Merge remote-tracking branch 'remotes/vivier2/tags/linux-user-for-5.2-pull-request...
[qemu.git] / include / libdecnumber / decNumberLocal.h
1 /* Local definitions for the decNumber C Library.
2 Copyright (C) 2007 Free Software Foundation, Inc.
3 Contributed by IBM Corporation. Author Mike Cowlishaw.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 In addition to the permissions in the GNU General Public License,
13 the Free Software Foundation gives you unlimited permission to link
14 the compiled version of this file into combinations with other
15 programs, and to distribute those combinations without any
16 restriction coming from the use of this file. (The General Public
17 License restrictions do apply in other respects; for example, they
18 cover modification of the file, and distribution when not linked
19 into a combine executable.)
20
21 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
22 WARRANTY; without even the implied warranty of MERCHANTABILITY or
23 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
24 for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with GCC; see the file COPYING. If not, write to the Free
28 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
29 02110-1301, USA. */
30
31 /* ------------------------------------------------------------------ */
32 /* decNumber package local type, tuning, and macro definitions */
33 /* ------------------------------------------------------------------ */
34 /* This header file is included by all modules in the decNumber */
35 /* library, and contains local type definitions, tuning parameters, */
36 /* etc. It should not need to be used by application programs. */
37 /* decNumber.h or one of decDouble (etc.) must be included first. */
38 /* ------------------------------------------------------------------ */
39
40 #ifndef DECNUMBERLOCAL_H
41 #define DECNUMBERLOCAL_H
42
43 #define DECVERSION "decNumber 3.53" /* Package Version [16 max.] */
44 #define DECNLAUTHOR "Mike Cowlishaw" /* Who to blame */
45
46 #include "libdecnumber/dconfig.h"
47 #include "libdecnumber/decContext.h"
48
49 /* Conditional code flag -- set this to match hardware platform */
50 /* 1=little-endian, 0=big-endian */
51 #if WORDS_BIGENDIAN
52 #define DECLITEND 0
53 #else
54 #define DECLITEND 1
55 #endif
56
57 /* Conditional code flag -- set this to 1 for best performance */
58 #define DECUSE64 1 /* 1=use int64s, 0=int32 & smaller only */
59
60 /* Conditional check flags -- set these to 0 for best performance */
61 #define DECCHECK 0 /* 1 to enable robust checking */
62 #define DECALLOC 0 /* 1 to enable memory accounting */
63 #define DECTRACE 0 /* 1 to trace certain internals, etc. */
64
65 /* Tuning parameter for decNumber (arbitrary precision) module */
66 #define DECBUFFER 36 /* Size basis for local buffers. This */
67 /* should be a common maximum precision */
68 /* rounded up to a multiple of 4; must */
69 /* be zero or positive. */
70
71 /* ---------------------------------------------------------------- */
72 /* Definitions for all modules (general-purpose) */
73 /* ---------------------------------------------------------------- */
74
75 /* Local names for common types -- for safety, decNumber modules do */
76 /* not use int or long directly. */
77 #define Flag uint8_t
78 #define Byte int8_t
79 #define uByte uint8_t
80 #define Short int16_t
81 #define uShort uint16_t
82 #define Int int32_t
83 #define uInt uint32_t
