Merge remote-tracking branch 'remotes/rth/tags/pull-tcg-20210921' into staging
[qemu.git] / include / hw / elf_ops.h
1 static void glue(bswap_ehdr, SZ)(struct elfhdr *ehdr)
2 {
3 bswap16s(&ehdr->e_type); /* Object file type */
4 bswap16s(&ehdr->e_machine); /* Architecture */
5 bswap32s(&ehdr->e_version); /* Object file version */
6 bswapSZs(&ehdr->e_entry); /* Entry point virtual address */
7 bswapSZs(&ehdr->e_phoff); /* Program header table file offset */
8 bswapSZs(&ehdr->e_shoff); /* Section header table file offset */
9 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
10 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
11 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
12 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
13 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
14 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
15 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
16 }
17
18 static void glue(bswap_phdr, SZ)(struct elf_phdr *phdr)
19 {
20 bswap32s(&phdr->p_type); /* Segment type */
21 bswapSZs(&phdr->p_offset); /* Segment file offset */
22 bswapSZs(&phdr->p_vaddr); /* Segment virtual address */
23 bswapSZs(&phdr->p_paddr); /* Segment physical address */
24 bswapSZs(&phdr->p_filesz); /* Segment size in file */
25 bswapSZs(&phdr->p_memsz); /* Segment size in memory */
26 bswap32s(&phdr->p_flags); /* Segment flags */
27 bswapSZs(&phdr->p_align); /* Segment alignment */
28 }
29
30 static void glue(bswap_shdr, SZ)(struct elf_shdr *shdr)
31 {
32 bswap32s(&shdr->sh_name);
33 bswap32s(&shdr->sh_type);
34 bswapSZs(&shdr->sh_flags);
35 bswapSZs(&shdr->sh_addr);
36 bswapSZs(&shdr->sh_offset);
37 bswapSZs(&shdr->sh_size);
38 bswap32s(&shdr->sh_link);
39 bswap32s(&shdr->sh_info);
40 bswapSZs(&shdr->sh_addralign);
41 bswapSZs(&shdr->sh_entsize);
42 }
43
44 static void glue(bswap_sym, SZ)(struct elf_sym *sym)
45 {
46 bswap32s(&sym->st_name);
47 bswapSZs(&sym->st_value);
48 bswapSZs(&sym->st_size);
49 bswap16s(&sym->st_shndx);
50 }
51
52 static void glue(bswap_rela, SZ)(struct elf_rela *rela)
53 {
54 bswapSZs(&rela->r_offset);
55 bswapSZs(&rela->r_info);
56 bswapSZs((elf_word *)&rela->r_addend);
57 }
58
59 static struct elf_shdr *glue(find_section, SZ)(struct elf_shdr *shdr_table,
60 int n, int type)
61 {
62 int i;
63 for(i=0;i<n;i++) {
64 if (shdr_table[i].sh_type == type)
65 return shdr_table + i;
66 }
67 return NULL;
68 }
69
70 static int glue(symfind, SZ)(const void *s0, const void *s1)
71 {
72 hwaddr addr = *(hwaddr *)s0;
73 struct elf_sym *sym = (struct elf_sym *)s1;
74 int result = 0;
75 if (addr < sym->st_value) {
76 result = -1;
77 } else if (addr >= sym->st_value + sym->st_size) {
78 result = 1;
79 }
80 return result;
81 }
82
83 static const char *glue(lookup_symbol, SZ)(struct syminfo *s,
84 hwaddr orig_addr)
85 {
86 struct elf_sym *syms = glue(s->disas_symtab.elf, SZ);
87 struct elf_sym *sym;
88
89 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms),
90 glue(symfind, SZ));
91 if (sym != NULL) {
92 return s->disas_strtab + sym->st_name;
93 }
94
95 return "";
96 }
97
98 static int glue(symcmp, SZ)(const void *s0, const void *s1)
99 {
100 struct elf_sym *sym0 = (struct elf_sym *)s0;
101 struct elf_sym *sym1 = (struct elf_sym *)s1;
102 return (sym0->st_value < sym1->st_value)
103 ? -1
104 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
105 }
106
107 static void glue(load_symbols, SZ)(struct elfhdr *ehdr, int fd, int must_swab,
108 int clear_lsb, symbol_fn_t sym_cb)
109 {
110 struct elf_shdr *symtab, *strtab;
111 g_autofree struct elf_shdr *shdr_table = NULL;
112 g_autofree struct elf_sym *syms = NULL;
113 g_autofree char *str = NULL;
114 struct syminfo *s;
115 int nsyms, i;
116
117 shdr_table = load_at(fd, ehdr->e_shoff,
118 sizeof(struct elf_shdr) * ehdr->e_shnum);
119 if (!shdr_table) {
120 return ;
