qom: Make functions taking Error ** return bool, not void
[qemu.git] / include / qom / object.h
1 /*
2 * QEMU Object Model
3 *
4 * Copyright IBM, Corp. 2011
5 *
6 * Authors:
7 * Anthony Liguori <aliguori@us.ibm.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef QEMU_OBJECT_H
15 #define QEMU_OBJECT_H
16
17 #include "qapi/qapi-builtin-types.h"
18 #include "qemu/module.h"
19
20 struct TypeImpl;
21 typedef struct TypeImpl *Type;
22
23 typedef struct TypeInfo TypeInfo;
24
25 typedef struct InterfaceClass InterfaceClass;
26 typedef struct InterfaceInfo InterfaceInfo;
27
28 #define TYPE_OBJECT "object"
29
30 /**
31 * SECTION:object.h
32 * @title:Base Object Type System
33 * @short_description: interfaces for creating new types and objects
34 *
35 * The QEMU Object Model provides a framework for registering user creatable
36 * types and instantiating objects from those types. QOM provides the following
37 * features:
38 *
39 * - System for dynamically registering types
40 * - Support for single-inheritance of types
41 * - Multiple inheritance of stateless interfaces
42 *
43 * <example>
44 * <title>Creating a minimal type</title>
45 * <programlisting>
46 * #include "qdev.h"
47 *
48 * #define TYPE_MY_DEVICE "my-device"
49 *
50 * // No new virtual functions: we can reuse the typedef for the
51 * // superclass.
52 * typedef DeviceClass MyDeviceClass;
53 * typedef struct MyDevice
54 * {
55 * DeviceState parent;
56 *
57 * int reg0, reg1, reg2;
58 * } MyDevice;
59 *
60 * static const TypeInfo my_device_info = {
61 * .name = TYPE_MY_DEVICE,
62 * .parent = TYPE_DEVICE,
63 * .instance_size = sizeof(MyDevice),
64 * };
65 *
66 * static void my_device_register_types(void)
67 * {
68 * type_register_static(&my_device_info);
69 * }
70 *
71 * type_init(my_device_register_types)
72 * </programlisting>
73 * </example>
74 *
75 * In the above example, we create a simple type that is described by #TypeInfo.
76 * #TypeInfo describes information about the type including what it inherits
77 * from, the instance and class size, and constructor/destructor hooks.
78 *
79 * Alternatively several static types could be registered using helper macro
80 * DEFINE_TYPES()
81 *
82 * <example>
83 * <programlisting>
84 * static const TypeInfo device_types_info[] = {
85 * {
86 * .name = TYPE_MY_DEVICE_A,
87 * .parent = TYPE_DEVICE,
88 * .instance_size = sizeof(MyDeviceA),
89 * },
90 * {
91 * .name = TYPE_MY_DEVICE_B,
92 * .parent = TYPE_DEVICE,
93 * .instance_size = sizeof(MyDeviceB),
94 * },
95 * };
96 *
97 * DEFINE_TYPES(device_types_info)
98 * </programlisting>
99 * </example>
100 *
101 * Every type has an #ObjectClass associated with it. #ObjectClass derivatives
102 * are instantiated dynamically but there is only ever one instance for any
103 * given type. The #ObjectClass typically holds a table of function pointers
104 * for the virtual methods implemented by this type.
105 *
106 * Using object_new(), a new #Object derivative will be instantiated. You can
107 * cast an #Object to a subclass (or base-class) type using
108 * object_dynamic_cast(). You typically want to define macro wrappers around
109 * OBJECT_CHECK() and OBJECT_CLASS_CHECK() to make it easier to convert to a
110 * specific type:
111 *
112 * <example>
113 * <title>Typecasting macros</title>
114 * <programlisting>
115 * #define MY_DEVICE_GET_CLASS(obj) \
116 * OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE)
117 * #define MY_DEVICE_CLASS(klass) \
118 * OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE)
119 * #define MY_DEVICE(obj) \
120 * OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE)
121 * </programlisting>
122 * </example>
123 *
124 * # Class Initialization #
125 *
126 * Before an object is initialized, the class for the object must be
127 * initialized. There is only one class object for all instance objects
128 * that is created lazily.
129 *
130 * Classes are initialized by first initializing any parent classes (if
131 * necessary). After the parent class object has initialized, it will be
132 * copied into the current class object and any additional storage in the
133 * class object is zero filled.
134 *
135 * The effect of this is that classes automatically inherit any virtual
136 * function pointers that the parent class has already initialized. All
137 * other fields will be zero filled.
138 *
139 * Once all of the parent classes have been initialized, #TypeInfo::class_init
140 * is called to let the class being instantiated provide default initialize for
141 * its virtual functions. Here is how the above example might be modified
142 * to introduce an overridden virtual function:
143 *
144 * <example>
145 * <title>Overriding a virtual function</title>
146 * <programlisting>
147 * #include "qdev.h"
148 *
149 * void my_device_class_init(ObjectClass *klass, void *class_data)
150 * {
151 * DeviceClass *dc = DEVICE_CLASS(klass);
152 * dc->reset = my_device_reset;
153 * }
154 *
155 * static const TypeInfo my_device_info = {
156 * .name = TYPE_MY_DEVICE,
157 * .parent = TYPE_DEVICE,
158 * .instance_size = sizeof(MyDevice),
159 * .class_init = my_device_class_init,
160 * };
161 * </programlisting>
162 * </example>
163 *
164 * Introducing new virtual methods requires a class to define its own
165 * struct and to add a .class_size member to the #TypeInfo. Each method
166 * will also have a wrapper function to call it easily:
167 *
168 * <example>
169 * <title>Defining an abstract class</title>
170 * <programlisting>
171 * #include "qdev.h"
172 *
173 * typedef struct MyDeviceClass
174 * {
175 * DeviceClass parent;
176 *
177 * void (*frobnicate) (MyDevice *obj);
178 * } MyDeviceClass;
179 *
180 * static const TypeInfo my_device_info = {
181 * .name = TYPE_MY_DEVICE,
182 * .parent = TYPE_DEVICE,
183 * .instance_size = sizeof(MyDevice),
184 * .abstract = true, // or set a default in my_device_class_init
185 * .class_size = sizeof(MyDeviceClass),
186 * };
187 *
188 * void my_device_frobnicate(MyDevice *obj)
189 * {
190 * MyDeviceClass *klass = MY_DEVICE_GET_CLASS(obj);
191 *
192 * klass->frobnicate(obj);
193 * }
194 * </programlisting>
195 * </example>
196 *
197 * # Interfaces #
198 *
199 * Interfaces allow a limited form of multiple inheritance. Instances are
200 * similar to normal types except for the fact that are only defined by
201 * their classes and never carry any state. As a consequence, a pointer to
202 * an interface instance should always be of incomplete type in order to be
203 * sure it cannot be dereferenced. That is, you should define the
204 * 'typedef struct SomethingIf SomethingIf' so that you can pass around
205 * 'SomethingIf *si' arguments, but not define a 'struct SomethingIf { ... }'.
206 * The only things you can validly do with a 'SomethingIf *' are to pass it as
207 * an argument to a method on its corresponding SomethingIfClass, or to
208 * dynamically cast it to an object that implements the interface.
209 *
210 * # Methods #
211 *
212 * A <emphasis>method</emphasis> is a function within the namespace scope of
213 * a class. It usually operates on the object instance by passing it as a
214 * strongly-typed first argument.
215 * If it does not operate on an object instance, it is dubbed
216 * <emphasis>class method</emphasis>.
217 *
218 * Methods cannot be overloaded. That is, the #ObjectClass and method name
219 * uniquely identity the function to be called; the signature does not vary
220 * except for trailing varargs.
221 *
222 * Methods are always <emphasis>virtual</emphasis>. Overriding a method in
223 * #TypeInfo.class_init of a subclass leads to any user of the class obtained
224 * via OBJECT_GET_CLASS() accessing the overridden function.
225 * The original function is not automatically invoked. It is the responsibility
226 * of the overriding class to determine whether and when to invoke the method
227 * being overridden.
228 *
229 * To invoke the method being overridden, the preferred solution is to store
230 * the original value in the overriding class before overriding the method.
231 * This corresponds to |[ {super,base}.method(...) ]| in Java and C#
232 * respectively; this frees the overriding class from hardcoding its parent
233 * class, which someone might choose to change at some point.