84 #define Unit decNumberUnit
85 #if DECUSE64
86 #define Long int64_t
87 #define uLong uint64_t
88 #endif
89
90 /* Development-use definitions */
91 typedef long int LI; /* for printf arguments only */
92 #define DECNOINT 0 /* 1 to check no internal use of 'int' */
93 #if DECNOINT
94 /* if these interfere with your C includes, do not set DECNOINT */
95 #define int ? /* enable to ensure that plain C 'int' */
96 #define long ?? /* .. or 'long' types are not used */
97 #endif
98
99 /* Shared lookup tables */
100 extern const uByte DECSTICKYTAB[10]; /* re-round digits if sticky */
101 extern const uLong DECPOWERS[19]; /* powers of ten table */
102 /* The following are included from decDPD.h */
103 extern const uShort DPD2BIN[1024]; /* DPD -> 0-999 */
104 extern const uShort BIN2DPD[1000]; /* 0-999 -> DPD */
105 extern const uInt DPD2BINK[1024]; /* DPD -> 0-999000 */
106 extern const uInt DPD2BINM[1024]; /* DPD -> 0-999000000 */
107 extern const uByte DPD2BCD8[4096]; /* DPD -> ddd + len */
108 extern const uByte BIN2BCD8[4000]; /* 0-999 -> ddd + len */
109 extern const uShort BCD2DPD[2458]; /* 0-0x999 -> DPD (0x999=2457)*/
110
111 /* LONGMUL32HI -- set w=(u*v)>>32, where w, u, and v are uInts */
112 /* (that is, sets w to be the high-order word of the 64-bit result; */
113 /* the low-order word is simply u*v.) */
114 /* This version is derived from Knuth via Hacker's Delight; */
115 /* it seems to optimize better than some others tried */
116 #define LONGMUL32HI(w, u, v) { \
117 uInt u0, u1, v0, v1, w0, w1, w2, t; \
118 u0=u & 0xffff; u1=u>>16; \
119 v0=v & 0xffff; v1=v>>16; \
120 w0=u0*v0; \
121 t=u1*v0 + (w0>>16); \
122 w1=t & 0xffff; w2=t>>16; \
123 w1=u0*v1 + w1; \
124 (w)=u1*v1 + w2 + (w1>>16);}
125
126 /* ROUNDUP -- round an integer up to a multiple of n */
127 #define ROUNDUP(i, n) ((((i)+(n)-1)/n)*n)
128
129 /* ROUNDDOWN -- round an integer down to a multiple of n */
130 #define ROUNDDOWN(i, n) (((i)/n)*n)
131 #define ROUNDDOWN4(i) ((i)&~3) /* special for n=4 */
132
133 /* References to multi-byte sequences under different sizes */
134 /* Refer to a uInt from four bytes starting at a char* or uByte*, */
135 /* etc. */
136 #define UINTAT(b) (*((uInt *)(b)))
137 #define USHORTAT(b) (*((uShort *)(b)))
138 #define UBYTEAT(b) (*((uByte *)(b)))
139
140 /* X10 and X100 -- multiply integer i by 10 or 100 */
141 /* [shifts are usually faster than multiply; could be conditional] */
142 #define X10(i) (((i)<<1)+((i)<<3))
143 #define X100(i) (((i)<<2)+((i)<<5)+((i)<<6))
144
145 /* MAXI and MINI -- general max & min (not in ANSI) for integers */
146 #define MAXI(x,y) ((x)<(y)?(y):(x))
147 #define MINI(x,y) ((x)>(y)?(y):(x))
148
149 /* Useful constants */
150 #define BILLION 1000000000 /* 10**9 */
151 /* CHARMASK: 0x30303030 for ASCII/UTF8; 0xF0F0F0F0 for EBCDIC */
152 #define CHARMASK ((((((((uInt)'0')<<8)+'0')<<8)+'0')<<8)+'0')
153
154
155 /* ---------------------------------------------------------------- */
156 /* Definitions for arbitrary-precision modules (only valid after */
157 /* decNumber.h has been included) */
158 /* ---------------------------------------------------------------- */
159
160 /* Limits and constants */
161 #define DECNUMMAXP 999999999 /* maximum precision code can handle */
162 #define DECNUMMAXE 999999999 /* maximum adjusted exponent ditto */
163 #define DECNUMMINE -999999999 /* minimum adjusted exponent ditto */
164 #if (DECNUMMAXP != DEC_MAX_DIGITS)
165 #error Maximum digits mismatch