121 }
122
123 if (must_swab) {
124 for (i = 0; i < ehdr->e_shnum; i++) {
125 glue(bswap_shdr, SZ)(shdr_table + i);
126 }
127 }
128
129 symtab = glue(find_section, SZ)(shdr_table, ehdr->e_shnum, SHT_SYMTAB);
130 if (!symtab) {
131 return;
132 }
133 syms = load_at(fd, symtab->sh_offset, symtab->sh_size);
134 if (!syms) {
135 return;
136 }
137
138 nsyms = symtab->sh_size / sizeof(struct elf_sym);
139
140 /* String table */
141 if (symtab->sh_link >= ehdr->e_shnum) {
142 return;
143 }
144 strtab = &shdr_table[symtab->sh_link];
145
146 str = load_at(fd, strtab->sh_offset, strtab->sh_size);
147 if (!str) {
148 return;
149 }
150
151 i = 0;
152 while (i < nsyms) {
153 if (must_swab) {
154 glue(bswap_sym, SZ)(&syms[i]);
155 }
156 if (sym_cb) {
157 sym_cb(str + syms[i].st_name, syms[i].st_info,
158 syms[i].st_value, syms[i].st_size);
159 }
160 /* We are only interested in function symbols.
161 Throw everything else away. */
162 if (syms[i].st_shndx == SHN_UNDEF ||
163 syms[i].st_shndx >= SHN_LORESERVE ||
164 ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
165 nsyms--;
166 if (i < nsyms) {
167 syms[i] = syms[nsyms];
168 }
169 continue;
170 }
171 if (clear_lsb) {
172 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
173 syms[i].st_value &= ~(glue(glue(Elf, SZ), _Addr))1;
174 }
175 i++;
176 }
177
178 /* check we have symbols left */
179 if (nsyms == 0) {
180 return;
181 }
182
183 syms = g_realloc(syms, nsyms * sizeof(*syms));
184 qsort(syms, nsyms, sizeof(*syms), glue(symcmp, SZ));
185 for (i = 0; i < nsyms - 1; i++) {
186 if (syms[i].st_size == 0) {
187 syms[i].st_size = syms[i + 1].st_value - syms[i].st_value;
188 }
189 }
190
191 /* Commit */
192 s = g_malloc0(sizeof(*s));
193 s->lookup_symbol = glue(lookup_symbol, SZ);
194 glue(s->disas_symtab.elf, SZ) = g_steal_pointer(&syms);
195 s->disas_num_syms = nsyms;
196 s->disas_strtab = g_steal_pointer(&str);
197 s->next = syminfos;
198 syminfos = s;
199 }
200
201 static int glue(elf_reloc, SZ)(struct elfhdr *ehdr, int fd, int must_swab,
202 uint64_t (*translate_fn)(void *, uint64_t),
203 void *translate_opaque, uint8_t *data,
204 struct elf_phdr *ph, int elf_machine)
205 {
206 struct elf_shdr *reltab, *shdr_table = NULL;
207 struct elf_rela *rels = NULL;
208 int nrels, i, ret = -1;
209 elf_word wordval;
210 void *addr;
211
212 shdr_table = load_at(fd, ehdr->e_shoff,
213 sizeof(struct elf_shdr) * ehdr->e_shnum);
214 if (!shdr_table) {
215 return -1;
216 }
217 if (must_swab) {
218 for (i = 0; i < ehdr->e_shnum; i++) {
219 glue(bswap_shdr, SZ)(&shdr_table[i]);
220 }
221 }
222
223 reltab = glue(find_section, SZ)(shdr_table, ehdr->e_shnum, SHT_RELA);
224 if (!reltab) {
225 goto fail;
226 }
227 rels = load_at(fd, reltab->sh_offset, reltab->sh_size);
228 if (!rels) {
229 goto fail;
230 }
231 nrels = reltab->sh_size / sizeof(struct elf_rela);
232
233 for (i = 0; i < nrels; i++) {
234 if (must_swab) {
235 glue(bswap_rela, SZ)(&rels[i]);
236 }
237 if (rels[i].r_offset < ph->p_vaddr ||
238 rels[i].r_offset >= ph->p_vaddr + ph->p_filesz) {
239 continue;
240 }
241 addr = &data[rels[i].r_offset - ph->p_vaddr];
242 switch (elf_machine) {
243 case EM_S390:
244 switch (rels[i].r_info) {
245 case R_390_RELATIVE:
246 wordval = *(elf_word *)addr;
247 if (must_swab) {
248 bswapSZs(&wordval);
249 }
250 wordval = translate_fn(translate_opaque, wordval);
251 if (must_swab) {
252 bswapSZs(&wordval);
253 }
254 *(elf_word *)addr = wordval;
255 break;
256 default:
257 fprintf(stderr, "Unsupported relocation type %i!\n",
258 (int)rels[i].r_info);
259 }
260 }
261 }
262
263 ret = 0;
264 fail:
265 g_free(rels);
266 g_free(shdr_table);
267 return ret;
268 }
269
270 /*
271 * Given 'nhdr', a pointer to a range of ELF Notes, search through them
272 * for a note matching type 'elf_note_type' and return a pointer to
273 * the matching ELF note.