234 *
235 * <example>
236 * <title>Overriding a virtual method</title>
237 * <programlisting>
238 * typedef struct MyState MyState;
239 *
240 * typedef void (*MyDoSomething)(MyState *obj);
241 *
242 * typedef struct MyClass {
243 * ObjectClass parent_class;
244 *
245 * MyDoSomething do_something;
246 * } MyClass;
247 *
248 * static void my_do_something(MyState *obj)
249 * {
250 * // do something
251 * }
252 *
253 * static void my_class_init(ObjectClass *oc, void *data)
254 * {
255 * MyClass *mc = MY_CLASS(oc);
256 *
257 * mc->do_something = my_do_something;
258 * }
259 *
260 * static const TypeInfo my_type_info = {
261 * .name = TYPE_MY,
262 * .parent = TYPE_OBJECT,
263 * .instance_size = sizeof(MyState),
264 * .class_size = sizeof(MyClass),
265 * .class_init = my_class_init,
266 * };
267 *
268 * typedef struct DerivedClass {
269 * MyClass parent_class;
270 *
271 * MyDoSomething parent_do_something;
272 * } DerivedClass;
273 *
274 * static void derived_do_something(MyState *obj)
275 * {
276 * DerivedClass *dc = DERIVED_GET_CLASS(obj);
277 *
278 * // do something here
279 * dc->parent_do_something(obj);
280 * // do something else here
281 * }
282 *
283 * static void derived_class_init(ObjectClass *oc, void *data)
284 * {
285 * MyClass *mc = MY_CLASS(oc);
286 * DerivedClass *dc = DERIVED_CLASS(oc);
287 *
288 * dc->parent_do_something = mc->do_something;
289 * mc->do_something = derived_do_something;
290 * }
291 *
292 * static const TypeInfo derived_type_info = {
293 * .name = TYPE_DERIVED,
294 * .parent = TYPE_MY,
295 * .class_size = sizeof(DerivedClass),
296 * .class_init = derived_class_init,
297 * };
298 * </programlisting>
299 * </example>
300 *
301 * Alternatively, object_class_by_name() can be used to obtain the class and
302 * its non-overridden methods for a specific type. This would correspond to
303 * |[ MyClass::method(...) ]| in C++.
304 *
305 * The first example of such a QOM method was #CPUClass.reset,
306 * another example is #DeviceClass.realize.
307 */
308
309
310 typedef struct ObjectProperty ObjectProperty;
311
312 /**
313 * ObjectPropertyAccessor:
314 * @obj: the object that owns the property
315 * @v: the visitor that contains the property data
316 * @name: the name of the property
317 * @opaque: the object property opaque
318 * @errp: a pointer to an Error that is filled if getting/setting fails.
319 *
320 * Called when trying to get/set a property.
321 */
322 typedef void (ObjectPropertyAccessor)(Object *obj,
323 Visitor *v,
324 const char *name,
325 void *opaque,
326 Error **errp);
327
328 /**
329 * ObjectPropertyResolve:
330 * @obj: the object that owns the property
331 * @opaque: the opaque registered with the property
332 * @part: the name of the property
333 *
334 * Resolves the #Object corresponding to property @part.
335 *
336 * The returned object can also be used as a starting point
337 * to resolve a relative path starting with "@part".
338 *
339 * Returns: If @path is the path that led to @obj, the function
340 * returns the #Object corresponding to "@path/@part".
341 * If "@path/@part" is not a valid object path, it returns #NULL.
342 */
343 typedef Object *(ObjectPropertyResolve)(Object *obj,
344 void *opaque,
345 const char *part);
346
347 /**
348 * ObjectPropertyRelease:
349 * @obj: the object that owns the property
350 * @name: the name of the property
351 * @opaque: the opaque registered with the property
352 *
353 * Called when a property is removed from a object.
354 */
355 typedef void (ObjectPropertyRelease)(Object *obj,
356 const char *name,
357 void *opaque);
358
359 /**
360 * ObjectPropertyInit:
361 * @obj: the object that owns the property
362 * @prop: the property to set
363 *
364 * Called when a property is initialized.
365 */
366 typedef void (ObjectPropertyInit)(Object *obj, ObjectProperty *prop);
367
368 struct ObjectProperty
369 {
370 char *name;
371 char *type;
372 char *description;
373 ObjectPropertyAccessor *get;
374 ObjectPropertyAccessor *set;
375 ObjectPropertyResolve *resolve;
376 ObjectPropertyRelease *release;
377 ObjectPropertyInit *init;
378 void *opaque;
379 QObject *defval;
380 };
381
382 /**
383 * ObjectUnparent:
384 * @obj: the object that is being removed from the composition tree
385 *
386 * Called when an object is being removed from the QOM composition tree.
387 * The function should remove any backlinks from children objects to @obj.
388 */
389 typedef void (ObjectUnparent)(Object *obj);
390
391 /**
392 * ObjectFree:
393 * @obj: the object being freed
394 *
395 * Called when an object's last reference is removed.
396 */
397 typedef void (ObjectFree)(void *obj);
398
399 #define OBJECT_CLASS_CAST_CACHE 4
400
401 /**
402 * ObjectClass:
403 *
404 * The base for all classes. The only thing that #ObjectClass contains is an
405 * integer type handle.
406 */
407 struct ObjectClass
408 {
409 /*< private >*/
410 Type type;
411 GSList *interfaces;
412
413 const char *object_cast_cache[OBJECT_CLASS_CAST_CACHE];
414 const char *class_cast_cache[OBJECT_CLASS_CAST_CACHE];
415
416 ObjectUnparent *unparent;
417
418 GHashTable *properties;
419 };
420
421 /**
422 * Object:
423 *
424 * The base for all objects. The first member of this object is a pointer to
425 * a #ObjectClass. Since C guarantees that the first member of a structure
426 * always begins at byte 0 of that structure, as long as any sub-object places
427 * its parent as the first member, we can cast directly to a #Object.
428 *
429 * As a result, #Object contains a reference to the objects type as its
430 * first member. This allows identification of the real type of the object at
431 * run time.
432 */
433 struct Object
434 {
435 /*< private >*/
436 ObjectClass *class;
437 ObjectFree *free;
438 GHashTable *properties;
439 uint32_t ref;
440 Object *parent;
441 };
442
443 /**
444 * TypeInfo:
445 * @name: The name of the type.
446 * @parent: The name of the parent type.
447 * @instance_size: The size of the object (derivative of #Object). If
448 * @instance_size is 0, then the size of the object will be the size of the
449 * parent object.
450 * @instance_init: This function is called to initialize an object. The parent
451 * class will have already been initialized so the type is only responsible
452 * for initializing its own members.
453 * @instance_post_init: This function is called to finish initialization of
454 * an object, after all @instance_init functions were called.
455 * @instance_finalize: This function is called during object destruction. This
456 * is called before the parent @instance_finalize function has been called.
457 * An object should only free the members that are unique to its type in this
458 * function.
459 * @abstract: If this field is true, then the class is considered abstract and
460 * cannot be directly instantiated.
461 * @class_size: The size of the class object (derivative of #ObjectClass)
462 * for this object. If @class_size is 0, then the size of the class will be
463 * assumed to be the size of the parent class. This allows a type to avoid
464 * implementing an explicit class type if they are not adding additional
465 * virtual functions.
466 * @class_init: This function is called after all parent class initialization
467 * has occurred to allow a class to set its default virtual method pointers.
468 * This is also the function to use to override virtual methods from a parent
469 * class.
470 * @class_base_init: This function is called for all base classes after all
471 * parent class initialization has occurred, but before the class itself
472 * is initialized. This is the function to use to undo the effects of
473 * memcpy from the parent class to the descendants.
474 * @class_data: Data to pass to the @class_init,
475 * @class_base_init. This can be useful when building dynamic
476 * classes.
477 * @interfaces: The list of interfaces associated with this type. This
478 * should point to a static array that's terminated with a zero filled
479 * element.
