_coalesced(MemoryRegion *mr);
1746
1747 /**
1748 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1749 * accesses.
1750 *
1751 * Clear the automatic coalesced MMIO flushing enabled via
1752 * memory_region_set_flush_coalesced. Note that this service has no effect on
1753 * memory regions that have MMIO coalescing enabled for themselves. For them,
1754 * automatic flushing will stop once coalescing is disabled.
1755 *
1756 * @mr: the memory region to be updated.
1757 */
1758 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1759
1760 /**
1761 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1762 * is written to a location.
1763 *
1764 * Marks a word in an IO region (initialized with memory_region_init_io())
1765 * as a trigger for an eventfd event. The I/O callback will not be called.
1766 * The caller must be prepared to handle failure (that is, take the required
1767 * action if the callback _is_ called).
1768 *
1769 * @mr: the memory region being updated.
1770 * @addr: the address within @mr that is to be monitored
1771 * @size: the size of the access to trigger the eventfd
1772 * @match_data: whether to match against @data, instead of just @addr
1773 * @data: the data to match against the guest write
1774 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1775 **/
1776 void memory_region_add_eventfd(MemoryRegion *mr,
1777 hwaddr addr,
1778 unsigned size,
1779 bool match_data,
1780 uint64_t data,
1781 EventNotifier *e);
1782
1783 /**
1784 * memory_region_del_eventfd: Cancel an eventfd.
1785 *
1786 * Cancels an eventfd trigger requested by a previous
1787 * memory_region_add_eventfd() call.
1788 *
1789 * @mr: the memory region being updated.
1790 * @addr: the address within @mr that is to be monitored
1791 * @size: the size of the access to trigger the eventfd
1792 * @match_data: whether to match against @data, instead of just @addr
1793 * @data: the data to match against the guest write
1794 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1795 */
1796 void memory_region_del_eventfd(MemoryRegion *mr,
1797 hwaddr addr,
1798 unsigned size,
1799 bool match_data,
1800 uint64_t data,
1801 EventNotifier *e);
1802
1803 /**
1804 * memory_region_add_subregion: Add a subregion to a container.
1805 *
1806 * Adds a subregion at @offset. The subregion may not overlap with other
1807 * subregions (except for those explicitly marked as overlapping). A region
1808 * may only be added once as a subregion (unless removed with
1809 * memory_region_del_subregion()); use memory_region_init_alias() if you
1810 * want a region to be a subregion in multiple locations.
1811 *
1812 * @mr: the region to contain the new subregion; must be a container
1813 * initialized with memory_region_init().
1814 * @offset: the offset relative to @mr where @subregion is added.
1815 * @subregion: the subregion to be added.
1816 */
1817 void memory_region_add_subregion(MemoryRegion *mr,
1818 hwaddr offset,
1819 MemoryRegion *subregion);
1820 /**
1821 * memory_region_add_subregion_overlap: Add a subregion to a container
1822 * with overlap.
1823 *
1824 * Adds a subregion at @offset. The subregion may overlap with other
1825 * subregions. Conflicts are resolved by having a higher @priority hide a
1826 * lower @priority. Subregions without priority are taken as @priority 0.
1827 * A region may only be added once as a subregion (unless removed with
1828 * memory_region_del_subregion()); use memory_region_init_alias() if you
1829 * want a region to be a subregion in multiple locations.
1830 *
1831 * @mr: the region to contain the new subregion; must be a container
1832 * initialized with memory_region_init().
1833 * @offset: the offset relative to @mr where @subregion is added.
1834 * @subregion: the subregion to be added.
1835 * @priority: used for resolving overlaps; highest priority wins.
1836 */
1837 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1838 hwaddr offset,
1839 MemoryRegion *subregion,
1840 int priority);
1841
1842 /**
1843 * memory_region_get_ram_addr: Get the ram address associated with a memory
1844 * region
1845 *
1846 * @mr: the region to be queried
1847 */
1848 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1849
1850 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1851 /**
1852 * memory_region_del_subregion: Remove a subregion.
