qom: Constify object_get_canonical_path{,_component}()'s parameter
[qemu.git] / include / qom / object.h
1 /*
2 * QEMU Object Model
3 *
4 * Copyright IBM, Corp. 2011
5 *
6 * Authors:
7 * Anthony Liguori <aliguori@us.ibm.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef QEMU_OBJECT_H
15 #define QEMU_OBJECT_H
16
17 #include "qapi/qapi-builtin-types.h"
18 #include "qemu/module.h"
19
20 struct TypeImpl;
21 typedef struct TypeImpl *Type;
22
23 typedef struct TypeInfo TypeInfo;
24
25 typedef struct InterfaceClass InterfaceClass;
26 typedef struct InterfaceInfo InterfaceInfo;
27
28 #define TYPE_OBJECT "object"
29
30 /**
31 * SECTION:object.h
32 * @title:Base Object Type System
33 * @short_description: interfaces for creating new types and objects
34 *
35 * The QEMU Object Model provides a framework for registering user creatable
36 * types and instantiating objects from those types. QOM provides the following
37 * features:
38 *
39 * - System for dynamically registering types
40 * - Support for single-inheritance of types
41 * - Multiple inheritance of stateless interfaces
42 *
43 * <example>
44 * <title>Creating a minimal type</title>
45 * <programlisting>
46 * #include "qdev.h"
47 *
48 * #define TYPE_MY_DEVICE "my-device"
49 *
50 * // No new virtual functions: we can reuse the typedef for the
51 * // superclass.
52 * typedef DeviceClass MyDeviceClass;
53 * typedef struct MyDevice
54 * {
55 * DeviceState parent;
56 *
57 * int reg0, reg1, reg2;
58 * } MyDevice;
59 *
60 * static const TypeInfo my_device_info = {
61 * .name = TYPE_MY_DEVICE,
62 * .parent = TYPE_DEVICE,
63 * .instance_size = sizeof(MyDevice),
64 * };
65 *
66 * static void my_device_register_types(void)
67 * {
68 * type_register_static(&my_device_info);
69 * }
70 *
71 * type_init(my_device_register_types)
72 * </programlisting>
73 * </example>
74 *
75 * In the above example, we create a simple type that is described by #TypeInfo.
76 * #TypeInfo describes information about the type including what it inherits
77 * from, the instance and class size, and constructor/destructor hooks.
78 *
79 * Alternatively several static types could be registered using helper macro
80 * DEFINE_TYPES()
81 *
82 * <example>
83 * <programlisting>
84 * static const TypeInfo device_types_info[] = {
85 * {
86 * .name = TYPE_MY_DEVICE_A,
87 * .parent = TYPE_DEVICE,
88 * .instance_size = sizeof(MyDeviceA),
89 * },
90 * {
91 * .name = TYPE_MY_DEVICE_B,
92 * .parent = TYPE_DEVICE,
93 * .instance_size = sizeof(MyDeviceB),
94 * },
95 * };
96 *
97 * DEFINE_TYPES(device_types_info)
98 * </programlisting>
99 * </example>
100 *
101 * Every type has an #ObjectClass associated with it. #ObjectClass derivatives
102 * are instantiated dynamically but there is only ever one instance for any
103 * given type. The #ObjectClass typically holds a table of function pointers
104 * for the virtual methods implemented by this type.
105 *
106 * Using object_new(), a new #Object derivative will be instantiated. You can
107 * cast an #Object to a subclass (or base-class) type using
108 * object_dynamic_cast(). You typically want to define macro wrappers around
109 * OBJECT_CHECK() and OBJECT_CLASS_CHECK() to make it easier to convert to a
110 * specific type:
111 *
112 * <example>
113 * <title>Typecasting macros</title>
114 * <programlisting>
115 * #define MY_DEVICE_GET_CLASS(obj) \
116 * OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE)
117 * #define MY_DEVICE_CLASS(klass) \
118 * OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE)
119 * #define MY_DEVICE(obj) \
120 * OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE)
121 * </programlisting>
122 * </example>
123 *
124 * # Class Initialization #
125 *
126 * Before an object is initialized, the class for the object must be
127 * initialized. There is only one class object for all instance objects
128 * that is created lazily.
129 *
130 * Classes are initialized by first initializing any parent classes (if
131 * necessary). After the parent class object has initialized, it will be
132 * copied into the current class object and any additional storage in the
133 * class object is zero filled.
134 *
135 * The effect of this is that classes automatically inherit any virtual
136 * function pointers that the parent class has already initialized. All
137 * other fields will be zero filled.
138 *
139 * Once all of the parent classes have been initialized, #TypeInfo::class_init
140 * is called to let the class being instantiated provide default initialize for
141 * its virtual functions. Here is how the above example might be modified
142 * to introduce an overridden virtual function:
143 *
144 * <example>
145 * <title>Overriding a virtual function</title>
146 * <programlisting>
147 * #include "qdev.h"
148 *
149 * void my_device_class_init(ObjectClass *klass, void *class_data)
150 * {
151 * DeviceClass *dc = DEVICE_CLASS(klass);
152 * dc->reset = my_device_reset;
153 * }
154 *
155 * static const TypeInfo my_device_info = {
156 * .name = TYPE_MY_DEVICE,
157 * .parent = TYPE_DEVICE,
158 * .instance_size = sizeof(MyDevice),
159 * .class_init = my_device_class_init,
160 * };
161 * </programlisting>
162 * </example>
163 *
164 * Introducing new virtual methods requires a class to define its own
165 * struct and to add a .class_size member to the #TypeInfo. Each method
166 * will also have a wrapper function to call it easily:
167 *
168 * <example>
169 * <title>Defining an abstract class</title>
170 * <programlisting>
171 * #include "qdev.h"
172 *
173 * typedef struct MyDeviceClass
174 * {
175 * DeviceClass parent;
176 *
177 * void (*frobnicate) (MyDevice *obj);
178 * } MyDeviceClass;
179 *
180 * static const TypeInfo my_device_info = {
181 * .name = TYPE_MY_DEVICE,
182 * .parent = TYPE_DEVICE,
183 * .instance_size = sizeof(MyDevice),
184 * .abstract = true, // or set a default in my_device_class_init
185 * .class_size = sizeof(MyDeviceClass),
186 * };
187 *
188 * void my_device_frobnicate(MyDevice *obj)
189 * {
190 * MyDeviceClass *klass = MY_DEVICE_GET_CLASS(obj);
191 *
192 * klass->frobnicate(obj);
193 * }
194 * </programlisting>
195 * </example>
196 *
197 * # Interfaces #
198 *
199 * Interfaces allow a limited form of multiple inheritance. Instances are
200 * similar to normal types except for the fact that are only defined by
201 * their classes and never carry any state. As a consequence, a pointer to
202 * an interface instance should always be of incomplete type in order to be
203 * sure it cannot be dereferenced. That is, you should define the
204 * 'typedef struct SomethingIf SomethingIf' so that you can pass around
205 * 'SomethingIf *si' arguments, but not define a 'struct SomethingIf { ... }'.
206 * The only things you can validly do with a 'SomethingIf *' are to pass it as
207 * an argument to a method on its corresponding SomethingIfClass, or to
208 * dynamically cast it to an object that implements the interface.
209 *
210 * # Methods #
211 *
212 * A <emphasis>method</emphasis> is a function within the namespace scope of
213 * a class. It usually operates on the object instance by passing it as a
214 * strongly-typed first argument.
215 * If it does not operate on an object instance, it is dubbed
216 * <emphasis>class method</emphasis>.
217 *
218 * Methods cannot be overloaded. That is, the #ObjectClass and method name
219 * uniquely identity the function to be called; the signature does not vary
220 * except for trailing varargs.