480 */
481 struct TypeInfo
482 {
483 const char *name;
484 const char *parent;
485
486 size_t instance_size;
487 void (*instance_init)(Object *obj);
488 void (*instance_post_init)(Object *obj);
489 void (*instance_finalize)(Object *obj);
490
491 bool abstract;
492 size_t class_size;
493
494 void (*class_init)(ObjectClass *klass, void *data);
495 void (*class_base_init)(ObjectClass *klass, void *data);
496 void *class_data;
497
498 InterfaceInfo *interfaces;
499 };
500
501 /**
502 * OBJECT:
503 * @obj: A derivative of #Object
504 *
505 * Converts an object to a #Object. Since all objects are #Objects,
506 * this function will always succeed.
507 */
508 #define OBJECT(obj) \
509 ((Object *)(obj))
510
511 /**
512 * OBJECT_CLASS:
513 * @class: A derivative of #ObjectClass.
514 *
515 * Converts a class to an #ObjectClass. Since all objects are #Objects,
516 * this function will always succeed.
517 */
518 #define OBJECT_CLASS(class) \
519 ((ObjectClass *)(class))
520
521 /**
522 * OBJECT_CHECK:
523 * @type: The C type to use for the return value.
524 * @obj: A derivative of @type to cast.
525 * @name: The QOM typename of @type
526 *
527 * A type safe version of @object_dynamic_cast_assert. Typically each class
528 * will define a macro based on this type to perform type safe dynamic_casts to
529 * this object type.
530 *
531 * If an invalid object is passed to this function, a run time assert will be
532 * generated.
533 */
534 #define OBJECT_CHECK(type, obj, name) \
535 ((type *)object_dynamic_cast_assert(OBJECT(obj), (name), \
536 __FILE__, __LINE__, __func__))
537
538 /**
539 * OBJECT_CLASS_CHECK:
540 * @class_type: The C type to use for the return value.
541 * @class: A derivative class of @class_type to cast.
542 * @name: the QOM typename of @class_type.
543 *
544 * A type safe version of @object_class_dynamic_cast_assert. This macro is
545 * typically wrapped by each type to perform type safe casts of a class to a
546 * specific class type.
547 */
548 #define OBJECT_CLASS_CHECK(class_type, class, name) \
549 ((class_type *)object_class_dynamic_cast_assert(OBJECT_CLASS(class), (name), \
550 __FILE__, __LINE__, __func__))
551
552 /**
553 * OBJECT_GET_CLASS:
554 * @class: The C type to use for the return value.
555 * @obj: The object to obtain the class for.
556 * @name: The QOM typename of @obj.
557 *
558 * This function will return a specific class for a given object. Its generally
559 * used by each type to provide a type safe macro to get a specific class type
560 * from an object.
561 */
562 #define OBJECT_GET_CLASS(class, obj, name) \
563 OBJECT_CLASS_CHECK(class, object_get_class(OBJECT(obj)), name)
564
565 /**
566 * InterfaceInfo:
567 * @type: The name of the interface.
568 *
569 * The information associated with an interface.
570 */
571 struct InterfaceInfo {
572 const char *type;
573 };
574
575 /**
576 * InterfaceClass:
577 * @parent_class: the base class
578 *
579 * The class for all interfaces. Subclasses of this class should only add
580 * virtual methods.
581 */
582 struct InterfaceClass
583 {
584 ObjectClass parent_class;
585 /*< private >*/
586 ObjectClass *concrete_class;
587 Type interface_type;
588 };
589
590 #define TYPE_INTERFACE "interface"
591
592 /**
593 * INTERFACE_CLASS:
594 * @klass: class to cast from
595 * Returns: An #InterfaceClass or raise an error if cast is invalid
596 */
597 #define INTERFACE_CLASS(klass) \
598 OBJECT_CLASS_CHECK(InterfaceClass, klass, TYPE_INTERFACE)
599
600 /**
601 * INTERFACE_CHECK:
602 * @interface: the type to return
603 * @obj: the object to convert to an interface
604 * @name: the interface type name
605 *
606 * Returns: @obj casted to @interface if cast is valid, otherwise raise error.
607 */
608 #define INTERFACE_CHECK(interface, obj, name) \
609 ((interface *)object_dynamic_cast_assert(OBJECT((obj)), (name), \
610 __FILE__, __LINE__, __func__))
611
612 /**
613 * object_new_with_class:
614 * @klass: The class to instantiate.
615 *
616 * This function will initialize a new object using heap allocated memory.
617 * The returned object has a reference count of 1, and will be freed when
618 * the last reference is dropped.
619 *
620 * Returns: The newly allocated and instantiated object.
621 */
622 Object *object_new_with_class(ObjectClass *klass);
623
624 /**
625 * object_new:
626 * @typename: The name of the type of the object to instantiate.
627 *
628 * This function will initialize a new object using heap allocated memory.
629 * The returned object has a reference count of 1, and will be freed when
630 * the last reference is dropped.
631 *
632 * Returns: The newly allocated and instantiated object.
633 */
634 Object *object_new(const char *typename);
635
636 /**
637 * object_new_with_props:
638 * @typename: The name of the type of the object to instantiate.
639 * @parent: the parent object
640 * @id: The unique ID of the object
641 * @errp: pointer to error object
642 * @...: list of property names and values
643 *
644 * This function will initialize a new object using heap allocated memory.
645 * The returned object has a reference count of 1, and will be freed when
646 * the last reference is dropped.
647 *
648 * The @id parameter will be used when registering the object as a
649 * child of @parent in the composition tree.
650 *
651 * The variadic parameters are a list of pairs of (propname, propvalue)
652 * strings. The propname of %NULL indicates the end of the property
653 * list. If the object implements the user creatable interface, the
654 * object will be marked complete once all the properties have been
655 * processed.
656 *
657 * <example>
658 * <title>Creating an object with properties</title>
659 * <programlisting>
660 * Error *err = NULL;
661 * Object *obj;
662 *
663 * obj = object_new_with_props(TYPE_MEMORY_BACKEND_FILE,
664 * object_get_objects_root(),
665 * "hostmem0",
666 * &err,
667 * "share", "yes",
668 * "mem-path", "/dev/shm/somefile",
669 * "prealloc", "yes",
670 * "size", "1048576",
671 * NULL);
672 *
673 * if (!obj) {
674 * error_reportf_err(err, "Cannot create memory backend: ");
675 * }
676 * </programlisting>
677 * </example>
678 *
679 * The returned object will have one stable reference maintained
680 * for as long as it is present in the object hierarchy.
681 *
682 * Returns: The newly allocated, instantiated & initialized object.
683 */
684 Object *object_new_with_props(const char *typename,
685 Object *parent,
686 const char *id,
687 Error **errp,
688 ...) QEMU_SENTINEL;
689
690 /**
691 * object_new_with_propv:
692 * @typename: The name of the type of the object to instantiate.
693 * @parent: the parent object
694 * @id: The unique ID of the object
695 * @errp: pointer to error object
696 * @vargs: list of property names and values
697 *
698 * See object_new_with_props() for documentation.
699 */
700 Object *object_new_with_propv(const char *typename,
701 Object *parent,
702 const char *id,
703 Error **errp,
704 va_list vargs);
705
706 bool object_apply_global_props(Object *obj, const GPtrArray *props,
707 Error **errp);
708 void object_set_machine_compat_props(GPtrArray *compat_props);
709 void object_set_accelerator_compat_props(GPtrArray *compat_props);
710 void object_register_sugar_prop(const char *driver, const char *prop, const char *value);
711 void object_apply_compat_props(Object *obj);
712
713 /**
714 * object_set_props:
715 * @obj: the object instance to set properties on
716 * @errp: pointer to error object
717 * @...: list of property names and values
718 *
719 * This function will set a list of properties on an existing object
720 * instance.
721 *
722 * The variadic parameters are a list of pairs of (propname, propvalue)
723 * strings. The propname of %NULL indicates the end of the property
724 * list.
725 *
726 * <example>
727 * <title>Update an object's properties</title>
728 * <programlisting>
729 * Error *err = NULL;
730 * Object *obj = ...get / create object...;
731 *
732 * obj = object_set_props(obj,
733 * &err,
734 * "share", "yes",
735 * "mem-path", "/dev/shm/somefile",
736 * "prealloc", "yes",
737 * "size", "1048576",
738 * NULL);
739 *
740 * if (!obj) {
741 * error_reportf_err(err, "Cannot set properties: ");
742 * }
743 * </programlisting>
744 * </example>
745 *
746 * The returned object will have one stable reference maintained
747 * for as long as it is present in the object hierarchy.