1853 *
1854 * Removes a subregion from its container.
1855 *
1856 * @mr: the container to be updated.
1857 * @subregion: the region being removed; must be a current subregion of @mr.
1858 */
1859 void memory_region_del_subregion(MemoryRegion *mr,
1860 MemoryRegion *subregion);
1861
1862 /*
1863 * memory_region_set_enabled: dynamically enable or disable a region
1864 *
1865 * Enables or disables a memory region. A disabled memory region
1866 * ignores all accesses to itself and its subregions. It does not
1867 * obscure sibling subregions with lower priority - it simply behaves as
1868 * if it was removed from the hierarchy.
1869 *
1870 * Regions default to being enabled.
1871 *
1872 * @mr: the region to be updated
1873 * @enabled: whether to enable or disable the region
1874 */
1875 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1876
1877 /*
1878 * memory_region_set_address: dynamically update the address of a region
1879 *
1880 * Dynamically updates the address of a region, relative to its container.
1881 * May be used on regions are currently part of a memory hierarchy.
1882 *
1883 * @mr: the region to be updated
1884 * @addr: new address, relative to container region
1885 */
1886 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1887
1888 /*
1889 * memory_region_set_size: dynamically update the size of a region.
1890 *
1891 * Dynamically updates the size of a region.
1892 *
1893 * @mr: the region to be updated
1894 * @size: used size of the region.
1895 */
1896 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1897
1898 /*
1899 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1900 *
1901 * Dynamically updates the offset into the target region that an alias points
1902 * to, as if the fourth argument to memory_region_init_alias() has changed.
1903 *
1904 * @mr: the #MemoryRegion to be updated; should be an alias.
1905 * @offset: the new offset into the target memory region
1906 */
1907 void memory_region_set_alias_offset(MemoryRegion *mr,
1908 hwaddr offset);
1909
1910 /**
1911 * memory_region_present: checks if an address relative to a @container
1912 * translates into #MemoryRegion within @container
1913 *
1914 * Answer whether a #MemoryRegion within @container covers the address
1915 * @addr.
1916 *
1917 * @container: a #MemoryRegion within which @addr is a relative address
1918 * @addr: the area within @container to be searched
1919 */
1920 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1921
1922 /**
1923 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1924 * into any address space.
1925 *
1926 * @mr: a #MemoryRegion which should be checked if it's mapped
1927 */
1928 bool memory_region_is_mapped(MemoryRegion *mr);
1929
1930 /**
1931 * memory_region_find: translate an address/size relative to a
1932 * MemoryRegion into a #MemoryRegionSection.
1933 *
1934 * Locates the first #MemoryRegion within @mr that overlaps the range
1935 * given by @addr and @size.
1936 *
1937 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1938 * It will have the following characteristics:
1939 * - @size = 0 iff no overlap was found
1940 * - @mr is non-%NULL iff an overlap was found
1941 *
1942 * Remember that in the return value the @offset_within_region is
1943 * relative to the returned region (in the .@mr field), not to the
1944 * @mr argument.
1945 *
1946 * Similarly, the .@offset_within_address_space is relative to the
1947 * address space that contains both regions, the passed and the
1948 * returned one. However, in the special case where the @mr argument
1949 * has no container (and thus is the root of the address space), the
1950 * following will hold:
1951 * - @offset_within_address_space >= @addr
1952 * - @offset_within_address_space + .@size <= @addr + @size
1953 *
1954 * @mr: a MemoryRegion within which @addr is a relative address
1955 * @addr: start of the area within @as to be searched
1956 * @size: size of the area to be searched
1957 */
1958 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1959 hwaddr addr, uint64_t size);
1960
1961 /**
1962 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1963 *
1964 * Synchronizes the dirty page log for all address spaces.
1965 */
1966 void memory_global_dirty_log_sync(void);
1967
1968 /**
1969 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1970 *
1971 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
1972 * This function must be called after the dirty log bitmap is cleared, and
1973 * before dirty guest memory pages are read. If you are using
1974 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
1975 * care of doing this.