166 #endif
167 #if (DECNUMMAXE != DEC_MAX_EMAX)
168 #error Maximum exponent mismatch
169 #endif
170 #if (DECNUMMINE != DEC_MIN_EMIN)
171 #error Minimum exponent mismatch
172 #endif
173
174 /* Set DECDPUNMAX -- the maximum integer that fits in DECDPUN */
175 /* digits, and D2UTABLE -- the initializer for the D2U table */
176 #if DECDPUN==1
177 #define DECDPUNMAX 9
178 #define D2UTABLE {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, \
179 18,19,20,21,22,23,24,25,26,27,28,29,30,31,32, \
180 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47, \
181 48,49}
182 #elif DECDPUN==2
183 #define DECDPUNMAX 99
184 #define D2UTABLE {0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10, \
185 11,11,12,12,13,13,14,14,15,15,16,16,17,17,18, \
186 18,19,19,20,20,21,21,22,22,23,23,24,24,25}
187 #elif DECDPUN==3
188 #define DECDPUNMAX 999
189 #define D2UTABLE {0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7, \
190 8,8,8,9,9,9,10,10,10,11,11,11,12,12,12,13,13, \
191 13,14,14,14,15,15,15,16,16,16,17}
192 #elif DECDPUN==4
193 #define DECDPUNMAX 9999
194 #define D2UTABLE {0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6, \
195 6,6,6,7,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,11, \
196 11,11,11,12,12,12,12,13}
197 #elif DECDPUN==5
198 #define DECDPUNMAX 99999
199 #define D2UTABLE {0,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,5, \
200 5,5,5,5,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8,9,9,9, \
201 9,9,10,10,10,10}
202 #elif DECDPUN==6
203 #define DECDPUNMAX 999999
204 #define D2UTABLE {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4, \
205 4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,8, \
206 8,8,8,8,8,9}
207 #elif DECDPUN==7
208 #define DECDPUNMAX 9999999
209 #define D2UTABLE {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3, \
210 4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7, \
211 7,7,7,7,7,7}
212 #elif DECDPUN==8
213 #define DECDPUNMAX 99999999
214 #define D2UTABLE {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3, \
215 3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6, \
216 6,6,6,6,6,7}
217 #elif DECDPUN==9
218 #define DECDPUNMAX 999999999
219 #define D2UTABLE {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3, \
220 3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5, \
221 5,5,6,6,6,6}
222 #elif defined(DECDPUN)
223 #error DECDPUN must be in the range 1-9
224 #endif
225
226 /* ----- Shared data (in decNumber.c) ----- */
227 /* Public lookup table used by the D2U macro (see below) */
228 #define DECMAXD2U 49
229 extern const uByte d2utable[DECMAXD2U+1];
230
231 /* ----- Macros ----- */
232 /* ISZERO -- return true if decNumber dn is a zero */
233 /* [performance-critical in some situations] */
234 #define ISZERO(dn) decNumberIsZero(dn) /* now just a local name */
235
236 /* D2U -- return the number of Units needed to hold d digits */
237 /* (runtime version, with table lookaside for small d) */
238 #if DECDPUN==8
239 #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+7)>>3))
240 #elif DECDPUN==4
241 #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+3)>>2))
242 #else
243 #define D2U(d) ((d)<=DECMAXD2U?d2utable[d]:((d)+DECDPUN-1)/DECDPUN)
244 #endif
245 /* SD2U -- static D2U macro (for compile-time calculation) */
246 #define SD2U(d) (((d)+DECDPUN-1)/DECDPUN)
247
248 /* MSUDIGITS -- returns digits in msu, from digits, calculated */
249 /* using D2U */