748 *
749 * Returns: -1 on error, 0 on success
750 */
751 int object_set_props(Object *obj,
752 Error **errp,
753 ...) QEMU_SENTINEL;
754
755 /**
756 * object_set_propv:
757 * @obj: the object instance to set properties on
758 * @errp: pointer to error object
759 * @vargs: list of property names and values
760 *
761 * See object_set_props() for documentation.
762 *
763 * Returns: -1 on error, 0 on success
764 */
765 int object_set_propv(Object *obj,
766 Error **errp,
767 va_list vargs);
768
769 /**
770 * object_initialize:
771 * @obj: A pointer to the memory to be used for the object.
772 * @size: The maximum size available at @obj for the object.
773 * @typename: The name of the type of the object to instantiate.
774 *
775 * This function will initialize an object. The memory for the object should
776 * have already been allocated. The returned object has a reference count of 1,
777 * and will be finalized when the last reference is dropped.
778 */
779 void object_initialize(void *obj, size_t size, const char *typename);
780
781 /**
782 * object_initialize_child_with_props:
783 * @parentobj: The parent object to add a property to
784 * @propname: The name of the property
785 * @childobj: A pointer to the memory to be used for the object.
786 * @size: The maximum size available at @childobj for the object.
787 * @type: The name of the type of the object to instantiate.
788 * @errp: If an error occurs, a pointer to an area to store the error
789 * @...: list of property names and values
790 *
791 * This function will initialize an object. The memory for the object should
792 * have already been allocated. The object will then be added as child property
793 * to a parent with object_property_add_child() function. The returned object
794 * has a reference count of 1 (for the "child<...>" property from the parent),
795 * so the object will be finalized automatically when the parent gets removed.
796 *
797 * The variadic parameters are a list of pairs of (propname, propvalue)
798 * strings. The propname of %NULL indicates the end of the property list.
799 * If the object implements the user creatable interface, the object will
800 * be marked complete once all the properties have been processed.
801 *
802 * Returns: %true on success, %false on failure.
803 */
804 bool object_initialize_child_with_props(Object *parentobj,
805 const char *propname,
806 void *childobj, size_t size, const char *type,
807 Error **errp, ...) QEMU_SENTINEL;
808
809 /**
810 * object_initialize_child_with_propsv:
811 * @parentobj: The parent object to add a property to
812 * @propname: The name of the property
813 * @childobj: A pointer to the memory to be used for the object.
814 * @size: The maximum size available at @childobj for the object.
815 * @type: The name of the type of the object to instantiate.
816 * @errp: If an error occurs, a pointer to an area to store the error
817 * @vargs: list of property names and values
818 *
819 * See object_initialize_child() for documentation.
820 *
821 * Returns: %true on success, %false on failure.
822 */
823 bool object_initialize_child_with_propsv(Object *parentobj,
824 const char *propname,
825 void *childobj, size_t size, const char *type,
826 Error **errp, va_list vargs);
827
828 /**
829 * object_initialize_child:
830 * @parent: The parent object to add a property to
831 * @propname: The name of the property
832 * @child: A precisely typed pointer to the memory to be used for the
833 * object.
834 * @type: The name of the type of the object to instantiate.
835 *
836 * This is like
837 * object_initialize_child_with_props(parent, propname,
838 * child, sizeof(*child), type,
839 * &error_abort, NULL)
840 */
841 #define object_initialize_child(parent, propname, child, type) \
842 object_initialize_child_internal((parent), (propname), \
843 (child), sizeof(*(child)), (type))
844 void object_initialize_child_internal(Object *parent, const char *propname,
845 void *child, size_t size,
846 const char *type);
847
848 /**
849 * object_dynamic_cast:
850 * @obj: The object to cast.
851 * @typename: The @typename to cast to.
852 *
853 * This function will determine if @obj is-a @typename. @obj can refer to an
854 * object or an interface associated with an object.
855 *
856 * Returns: This function returns @obj on success or #NULL on failure.
857 */
858 Object *object_dynamic_cast(Object *obj, const char *typename);
859
860 /**
861 * object_dynamic_cast_assert:
862 *
863 * See object_dynamic_cast() for a description of the parameters of this
864 * function. The only difference in behavior is that this function asserts
865 * instead of returning #NULL on failure if QOM cast debugging is enabled.
866 * This function is not meant to be called directly, but only through
867 * the wrapper macro OBJECT_CHECK.
868 */
869 Object *object_dynamic_cast_assert(Object *obj, const char *typename,
870 const char *file, int line, const char *func);
871
872 /**
873 * object_get_class:
874 * @obj: A derivative of #Object
875 *
876 * Returns: The #ObjectClass of the type associated with @obj.
877 */
878 ObjectClass *object_get_class(Object *obj);
879
880 /**
881 * object_get_typename:
882 * @obj: A derivative of #Object.
883 *
884 * Returns: The QOM typename of @obj.
885 */
886 const char *object_get_typename(const Object *obj);
887
888 /**
889 * type_register_static:
890 * @info: The #TypeInfo of the new type.
891 *
892 * @info and all of the strings it points to should exist for the life time
893 * that the type is registered.
894 *
895 * Returns: the new #Type.
896 */
897 Type type_register_static(const TypeInfo *info);
898
899 /**
900 * type_register:
901 * @info: The #TypeInfo of the new type
902 *
903 * Unlike type_register_static(), this call does not require @info or its
904 * string members to continue to exist after the call returns.
905 *
906 * Returns: the new #Type.
907 */
908 Type type_register(const TypeInfo *info);
909
910 /**
911 * type_register_static_array:
912 * @infos: The array of the new type #TypeInfo structures.
913 * @nr_infos: number of entries in @infos
914 *
915 * @infos and all of the strings it points to should exist for the life time
916 * that the type is registered.
917 */
918 void type_register_static_array(const TypeInfo *infos, int nr_infos);
919
920 /**
921 * DEFINE_TYPES:
922 * @type_array: The array containing #TypeInfo structures to register
923 *
924 * @type_array should be static constant that exists for the life time
925 * that the type is registered.
926 */
927 #define DEFINE_TYPES(type_array) \
928 static void do_qemu_init_ ## type_array(void) \
929 { \
930 type_register_static_array(type_array, ARRAY_SIZE(type_array)); \
931 } \
932 type_init(do_qemu_init_ ## type_array)
933
934 /**
935 * object_class_dynamic_cast_assert:
936 * @klass: The #ObjectClass to attempt to cast.
937 * @typename: The QOM typename of the class to cast to.
938 *
939 * See object_class_dynamic_cast() for a description of the parameters
940 * of this function. The only difference in behavior is that this function
941 * asserts instead of returning #NULL on failure if QOM cast debugging is
942 * enabled. This function is not meant to be called directly, but only through
943 * the wrapper macros OBJECT_CLASS_CHECK and INTERFACE_CHECK.
944 */
945 ObjectClass *object_class_dynamic_cast_assert(ObjectClass *klass,
946 const char *typename,
947 const char *file, int line,
948 const char *func);
949
950 /**
951 * object_class_dynamic_cast:
952 * @klass: The #ObjectClass to attempt to cast.
953 * @typename: The QOM typename of the class to cast to.
954 *
955 * Returns: If @typename is a class, this function returns @klass if
956 * @typename is a subtype of @klass, else returns #NULL.
957 *
958 * If @typename is an interface, this function returns the interface
959 * definition for @klass if @klass implements it unambiguously; #NULL
960 * is returned if @klass does not implement the interface or if multiple
961 * classes or interfaces on the hierarchy leading to @klass implement
962 * it. (FIXME: perhaps this can be detected at type definition time?)
963 */
964 ObjectClass *object_class_dynamic_cast(ObjectClass *klass,
965 const char *typename);
966
967 /**
968 * object_class_get_parent:
969 * @klass: The class to obtain the parent for.
970 *
971 * Returns: The parent for @klass or %NULL if none.
972 */
973 ObjectClass *object_class_get_parent(ObjectClass *klass);
974
975 /**
976 * object_class_get_name:
977 * @klass: The class to obtain the QOM typename for.
978 *
979 * Returns: The QOM typename for @klass.
980 */
981 const char *object_class_get_name(ObjectClass *klass);
982
983 /**
984 * object_class_is_abstract:
985 * @klass: The class to obtain the abstractness for.