221 *
222 * Methods are always <emphasis>virtual</emphasis>. Overriding a method in
223 * #TypeInfo.class_init of a subclass leads to any user of the class obtained
224 * via OBJECT_GET_CLASS() accessing the overridden function.
225 * The original function is not automatically invoked. It is the responsibility
226 * of the overriding class to determine whether and when to invoke the method
227 * being overridden.
228 *
229 * To invoke the method being overridden, the preferred solution is to store
230 * the original value in the overriding class before overriding the method.
231 * This corresponds to |[ {super,base}.method(...) ]| in Java and C#
232 * respectively; this frees the overriding class from hardcoding its parent
233 * class, which someone might choose to change at some point.
234 *
235 * <example>
236 * <title>Overriding a virtual method</title>
237 * <programlisting>
238 * typedef struct MyState MyState;
239 *
240 * typedef void (*MyDoSomething)(MyState *obj);
241 *
242 * typedef struct MyClass {
243 * ObjectClass parent_class;
244 *
245 * MyDoSomething do_something;
246 * } MyClass;
247 *
248 * static void my_do_something(MyState *obj)
249 * {
250 * // do something
251 * }
252 *
253 * static void my_class_init(ObjectClass *oc, void *data)
254 * {
255 * MyClass *mc = MY_CLASS(oc);
256 *
257 * mc->do_something = my_do_something;
258 * }
259 *
260 * static const TypeInfo my_type_info = {
261 * .name = TYPE_MY,
262 * .parent = TYPE_OBJECT,
263 * .instance_size = sizeof(MyState),
264 * .class_size = sizeof(MyClass),
265 * .class_init = my_class_init,
266 * };
267 *
268 * typedef struct DerivedClass {
269 * MyClass parent_class;
270 *
271 * MyDoSomething parent_do_something;
272 * } DerivedClass;
273 *
274 * static void derived_do_something(MyState *obj)
275 * {
276 * DerivedClass *dc = DERIVED_GET_CLASS(obj);
277 *
278 * // do something here
279 * dc->parent_do_something(obj);
280 * // do something else here
281 * }
282 *
283 * static void derived_class_init(ObjectClass *oc, void *data)
284 * {
285 * MyClass *mc = MY_CLASS(oc);
286 * DerivedClass *dc = DERIVED_CLASS(oc);
287 *
288 * dc->parent_do_something = mc->do_something;
289 * mc->do_something = derived_do_something;
290 * }
291 *
292 * static const TypeInfo derived_type_info = {
293 * .name = TYPE_DERIVED,
294 * .parent = TYPE_MY,
295 * .class_size = sizeof(DerivedClass),
296 * .class_init = derived_class_init,
297 * };
298 * </programlisting>
299 * </example>
300 *
301 * Alternatively, object_class_by_name() can be used to obtain the class and
302 * its non-overridden methods for a specific type. This would correspond to
303 * |[ MyClass::method(...) ]| in C++.
304 *
305 * The first example of such a QOM method was #CPUClass.reset,
306 * another example is #DeviceClass.realize.
307 */
308
309
310 typedef struct ObjectProperty ObjectProperty;
311
312 /**
313 * ObjectPropertyAccessor:
314 * @obj: the object that owns the property
315 * @v: the visitor that contains the property data
316 * @name: the name of the property
317 * @opaque: the object property opaque
318 * @errp: a pointer to an Error that is filled if getting/setting fails.
319 *
320 * Called when trying to get/set a property.
321 */
322 typedef void (ObjectPropertyAccessor)(Object *obj,
323 Visitor *v,
324 const char *name,
325 void *opaque,
326 Error **errp);
327
328 /**
329 * ObjectPropertyResolve:
330 * @obj: the object that owns the property
331 * @opaque: the opaque registered with the property
332 * @part: the name of the property
333 *
334 * Resolves the #Object corresponding to property @part.
335 *
336 * The returned object can also be used as a starting point
337 * to resolve a relative path starting with "@part".
338 *
339 * Returns: If @path is the path that led to @obj, the function
340 * returns the #Object corresponding to "@path/@part".
341 * If "@path/@part" is not a valid object path, it returns #NULL.
342 */
343 typedef Object *(ObjectPropertyResolve)(Object *obj,
344 void *opaque,
345 const char *part);
346
347 /**
348 * ObjectPropertyRelease:
349 * @obj: the object that owns the property
350 * @name: the name of the property
351 * @opaque: the opaque registered with the property
352 *
353 * Called when a property is removed from a object.
354 */
355 typedef void (ObjectPropertyRelease)(Object *obj,
356 const char *name,
357 void *opaque);
358
359 /**
360 * ObjectPropertyInit:
361 * @obj: the object that owns the property
362 * @prop: the property to set
363 *
364 * Called when a property is initialized.
365 */
366 typedef void (ObjectPropertyInit)(Object *obj, ObjectProperty *prop);
367
368 struct ObjectProperty
369 {
370 char *name;
371 char *type;
372 char *description;
373 ObjectPropertyAccessor *get;
374 ObjectPropertyAccessor *set;
375 ObjectPropertyResolve *resolve;
376 ObjectPropertyRelease *release;
377 ObjectPropertyInit *init;
378 void *opaque;
379 QObject *defval;
380 };
381
382 /**
383 * ObjectUnparent:
384 * @obj: the object that is being removed from the composition tree
385 *
386 * Called when an object is being removed from the QOM composition tree.
387 * The function should remove any backlinks from children objects to @obj.
388 */
389 typedef void (ObjectUnparent)(Object *obj);
390
391 /**
392 * ObjectFree:
393 * @obj: the object being freed
394 *
395 * Called when an object's last reference is removed.
396 */
397 typedef void (ObjectFree)(void *obj);
398
399 #define OBJECT_CLASS_CAST_CACHE 4
400
401 /**
402 * ObjectClass:
403 *
404 * The base for all classes. The only thing that #ObjectClass contains is an
405 * integer type handle.
406 */
407 struct ObjectClass
408 {
409 /*< private >*/
410 Type type;
411 GSList *interfaces;
412
413 const char *object_cast_cache[OBJECT_CLASS_CAST_CACHE];
414 const char *class_cast_cache[OBJECT_CLASS_CAST_CACHE];
415
416 ObjectUnparent *unparent;
417
418 GHashTable *properties;
419 };
420
421 /**
422 * Object:
423 *
424 * The base for all objects. The first member of this object is a pointer to
425 * a #ObjectClass. Since C guarantees that the first member of a structure
426 * always begins at byte 0 of that structure, as long as any sub-object places
427 * its parent as the first member, we can cast directly to a #Object.
428 *
429 * As a result, #Object contains a reference to the objects type as its
430 * first member. This allows identification of the real type of the object at
431 * run time.
432 */
433 struct Object
434 {
435 /*< private >*/
436 ObjectClass *class;
437 ObjectFree *free;
438 GHashTable *properties;
439 uint32_t ref;
440 Object *parent;
441 };
442
443 /**
444 * TypeInfo:
445 * @name: The name of the type.
446 * @parent: The name of the parent type.
447 * @instance_size: The size of the object (derivative of #Object). If
448 * @instance_size is 0, then the size of the object will be the size of the
449 * parent object.
450 * @instance_init: This function is called to initialize an object. The parent
451 * class will have already been initialized so the type is only responsible
452 * for initializing its own members.
453 * @instance_post_init: This function is called to finish initialization of
454 * an object, after all @instance_init functions were called.
455 * @instance_finalize: This function is called during object destruction. This
456 * is called before the parent @instance_finalize function has been called.
457 * An object should only free the members that are unique to its type in this
458 * function.
459 * @abstract: If this field is true, then the class is considered abstract and
460 * cannot be directly instantiated.