250 #define MSUDIGITS(d) ((d)-(D2U(d)-1)*DECDPUN)
251
252 /* D2N -- return the number of decNumber structs that would be */
253 /* needed to contain that number of digits (and the initial */
254 /* decNumber struct) safely. Note that one Unit is included in the */
255 /* initial structure. Used for allocating space that is aligned on */
256 /* a decNumber struct boundary. */
257 #define D2N(d) \
258 ((((SD2U(d)-1)*sizeof(Unit))+sizeof(decNumber)*2-1)/sizeof(decNumber))
259
260 /* TODIGIT -- macro to remove the leading digit from the unsigned */
261 /* integer u at column cut (counting from the right, LSD=0) and */
262 /* place it as an ASCII character into the character pointed to by */
263 /* c. Note that cut must be <= 9, and the maximum value for u is */
264 /* 2,000,000,000 (as is needed for negative exponents of */
265 /* subnormals). The unsigned integer pow is used as a temporary */
266 /* variable. */
267 #define TODIGIT(u, cut, c, pow) { \
268 *(c)='0'; \
269 pow=DECPOWERS[cut]*2; \
270 if ((u)>pow) { \
271 pow*=4; \
272 if ((u)>=pow) {(u)-=pow; *(c)+=8;} \
273 pow/=2; \
274 if ((u)>=pow) {(u)-=pow; *(c)+=4;} \
275 pow/=2; \
276 } \
277 if ((u)>=pow) {(u)-=pow; *(c)+=2;} \
278 pow/=2; \
279 if ((u)>=pow) {(u)-=pow; *(c)+=1;} \
280 }
281
282 /* ---------------------------------------------------------------- */
283 /* Definitions for fixed-precision modules (only valid after */
284 /* decSingle.h, decDouble.h, or decQuad.h has been included) */
285 /* ---------------------------------------------------------------- */
286
287 /* bcdnum -- a structure describing a format-independent finite */
288 /* number, whose coefficient is a string of bcd8 uBytes */
289 typedef struct {
290 uByte *msd; /* -> most significant digit */
291 uByte *lsd; /* -> least ditto */
292 uInt sign; /* 0=positive, DECFLOAT_Sign=negative */
293 Int exponent; /* Unadjusted signed exponent (q), or */
294 /* DECFLOAT_NaN etc. for a special */
295 } bcdnum;
296
297 /* Test if exponent or bcdnum exponent must be a special, etc. */
298 #define EXPISSPECIAL(exp) ((exp)>=DECFLOAT_MinSp)
299 #define EXPISINF(exp) (exp==DECFLOAT_Inf)
300 #define EXPISNAN(exp) (exp==DECFLOAT_qNaN || exp==DECFLOAT_sNaN)
301 #define NUMISSPECIAL(num) (EXPISSPECIAL((num)->exponent))
302
303 /* Refer to a 32-bit word or byte in a decFloat (df) by big-endian */
304 /* (array) notation (the 0 word or byte contains the sign bit), */
305 /* automatically adjusting for endianness; similarly address a word */
306 /* in the next-wider format (decFloatWider, or dfw) */
307 #define DECWORDS (DECBYTES/4)
308 #define DECWWORDS (DECWBYTES/4)
309 #if DECLITEND
310 #define DFWORD(df, off) ((df)->words[DECWORDS-1-(off)])
311 #define DFBYTE(df, off) ((df)->bytes[DECBYTES-1-(off)])
312 #define DFWWORD(dfw, off) ((dfw)->words[DECWWORDS-1-(off)])
313 #else
314 #define DFWORD(df, off) ((df)->words[off])
315 #define DFBYTE(df, off) ((df)->bytes[off])
316 #define DFWWORD(dfw, off) ((dfw)->words[off])
317 #endif
318
319 /* Tests for sign or specials, directly on DECFLOATs */
320 #define DFISSIGNED(df) (DFWORD(df, 0)&0x80000000)
321 #define DFISSPECIAL(df) ((DFWORD(df, 0)&0x78000000)==0x78000000)
322 #define DFISINF(df) ((DFWORD(df, 0)&0x7c000000)==0x78000000)
323 #define DFISNAN(df) ((DFWORD(df, 0)&0x7c000000)==0x7c000000)
324 #define DFISQNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7c000000)
325 #define DFISSNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7e000000)