986 *
987 * Returns: %true if @klass is abstract, %false otherwise.
988 */
989 bool object_class_is_abstract(ObjectClass *klass);
990
991 /**
992 * object_class_by_name:
993 * @typename: The QOM typename to obtain the class for.
994 *
995 * Returns: The class for @typename or %NULL if not found.
996 */
997 ObjectClass *object_class_by_name(const char *typename);
998
999 /**
1000 * module_object_class_by_name:
1001 * @typename: The QOM typename to obtain the class for.
1002 *
1003 * For objects which might be provided by a module. Behaves like
1004 * object_class_by_name, but additionally tries to load the module
1005 * needed in case the class is not available.
1006 *
1007 * Returns: The class for @typename or %NULL if not found.
1008 */
1009 ObjectClass *module_object_class_by_name(const char *typename);
1010
1011 void object_class_foreach(void (*fn)(ObjectClass *klass, void *opaque),
1012 const char *implements_type, bool include_abstract,
1013 void *opaque);
1014
1015 /**
1016 * object_class_get_list:
1017 * @implements_type: The type to filter for, including its derivatives.
1018 * @include_abstract: Whether to include abstract classes.
1019 *
1020 * Returns: A singly-linked list of the classes in reverse hashtable order.
1021 */
1022 GSList *object_class_get_list(const char *implements_type,
1023 bool include_abstract);
1024
1025 /**
1026 * object_class_get_list_sorted:
1027 * @implements_type: The type to filter for, including its derivatives.
1028 * @include_abstract: Whether to include abstract classes.
1029 *
1030 * Returns: A singly-linked list of the classes in alphabetical
1031 * case-insensitive order.
1032 */
1033 GSList *object_class_get_list_sorted(const char *implements_type,
1034 bool include_abstract);
1035
1036 /**
1037 * object_ref:
1038 * @obj: the object
1039 *
1040 * Increase the reference count of a object. A object cannot be freed as long
1041 * as its reference count is greater than zero.
1042 * Returns: @obj
1043 */
1044 Object *object_ref(Object *obj);
1045
1046 /**
1047 * object_unref:
1048 * @obj: the object
1049 *
1050 * Decrease the reference count of a object. A object cannot be freed as long
1051 * as its reference count is greater than zero.
1052 */
1053 void object_unref(Object *obj);
1054
1055 /**
1056 * object_property_add:
1057 * @obj: the object to add a property to
1058 * @name: the name of the property. This can contain any character except for
1059 * a forward slash. In general, you should use hyphens '-' instead of
1060 * underscores '_' when naming properties.
1061 * @type: the type name of the property. This namespace is pretty loosely
1062 * defined. Sub namespaces are constructed by using a prefix and then
1063 * to angle brackets. For instance, the type 'virtio-net-pci' in the
1064 * 'link' namespace would be 'link<virtio-net-pci>'.
1065 * @get: The getter to be called to read a property. If this is NULL, then
1066 * the property cannot be read.
1067 * @set: the setter to be called to write a property. If this is NULL,
1068 * then the property cannot be written.
1069 * @release: called when the property is removed from the object. This is
1070 * meant to allow a property to free its opaque upon object
1071 * destruction. This may be NULL.
1072 * @opaque: an opaque pointer to pass to the callbacks for the property
1073 *
1074 * Returns: The #ObjectProperty; this can be used to set the @resolve
1075 * callback for child and link properties.
1076 */
1077 ObjectProperty *object_property_add(Object *obj, const char *name,
1078 const char *type,
1079 ObjectPropertyAccessor *get,
1080 ObjectPropertyAccessor *set,
1081 ObjectPropertyRelease *release,
1082 void *opaque);
1083
1084 void object_property_del(Object *obj, const char *name);
1085
1086 ObjectProperty *object_class_property_add(ObjectClass *klass, const char *name,
1087 const char *type,
1088 ObjectPropertyAccessor *get,
1089 ObjectPropertyAccessor *set,
1090 ObjectPropertyRelease *release,
1091 void *opaque);
1092
1093 /**
1094 * object_property_set_default_bool:
1095 * @prop: the property to set
1096 * @value: the value to be written to the property
1097 *
1098 * Set the property default value.
1099 */
1100 void object_property_set_default_bool(ObjectProperty *prop, bool value);
1101
1102 /**
1103 * object_property_set_default_str:
1104 * @prop: the property to set
1105 * @value: the value to be written to the property
1106 *
1107 * Set the property default value.
1108 */
1109 void object_property_set_default_str(ObjectProperty *prop, const char *value);
1110
1111 /**
1112 * object_property_set_default_int:
1113 * @prop: the property to set
1114 * @value: the value to be written to the property
1115 *
1116 * Set the property default value.
1117 */
1118 void object_property_set_default_int(ObjectProperty *prop, int64_t value);
1119
1120 /**
1121 * object_property_set_default_uint:
1122 * @prop: the property to set
1123 * @value: the value to be written to the property
1124 *
1125 * Set the property default value.
1126 */
1127 void object_property_set_default_uint(ObjectProperty *prop, uint64_t value);
1128
1129 /**
1130 * object_property_find:
1131 * @obj: the object
1132 * @name: the name of the property
1133 * @errp: returns an error if this function fails
1134 *
1135 * Look up a property for an object and return its #ObjectProperty if found.
1136 */
1137 ObjectProperty *object_property_find(Object *obj, const char *name,
1138 Error **errp);
1139 ObjectProperty *object_class_property_find(ObjectClass *klass, const char *name,
1140 Error **errp);
1141
1142 typedef struct ObjectPropertyIterator {
1143 ObjectClass *nextclass;
1144 GHashTableIter iter;
1145 } ObjectPropertyIterator;
1146
1147 /**
1148 * object_property_iter_init:
1149 * @obj: the object
1150 *
1151 * Initializes an iterator for traversing all properties
1152 * registered against an object instance, its class and all parent classes.
1153 *
1154 * It is forbidden to modify the property list while iterating,
1155 * whether removing or adding properties.
1156 *
1157 * Typical usage pattern would be
1158 *
1159 * <example>
1160 * <title>Using object property iterators</title>
1161 * <programlisting>
1162 * ObjectProperty *prop;
1163 * ObjectPropertyIterator iter;
1164 *
1165 * object_property_iter_init(&iter, obj);
1166 * while ((prop = object_property_iter_next(&iter))) {
1167 * ... do something with prop ...
1168 * }
1169 * </programlisting>
1170 * </example>
1171 */
1172 void object_property_iter_init(ObjectPropertyIterator *iter,
1173 Object *obj);
1174
1175 /**
1176 * object_class_property_iter_init:
1177 * @klass: the class
1178 *
1179 * Initializes an iterator for traversing all properties
1180 * registered against an object class and all parent classes.
1181 *
1182 * It is forbidden to modify the property list while iterating,
1183 * whether removing or adding properties.
1184 *
1185 * This can be used on abstract classes as it does not create a temporary
1186 * instance.
1187 */
1188 void object_class_property_iter_init(ObjectPropertyIterator *iter,
1189 ObjectClass *klass);
1190
1191 /**
1192 * object_property_iter_next:
1193 * @iter: the iterator instance
1194 *
1195 * Return the next available property. If no further properties
1196 * are available, a %NULL value will be returned and the @iter
1197 * pointer should not be used again after this point without
1198 * re-initializing it.
1199 *
1200 * Returns: the next property, or %NULL when all properties
1201 * have been traversed.
1202 */
1203 ObjectProperty *object_property_iter_next(ObjectPropertyIterator *iter);
1204
1205 void object_unparent(Object *obj);
1206
1207 /**
1208 * object_property_get:
1209 * @obj: the object
1210 * @name: the name of the property
1211 * @v: the visitor that will receive the property value. This should be an
1212 * Output visitor and the data will be written with @name as the name.
1213 * @errp: returns an error if this function fails
1214 *
1215 * Reads a property from a object.
1216 *
1217 * Returns: %true on success, %false on failure.
1218 */
1219 bool object_property_get(Object *obj, const char *name, Visitor *v,
1220 Error **errp);
1221
1222 /**
1223 * object_property_set_str:
1224 * @name: the name of the property
1225 * @value: the value to be written to the property
1226 * @errp: returns an error if this function fails
1227 *
1228 * Writes a string value to a property.