461 * @class_size: The size of the class object (derivative of #ObjectClass)
462 * for this object. If @class_size is 0, then the size of the class will be
463 * assumed to be the size of the parent class. This allows a type to avoid
464 * implementing an explicit class type if they are not adding additional
465 * virtual functions.
466 * @class_init: This function is called after all parent class initialization
467 * has occurred to allow a class to set its default virtual method pointers.
468 * This is also the function to use to override virtual methods from a parent
469 * class.
470 * @class_base_init: This function is called for all base classes after all
471 * parent class initialization has occurred, but before the class itself
472 * is initialized. This is the function to use to undo the effects of
473 * memcpy from the parent class to the descendants.
474 * @class_data: Data to pass to the @class_init,
475 * @class_base_init. This can be useful when building dynamic
476 * classes.
477 * @interfaces: The list of interfaces associated with this type. This
478 * should point to a static array that's terminated with a zero filled
479 * element.
480 */
481 struct TypeInfo
482 {
483 const char *name;
484 const char *parent;
485
486 size_t instance_size;
487 void (*instance_init)(Object *obj);
488 void (*instance_post_init)(Object *obj);
489 void (*instance_finalize)(Object *obj);
490
491 bool abstract;
492 size_t class_size;
493
494 void (*class_init)(ObjectClass *klass, void *data);
495 void (*class_base_init)(ObjectClass *klass, void *data);
496 void *class_data;
497
498 InterfaceInfo *interfaces;
499 };
500
501 /**
502 * OBJECT:
503 * @obj: A derivative of #Object
504 *
505 * Converts an object to a #Object. Since all objects are #Objects,
506 * this function will always succeed.
507 */
508 #define OBJECT(obj) \
509 ((Object *)(obj))
510
511 /**
512 * OBJECT_CLASS:
513 * @class: A derivative of #ObjectClass.
514 *
515 * Converts a class to an #ObjectClass. Since all objects are #Objects,
516 * this function will always succeed.
517 */
518 #define OBJECT_CLASS(class) \
519 ((ObjectClass *)(class))
520
521 /**
522 * OBJECT_CHECK:
523 * @type: The C type to use for the return value.
524 * @obj: A derivative of @type to cast.
525 * @name: The QOM typename of @type
526 *
527 * A type safe version of @object_dynamic_cast_assert. Typically each class
528 * will define a macro based on this type to perform type safe dynamic_casts to
529 * this object type.
530 *
531 * If an invalid object is passed to this function, a run time assert will be
532 * generated.
533 */
534 #define OBJECT_CHECK(type, obj, name) \
535 ((type *)object_dynamic_cast_assert(OBJECT(obj), (name), \
536 __FILE__, __LINE__, __func__))
537
538 /**
539 * OBJECT_CLASS_CHECK:
540 * @class_type: The C type to use for the return value.
541 * @class: A derivative class of @class_type to cast.
542 * @name: the QOM typename of @class_type.
543 *
544 * A type safe version of @object_class_dynamic_cast_assert. This macro is
545 * typically wrapped by each type to perform type safe casts of a class to a
546 * specific class type.
547 */
548 #define OBJECT_CLASS_CHECK(class_type, class, name) \
549 ((class_type *)object_class_dynamic_cast_assert(OBJECT_CLASS(class), (name), \
550 __FILE__, __LINE__, __func__))
551
552 /**
553 * OBJECT_GET_CLASS:
554 * @class: The C type to use for the return value.
555 * @obj: The object to obtain the class for.
556 * @name: The QOM typename of @obj.
557 *
558 * This function will return a specific class for a given object. Its generally
559 * used by each type to provide a type safe macro to get a specific class type
560 * from an object.
561 */
562 #define OBJECT_GET_CLASS(class, obj, name) \
563 OBJECT_CLASS_CHECK(class, object_get_class(OBJECT(obj)), name)
564
565 /**
566 * InterfaceInfo:
567 * @type: The name of the interface.
568 *
569 * The information associated with an interface.
570 */
571 struct InterfaceInfo {
572 const char *type;
573 };
574
575 /**
576 * InterfaceClass:
577 * @parent_class: the base class
578 *
579 * The class for all interfaces. Subclasses of this class should only add
580 * virtual methods.
581 */
582 struct InterfaceClass
583 {
584 ObjectClass parent_class;
585 /*< private >*/
586 ObjectClass *concrete_class;
587 Type interface_type;
588 };
589
590 #define TYPE_INTERFACE "interface"
591
592 /**
593 * INTERFACE_CLASS:
594 * @klass: class to cast from
595 * Returns: An #InterfaceClass or raise an error if cast is invalid
596 */
597 #define INTERFACE_CLASS(klass) \
598 OBJECT_CLASS_CHECK(InterfaceClass, klass, TYPE_INTERFACE)
599
600 /**
601 * INTERFACE_CHECK:
602 * @interface: the type to return
603 * @obj: the object to convert to an interface
604 * @name: the interface type name
605 *
606 * Returns: @obj casted to @interface if cast is valid, otherwise raise error.
607 */
608 #define INTERFACE_CHECK(interface, obj, name) \
609 ((interface *)object_dynamic_cast_assert(OBJECT((obj)), (name), \
610 __FILE__, __LINE__, __func__))
611
612 /**
613 * object_new_with_class:
614 * @klass: The class to instantiate.
615 *
616 * This function will initialize a new object using heap allocated memory.
617 * The returned object has a reference count of 1, and will be freed when
618 * the last reference is dropped.
619 *
620 * Returns: The newly allocated and instantiated object.
621 */
622 Object *object_new_with_class(ObjectClass *klass);
623
624 /**
625 * object_new:
626 * @typename: The name of the type of the object to instantiate.
627 *
628 * This function will initialize a new object using heap allocated memory.
629 * The returned object has a reference count of 1, and will be freed when
630 * the last reference is dropped.
631 *
632 * Returns: The newly allocated and instantiated object.
633 */
634 Object *object_new(const char *typename);
635
636 /**
637 * object_new_with_props:
638 * @typename: The name of the type of the object to instantiate.
639 * @parent: the parent object
640 * @id: The unique ID of the object
641 * @errp: pointer to error object
642 * @...: list of property names and values
643 *
644 * This function will initialize a new object using heap allocated memory.
645 * The returned object has a reference count of 1, and will be freed when
646 * the last reference is dropped.
647 *
648 * The @id parameter will be used when registering the object as a
649 * child of @parent in the composition tree.
650 *
651 * The variadic parameters are a list of pairs of (propname, propvalue)
652 * strings. The propname of %NULL indicates the end of the property
653 * list. If the object implements the user creatable interface, the
654 * object will be marked complete once all the properties have been
655 * processed.
656 *
657 * <example>
658 * <title>Creating an object with properties</title>
659 * <programlisting>
660 * Error *err = NULL;
661 * Object *obj;
662 *
663 * obj = object_new_with_props(TYPE_MEMORY_BACKEND_FILE,
664 * object_get_objects_root(),
665 * "hostmem0",
666 * &err,
667 * "share", "yes",
668 * "mem-path", "/dev/shm/somefile",
669 * "prealloc", "yes",
670 * "size", "1048576",
671 * NULL);
672 *
673 * if (!obj) {
674 * g_printerr("Cannot create memory backend: %s\n",
675 * error_get_pretty(err));
676 * }
677 * </programlisting>
678 * </example>
679 *
680 * The returned object will have one stable reference maintained
681 * for as long as it is present in the object hierarchy.
682 *
683 * Returns: The newly allocated, instantiated & initialized object.
684 */
685 Object *object_new_with_props(const char *typename,
686 Object *parent,
687 const char *id,
688 Error **errp,
689 ...) QEMU_SENTINEL;
690
691 /**
692 * object_new_with_propv:
693 * @typename: The name of the type of the object to instantiate.