326
327 /* Shared lookup tables */
328 extern const uInt DECCOMBMSD[64]; /* Combination field -> MSD */
329 extern const uInt DECCOMBFROM[48]; /* exp+msd -> Combination */
330
331 /* Private generic (utility) routine */
332 #if DECCHECK || DECTRACE
333 extern void decShowNum(const bcdnum *, const char *);
334 #endif
335
336 /* Format-dependent macros and constants */
337 #if defined(DECPMAX)
338
339 /* Useful constants */
340 #define DECPMAX9 (ROUNDUP(DECPMAX, 9)/9) /* 'Pmax' in 10**9s */
341 /* Top words for a zero */
342 #define SINGLEZERO 0x22500000
343 #define DOUBLEZERO 0x22380000
344 #define QUADZERO 0x22080000
345 /* [ZEROWORD is defined to be one of these in the DFISZERO macro] */
346
347 /* Format-dependent common tests: */
348 /* DFISZERO -- test for (any) zero */
349 /* DFISCCZERO -- test for coefficient continuation being zero */
350 /* DFISCC01 -- test for coefficient contains only 0s and 1s */
351 /* DFISINT -- test for finite and exponent q=0 */
352 /* DFISUINT01 -- test for sign=0, finite, exponent q=0, and */
353 /* MSD=0 or 1 */
354 /* ZEROWORD is also defined here. */
355 /* In DFISZERO the first test checks the least-significant word */
356 /* (most likely to be non-zero); the penultimate tests MSD and */
357 /* DPDs in the signword, and the final test excludes specials and */
358 /* MSD>7. DFISINT similarly has to allow for the two forms of */
359 /* MSD codes. DFISUINT01 only has to allow for one form of MSD */
360 /* code. */
361 #if DECPMAX==7
362 #define ZEROWORD SINGLEZERO
363 /* [test macros not needed except for Zero] */
364 #define DFISZERO(df) ((DFWORD(df, 0)&0x1c0fffff)==0 \
365 && (DFWORD(df, 0)&0x60000000)!=0x60000000)
366 #elif DECPMAX==16
367 #define ZEROWORD DOUBLEZERO
368 #define DFISZERO(df) ((DFWORD(df, 1)==0 \
369 && (DFWORD(df, 0)&0x1c03ffff)==0 \
370 && (DFWORD(df, 0)&0x60000000)!=0x60000000))
371 #define DFISINT(df) ((DFWORD(df, 0)&0x63fc0000)==0x22380000 \
372 ||(DFWORD(df, 0)&0x7bfc0000)==0x6a380000)
373 #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbfc0000)==0x22380000)
374 #define DFISCCZERO(df) (DFWORD(df, 1)==0 \
375 && (DFWORD(df, 0)&0x0003ffff)==0)
376 #define DFISCC01(df) ((DFWORD(df, 0)&~0xfffc9124)==0 \
377 && (DFWORD(df, 1)&~0x49124491)==0)
378 #elif DECPMAX==34
379 #define ZEROWORD QUADZERO
380 #define DFISZERO(df) ((DFWORD(df, 3)==0 \
381 && DFWORD(df, 2)==0 \
382 && DFWORD(df, 1)==0 \
383 && (DFWORD(df, 0)&0x1c003fff)==0 \
384 && (DFWORD(df, 0)&0x60000000)!=0x60000000))
385 #define DFISINT(df) ((DFWORD(df, 0)&0x63ffc000)==0x22080000 \
386 ||(DFWORD(df, 0)&0x7bffc000)==0x6a080000)
387 #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbffc000)==0x22080000)
388 #define DFISCCZERO(df) (DFWORD(df, 3)==0 \
389 && DFWORD(df, 2)==0 \
390 && DFWORD(df, 1)==0 \
391 && (DFWORD(df, 0)&0x00003fff)==0)
392
393 #define DFISCC01(df) ((DFWORD(df, 0)&~0xffffc912)==0 \
394 && (DFWORD(df, 1)&~0x44912449)==0 \
395 && (DFWORD(df, 2)&~0x12449124)==0 \
396 && (DFWORD(df, 3)&~0x49124491)==0)
397 #endif
398
399 /* Macros to test if a certain 10 bits of a uInt or pair of uInts */
400 /* are a canonical declet [higher or lower bits are ignored]. */
401 /* declet is at offset 0 (from the right) in a uInt: */
402 #define CANONDPD(dpd) (((dpd)&0x300)==0 || ((dpd)&0x6e)!=0x6e)
403 /* declet is at offset k (a multiple of 2) in a uInt: */
404 #define CANONDPDOFF(dpd, k) (((dpd)&(0x300<<(k)))==0 \
405 || ((dpd)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k)))