1229 *
1230 * Returns: %true on success, %false on failure.
1231 */
1232 bool object_property_set_str(Object *obj, const char *name,
1233 const char *value, Error **errp);
1234
1235 /**
1236 * object_property_get_str:
1237 * @obj: the object
1238 * @name: the name of the property
1239 * @errp: returns an error if this function fails
1240 *
1241 * Returns: the value of the property, converted to a C string, or NULL if
1242 * an error occurs (including when the property value is not a string).
1243 * The caller should free the string.
1244 */
1245 char *object_property_get_str(Object *obj, const char *name,
1246 Error **errp);
1247
1248 /**
1249 * object_property_set_link:
1250 * @name: the name of the property
1251 * @value: the value to be written to the property
1252 * @errp: returns an error if this function fails
1253 *
1254 * Writes an object's canonical path to a property.
1255 *
1256 * If the link property was created with
1257 * <code>OBJ_PROP_LINK_STRONG</code> bit, the old target object is
1258 * unreferenced, and a reference is added to the new target object.
1259 *
1260 * Returns: %true on success, %false on failure.
1261 */
1262 bool object_property_set_link(Object *obj, const char *name,
1263 Object *value, Error **errp);
1264
1265 /**
1266 * object_property_get_link:
1267 * @obj: the object
1268 * @name: the name of the property
1269 * @errp: returns an error if this function fails
1270 *
1271 * Returns: the value of the property, resolved from a path to an Object,
1272 * or NULL if an error occurs (including when the property value is not a
1273 * string or not a valid object path).
1274 */
1275 Object *object_property_get_link(Object *obj, const char *name,
1276 Error **errp);
1277
1278 /**
1279 * object_property_set_bool:
1280 * @name: the name of the property
1281 * @value: the value to be written to the property
1282 * @errp: returns an error if this function fails
1283 *
1284 * Writes a bool value to a property.
1285 *
1286 * Returns: %true on success, %false on failure.
1287 */
1288 bool object_property_set_bool(Object *obj, const char *name,
1289 bool value, Error **errp);
1290
1291 /**
1292 * object_property_get_bool:
1293 * @obj: the object
1294 * @name: the name of the property
1295 * @errp: returns an error if this function fails
1296 *
1297 * Returns: the value of the property, converted to a boolean, or NULL if
1298 * an error occurs (including when the property value is not a bool).
1299 */
1300 bool object_property_get_bool(Object *obj, const char *name,
1301 Error **errp);
1302
1303 /**
1304 * object_property_set_int:
1305 * @name: the name of the property
1306 * @value: the value to be written to the property
1307 * @errp: returns an error if this function fails
1308 *
1309 * Writes an integer value to a property.
1310 *
1311 * Returns: %true on success, %false on failure.
1312 */
1313 bool object_property_set_int(Object *obj, const char *name,
1314 int64_t value, Error **errp);
1315
1316 /**
1317 * object_property_get_int:
1318 * @obj: the object
1319 * @name: the name of the property
1320 * @errp: returns an error if this function fails
1321 *
1322 * Returns: the value of the property, converted to an integer, or negative if
1323 * an error occurs (including when the property value is not an integer).
1324 */
1325 int64_t object_property_get_int(Object *obj, const char *name,
1326 Error **errp);
1327
1328 /**
1329 * object_property_set_uint:
1330 * @name: the name of the property
1331 * @value: the value to be written to the property
1332 * @errp: returns an error if this function fails
1333 *
1334 * Writes an unsigned integer value to a property.
1335 *
1336 * Returns: %true on success, %false on failure.
1337 */
1338 bool object_property_set_uint(Object *obj, const char *name,
1339 uint64_t value, Error **errp);
1340
1341 /**
1342 * object_property_get_uint:
1343 * @obj: the object
1344 * @name: the name of the property
1345 * @errp: returns an error if this function fails
1346 *
1347 * Returns: the value of the property, converted to an unsigned integer, or 0
1348 * an error occurs (including when the property value is not an integer).
1349 */
1350 uint64_t object_property_get_uint(Object *obj, const char *name,
1351 Error **errp);
1352
1353 /**
1354 * object_property_get_enum:
1355 * @obj: the object
1356 * @name: the name of the property
1357 * @typename: the name of the enum data type
1358 * @errp: returns an error if this function fails
1359 *
1360 * Returns: the value of the property, converted to an integer, or
1361 * undefined if an error occurs (including when the property value is not
1362 * an enum).
1363 */
1364 int object_property_get_enum(Object *obj, const char *name,
1365 const char *typename, Error **errp);
1366
1367 /**
1368 * object_property_set:
1369 * @obj: the object
1370 * @name: the name of the property
1371 * @v: the visitor that will be used to write the property value. This should
1372 * be an Input visitor and the data will be first read with @name as the
1373 * name and then written as the property value.
1374 * @errp: returns an error if this function fails
1375 *
1376 * Writes a property to a object.
1377 *
1378 * Returns: %true on success, %false on failure.
1379 */
1380 bool object_property_set(Object *obj, const char *name, Visitor *v,
1381 Error **errp);
1382
1383 /**
1384 * object_property_parse:
1385 * @obj: the object
1386 * @name: the name of the property
1387 * @string: the string that will be used to parse the property value.
1388 * @errp: returns an error if this function fails
1389 *
1390 * Parses a string and writes the result into a property of an object.
1391 *
1392 * Returns: %true on success, %false on failure.
1393 */
1394 bool object_property_parse(Object *obj, const char *name,
1395 const char *string, Error **errp);
1396
1397 /**
1398 * object_property_print:
1399 * @obj: the object
1400 * @name: the name of the property
1401 * @human: if true, print for human consumption
1402 * @errp: returns an error if this function fails
1403 *
1404 * Returns a string representation of the value of the property. The
1405 * caller shall free the string.
1406 */
1407 char *object_property_print(Object *obj, const char *name, bool human,
1408 Error **errp);
1409
1410 /**
1411 * object_property_get_type:
1412 * @obj: the object
1413 * @name: the name of the property
1414 * @errp: returns an error if this function fails
1415 *
1416 * Returns: The type name of the property.
1417 */
1418 const char *object_property_get_type(Object *obj, const char *name,
1419 Error **errp);
1420
1421 /**
1422 * object_get_root:
1423 *
1424 * Returns: the root object of the composition tree
1425 */
1426 Object *object_get_root(void);
1427
1428
1429 /**
1430 * object_get_objects_root:
1431 *
1432 * Get the container object that holds user created
1433 * object instances. This is the object at path
1434 * "/objects"
1435 *
1436 * Returns: the user object container
1437 */
1438 Object *object_get_objects_root(void);
1439
1440 /**
1441 * object_get_internal_root:
1442 *
1443 * Get the container object that holds internally used object
1444 * instances. Any object which is put into this container must not be
1445 * user visible, and it will not be exposed in the QOM tree.
1446 *
1447 * Returns: the internal object container
1448 */
1449 Object *object_get_internal_root(void);
1450
1451 /**
1452 * object_get_canonical_path_component:
1453 *
1454 * Returns: The final component in the object's canonical path. The canonical
1455 * path is the path within the composition tree starting from the root.
1456 * %NULL if the object doesn't have a parent (and thus a canonical path).
1457 */
1458 char *object_get_canonical_path_component(const Object *obj);
1459
1460 /**
1461 * object_get_canonical_path:
1462 *
1463 * Returns: The canonical path for a object. This is the path within the
1464 * composition tree starting from the root.
1465 */
1466 char *object_get_canonical_path(const Object *obj);
1467
1468 /**
1469 * object_resolve_path:
1470 * @path: the path to resolve
1471 * @ambiguous: returns true if the path resolution failed because of an
1472 * ambiguous match
1473 *
1474 * There are two types of supported paths--absolute paths and partial paths.
1475 *
1476 * Absolute paths are derived from the root object and can follow child<> or
1477 * link<> properties. Since they can follow link<> properties, they can be
1478 * arbitrarily long. Absolute paths look like absolute filenames and are
1479 * prefixed with a leading slash.