694 * @parent: the parent object
695 * @id: The unique ID of the object
696 * @errp: pointer to error object
697 * @vargs: list of property names and values
698 *
699 * See object_new_with_props() for documentation.
700 */
701 Object *object_new_with_propv(const char *typename,
702 Object *parent,
703 const char *id,
704 Error **errp,
705 va_list vargs);
706
707 void object_apply_global_props(Object *obj, const GPtrArray *props,
708 Error **errp);
709 void object_set_machine_compat_props(GPtrArray *compat_props);
710 void object_set_accelerator_compat_props(GPtrArray *compat_props);
711 void object_register_sugar_prop(const char *driver, const char *prop, const char *value);
712 void object_apply_compat_props(Object *obj);
713
714 /**
715 * object_set_props:
716 * @obj: the object instance to set properties on
717 * @errp: pointer to error object
718 * @...: list of property names and values
719 *
720 * This function will set a list of properties on an existing object
721 * instance.
722 *
723 * The variadic parameters are a list of pairs of (propname, propvalue)
724 * strings. The propname of %NULL indicates the end of the property
725 * list.
726 *
727 * <example>
728 * <title>Update an object's properties</title>
729 * <programlisting>
730 * Error *err = NULL;
731 * Object *obj = ...get / create object...;
732 *
733 * obj = object_set_props(obj,
734 * &err,
735 * "share", "yes",
736 * "mem-path", "/dev/shm/somefile",
737 * "prealloc", "yes",
738 * "size", "1048576",
739 * NULL);
740 *
741 * if (!obj) {
742 * g_printerr("Cannot set properties: %s\n",
743 * error_get_pretty(err));
744 * }
745 * </programlisting>
746 * </example>
747 *
748 * The returned object will have one stable reference maintained
749 * for as long as it is present in the object hierarchy.
750 *
751 * Returns: -1 on error, 0 on success
752 */
753 int object_set_props(Object *obj,
754 Error **errp,
755 ...) QEMU_SENTINEL;
756
757 /**
758 * object_set_propv:
759 * @obj: the object instance to set properties on
760 * @errp: pointer to error object
761 * @vargs: list of property names and values
762 *
763 * See object_set_props() for documentation.
764 *
765 * Returns: -1 on error, 0 on success
766 */
767 int object_set_propv(Object *obj,
768 Error **errp,
769 va_list vargs);
770
771 /**
772 * object_initialize:
773 * @obj: A pointer to the memory to be used for the object.
774 * @size: The maximum size available at @obj for the object.
775 * @typename: The name of the type of the object to instantiate.
776 *
777 * This function will initialize an object. The memory for the object should
778 * have already been allocated. The returned object has a reference count of 1,
779 * and will be finalized when the last reference is dropped.
780 */
781 void object_initialize(void *obj, size_t size, const char *typename);
782
783 /**
784 * object_initialize_child:
785 * @parentobj: The parent object to add a property to
786 * @propname: The name of the property
787 * @childobj: A pointer to the memory to be used for the object.
788 * @size: The maximum size available at @childobj for the object.
789 * @type: The name of the type of the object to instantiate.
790 * @errp: If an error occurs, a pointer to an area to store the error
791 * @...: list of property names and values
792 *
793 * This function will initialize an object. The memory for the object should
794 * have already been allocated. The object will then be added as child property
795 * to a parent with object_property_add_child() function. The returned object
796 * has a reference count of 1 (for the "child<...>" property from the parent),
797 * so the object will be finalized automatically when the parent gets removed.
798 *
799 * The variadic parameters are a list of pairs of (propname, propvalue)
800 * strings. The propname of %NULL indicates the end of the property list.
801 * If the object implements the user creatable interface, the object will
802 * be marked complete once all the properties have been processed.
803 */
804 void object_initialize_child(Object *parentobj, const char *propname,
805 void *childobj, size_t size, const char *type,
806 Error **errp, ...) QEMU_SENTINEL;
807
808 /**
809 * object_initialize_childv:
810 * @parentobj: The parent object to add a property to
811 * @propname: The name of the property
812 * @childobj: A pointer to the memory to be used for the object.
813 * @size: The maximum size available at @childobj for the object.
814 * @type: The name of the type of the object to instantiate.
815 * @errp: If an error occurs, a pointer to an area to store the error
816 * @vargs: list of property names and values
817 *
818 * See object_initialize_child() for documentation.
819 */
820 void object_initialize_childv(Object *parentobj, const char *propname,
821 void *childobj, size_t size, const char *type,
822 Error **errp, va_list vargs);
823
824 /**
825 * object_dynamic_cast:
826 * @obj: The object to cast.
827 * @typename: The @typename to cast to.
828 *
829 * This function will determine if @obj is-a @typename. @obj can refer to an
830 * object or an interface associated with an object.
831 *
832 * Returns: This function returns @obj on success or #NULL on failure.
833 */
834 Object *object_dynamic_cast(Object *obj, const char *typename);
835
836 /**
837 * object_dynamic_cast_assert:
838 *
839 * See object_dynamic_cast() for a description of the parameters of this
840 * function. The only difference in behavior is that this function asserts
841 * instead of returning #NULL on failure if QOM cast debugging is enabled.
842 * This function is not meant to be called directly, but only through
843 * the wrapper macro OBJECT_CHECK.
844 */
845 Object *object_dynamic_cast_assert(Object *obj, const char *typename,
846 const char *file, int line, const char *func);
847
848 /**
849 * object_get_class:
850 * @obj: A derivative of #Object
851 *
852 * Returns: The #ObjectClass of the type associated with @obj.
853 */
854 ObjectClass *object_get_class(Object *obj);
855
856 /**
857 * object_get_typename:
858 * @obj: A derivative of #Object.
859 *
860 * Returns: The QOM typename of @obj.
861 */
862 const char *object_get_typename(const Object *obj);
863
864 /**
865 * type_register_static:
866 * @info: The #TypeInfo of the new type.
867 *
868 * @info and all of the strings it points to should exist for the life time
869 * that the type is registered.
870 *
871 * Returns: the new #Type.
872 */
873 Type type_register_static(const TypeInfo *info);
874
875 /**
876 * type_register:
877 * @info: The #TypeInfo of the new type
878 *
879 * Unlike type_register_static(), this call does not require @info or its
880 * string members to continue to exist after the call returns.
881 *
882 * Returns: the new #Type.
883 */
884 Type type_register(const TypeInfo *info);
885
886 /**
887 * type_register_static_array:
888 * @infos: The array of the new type #TypeInfo structures.
889 * @nr_infos: number of entries in @infos
890 *
891 * @infos and all of the strings it points to should exist for the life time
892 * that the type is registered.
893 */
894 void type_register_static_array(const TypeInfo *infos, int nr_infos);
895
896 /**
897 * DEFINE_TYPES:
898 * @type_array: The array containing #TypeInfo structures to register
899 *
900 * @type_array should be static constant that exists for the life time
901 * that the type is registered.
902 */
903 #define DEFINE_TYPES(type_array) \
904 static void do_qemu_init_ ## type_array(void) \
905 { \
906 type_register_static_array(type_array, ARRAY_SIZE(type_array)); \
907 } \
908 type_init(do_qemu_init_ ## type_array)
909
910 /**
911 * object_class_dynamic_cast_assert:
912 * @klass: The #ObjectClass to attempt to cast.
913 * @typename: The QOM typename of the class to cast to.
914 *
915 * See object_class_dynamic_cast() for a description of the parameters
916 * of this function. The only difference in behavior is that this function
917 * asserts instead of returning #NULL on failure if QOM cast debugging is
918 * enabled. This function is not meant to be called directly, but only through
919 * the wrapper macros OBJECT_CLASS_CHECK and INTERFACE_CHECK.