406 /* declet is at offset k (a multiple of 2) in a pair of uInts: */
407 /* [the top 2 bits will always be in the more-significant uInt] */
408 #define CANONDPDTWO(hi, lo, k) (((hi)&(0x300>>(32-(k))))==0 \
409 || ((hi)&(0x6e>>(32-(k))))!=(0x6e>>(32-(k))) \
410 || ((lo)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k)))
411
412 /* Macro to test whether a full-length (length DECPMAX) BCD8 */
413 /* coefficient is zero */
414 /* test just the LSWord first, then the remainder */
415 #if DECPMAX==7
416 #define ISCOEFFZERO(u) (UINTAT((u)+DECPMAX-4)==0 \
417 && UINTAT((u)+DECPMAX-7)==0)
418 #elif DECPMAX==16
419 #define ISCOEFFZERO(u) (UINTAT((u)+DECPMAX-4)==0 \
420 && (UINTAT((u)+DECPMAX-8)+UINTAT((u)+DECPMAX-12) \
421 +UINTAT((u)+DECPMAX-16))==0)
422 #elif DECPMAX==34
423 #define ISCOEFFZERO(u) (UINTAT((u)+DECPMAX-4)==0 \
424 && (UINTAT((u)+DECPMAX-8) +UINTAT((u)+DECPMAX-12) \
425 +UINTAT((u)+DECPMAX-16)+UINTAT((u)+DECPMAX-20) \
426 +UINTAT((u)+DECPMAX-24)+UINTAT((u)+DECPMAX-28) \
427 +UINTAT((u)+DECPMAX-32)+USHORTAT((u)+DECPMAX-34))==0)
428 #endif
429
430 /* Macros and masks for the exponent continuation field and MSD */
431 /* Get the exponent continuation from a decFloat *df as an Int */
432 #define GETECON(df) ((Int)((DFWORD((df), 0)&0x03ffffff)>>(32-6-DECECONL)))
433 /* Ditto, from the next-wider format */
434 #define GETWECON(df) ((Int)((DFWWORD((df), 0)&0x03ffffff)>>(32-6-DECWECONL)))
435 /* Get the biased exponent similarly */
436 #define GETEXP(df) ((Int)(DECCOMBEXP[DFWORD((df), 0)>>26]+GETECON(df)))
437 /* Get the unbiased exponent similarly */
438 #define GETEXPUN(df) ((Int)GETEXP(df)-DECBIAS)
439 /* Get the MSD similarly (as uInt) */
440 #define GETMSD(df) (DECCOMBMSD[DFWORD((df), 0)>>26])
441
442 /* Compile-time computes of the exponent continuation field masks */
443 /* full exponent continuation field: */
444 #define ECONMASK ((0x03ffffff>>(32-6-DECECONL))<<(32-6-DECECONL))
445 /* same, not including its first digit (the qNaN/sNaN selector): */
446 #define ECONNANMASK ((0x01ffffff>>(32-6-DECECONL))<<(32-6-DECECONL))
447
448 /* Macros to decode the coefficient in a finite decFloat *df into */
449 /* a BCD string (uByte *bcdin) of length DECPMAX uBytes */
450
451 /* In-line sequence to convert 10 bits at right end of uInt dpd */
452 /* to three BCD8 digits starting at uByte u. Note that an extra */
453 /* byte is written to the right of the three digits because this */
454 /* moves four at a time for speed; the alternative macro moves */
455 /* exactly three bytes */
456 #define dpd2bcd8(u, dpd) { \
457 UINTAT(u)=UINTAT(&DPD2BCD8[((dpd)&0x3ff)*4]);}
458
459 #define dpd2bcd83(u, dpd) { \
460 *(u)=DPD2BCD8[((dpd)&0x3ff)*4]; \
461 *(u+1)=DPD2BCD8[((dpd)&0x3ff)*4+1]; \
462 *(u+2)=DPD2BCD8[((dpd)&0x3ff)*4+2];}
463
464 /* Decode the declets. After extracting each one, it is decoded */
465 /* to BCD8 using a table lookup (also used for variable-length */
466 /* decode). Each DPD decode is 3 bytes BCD8 plus a one-byte */
467 /* length which is not used, here). Fixed-length 4-byte moves */
468 /* are fast, however, almost everywhere, and so are used except */
469 /* for the final three bytes (to avoid overrun). The code below */
470 /* is 36 instructions for Doubles and about 70 for Quads, even */
471 /* on IA32. */
472
473 /* Two macros are defined for each format: */
474 /* GETCOEFF extracts the coefficient of the current format */