1480 *
1481 * Partial paths look like relative filenames. They do not begin with a
1482 * prefix. The matching rules for partial paths are subtle but designed to make
1483 * specifying objects easy. At each level of the composition tree, the partial
1484 * path is matched as an absolute path. The first match is not returned. At
1485 * least two matches are searched for. A successful result is only returned if
1486 * only one match is found. If more than one match is found, a flag is
1487 * returned to indicate that the match was ambiguous.
1488 *
1489 * Returns: The matched object or NULL on path lookup failure.
1490 */
1491 Object *object_resolve_path(const char *path, bool *ambiguous);
1492
1493 /**
1494 * object_resolve_path_type:
1495 * @path: the path to resolve
1496 * @typename: the type to look for.
1497 * @ambiguous: returns true if the path resolution failed because of an
1498 * ambiguous match
1499 *
1500 * This is similar to object_resolve_path. However, when looking for a
1501 * partial path only matches that implement the given type are considered.
1502 * This restricts the search and avoids spuriously flagging matches as
1503 * ambiguous.
1504 *
1505 * For both partial and absolute paths, the return value goes through
1506 * a dynamic cast to @typename. This is important if either the link,
1507 * or the typename itself are of interface types.
1508 *
1509 * Returns: The matched object or NULL on path lookup failure.
1510 */
1511 Object *object_resolve_path_type(const char *path, const char *typename,
1512 bool *ambiguous);
1513
1514 /**
1515 * object_resolve_path_component:
1516 * @parent: the object in which to resolve the path
1517 * @part: the component to resolve.
1518 *
1519 * This is similar to object_resolve_path with an absolute path, but it
1520 * only resolves one element (@part) and takes the others from @parent.
1521 *
1522 * Returns: The resolved object or NULL on path lookup failure.
1523 */
1524 Object *object_resolve_path_component(Object *parent, const char *part);
1525
1526 /**
1527 * object_property_add_child:
1528 * @obj: the object to add a property to
1529 * @name: the name of the property
1530 * @child: the child object
1531 *
1532 * Child properties form the composition tree. All objects need to be a child
1533 * of another object. Objects can only be a child of one object.
1534 *
1535 * There is no way for a child to determine what its parent is. It is not
1536 * a bidirectional relationship. This is by design.
1537 *
1538 * The value of a child property as a C string will be the child object's
1539 * canonical path. It can be retrieved using object_property_get_str().
1540 * The child object itself can be retrieved using object_property_get_link().
1541 *
1542 * Returns: The newly added property on success, or %NULL on failure.
1543 */
1544 ObjectProperty *object_property_add_child(Object *obj, const char *name,
1545 Object *child);
1546
1547 typedef enum {
1548 /* Unref the link pointer when the property is deleted */
1549 OBJ_PROP_LINK_STRONG = 0x1,
1550
1551 /* private */
1552 OBJ_PROP_LINK_DIRECT = 0x2,
1553 OBJ_PROP_LINK_CLASS = 0x4,
1554 } ObjectPropertyLinkFlags;
1555
1556 /**
1557 * object_property_allow_set_link:
1558 *
1559 * The default implementation of the object_property_add_link() check()
1560 * callback function. It allows the link property to be set and never returns
1561 * an error.
1562 */
1563 void object_property_allow_set_link(const Object *, const char *,
1564 Object *, Error **);
1565
1566 /**
1567 * object_property_add_link:
1568 * @obj: the object to add a property to
1569 * @name: the name of the property
1570 * @type: the qobj type of the link
1571 * @targetp: a pointer to where the link object reference is stored
1572 * @check: callback to veto setting or NULL if the property is read-only
1573 * @flags: additional options for the link
1574 *
1575 * Links establish relationships between objects. Links are unidirectional
1576 * although two links can be combined to form a bidirectional relationship
1577 * between objects.
1578 *
1579 * Links form the graph in the object model.
1580 *
1581 * The <code>@check()</code> callback is invoked when
1582 * object_property_set_link() is called and can raise an error to prevent the
1583 * link being set. If <code>@check</code> is NULL, the property is read-only
1584 * and cannot be set.
1585 *
1586 * Ownership of the pointer that @child points to is transferred to the
1587 * link property. The reference count for <code>*@child</code> is
1588 * managed by the property from after the function returns till the
1589 * property is deleted with object_property_del(). If the
1590 * <code>@flags</code> <code>OBJ_PROP_LINK_STRONG</code> bit is set,
1591 * the reference count is decremented when the property is deleted or
1592 * modified.
1593 *
1594 * Returns: The newly added property on success, or %NULL on failure.
1595 */
1596 ObjectProperty *object_property_add_link(Object *obj, const char *name,
1597 const char *type, Object **targetp,
1598 void (*check)(const Object *obj, const char *name,
1599 Object *val, Error **errp),
1600 ObjectPropertyLinkFlags flags);
1601
1602 ObjectProperty *object_class_property_add_link(ObjectClass *oc,
1603 const char *name,
1604 const char *type, ptrdiff_t offset,
1605 void (*check)(const Object *obj, const char *name,
1606 Object *val, Error **errp),
1607 ObjectPropertyLinkFlags flags);
1608
1609 /**
1610 * object_property_add_str:
1611 * @obj: the object to add a property to
1612 * @name: the name of the property
1613 * @get: the getter or NULL if the property is write-only. This function must
1614 * return a string to be freed by g_free().
1615 * @set: the setter or NULL if the property is read-only
1616 *
1617 * Add a string property using getters/setters. This function will add a
1618 * property of type 'string'.
1619 *
1620 * Returns: The newly added property on success, or %NULL on failure.
1621 */
1622 ObjectProperty *object_property_add_str(Object *obj, const char *name,
1623 char *(*get)(Object *, Error **),
1624 void (*set)(Object *, const char *, Error **));
1625
1626 ObjectProperty *object_class_property_add_str(ObjectClass *klass,
1627 const char *name,
1628 char *(*get)(Object *, Error **),
1629 void (*set)(Object *, const char *,
1630 Error **));
1631
1632 /**
1633 * object_property_add_bool:
1634 * @obj: the object to add a property to
1635 * @name: the name of the property
1636 * @get: the getter or NULL if the property is write-only.
1637 * @set: the setter or NULL if the property is read-only
1638 *
1639 * Add a bool property using getters/setters. This function will add a
1640 * property of type 'bool'.
1641 *
1642 * Returns: The newly added property on success, or %NULL on failure.
1643 */
1644 ObjectProperty *object_property_add_bool(Object *obj, const char *name,
1645 bool (*get)(Object *, Error **),
1646 void (*set)(Object *, bool, Error **));
1647
1648 ObjectProperty *object_class_property_add_bool(ObjectClass *klass,
1649 const char *name,
1650 bool (*get)(Object *, Error **),
1651 void (*set)(Object *, bool, Error **));
1652
1653 /**
1654 * object_property_add_enum:
1655 * @obj: the object to add a property to
1656 * @name: the name of the property
1657 * @typename: the name of the enum data type
1658 * @get: the getter or %NULL if the property is write-only.
1659 * @set: the setter or %NULL if the property is read-only
1660 *
1661 * Add an enum property using getters/setters. This function will add a
1662 * property of type '@typename'.
1663 *
1664 * Returns: The newly added property on success, or %NULL on failure.
1665 */
1666 ObjectProperty *object_property_add_enum(Object *obj, const char *name,
1667 const char *typename,
1668 const QEnumLookup *lookup,
1669 int (*get)(Object *, Error **),
1670 void (*set)(Object *, int, Error **));
1671
1672 ObjectProperty *object_class_property_add_enum(ObjectClass *klass,
1673 const char *name,
1674 const char *typename,
1675 const QEnumLookup *lookup,
1676 int (*get)(Object *, Error **),
1677 void (*set)(Object *, int, Error **));
1678
1679 /**
1680 * object_property_add_tm:
1681 * @obj: the object to add a property to
1682 * @name: the name of the property
1683 * @get: the getter or NULL if the property is write-only.
1684 *
1685 * Add a read-only struct tm valued property using a getter function.
1686 * This function will add a property of type 'struct tm'.
1687 *
1688 * Returns: The newly added property on success, or %NULL on failure.