920 */
921 ObjectClass *object_class_dynamic_cast_assert(ObjectClass *klass,
922 const char *typename,
923 const char *file, int line,
924 const char *func);
925
926 /**
927 * object_class_dynamic_cast:
928 * @klass: The #ObjectClass to attempt to cast.
929 * @typename: The QOM typename of the class to cast to.
930 *
931 * Returns: If @typename is a class, this function returns @klass if
932 * @typename is a subtype of @klass, else returns #NULL.
933 *
934 * If @typename is an interface, this function returns the interface
935 * definition for @klass if @klass implements it unambiguously; #NULL
936 * is returned if @klass does not implement the interface or if multiple
937 * classes or interfaces on the hierarchy leading to @klass implement
938 * it. (FIXME: perhaps this can be detected at type definition time?)
939 */
940 ObjectClass *object_class_dynamic_cast(ObjectClass *klass,
941 const char *typename);
942
943 /**
944 * object_class_get_parent:
945 * @klass: The class to obtain the parent for.
946 *
947 * Returns: The parent for @klass or %NULL if none.
948 */
949 ObjectClass *object_class_get_parent(ObjectClass *klass);
950
951 /**
952 * object_class_get_name:
953 * @klass: The class to obtain the QOM typename for.
954 *
955 * Returns: The QOM typename for @klass.
956 */
957 const char *object_class_get_name(ObjectClass *klass);
958
959 /**
960 * object_class_is_abstract:
961 * @klass: The class to obtain the abstractness for.
962 *
963 * Returns: %true if @klass is abstract, %false otherwise.
964 */
965 bool object_class_is_abstract(ObjectClass *klass);
966
967 /**
968 * object_class_by_name:
969 * @typename: The QOM typename to obtain the class for.
970 *
971 * Returns: The class for @typename or %NULL if not found.
972 */
973 ObjectClass *object_class_by_name(const char *typename);
974
975 void object_class_foreach(void (*fn)(ObjectClass *klass, void *opaque),
976 const char *implements_type, bool include_abstract,
977 void *opaque);
978
979 /**
980 * object_class_get_list:
981 * @implements_type: The type to filter for, including its derivatives.
982 * @include_abstract: Whether to include abstract classes.
983 *
984 * Returns: A singly-linked list of the classes in reverse hashtable order.
985 */
986 GSList *object_class_get_list(const char *implements_type,
987 bool include_abstract);
988
989 /**
990 * object_class_get_list_sorted:
991 * @implements_type: The type to filter for, including its derivatives.
992 * @include_abstract: Whether to include abstract classes.
993 *
994 * Returns: A singly-linked list of the classes in alphabetical
995 * case-insensitive order.
996 */
997 GSList *object_class_get_list_sorted(const char *implements_type,
998 bool include_abstract);
999
1000 /**
1001 * object_ref:
1002 * @obj: the object
1003 *
1004 * Increase the reference count of a object. A object cannot be freed as long
1005 * as its reference count is greater than zero.
1006 * Returns: @obj
1007 */
1008 Object *object_ref(Object *obj);
1009
1010 /**
1011 * object_unref:
1012 * @obj: the object
1013 *
1014 * Decrease the reference count of a object. A object cannot be freed as long
1015 * as its reference count is greater than zero.
1016 */
1017 void object_unref(Object *obj);
1018
1019 /**
1020 * object_property_add:
1021 * @obj: the object to add a property to
1022 * @name: the name of the property. This can contain any character except for
1023 * a forward slash. In general, you should use hyphens '-' instead of
1024 * underscores '_' when naming properties.
1025 * @type: the type name of the property. This namespace is pretty loosely
1026 * defined. Sub namespaces are constructed by using a prefix and then
1027 * to angle brackets. For instance, the type 'virtio-net-pci' in the
1028 * 'link' namespace would be 'link<virtio-net-pci>'.
1029 * @get: The getter to be called to read a property. If this is NULL, then
1030 * the property cannot be read.
1031 * @set: the setter to be called to write a property. If this is NULL,
1032 * then the property cannot be written.
1033 * @release: called when the property is removed from the object. This is
1034 * meant to allow a property to free its opaque upon object
1035 * destruction. This may be NULL.
1036 * @opaque: an opaque pointer to pass to the callbacks for the property
1037 *
1038 * Returns: The #ObjectProperty; this can be used to set the @resolve
1039 * callback for child and link properties.
1040 */
1041 ObjectProperty *object_property_add(Object *obj, const char *name,
1042 const char *type,
1043 ObjectPropertyAccessor *get,
1044 ObjectPropertyAccessor *set,
1045 ObjectPropertyRelease *release,
1046 void *opaque);
1047
1048 void object_property_del(Object *obj, const char *name);
1049
1050 ObjectProperty *object_class_property_add(ObjectClass *klass, const char *name,
1051 const char *type,
1052 ObjectPropertyAccessor *get,
1053 ObjectPropertyAccessor *set,
1054 ObjectPropertyRelease *release,
1055 void *opaque);
1056
1057 /**
1058 * object_property_set_default_bool:
1059 * @prop: the property to set
1060 * @value: the value to be written to the property
1061 *
1062 * Set the property default value.
1063 */
1064 void object_property_set_default_bool(ObjectProperty *prop, bool value);
1065
1066 /**
1067 * object_property_set_default_str:
1068 * @prop: the property to set
1069 * @value: the value to be written to the property
1070 *
1071 * Set the property default value.
1072 */
1073 void object_property_set_default_str(ObjectProperty *prop, const char *value);
1074
1075 /**
1076 * object_property_set_default_int:
1077 * @prop: the property to set
1078 * @value: the value to be written to the property
1079 *
1080 * Set the property default value.
1081 */
1082 void object_property_set_default_int(ObjectProperty *prop, int64_t value);
1083
1084 /**
1085 * object_property_set_default_uint:
1086 * @prop: the property to set
1087 * @value: the value to be written to the property
1088 *
1089 * Set the property default value.
1090 */
1091 void object_property_set_default_uint(ObjectProperty *prop, uint64_t value);
1092
1093 /**
1094 * object_property_find:
1095 * @obj: the object
1096 * @name: the name of the property
1097 * @errp: returns an error if this function fails
1098 *
1099 * Look up a property for an object and return its #ObjectProperty if found.
1100 */
1101 ObjectProperty *object_property_find(Object *obj, const char *name,
1102 Error **errp);
1103 ObjectProperty *object_class_property_find(ObjectClass *klass, const char *name,
1104 Error **errp);
1105
1106 typedef struct ObjectPropertyIterator {
1107 ObjectClass *nextclass;
1108 GHashTableIter iter;
1109 } ObjectPropertyIterator;
1110
1111 /**
1112 * object_property_iter_init:
1113 * @obj: the object
1114 *
1115 * Initializes an iterator for traversing all properties
1116 * registered against an object instance, its class and all parent classes.
1117 *
1118 * It is forbidden to modify the property list while iterating,
1119 * whether removing or adding properties.
1120 *
1121 * Typical usage pattern would be
1122 *
1123 * <example>
1124 * <title>Using object property iterators</title>
1125 * <programlisting>
1126 * ObjectProperty *prop;
1127 * ObjectPropertyIterator iter;
1128 *
1129 * object_property_iter_init(&iter, obj);
1130 * while ((prop = object_property_iter_next(&iter))) {
1131 * ... do something with prop ...
1132 * }
1133 * </programlisting>
1134 * </example>
1135 */
1136 void object_property_iter_init(ObjectPropertyIterator *iter,
1137 Object *obj);
1138
1139 /**
1140 * object_class_property_iter_init:
1141 * @klass: the class
1142 *
1143 * Initializes an iterator for traversing all properties
1144 * registered against an object class and all parent classes.