475 /* GETWCOEFF extracts the coefficient of the next-wider format. */
476 /* The latter is a copy of the next-wider GETCOEFF using DFWWORD. */
477
478 #if DECPMAX==7
479 #define GETCOEFF(df, bcd) { \
480 uInt sourhi=DFWORD(df, 0); \
481 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
482 dpd2bcd8(bcd+1, sourhi>>10); \
483 dpd2bcd83(bcd+4, sourhi);}
484 #define GETWCOEFF(df, bcd) { \
485 uInt sourhi=DFWWORD(df, 0); \
486 uInt sourlo=DFWWORD(df, 1); \
487 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
488 dpd2bcd8(bcd+1, sourhi>>8); \
489 dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \
490 dpd2bcd8(bcd+7, sourlo>>20); \
491 dpd2bcd8(bcd+10, sourlo>>10); \
492 dpd2bcd83(bcd+13, sourlo);}
493
494 #elif DECPMAX==16
495 #define GETCOEFF(df, bcd) { \
496 uInt sourhi=DFWORD(df, 0); \
497 uInt sourlo=DFWORD(df, 1); \
498 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
499 dpd2bcd8(bcd+1, sourhi>>8); \
500 dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \
501 dpd2bcd8(bcd+7, sourlo>>20); \
502 dpd2bcd8(bcd+10, sourlo>>10); \
503 dpd2bcd83(bcd+13, sourlo);}
504 #define GETWCOEFF(df, bcd) { \
505 uInt sourhi=DFWWORD(df, 0); \
506 uInt sourmh=DFWWORD(df, 1); \
507 uInt sourml=DFWWORD(df, 2); \
508 uInt sourlo=DFWWORD(df, 3); \
509 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
510 dpd2bcd8(bcd+1, sourhi>>4); \
511 dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \
512 dpd2bcd8(bcd+7, sourmh>>16); \
513 dpd2bcd8(bcd+10, sourmh>>6); \
514 dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \
515 dpd2bcd8(bcd+16, sourml>>18); \
516 dpd2bcd8(bcd+19, sourml>>8); \
517 dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \
518 dpd2bcd8(bcd+25, sourlo>>20); \
519 dpd2bcd8(bcd+28, sourlo>>10); \
520 dpd2bcd83(bcd+31, sourlo);}
521
522 #elif DECPMAX==34
523 #define GETCOEFF(df, bcd) { \
524 uInt sourhi=DFWORD(df, 0); \
525 uInt sourmh=DFWORD(df, 1); \
526 uInt sourml=DFWORD(df, 2); \
527 uInt sourlo=DFWORD(df, 3); \
528 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
529 dpd2bcd8(bcd+1, sourhi>>4); \
530 dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \
531 dpd2bcd8(bcd+7, sourmh>>16); \
532 dpd2bcd8(bcd+10, sourmh>>6); \
533 dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \
534 dpd2bcd8(bcd+16, sourml>>18); \
535 dpd2bcd8(bcd+19, sourml>>8); \
536 dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \
537 dpd2bcd8(bcd+25, sourlo>>20); \
538 dpd2bcd8(bcd+28, sourlo>>10); \
539 dpd2bcd83(bcd+31, sourlo);}
540
541 #define GETWCOEFF(df, bcd) {??} /* [should never be used] */
542 #endif
543
544 /* Macros to decode the coefficient in a finite decFloat *df into */
545 /* a base-billion uInt array, with the least-significant */
546 /* 0-999999999 'digit' at offset 0. */
547
548 /* Decode the declets. After extracting each one, it is decoded */
549 /* to binary using a table lookup. Three tables are used; one */
550 /* the usual DPD to binary, the other two pre-multiplied by 1000 */
551 /* and 1000000 to avoid multiplication during decode. These */
552 /* tables can also be used for multiplying up the MSD as the DPD */
553 /* code for 0 through 9 is the identity. */
554 #define DPD2BIN0 DPD2BIN /* for prettier code */
555
556 #if DECPMAX==7
557 #define GETCOEFFBILL(df, buf) { \
558 uInt sourhi=DFWORD(df, 0); \
559 (buf)[0]=DPD2BIN0[sourhi&0x3ff] \
560 +DPD2BINK[(sourhi>>10)&0x3ff] \
561 +DPD2BINM[DECCOMBMSD[sourhi>>26]];}
562
563 #elif DECPMAX==16