1976 */
1977 void memory_global_after_dirty_log_sync(void);
1978
1979 /**
1980 * memory_region_transaction_begin: Start a transaction.
1981 *
1982 * During a transaction, changes will be accumulated and made visible
1983 * only when the transaction ends (is committed).
1984 */
1985 void memory_region_transaction_begin(void);
1986
1987 /**
1988 * memory_region_transaction_commit: Commit a transaction and make changes
1989 * visible to the guest.
1990 */
1991 void memory_region_transaction_commit(void);
1992
1993 /**
1994 * memory_listener_register: register callbacks to be called when memory
1995 * sections are mapped or unmapped into an address
1996 * space
1997 *
1998 * @listener: an object containing the callbacks to be called
1999 * @filter: if non-%NULL, only regions in this address space will be observed
2000 */
2001 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2002
2003 /**
2004 * memory_listener_unregister: undo the effect of memory_listener_register()
2005 *
2006 * @listener: an object containing the callbacks to be removed
2007 */
2008 void memory_listener_unregister(MemoryListener *listener);
2009
2010 /**
2011 * memory_global_dirty_log_start: begin dirty logging for all regions
2012 */
2013 void memory_global_dirty_log_start(void);
2014
2015 /**
2016 * memory_global_dirty_log_stop: end dirty logging for all regions
2017 */
2018 void memory_global_dirty_log_stop(void);
2019
2020 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2021
2022 /**
2023 * memory_region_dispatch_read: perform a read directly to the specified
2024 * MemoryRegion.
2025 *
2026 * @mr: #MemoryRegion to access
2027 * @addr: address within that region
2028 * @pval: pointer to uint64_t which the data is written to
2029 * @op: size, sign, and endianness of the memory operation
2030 * @attrs: memory transaction attributes to use for the access
2031 */
2032 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2033 hwaddr addr,
2034 uint64_t *pval,
2035 MemOp op,
2036 MemTxAttrs attrs);
2037 /**
2038 * memory_region_dispatch_write: perform a write directly to the specified
2039 * MemoryRegion.
2040 *
2041 * @mr: #MemoryRegion to access
2042 * @addr: address within that region
2043 * @data: data to write
2044 * @op: size, sign, and endianness of the memory operation
2045 * @attrs: memory transaction attributes to use for the access
2046 */
2047 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2048 hwaddr addr,
2049 uint64_t data,
2050 MemOp op,
2051 MemTxAttrs attrs);
2052
2053 /**
2054 * address_space_init: initializes an address space
2055 *
2056 * @as: an uninitialized #AddressSpace
2057 * @root: a #MemoryRegion that routes addresses for the address space
2058 * @name: an address space name. The name is only used for debugging
2059 * output.
2060 */
2061 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2062
2063 /**
2064 * address_space_destroy: destroy an address space
2065 *
2066 * Releases all resources associated with an address space. After an address space
2067 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2068 * as well.
2069 *
2070 * @as: address space to be destroyed
2071 */
2072 void address_space_destroy(AddressSpace *as);
2073
2074 /**
2075 * address_space_remove_listeners: unregister all listeners of an address space
2076 *
2077 * Removes all callbacks previously registered with memory_listener_register()
2078 * for @as.
2079 *
2080 * @as: an initialized #AddressSpace
2081 */
2082 void address_space_remove_listeners(AddressSpace *as);
2083
2084 /**
2085 * address_space_rw: read from or write to an address space.
2086 *
2087 * Return a MemTxResult indicating whether the operation succeeded
2088 * or failed (eg unassigned memory, device rejected the transaction,
2089 * IOMMU fault).
2090 *
2091 * @as: #AddressSpace to be accessed
2092 * @addr: address within that address space
2093 * @attrs: memory transaction attributes
2094 * @buf: buffer with the data transferred
2095 * @len: the number of bytes to read or write
2096 * @is_write: indicates the transfer direction
2097 */
2098 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2099 MemTxAttrs attrs, void *buf,
2100 hwaddr len, bool is_write);
2101
2102 /**
2103 * address_space_write: write to address space.