1689 */
1690 ObjectProperty *object_property_add_tm(Object *obj, const char *name,
1691 void (*get)(Object *, struct tm *, Error **));
1692
1693 ObjectProperty *object_class_property_add_tm(ObjectClass *klass,
1694 const char *name,
1695 void (*get)(Object *, struct tm *, Error **));
1696
1697 typedef enum {
1698 /* Automatically add a getter to the property */
1699 OBJ_PROP_FLAG_READ = 1 << 0,
1700 /* Automatically add a setter to the property */
1701 OBJ_PROP_FLAG_WRITE = 1 << 1,
1702 /* Automatically add a getter and a setter to the property */
1703 OBJ_PROP_FLAG_READWRITE = (OBJ_PROP_FLAG_READ | OBJ_PROP_FLAG_WRITE),
1704 } ObjectPropertyFlags;
1705
1706 /**
1707 * object_property_add_uint8_ptr:
1708 * @obj: the object to add a property to
1709 * @name: the name of the property
1710 * @v: pointer to value
1711 * @flags: bitwise-or'd ObjectPropertyFlags
1712 *
1713 * Add an integer property in memory. This function will add a
1714 * property of type 'uint8'.
1715 *
1716 * Returns: The newly added property on success, or %NULL on failure.
1717 */
1718 ObjectProperty *object_property_add_uint8_ptr(Object *obj, const char *name,
1719 const uint8_t *v,
1720 ObjectPropertyFlags flags);
1721
1722 ObjectProperty *object_class_property_add_uint8_ptr(ObjectClass *klass,
1723 const char *name,
1724 const uint8_t *v,
1725 ObjectPropertyFlags flags);
1726
1727 /**
1728 * object_property_add_uint16_ptr:
1729 * @obj: the object to add a property to
1730 * @name: the name of the property
1731 * @v: pointer to value
1732 * @flags: bitwise-or'd ObjectPropertyFlags
1733 *
1734 * Add an integer property in memory. This function will add a
1735 * property of type 'uint16'.
1736 *
1737 * Returns: The newly added property on success, or %NULL on failure.
1738 */
1739 ObjectProperty *object_property_add_uint16_ptr(Object *obj, const char *name,
1740 const uint16_t *v,
1741 ObjectPropertyFlags flags);
1742
1743 ObjectProperty *object_class_property_add_uint16_ptr(ObjectClass *klass,
1744 const char *name,
1745 const uint16_t *v,
1746 ObjectPropertyFlags flags);
1747
1748 /**
1749 * object_property_add_uint32_ptr:
1750 * @obj: the object to add a property to
1751 * @name: the name of the property
1752 * @v: pointer to value
1753 * @flags: bitwise-or'd ObjectPropertyFlags
1754 *
1755 * Add an integer property in memory. This function will add a
1756 * property of type 'uint32'.
1757 *
1758 * Returns: The newly added property on success, or %NULL on failure.
1759 */
1760 ObjectProperty *object_property_add_uint32_ptr(Object *obj, const char *name,
1761 const uint32_t *v,
1762 ObjectPropertyFlags flags);
1763
1764 ObjectProperty *object_class_property_add_uint32_ptr(ObjectClass *klass,
1765 const char *name,
1766 const uint32_t *v,
1767 ObjectPropertyFlags flags);
1768
1769 /**
1770 * object_property_add_uint64_ptr:
1771 * @obj: the object to add a property to
1772 * @name: the name of the property
1773 * @v: pointer to value
1774 * @flags: bitwise-or'd ObjectPropertyFlags
1775 *
1776 * Add an integer property in memory. This function will add a
1777 * property of type 'uint64'.
1778 *
1779 * Returns: The newly added property on success, or %NULL on failure.
1780 */
1781 ObjectProperty *object_property_add_uint64_ptr(Object *obj, const char *name,
1782 const uint64_t *v,
1783 ObjectPropertyFlags flags);
1784
1785 ObjectProperty *object_class_property_add_uint64_ptr(ObjectClass *klass,
1786 const char *name,
1787 const uint64_t *v,
1788 ObjectPropertyFlags flags);
1789
1790 /**
1791 * object_property_add_alias:
1792 * @obj: the object to add a property to
1793 * @name: the name of the property
1794 * @target_obj: the object to forward property access to
1795 * @target_name: the name of the property on the forwarded object
1796 *
1797 * Add an alias for a property on an object. This function will add a property
1798 * of the same type as the forwarded property.
1799 *
1800 * The caller must ensure that <code>@target_obj</code> stays alive as long as
1801 * this property exists. In the case of a child object or an alias on the same
1802 * object this will be the case. For aliases to other objects the caller is
1803 * responsible for taking a reference.
1804 *
1805 * Returns: The newly added property on success, or %NULL on failure.
1806 */
1807 ObjectProperty *object_property_add_alias(Object *obj, const char *name,
1808 Object *target_obj, const char *target_name);
1809
1810 /**
1811 * object_property_add_const_link:
1812 * @obj: the object to add a property to
1813 * @name: the name of the property
1814 * @target: the object to be referred by the link
1815 *
1816 * Add an unmodifiable link for a property on an object. This function will
1817 * add a property of type link<TYPE> where TYPE is the type of @target.
1818 *
1819 * The caller must ensure that @target stays alive as long as
1820 * this property exists. In the case @target is a child of @obj,
1821 * this will be the case. Otherwise, the caller is responsible for
1822 * taking a reference.
1823 *
1824 * Returns: The newly added property on success, or %NULL on failure.
1825 */
1826 ObjectProperty *object_property_add_const_link(Object *obj, const char *name,
1827 Object *target);
1828
1829 /**
1830 * object_property_set_description:
1831 * @obj: the object owning the property
1832 * @name: the name of the property
1833 * @description: the description of the property on the object
1834 *
1835 * Set an object property's description.
1836 *
1837 * Returns: %true on success, %false on failure.
1838 */
1839 void object_property_set_description(Object *obj, const char *name,
1840 const char *description);
1841 void object_class_property_set_description(ObjectClass *klass, const char *name,
1842 const char *description);
1843
1844 /**
1845 * object_child_foreach:
1846 * @obj: the object whose children will be navigated
1847 * @fn: the iterator function to be called
1848 * @opaque: an opaque value that will be passed to the iterator
1849 *
1850 * Call @fn passing each child of @obj and @opaque to it, until @fn returns
1851 * non-zero.
1852 *
1853 * It is forbidden to add or remove children from @obj from the @fn
1854 * callback.
1855 *
1856 * Returns: The last value returned by @fn, or 0 if there is no child.
1857 */
1858 int object_child_foreach(Object *obj, int (*fn)(Object *child, void *opaque),
1859 void *opaque);
1860
1861 /**
1862 * object_child_foreach_recursive:
1863 * @obj: the object whose children will be navigated
1864 * @fn: the iterator function to be called
1865 * @opaque: an opaque value that will be passed to the iterator
1866 *
1867 * Call @fn passing each child of @obj and @opaque to it, until @fn returns
1868 * non-zero. Calls recursively, all child nodes of @obj will also be passed
1869 * all the way down to the leaf nodes of the tree. Depth first ordering.
1870 *
1871 * It is forbidden to add or remove children from @obj (or its
1872 * child nodes) from the @fn callback.
1873 *
1874 * Returns: The last value returned by @fn, or 0 if there is no child.
1875 */
1876 int object_child_foreach_recursive(Object *obj,
1877 int (*fn)(Object *child, void *opaque),
1878 void *opaque);
1879 /**
1880 * container_get:
1881 * @root: root of the #path, e.g., object_get_root()
1882 * @path: path to the container
1883 *
1884 * Return a container object whose path is @path. Create more containers
1885 * along the path if necessary.
1886 *
1887 * Returns: the container object.
1888 */
1889 Object *container_get(Object *root, const char *path);
1890
1891 /**
1892 * object_type_get_instance_size:
1893 * @typename: Name of the Type whose instance_size is required
1894 *
1895 * Returns the instance_size of the given @typename.
1896 */
1897 size_t object_type_get_instance_size(const char *typename);
1898
1899 /**
1900 * object_property_help:
1901 * @name: the name of the property
1902 * @type: the type of the property
1903 * @defval: the default value
1904 * @description: description of the property
1905 *
1906 * Returns: a user-friendly formatted string describing the property
1907 * for help purposes.
1908 */
1909 char *object_property_help(const char *name, const char *type,
1910 QObject *defval, const char *description);
1911
1912 G_DEFINE_AUTOPTR_CLEANUP_FUNC(Object, object_unref)
1913
1914 #endif