1145 *
1146 * It is forbidden to modify the property list while iterating,
1147 * whether removing or adding properties.
1148 *
1149 * This can be used on abstract classes as it does not create a temporary
1150 * instance.
1151 */
1152 void object_class_property_iter_init(ObjectPropertyIterator *iter,
1153 ObjectClass *klass);
1154
1155 /**
1156 * object_property_iter_next:
1157 * @iter: the iterator instance
1158 *
1159 * Return the next available property. If no further properties
1160 * are available, a %NULL value will be returned and the @iter
1161 * pointer should not be used again after this point without
1162 * re-initializing it.
1163 *
1164 * Returns: the next property, or %NULL when all properties
1165 * have been traversed.
1166 */
1167 ObjectProperty *object_property_iter_next(ObjectPropertyIterator *iter);
1168
1169 void object_unparent(Object *obj);
1170
1171 /**
1172 * object_property_get:
1173 * @obj: the object
1174 * @v: the visitor that will receive the property value. This should be an
1175 * Output visitor and the data will be written with @name as the name.
1176 * @name: the name of the property
1177 * @errp: returns an error if this function fails
1178 *
1179 * Reads a property from a object.
1180 */
1181 void object_property_get(Object *obj, Visitor *v, const char *name,
1182 Error **errp);
1183
1184 /**
1185 * object_property_set_str:
1186 * @value: the value to be written to the property
1187 * @name: the name of the property
1188 * @errp: returns an error if this function fails
1189 *
1190 * Writes a string value to a property.
1191 */
1192 void object_property_set_str(Object *obj, const char *value,
1193 const char *name, Error **errp);
1194
1195 /**
1196 * object_property_get_str:
1197 * @obj: the object
1198 * @name: the name of the property
1199 * @errp: returns an error if this function fails
1200 *
1201 * Returns: the value of the property, converted to a C string, or NULL if
1202 * an error occurs (including when the property value is not a string).
1203 * The caller should free the string.
1204 */
1205 char *object_property_get_str(Object *obj, const char *name,
1206 Error **errp);
1207
1208 /**
1209 * object_property_set_link:
1210 * @value: the value to be written to the property
1211 * @name: the name of the property
1212 * @errp: returns an error if this function fails
1213 *
1214 * Writes an object's canonical path to a property.
1215 *
1216 * If the link property was created with
1217 * <code>OBJ_PROP_LINK_STRONG</code> bit, the old target object is
1218 * unreferenced, and a reference is added to the new target object.
1219 *
1220 */
1221 void object_property_set_link(Object *obj, Object *value,
1222 const char *name, Error **errp);
1223
1224 /**
1225 * object_property_get_link:
1226 * @obj: the object
1227 * @name: the name of the property
1228 * @errp: returns an error if this function fails
1229 *
1230 * Returns: the value of the property, resolved from a path to an Object,
1231 * or NULL if an error occurs (including when the property value is not a
1232 * string or not a valid object path).
1233 */
1234 Object *object_property_get_link(Object *obj, const char *name,
1235 Error **errp);
1236
1237 /**
1238 * object_property_set_bool:
1239 * @value: the value to be written to the property
1240 * @name: the name of the property
1241 * @errp: returns an error if this function fails
1242 *
1243 * Writes a bool value to a property.
1244 */
1245 void object_property_set_bool(Object *obj, bool value,
1246 const char *name, Error **errp);
1247
1248 /**
1249 * object_property_get_bool:
1250 * @obj: the object
1251 * @name: the name of the property
1252 * @errp: returns an error if this function fails
1253 *
1254 * Returns: the value of the property, converted to a boolean, or NULL if
1255 * an error occurs (including when the property value is not a bool).
1256 */
1257 bool object_property_get_bool(Object *obj, const char *name,
1258 Error **errp);
1259
1260 /**
1261 * object_property_set_int:
1262 * @value: the value to be written to the property
1263 * @name: the name of the property
1264 * @errp: returns an error if this function fails
1265 *
1266 * Writes an integer value to a property.
1267 */
1268 void object_property_set_int(Object *obj, int64_t value,
1269 const char *name, Error **errp);
1270
1271 /**
1272 * object_property_get_int:
1273 * @obj: the object
1274 * @name: the name of the property
1275 * @errp: returns an error if this function fails
1276 *
1277 * Returns: the value of the property, converted to an integer, or negative if
1278 * an error occurs (including when the property value is not an integer).
1279 */
1280 int64_t object_property_get_int(Object *obj, const char *name,
1281 Error **errp);
1282
1283 /**
1284 * object_property_set_uint:
1285 * @value: the value to be written to the property
1286 * @name: the name of the property
1287 * @errp: returns an error if this function fails
1288 *
1289 * Writes an unsigned integer value to a property.
1290 */
1291 void object_property_set_uint(Object *obj, uint64_t value,
1292 const char *name, Error **errp);
1293
1294 /**
1295 * object_property_get_uint:
1296 * @obj: the object
1297 * @name: the name of the property
1298 * @errp: returns an error if this function fails
1299 *
1300 * Returns: the value of the property, converted to an unsigned integer, or 0
1301 * an error occurs (including when the property value is not an integer).
1302 */
1303 uint64_t object_property_get_uint(Object *obj, const char *name,
1304 Error **errp);
1305
1306 /**
1307 * object_property_get_enum:
1308 * @obj: the object
1309 * @name: the name of the property
1310 * @typename: the name of the enum data type
1311 * @errp: returns an error if this function fails
1312 *
1313 * Returns: the value of the property, converted to an integer, or
1314 * undefined if an error occurs (including when the property value is not
1315 * an enum).
1316 */
1317 int object_property_get_enum(Object *obj, const char *name,
1318 const char *typename, Error **errp);
1319
1320 /**
1321 * object_property_set:
1322 * @obj: the object
1323 * @v: the visitor that will be used to write the property value. This should
1324 * be an Input visitor and the data will be first read with @name as the
1325 * name and then written as the property value.
1326 * @name: the name of the property
1327 * @errp: returns an error if this function fails
1328 *
1329 * Writes a property to a object.
1330 */
1331 void object_property_set(Object *obj, Visitor *v, const char *name,
1332 Error **errp);
1333
1334 /**
1335 * object_property_parse:
1336 * @obj: the object
1337 * @string: the string that will be used to parse the property value.
1338 * @name: the name of the property
1339 * @errp: returns an error if this function fails
1340 *
1341 * Parses a string and writes the result into a property of an object.
1342 */
1343 void object_property_parse(Object *obj, const char *string,
1344 const char *name, Error **errp);
1345
1346 /**
1347 * object_property_print:
1348 * @obj: the object
1349 * @name: the name of the property
1350 * @human: if true, print for human consumption
1351 * @errp: returns an error if this function fails
1352 *
1353 * Returns a string representation of the value of the property. The
1354 * caller shall free the string.
1355 */
1356 char *object_property_print(Object *obj, const char *name, bool human,
1357 Error **errp);
1358
1359 /**
1360 * object_property_get_type:
1361 * @obj: the object
1362 * @name: the name of the property
1363 * @errp: returns an error if this function fails
1364 *
1365 * Returns: The type name of the property.
1366 */
1367 const char *object_property_get_type(Object *obj, const char *name,
1368 Error **errp);
1369
1370 /**
1371 * object_get_root:
1372 *
1373 * Returns: the root object of the composition tree
1374 */
1375 Object *object_get_root(void);
1376
1377
1378 /**
1379 * object_get_objects_root:
1380 *
1381 * Get the container object that holds user created
1382 * object instances. This is the object at path
1383 * "/objects"
1384 *
1385 * Returns: the user object container
1386 */
1387 Object *object_get_objects_root(void);
1388
1389 /**
1390 * object_get_internal_root:
1391 *
1392 * Get the container object that holds internally used object
1393 * instances. Any object which is put into this container must not be
1394 * user visible, and it will not be exposed in the QOM tree.