2104 *
2105 * Return a MemTxResult indicating whether the operation succeeded
2106 * or failed (eg unassigned memory, device rejected the transaction,
2107 * IOMMU fault).
2108 *
2109 * @as: #AddressSpace to be accessed
2110 * @addr: address within that address space
2111 * @attrs: memory transaction attributes
2112 * @buf: buffer with the data transferred
2113 * @len: the number of bytes to write
2114 */
2115 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2116 MemTxAttrs attrs,
2117 const void *buf, hwaddr len);
2118
2119 /**
2120 * address_space_write_rom: write to address space, including ROM.
2121 *
2122 * This function writes to the specified address space, but will
2123 * write data to both ROM and RAM. This is used for non-guest
2124 * writes like writes from the gdb debug stub or initial loading
2125 * of ROM contents.
2126 *
2127 * Note that portions of the write which attempt to write data to
2128 * a device will be silently ignored -- only real RAM and ROM will
2129 * be written to.
2130 *
2131 * Return a MemTxResult indicating whether the operation succeeded
2132 * or failed (eg unassigned memory, device rejected the transaction,
2133 * IOMMU fault).
2134 *
2135 * @as: #AddressSpace to be accessed
2136 * @addr: address within that address space
2137 * @attrs: memory transaction attributes
2138 * @buf: buffer with the data transferred
2139 * @len: the number of bytes to write
2140 */
2141 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2142 MemTxAttrs attrs,
2143 const void *buf, hwaddr len);
2144
2145 /* address_space_ld*: load from an address space
2146 * address_space_st*: store to an address space
2147 *
2148 * These functions perform a load or store of the byte, word,
2149 * longword or quad to the specified address within the AddressSpace.
2150 * The _le suffixed functions treat the data as little endian;
2151 * _be indicates big endian; no suffix indicates "same endianness
2152 * as guest CPU".
2153 *
2154 * The "guest CPU endianness" accessors are deprecated for use outside
2155 * target-* code; devices should be CPU-agnostic and use either the LE
2156 * or the BE accessors.
2157 *
2158 * @as #AddressSpace to be accessed
2159 * @addr: address within that address space
2160 * @val: data value, for stores
2161 * @attrs: memory transaction attributes
2162 * @result: location to write the success/failure of the transaction;
2163 * if NULL, this information is discarded
2164 */
2165
2166 #define SUFFIX
2167 #define ARG1 as
2168 #define ARG1_DECL AddressSpace *as
2169 #include "exec/memory_ldst.h.inc"
2170
2171 #define SUFFIX
2172 #define ARG1 as
2173 #define ARG1_DECL AddressSpace *as
2174 #include "exec/memory_ldst_phys.h.inc"
2175
2176 struct MemoryRegionCache {
2177 void *ptr;
2178 hwaddr xlat;
2179 hwaddr len;
2180 FlatView *fv;
2181 MemoryRegionSection mrs;
2182 bool is_write;
2183 };
2184
2185 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
2186
2187
2188 /* address_space_ld*_cached: load from a cached #MemoryRegion
2189 * address_space_st*_cached: store into a cached #MemoryRegion
2190 *
2191 * These functions perform a load or store of the byte, word,
2192 * longword or quad to the specified address. The address is
2193 * a physical address in the AddressSpace, but it must lie within
2194 * a #MemoryRegion that was mapped with address_space_cache_init.
2195 *
2196 * The _le suffixed functions treat the data as little endian;
2197 * _be indicates big endian; no suffix indicates "same endianness
2198 * as guest CPU".
2199 *
2200 * The "guest CPU endianness" accessors are deprecated for use outside
2201 * target-* code; devices should be CPU-agnostic and use either the LE
2202 * or the BE accessors.