274 */
275 static struct elf_note *glue(get_elf_note_type, SZ)(struct elf_note *nhdr,
276 elf_word note_size,
277 elf_word phdr_align,
278 elf_word elf_note_type)
279 {
280 elf_word nhdr_size = sizeof(struct elf_note);
281 elf_word elf_note_entry_offset = 0;
282 elf_word note_type;
283 elf_word nhdr_namesz;
284 elf_word nhdr_descsz;
285
286 if (nhdr == NULL) {
287 return NULL;
288 }
289
290 note_type = nhdr->n_type;
291 while (note_type != elf_note_type) {
292 nhdr_namesz = nhdr->n_namesz;
293 nhdr_descsz = nhdr->n_descsz;
294
295 elf_note_entry_offset = nhdr_size +
296 QEMU_ALIGN_UP(nhdr_namesz, phdr_align) +
297 QEMU_ALIGN_UP(nhdr_descsz, phdr_align);
298
299 /*
300 * If the offset calculated in this iteration exceeds the
301 * supplied size, we are done and no matching note was found.
302 */
303 if (elf_note_entry_offset > note_size) {
304 return NULL;
305 }
306
307 /* skip to the next ELF Note entry */
308 nhdr = (void *)nhdr + elf_note_entry_offset;
309 note_type = nhdr->n_type;
310 }
311
312 return nhdr;
313 }
314
315 static int glue(load_elf, SZ)(const char *name, int fd,
316 uint64_t (*elf_note_fn)(void *, void *, bool),
317 uint64_t (*translate_fn)(void *, uint64_t),
318 void *translate_opaque,
319 int must_swab, uint64_t *pentry,
320 uint64_t *lowaddr, uint64_t *highaddr,
321 uint32_t *pflags, int elf_machine,
322 int clear_lsb, int data_swab,
323 AddressSpace *as, bool load_rom,
324 symbol_fn_t sym_cb)
325 {
326 struct elfhdr ehdr;
327 struct elf_phdr *phdr = NULL, *ph;
328 int size, i, total_size;
329 elf_word mem_size, file_size, data_offset;
330 uint64_t addr, low = (uint64_t)-1, high = 0;
331 GMappedFile *mapped_file = NULL;
332 uint8_t *data = NULL;
333 int ret = ELF_LOAD_FAILED;
334
335 if (read(fd, &ehdr, sizeof(ehdr)) != sizeof(ehdr))
336 goto fail;
337 if (must_swab) {
338 glue(bswap_ehdr, SZ)(&ehdr);
339 }
340
341 if (elf_machine <= EM_NONE) {
342 /* The caller didn't specify an ARCH, we can figure it out */
343 elf_machine = ehdr.e_machine;
344 }
345
346 switch (elf_machine) {
347 case EM_PPC64:
348 if (ehdr.e_machine != EM_PPC64) {
349 if (ehdr.e_machine != EM_PPC) {
350 ret = ELF_LOAD_WRONG_ARCH;
351 goto fail;
352 }
353 }
354 break;
355 case EM_X86_64:
356 if (ehdr.e_machine != EM_X86_64) {
357 if (ehdr.e_machine != EM_386) {
358 ret = ELF_LOAD_WRONG_ARCH;
359 goto fail;
360 }
361 }
362 break;
363 case EM_MICROBLAZE:
364 if (ehdr.e_machine != EM_MICROBLAZE) {
365 if (ehdr.e_machine != EM_MICROBLAZE_OLD) {
366 ret = ELF_LOAD_WRONG_ARCH;
367 goto fail;
368 }
369 }
370 break;
371 case EM_MIPS:
372 case EM_NANOMIPS:
373 if ((ehdr.e_machine != EM_MIPS) &&
374 (ehdr.e_machine != EM_NANOMIPS)) {
375 ret = ELF_LOAD_WRONG_ARCH;
376 goto fail;
377 }
378 break;
379 default:
380 if (elf_machine != ehdr.e_machine) {
381 ret = ELF_LOAD_WRONG_ARCH;
382 goto fail;
383 }
384 }
385
386 if (pflags) {
387 *pflags = (elf_word)ehdr.e_flags;