564 #define GETCOEFFBILL(df, buf) { \
565 uInt sourhi, sourlo; \
566 sourlo=DFWORD(df, 1); \
567 (buf)[0]=DPD2BIN0[sourlo&0x3ff] \
568 +DPD2BINK[(sourlo>>10)&0x3ff] \
569 +DPD2BINM[(sourlo>>20)&0x3ff]; \
570 sourhi=DFWORD(df, 0); \
571 (buf)[1]=DPD2BIN0[((sourhi<<2) | (sourlo>>30))&0x3ff] \
572 +DPD2BINK[(sourhi>>8)&0x3ff] \
573 +DPD2BINM[DECCOMBMSD[sourhi>>26]];}
574
575 #elif DECPMAX==34
576 #define GETCOEFFBILL(df, buf) { \
577 uInt sourhi, sourmh, sourml, sourlo; \
578 sourlo=DFWORD(df, 3); \
579 (buf)[0]=DPD2BIN0[sourlo&0x3ff] \
580 +DPD2BINK[(sourlo>>10)&0x3ff] \
581 +DPD2BINM[(sourlo>>20)&0x3ff]; \
582 sourml=DFWORD(df, 2); \
583 (buf)[1]=DPD2BIN0[((sourml<<2) | (sourlo>>30))&0x3ff] \
584 +DPD2BINK[(sourml>>8)&0x3ff] \
585 +DPD2BINM[(sourml>>18)&0x3ff]; \
586 sourmh=DFWORD(df, 1); \
587 (buf)[2]=DPD2BIN0[((sourmh<<4) | (sourml>>28))&0x3ff] \
588 +DPD2BINK[(sourmh>>6)&0x3ff] \
589 +DPD2BINM[(sourmh>>16)&0x3ff]; \
590 sourhi=DFWORD(df, 0); \
591 (buf)[3]=DPD2BIN0[((sourhi<<6) | (sourmh>>26))&0x3ff] \
592 +DPD2BINK[(sourhi>>4)&0x3ff] \
593 +DPD2BINM[DECCOMBMSD[sourhi>>26]];}
594
595 #endif
596
597 /* Macros to decode the coefficient in a finite decFloat *df into */
598 /* a base-thousand uInt array, with the least-significant 0-999 */
599 /* 'digit' at offset 0. */
600
601 /* Decode the declets. After extracting each one, it is decoded */
602 /* to binary using a table lookup. */
603 #if DECPMAX==7
604 #define GETCOEFFTHOU(df, buf) { \
605 uInt sourhi=DFWORD(df, 0); \
606 (buf)[0]=DPD2BIN[sourhi&0x3ff]; \
607 (buf)[1]=DPD2BIN[(sourhi>>10)&0x3ff]; \
608 (buf)[2]=DECCOMBMSD[sourhi>>26];}
609
610 #elif DECPMAX==16
611 #define GETCOEFFTHOU(df, buf) { \
612 uInt sourhi, sourlo; \
613 sourlo=DFWORD(df, 1); \
614 (buf)[0]=DPD2BIN[sourlo&0x3ff]; \
615 (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \
616 (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \
617 sourhi=DFWORD(df, 0); \
618 (buf)[3]=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \
619 (buf)[4]=DPD2BIN[(sourhi>>8)&0x3ff]; \
620 (buf)[5]=DECCOMBMSD[sourhi>>26];}
621
622 #elif DECPMAX==34
623 #define GETCOEFFTHOU(df, buf) { \
624 uInt sourhi, sourmh, sourml, sourlo; \
625 sourlo=DFWORD(df, 3); \
626 (buf)[0]=DPD2BIN[sourlo&0x3ff]; \
627 (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \
628 (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \
629 sourml=DFWORD(df, 2); \
630 (buf)[3]=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \
631 (buf)[4]=DPD2BIN[(sourml>>8)&0x3ff]; \
632 (buf)[5]=DPD2BIN[(sourml>>18)&0x3ff]; \
633 sourmh=DFWORD(df, 1); \
634 (buf)[6]=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \
635 (buf)[7]=DPD2BIN[(sourmh>>6)&0x3ff]; \
636 (buf)[8]=DPD2BIN[(sourmh>>16)&0x3ff]; \
637 sourhi=DFWORD(df, 0); \
638 (buf)[9]=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \
639 (buf)[10]=DPD2BIN[(sourhi>>4)&0x3ff]; \
640 (buf)[11]=DECCOMBMSD[sourhi>>26];}
641
642 #endif
643
644 /* Set a decFloat to the maximum positive finite number (Nmax) */
645 #if DECPMAX==7
646 #define DFSETNMAX(df) \
647 {DFWORD(df, 0)=0x77f3fcff;}
648 #elif DECPMAX==16
649 #define DFSETNMAX(df) \
650 {DFWORD(df, 0)=0x77fcff3f; \
651 DFWORD(df, 1)=0xcff3fcff;}
652 #elif DECPMAX==34
653 #define DFSETNMAX(df) \
654 {DFWORD(df, 0)=0x77ffcff3; \
655 DFWORD(df, 1)=0xfcff3fcf; \
656 DFWORD(df, 2)=0xf3fcff3f; \
657 DFWORD(df, 3)=0xcff3fcff;}
658 #endif
659
660 /* [end of format-dependent macros and constants] */
661 #endif
662
663 #endif