2203 *
2204 * @cache: previously initialized #MemoryRegionCache to be accessed
2205 * @addr: address within the address space
2206 * @val: data value, for stores
2207 * @attrs: memory transaction attributes
2208 * @result: location to write the success/failure of the transaction;
2209 * if NULL, this information is discarded
2210 */
2211
2212 #define SUFFIX _cached_slow
2213 #define ARG1 cache
2214 #define ARG1_DECL MemoryRegionCache *cache
2215 #include "exec/memory_ldst.h.inc"
2216
2217 /* Inline fast path for direct RAM access. */
2218 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2219 hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2220 {
2221 assert(addr < cache->len);
2222 if (likely(cache->ptr)) {
2223 return ldub_p(cache->ptr + addr);
2224 } else {
2225 return address_space_ldub_cached_slow(cache, addr, attrs, result);
2226 }
2227 }
2228
2229 static inline void address_space_stb_cached(MemoryRegionCache *cache,
2230 hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result)
2231 {
2232 assert(addr < cache->len);
2233 if (likely(cache->ptr)) {
2234 stb_p(cache->ptr + addr, val);
2235 } else {
2236 address_space_stb_cached_slow(cache, addr, val, attrs, result);
2237 }
2238 }
2239
2240 #define ENDIANNESS _le
2241 #include "exec/memory_ldst_cached.h.inc"
2242
2243 #define ENDIANNESS _be
2244 #include "exec/memory_ldst_cached.h.inc"
2245
2246 #define SUFFIX _cached
2247 #define ARG1 cache
2248 #define ARG1_DECL MemoryRegionCache *cache
2249 #include "exec/memory_ldst_phys.h.inc"
2250
2251 /* address_space_cache_init: prepare for repeated access to a physical
2252 * memory region
2253 *
2254 * @cache: #MemoryRegionCache to be filled
2255 * @as: #AddressSpace to be accessed
2256 * @addr: address within that address space
2257 * @len: length of buffer
2258 * @is_write: indicates the transfer direction
2259 *
2260 * Will only work with RAM, and may map a subset of the requested range by
2261 * returning a value that is less than @len. On failure, return a negative
2262 * errno value.
2263 *
2264 * Because it only works with RAM, this function can be used for
2265 * read-modify-write operations. In this case, is_write should be %true.
2266 *
2267 * Note that addresses passed to the address_space_*_cached functions
2268 * are relative to @addr.
2269 */
2270 int64_t address_space_cache_init(MemoryRegionCache *cache,
2271 AddressSpace *as,
2272 hwaddr addr,
2273 hwaddr len,
2274 bool is_write);
2275
2276 /**
2277 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2278 *
2279 * @cache: The #MemoryRegionCache to operate on.
2280 * @addr: The first physical address that was written, relative to the
2281 * address that was passed to @address_space_cache_init.
2282 * @access_len: The number of bytes that were written starting at @addr.
2283 */
2284 void address_space_cache_invalidate(MemoryRegionCache *cache,
2285 hwaddr addr,
2286 hwaddr access_len);
2287
2288 /**
2289 * address_space_cache_destroy: free a #MemoryRegionCache
2290 *
2291 * @cache: The #MemoryRegionCache whose memory should be released.
2292 */
2293 void address_space_cache_destroy(MemoryRegionCache *cache);
2294
2295 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2296 * entry. Should be called from an RCU critical section.
2297 */
2298 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2299 bool is_write, MemTxAttrs attrs);
2300
2301 /* address_space_translate: translate an address range into an address space
2302 * into a MemoryRegion and an address range into that section. Should be
2303 * called from an RCU critical section, to avoid that the last reference
2304 * to the returned region disappears after address_space_translate returns.
2305 *
2306 * @fv: #FlatView to be accessed
2307 * @addr: address within that address space
2308 * @xlat: pointer to address within the returned memory region section's
2309 * #MemoryRegion.