388 }
389 if (pentry)
390 *pentry = (uint64_t)(elf_sword)ehdr.e_entry;
391
392 glue(load_symbols, SZ)(&ehdr, fd, must_swab, clear_lsb, sym_cb);
393
394 size = ehdr.e_phnum * sizeof(phdr[0]);
395 if (lseek(fd, ehdr.e_phoff, SEEK_SET) != ehdr.e_phoff) {
396 goto fail;
397 }
398 phdr = g_malloc0(size);
399 if (!phdr)
400 goto fail;
401 if (read(fd, phdr, size) != size)
402 goto fail;
403 if (must_swab) {
404 for(i = 0; i < ehdr.e_phnum; i++) {
405 ph = &phdr[i];
406 glue(bswap_phdr, SZ)(ph);
407 }
408 }
409
410 /*
411 * Since we want to be able to modify the mapped buffer, we set the
412 * 'writable' parameter to 'true'. Modifications to the buffer are not
413 * written back to the file.
414 */
415 mapped_file = g_mapped_file_new_from_fd(fd, true, NULL);
416 if (!mapped_file) {
417 goto fail;
418 }
419
420 total_size = 0;
421 for(i = 0; i < ehdr.e_phnum; i++) {
422 ph = &phdr[i];
423 if (ph->p_type == PT_LOAD) {
424 mem_size = ph->p_memsz; /* Size of the ROM */
425 file_size = ph->p_filesz; /* Size of the allocated data */
426 data_offset = ph->p_offset; /* Offset where the data is located */
427
428 if (file_size > 0) {
429 if (g_mapped_file_get_length(mapped_file) <
430 file_size + data_offset) {
431 goto fail;
432 }
433
434 data = (uint8_t *)g_mapped_file_get_contents(mapped_file);
435 data += data_offset;
436 }
437
438 /* The ELF spec is somewhat vague about the purpose of the
439 * physical address field. One common use in the embedded world
440 * is that physical address field specifies the load address
441 * and the virtual address field specifies the execution address.
442 * Segments are packed into ROM or flash, and the relocation
443 * and zero-initialization of data is done at runtime. This
444 * means that the memsz header represents the runtime size of the
445 * segment, but the filesz represents the loadtime size. If
446 * we try to honour the memsz value for an ELF file like this
447 * we will end up with overlapping segments (which the
448 * loader.c code will later reject).
449 * We support ELF files using this scheme by by checking whether
450 * paddr + memsz for this segment would overlap with any other
451 * segment. If so, then we assume it's using this scheme and
452 * truncate the loaded segment to the filesz size.
453 * If the segment considered as being memsz size doesn't overlap
454 * then we use memsz for the segment length, to handle ELF files
455 * which assume that the loader will do the zero-initialization.
456 */
457 if (mem_size > file_size) {
458 /* If this segment's zero-init portion overlaps another
459 * segment's data or zero-init portion, then truncate this one.
460 * Invalid ELF files where the segments overlap even when
461 * only file_size bytes are loaded will be rejected by
462 * the ROM overlap check in loader.c, so we don't try to
463 * explicitly detect those here.