1395 *
1396 * Returns: the internal object container
1397 */
1398 Object *object_get_internal_root(void);
1399
1400 /**
1401 * object_get_canonical_path_component:
1402 *
1403 * Returns: The final component in the object's canonical path. The canonical
1404 * path is the path within the composition tree starting from the root.
1405 * %NULL if the object doesn't have a parent (and thus a canonical path).
1406 */
1407 char *object_get_canonical_path_component(const Object *obj);
1408
1409 /**
1410 * object_get_canonical_path:
1411 *
1412 * Returns: The canonical path for a object. This is the path within the
1413 * composition tree starting from the root.
1414 */
1415 char *object_get_canonical_path(const Object *obj);
1416
1417 /**
1418 * object_resolve_path:
1419 * @path: the path to resolve
1420 * @ambiguous: returns true if the path resolution failed because of an
1421 * ambiguous match
1422 *
1423 * There are two types of supported paths--absolute paths and partial paths.
1424 *
1425 * Absolute paths are derived from the root object and can follow child<> or
1426 * link<> properties. Since they can follow link<> properties, they can be
1427 * arbitrarily long. Absolute paths look like absolute filenames and are
1428 * prefixed with a leading slash.
1429 *
1430 * Partial paths look like relative filenames. They do not begin with a
1431 * prefix. The matching rules for partial paths are subtle but designed to make
1432 * specifying objects easy. At each level of the composition tree, the partial
1433 * path is matched as an absolute path. The first match is not returned. At
1434 * least two matches are searched for. A successful result is only returned if
1435 * only one match is found. If more than one match is found, a flag is
1436 * returned to indicate that the match was ambiguous.
1437 *
1438 * Returns: The matched object or NULL on path lookup failure.
1439 */
1440 Object *object_resolve_path(const char *path, bool *ambiguous);
1441
1442 /**
1443 * object_resolve_path_type:
1444 * @path: the path to resolve
1445 * @typename: the type to look for.
1446 * @ambiguous: returns true if the path resolution failed because of an
1447 * ambiguous match
1448 *
1449 * This is similar to object_resolve_path. However, when looking for a
1450 * partial path only matches that implement the given type are considered.
1451 * This restricts the search and avoids spuriously flagging matches as
1452 * ambiguous.
1453 *
1454 * For both partial and absolute paths, the return value goes through
1455 * a dynamic cast to @typename. This is important if either the link,
1456 * or the typename itself are of interface types.
1457 *
1458 * Returns: The matched object or NULL on path lookup failure.
1459 */
1460 Object *object_resolve_path_type(const char *path, const char *typename,
1461 bool *ambiguous);
1462
1463 /**
1464 * object_resolve_path_component:
1465 * @parent: the object in which to resolve the path
1466 * @part: the component to resolve.
1467 *
1468 * This is similar to object_resolve_path with an absolute path, but it
1469 * only resolves one element (@part) and takes the others from @parent.
1470 *
1471 * Returns: The resolved object or NULL on path lookup failure.
1472 */
1473 Object *object_resolve_path_component(Object *parent, const char *part);
1474
1475 /**
1476 * object_property_add_child:
1477 * @obj: the object to add a property to
1478 * @name: the name of the property
1479 * @child: the child object
1480 *
1481 * Child properties form the composition tree. All objects need to be a child
1482 * of another object. Objects can only be a child of one object.
1483 *
1484 * There is no way for a child to determine what its parent is. It is not
1485 * a bidirectional relationship. This is by design.
1486 *
1487 * The value of a child property as a C string will be the child object's
1488 * canonical path. It can be retrieved using object_property_get_str().
1489 * The child object itself can be retrieved using object_property_get_link().
1490 *
1491 * Returns: The newly added property on success, or %NULL on failure.
1492 */
1493 ObjectProperty *object_property_add_child(Object *obj, const char *name,
1494 Object *child);
1495
1496 typedef enum {
1497 /* Unref the link pointer when the property is deleted */
1498 OBJ_PROP_LINK_STRONG = 0x1,
1499
1500 /* private */
1501 OBJ_PROP_LINK_DIRECT = 0x2,
1502 OBJ_PROP_LINK_CLASS = 0x4,
1503 } ObjectPropertyLinkFlags;
1504
1505 /**
1506 * object_property_allow_set_link:
1507 *
1508 * The default implementation of the object_property_add_link() check()
1509 * callback function. It allows the link property to be set and never returns
1510 * an error.
1511 */
1512 void object_property_allow_set_link(const Object *, const char *,
1513 Object *, Error **);
1514
1515 /**
1516 * object_property_add_link:
1517 * @obj: the object to add a property to
1518 * @name: the name of the property
1519 * @type: the qobj type of the link
1520 * @targetp: a pointer to where the link object reference is stored
1521 * @check: callback to veto setting or NULL if the property is read-only
1522 * @flags: additional options for the link
1523 *
1524 * Links establish relationships between objects. Links are unidirectional
1525 * although two links can be combined to form a bidirectional relationship
1526 * between objects.
1527 *
1528 * Links form the graph in the object model.
1529 *
1530 * The <code>@check()</code> callback is invoked when
1531 * object_property_set_link() is called and can raise an error to prevent the
1532 * link being set. If <code>@check</code> is NULL, the property is read-only
1533 * and cannot be set.
1534 *
1535 * Ownership of the pointer that @child points to is transferred to the
1536 * link property. The reference count for <code>*@child</code> is
1537 * managed by the property from after the function returns till the
1538 * property is deleted with object_property_del(). If the
1539 * <code>@flags</code> <code>OBJ_PROP_LINK_STRONG</code> bit is set,
1540 * the reference count is decremented when the property is deleted or
1541 * modified.
1542 *
1543 * Returns: The newly added property on success, or %NULL on failure.
1544 */
1545 ObjectProperty *object_property_add_link(Object *obj, const char *name,
1546 const char *type, Object **targetp,
1547 void (*check)(const Object *obj, const char *name,
1548 Object *val, Error **errp),
1549 ObjectPropertyLinkFlags flags);
1550
1551 ObjectProperty *object_class_property_add_link(ObjectClass *oc,
1552 const char *name,
1553 const char *type, ptrdiff_t offset,
1554 void (*check)(const Object *obj, const char *name,
1555 Object *val, Error **errp),
1556 ObjectPropertyLinkFlags flags);
1557
1558 /**
1559 * object_property_add_str:
1560 * @obj: the object to add a property to
1561 * @name: the name of the property
1562 * @get: the getter or NULL if the property is write-only. This function must
1563 * return a string to be freed by g_free().
1564 * @set: the setter or NULL if the property is read-only
1565 *
1566 * Add a string property using getters/setters. This function will add a
1567 * property of type 'string'.
1568 *
1569 * Returns: The newly added property on success, or %NULL on failure.
1570 */
1571 ObjectProperty *object_property_add_str(Object *obj, const char *name,
1572 char *(*get)(Object *, Error **),
1573 void (*set)(Object *, const char *, Error **));
1574
1575 ObjectProperty *object_class_property_add_str(ObjectClass *klass,
1576 const char *name,
1577 char *(*get)(Object *, Error **),
1578 void (*set)(Object *, const char *,
1579 Error **));
1580
1581 /**
1582 * object_property_add_bool:
1583 * @obj: the object to add a property to
1584 * @name: the name of the property
1585 * @get: the getter or NULL if the property is write-only.