2310 * @len: pointer to length
2311 * @is_write: indicates the transfer direction
2312 * @attrs: memory attributes
2313 */
2314 MemoryRegion *flatview_translate(FlatView *fv,
2315 hwaddr addr, hwaddr *xlat,
2316 hwaddr *len, bool is_write,
2317 MemTxAttrs attrs);
2318
2319 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2320 hwaddr addr, hwaddr *xlat,
2321 hwaddr *len, bool is_write,
2322 MemTxAttrs attrs)
2323 {
2324 return flatview_translate(address_space_to_flatview(as),
2325 addr, xlat, len, is_write, attrs);
2326 }
2327
2328 /* address_space_access_valid: check for validity of accessing an address
2329 * space range
2330 *
2331 * Check whether memory is assigned to the given address space range, and
2332 * access is permitted by any IOMMU regions that are active for the address
2333 * space.
2334 *
2335 * For now, addr and len should be aligned to a page size. This limitation
2336 * will be lifted in the future.
2337 *
2338 * @as: #AddressSpace to be accessed
2339 * @addr: address within that address space
2340 * @len: length of the area to be checked
2341 * @is_write: indicates the transfer direction
2342 * @attrs: memory attributes
2343 */
2344 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2345 bool is_write, MemTxAttrs attrs);
2346
2347 /* address_space_map: map a physical memory region into a host virtual address
2348 *
2349 * May map a subset of the requested range, given by and returned in @plen.
2350 * May return %NULL and set *@plen to zero(0), if resources needed to perform
2351 * the mapping are exhausted.
2352 * Use only for reads OR writes - not for read-modify-write operations.
2353 * Use cpu_register_map_client() to know when retrying the map operation is
2354 * likely to succeed.
2355 *
2356 * @as: #AddressSpace to be accessed
2357 * @addr: address within that address space
2358 * @plen: pointer to length of buffer; updated on return
2359 * @is_write: indicates the transfer direction
2360 * @attrs: memory attributes
2361 */
2362 void *address_space_map(AddressSpace *as, hwaddr addr,
2363 hwaddr *plen, bool is_write, MemTxAttrs attrs);
2364
2365 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2366 *
2367 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
2368 * the amount of memory that was actually read or written by the caller.
2369 *
2370 * @as: #AddressSpace used
2371 * @buffer: host pointer as returned by address_space_map()
2372 * @len: buffer length as returned by address_space_map()
2373 * @access_len: amount of data actually transferred
2374 * @is_write: indicates the transfer direction
2375 */
2376 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2377 bool is_write, hwaddr access_len);
2378
2379
2380 /* Internal functions, part of the implementation of address_space_read. */
2381 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2382 MemTxAttrs attrs, void *buf, hwaddr len);
2383 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2384 MemTxAttrs attrs, void *buf,
2385 hwaddr len, hwaddr addr1, hwaddr l,
2386 MemoryRegion *mr);
2387 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2388
2389 /* Internal functions, part of the implementation of address_space_read_cached
2390 * and address_space_write_cached. */
2391 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
2392 hwaddr addr, void *buf, hwaddr len);
2393 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
2394 hwaddr addr, const void *buf,
2395 hwaddr len);
2396
2397 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2398 {
2399 if (is_write) {
2400 return memory_region_is_ram(mr) && !mr->readonly &&
2401 !mr->rom_device && !memory_region_is_ram_device(mr);
2402 } else {
2403 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2404 memory_region_is_romd(mr);
2405 }
2406 }
2407
2408 /**
2409 * address_space_read: read from an address space.
2410 *
2411 * Return a MemTxResult indicating whether the operation succeeded
2412 * or failed (eg unassigned memory, device rejected the transaction,
2413 * IOMMU fault). Called within RCU critical section.