464 */
465 int j;
466 elf_word zero_start = ph->p_paddr + file_size;
467 elf_word zero_end = ph->p_paddr + mem_size;
468
469 for (j = 0; j < ehdr.e_phnum; j++) {
470 struct elf_phdr *jph = &phdr[j];
471
472 if (i != j && jph->p_type == PT_LOAD) {
473 elf_word other_start = jph->p_paddr;
474 elf_word other_end = jph->p_paddr + jph->p_memsz;
475
476 if (!(other_start >= zero_end ||
477 zero_start >= other_end)) {
478 mem_size = file_size;
479 break;
480 }
481 }
482 }
483 }
484
485 if (mem_size > INT_MAX - total_size) {
486 ret = ELF_LOAD_TOO_BIG;
487 goto fail;
488 }
489
490 /* address_offset is hack for kernel images that are
491 linked at the wrong physical address. */
492 if (translate_fn) {
493 addr = translate_fn(translate_opaque, ph->p_paddr);
494 glue(elf_reloc, SZ)(&ehdr, fd, must_swab, translate_fn,
495 translate_opaque, data, ph, elf_machine);
496 } else {
497 addr = ph->p_paddr;
498 }
499
500 if (data_swab) {
501 int j;
502 for (j = 0; j < file_size; j += (1 << data_swab)) {
503 uint8_t *dp = data + j;
504 switch (data_swab) {
505 case (1):
506 *(uint16_t *)dp = bswap16(*(uint16_t *)dp);
507 break;
508 case (2):
509 *(uint32_t *)dp = bswap32(*(uint32_t *)dp);
510 break;
511 case (3):
512 *(uint64_t *)dp = bswap64(*(uint64_t *)dp);
513 break;
514 default:
515 g_assert_not_reached();
516 }
517 }
518 }
519
520 /* the entry pointer in the ELF header is a virtual
521 * address, if the text segments paddr and vaddr differ
522 * we need to adjust the entry */
523 if (pentry && !translate_fn &&
524 ph->p_vaddr != ph->p_paddr &&
525 ehdr.e_entry >= ph->p_vaddr &&
526 ehdr.e_entry < ph->p_vaddr + ph->p_filesz &&
527 ph->p_flags & PF_X) {
528 *pentry = ehdr.e_entry - ph->p_vaddr + ph->p_paddr;
529 }
530
531 /* Some ELF files really do have segments of zero size;
532 * just ignore them rather than trying to create empty
533 * ROM blobs, because the zero-length blob can falsely
534 * trigger the overlapping-ROM-blobs check.
535 */
536 if (mem_size != 0) {
537 if (load_rom) {
538 g_autofree char *label =
539 g_strdup_printf("%s ELF program header segment %d",
540 name, i);
541
542 /*
543 * rom_add_elf_program() takes its own reference to
544 * 'mapped_file'.
545 */
546 rom_add_elf_program(label, mapped_file, data, file_size,
547 mem_size, addr, as);
548 } else {
549 MemTxResult res;
550
551 res = address_space_write(as ? as : &address_space_memory,
552 addr, MEMTXATTRS_UNSPECIFIED,
553 data, file_size);
554 if (res != MEMTX_OK) {
555 goto fail;
556 }
557 }
558 }
559
560 total_size += mem_size;
561 if (addr < low)
562 low = addr;
563 if ((addr + mem_size) > high)
564 high = addr + mem_size;
565
566 data = NULL;
567
568 } else if (ph->p_type == PT_NOTE && elf_note_fn) {
569 struct elf_note *nhdr = NULL;
570
571 file_size = ph->p_filesz; /* Size of the range of ELF notes */
572 data_offset = ph->p_offset; /* Offset where the notes are located */
573
574 if (file_size > 0) {
575 if (g_mapped_file_get_length(mapped_file) <
576 file_size + data_offset) {
577 goto fail;
578 }
579
580 data = (uint8_t *)g_mapped_file_get_contents(mapped_file);
581 data += data_offset;
582 }
583
584 /*
585 * Search the ELF notes to find one with a type matching the
586 * value passed in via 'translate_opaque'
587 */
588 nhdr = (struct elf_note *)data;
589 assert(translate_opaque != NULL);
590 nhdr = glue(get_elf_note_type, SZ)(nhdr, file_size, ph->p_align,
591 *(uint64_t *)translate_opaque);
592 if (nhdr != NULL) {
593 elf_note_fn((void *)nhdr, (void *)&ph->p_align, SZ == 64);
594 }
595 data = NULL;
596 }
597 }
598
599 if (lowaddr)
600 *lowaddr = (uint64_t)(elf_sword)low;
601 if (highaddr)
602 *highaddr = (uint64_t)(elf_sword)high;
603 ret = total_size;
604 fail:
605 if (mapped_file) {
606 g_mapped_file_unref(mapped_file);
607 }
608 g_free(phdr);
609 return ret;
610 }