2414 *
2415 * @as: #AddressSpace to be accessed
2416 * @addr: address within that address space
2417 * @attrs: memory transaction attributes
2418 * @buf: buffer with the data transferred
2419 * @len: length of the data transferred
2420 */
2421 static inline __attribute__((__always_inline__))
2422 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2423 MemTxAttrs attrs, void *buf,
2424 hwaddr len)
2425 {
2426 MemTxResult result = MEMTX_OK;
2427 hwaddr l, addr1;
2428 void *ptr;
2429 MemoryRegion *mr;
2430 FlatView *fv;
2431
2432 if (__builtin_constant_p(len)) {
2433 if (len) {
2434 RCU_READ_LOCK_GUARD();
2435 fv = address_space_to_flatview(as);
2436 l = len;
2437 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2438 if (len == l && memory_access_is_direct(mr, false)) {
2439 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2440 memcpy(buf, ptr, len);
2441 } else {
2442 result = flatview_read_continue(fv, addr, attrs, buf, len,
2443 addr1, l, mr);
2444 }
2445 }
2446 } else {
2447 result = address_space_read_full(as, addr, attrs, buf, len);
2448 }
2449 return result;
2450 }
2451
2452 /**
2453 * address_space_read_cached: read from a cached RAM region
2454 *
2455 * @cache: Cached region to be addressed
2456 * @addr: address relative to the base of the RAM region
2457 * @buf: buffer with the data transferred
2458 * @len: length of the data transferred
2459 */
2460 static inline MemTxResult
2461 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2462 void *buf, hwaddr len)
2463 {
2464 assert(addr < cache->len && len <= cache->len - addr);
2465 if (likely(cache->ptr)) {
2466 memcpy(buf, cache->ptr + addr, len);
2467 return MEMTX_OK;
2468 } else {
2469 return address_space_read_cached_slow(cache, addr, buf, len);
2470 }
2471 }
2472
2473 /**
2474 * address_space_write_cached: write to a cached RAM region
2475 *
2476 * @cache: Cached region to be addressed
2477 * @addr: address relative to the base of the RAM region
2478 * @buf: buffer with the data transferred
2479 * @len: length of the data transferred
2480 */
2481 static inline MemTxResult
2482 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2483 const void *buf, hwaddr len)
2484 {
2485 assert(addr < cache->len && len <= cache->len - addr);
2486 if (likely(cache->ptr)) {
2487 memcpy(cache->ptr + addr, buf, len);
2488 return MEMTX_OK;
2489 } else {
2490 return address_space_write_cached_slow(cache, addr, buf, len);
2491 }
2492 }
2493
2494 #ifdef NEED_CPU_H
2495 /* enum device_endian to MemOp. */
2496 static inline MemOp devend_memop(enum device_endian end)
2497 {
2498 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
2499 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
2500
2501 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
2502 /* Swap if non-host endianness or native (target) endianness */
2503 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
2504 #else
2505 const int non_host_endianness =
2506 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
2507
2508 /* In this case, native (target) endianness needs no swap. */
2509 return (end == non_host_endianness) ? MO_BSWAP : 0;
2510 #endif
2511 }
2512 #endif
2513
2514 /*
2515 * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
2516 * to manage the actual amount of memory consumed by the VM (then, the memory
2517 * provided by RAM blocks might be bigger than the desired memory consumption).
2518 * This *must* be set if:
2519 * - Discarding parts of a RAM blocks does not result in the change being
2520 * reflected in the VM and the pages getting freed.
2521 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
2522 * discards blindly.
2523 * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
2524 * encrypted VMs).
2525 * Technologies that only temporarily pin the current working set of a
2526 * driver are fine, because we don't expect such pages to be discarded
2527 * (esp. based on guest action like balloon inflation).
2528 *
2529 * This is *not* to be used to protect from concurrent discards (esp.,
2530 * postcopy).
2531 *
2532 * Returns 0 if successful. Returns -EBUSY if a technology that relies on
2533 * discards to work reliably is active.
2534 */
2535 int ram_block_discard_disable(bool state);
2536
2537 /*
2538 * Inhibit technologies that disable discarding of pages in RAM blocks.
2539 *
2540 * Returns 0 if successful. Returns -EBUSY if discards are already set to
2541 * broken.
2542 */
2543 int ram_block_discard_require(bool state);
2544
2545 /*
2546 * Test if discarding of memory in ram blocks is disabled.
2547 */
2548 bool ram_block_discard_is_disabled(void);
2549
2550 /*
2551 * Test if discarding of memory in ram blocks is required to work reliably.
2552 */
2553 bool ram_block_discard_is_required(void);
2554
2555 #endif
2556
2557 #endif