1586 * @set: the setter or NULL if the property is read-only
1587 *
1588 * Add a bool property using getters/setters. This function will add a
1589 * property of type 'bool'.
1590 *
1591 * Returns: The newly added property on success, or %NULL on failure.
1592 */
1593 ObjectProperty *object_property_add_bool(Object *obj, const char *name,
1594 bool (*get)(Object *, Error **),
1595 void (*set)(Object *, bool, Error **));
1596
1597 ObjectProperty *object_class_property_add_bool(ObjectClass *klass,
1598 const char *name,
1599 bool (*get)(Object *, Error **),
1600 void (*set)(Object *, bool, Error **));
1601
1602 /**
1603 * object_property_add_enum:
1604 * @obj: the object to add a property to
1605 * @name: the name of the property
1606 * @typename: the name of the enum data type
1607 * @get: the getter or %NULL if the property is write-only.
1608 * @set: the setter or %NULL if the property is read-only
1609 *
1610 * Add an enum property using getters/setters. This function will add a
1611 * property of type '@typename'.
1612 *
1613 * Returns: The newly added property on success, or %NULL on failure.
1614 */
1615 ObjectProperty *object_property_add_enum(Object *obj, const char *name,
1616 const char *typename,
1617 const QEnumLookup *lookup,
1618 int (*get)(Object *, Error **),
1619 void (*set)(Object *, int, Error **));
1620
1621 ObjectProperty *object_class_property_add_enum(ObjectClass *klass,
1622 const char *name,
1623 const char *typename,
1624 const QEnumLookup *lookup,
1625 int (*get)(Object *, Error **),
1626 void (*set)(Object *, int, Error **));
1627
1628 /**
1629 * object_property_add_tm:
1630 * @obj: the object to add a property to
1631 * @name: the name of the property
1632 * @get: the getter or NULL if the property is write-only.
1633 *
1634 * Add a read-only struct tm valued property using a getter function.
1635 * This function will add a property of type 'struct tm'.
1636 *
1637 * Returns: The newly added property on success, or %NULL on failure.
1638 */
1639 ObjectProperty *object_property_add_tm(Object *obj, const char *name,
1640 void (*get)(Object *, struct tm *, Error **));
1641
1642 ObjectProperty *object_class_property_add_tm(ObjectClass *klass,
1643 const char *name,
1644 void (*get)(Object *, struct tm *, Error **));
1645
1646 typedef enum {
1647 /* Automatically add a getter to the property */
1648 OBJ_PROP_FLAG_READ = 1 << 0,
1649 /* Automatically add a setter to the property */
1650 OBJ_PROP_FLAG_WRITE = 1 << 1,
1651 /* Automatically add a getter and a setter to the property */
1652 OBJ_PROP_FLAG_READWRITE = (OBJ_PROP_FLAG_READ | OBJ_PROP_FLAG_WRITE),
1653 } ObjectPropertyFlags;
1654
1655 /**
1656 * object_property_add_uint8_ptr:
1657 * @obj: the object to add a property to
1658 * @name: the name of the property
1659 * @v: pointer to value
1660 * @flags: bitwise-or'd ObjectPropertyFlags
1661 *
1662 * Add an integer property in memory. This function will add a
1663 * property of type 'uint8'.
1664 *
1665 * Returns: The newly added property on success, or %NULL on failure.
1666 */
1667 ObjectProperty *object_property_add_uint8_ptr(Object *obj, const char *name,
1668 const uint8_t *v,
1669 ObjectPropertyFlags flags);
1670
1671 ObjectProperty *object_class_property_add_uint8_ptr(ObjectClass *klass,
1672 const char *name,
1673 const uint8_t *v,
1674 ObjectPropertyFlags flags);
1675
1676 /**
1677 * object_property_add_uint16_ptr:
1678 * @obj: the object to add a property to
1679 * @name: the name of the property
1680 * @v: pointer to value
1681 * @flags: bitwise-or'd ObjectPropertyFlags
1682 *
1683 * Add an integer property in memory. This function will add a
1684 * property of type 'uint16'.
1685 *
1686 * Returns: The newly added property on success, or %NULL on failure.
1687 */
1688 ObjectProperty *object_property_add_uint16_ptr(Object *obj, const char *name,
1689 const uint16_t *v,
1690 ObjectPropertyFlags flags);
1691
1692 ObjectProperty *object_class_property_add_uint16_ptr(ObjectClass *klass,
1693 const char *name,
1694 const uint16_t *v,
1695 ObjectPropertyFlags flags);
1696
1697 /**
1698 * object_property_add_uint32_ptr:
1699 * @obj: the object to add a property to
1700 * @name: the name of the property
1701 * @v: pointer to value
1702 * @flags: bitwise-or'd ObjectPropertyFlags
1703 *
1704 * Add an integer property in memory. This function will add a
1705 * property of type 'uint32'.
1706 *
1707 * Returns: The newly added property on success, or %NULL on failure.
1708 */
1709 ObjectProperty *object_property_add_uint32_ptr(Object *obj, const char *name,
1710 const uint32_t *v,
1711 ObjectPropertyFlags flags);
1712
1713 ObjectProperty *object_class_property_add_uint32_ptr(ObjectClass *klass,
1714 const char *name,
1715 const uint32_t *v,
1716 ObjectPropertyFlags flags);
1717
1718 /**
1719 * object_property_add_uint64_ptr:
1720 * @obj: the object to add a property to
1721 * @name: the name of the property
1722 * @v: pointer to value
1723 * @flags: bitwise-or'd ObjectPropertyFlags
1724 *
1725 * Add an integer property in memory. This function will add a
1726 * property of type 'uint64'.
1727 *
1728 * Returns: The newly added property on success, or %NULL on failure.
1729 */
1730 ObjectProperty *object_property_add_uint64_ptr(Object *obj, const char *name,
1731 const uint64_t *v,
1732 ObjectPropertyFlags flags);
1733
1734 ObjectProperty *object_class_property_add_uint64_ptr(ObjectClass *klass,
1735 const char *name,
1736 const uint64_t *v,
1737 ObjectPropertyFlags flags);
1738
1739 /**
1740 * object_property_add_alias:
1741 * @obj: the object to add a property to
1742 * @name: the name of the property
1743 * @target_obj: the object to forward property access to
1744 * @target_name: the name of the property on the forwarded object
1745 *
1746 * Add an alias for a property on an object. This function will add a property
1747 * of the same type as the forwarded property.
1748 *
1749 * The caller must ensure that <code>@target_obj</code> stays alive as long as
1750 * this property exists. In the case of a child object or an alias on the same
1751 * object this will be the case. For aliases to other objects the caller is
1752 * responsible for taking a reference.
1753 *
1754 * Returns: The newly added property on success, or %NULL on failure.
1755 */
1756 ObjectProperty *object_property_add_alias(Object *obj, const char *name,
1757 Object *target_obj, const char *target_name);
1758
1759 /**
1760 * object_property_add_const_link:
1761 * @obj: the object to add a property to
1762 * @name: the name of the property
1763 * @target: the object to be referred by the link
1764 *
1765 * Add an unmodifiable link for a property on an object. This function will
1766 * add a property of type link<TYPE> where TYPE is the type of @target.
1767 *
1768 * The caller must ensure that @target stays alive as long as
1769 * this property exists. In the case @target is a child of @obj,
1770 * this will be the case. Otherwise, the caller is responsible for
1771 * taking a reference.
1772 *
1773 * Returns: The newly added property on success, or %NULL on failure.
1774 */
1775 ObjectProperty *object_property_add_const_link(Object *obj, const char *name,
1776 Object *target);
1777
1778 /**
1779 * object_property_set_description:
1780 * @obj: the object owning the property
1781 * @name: the name of the property
1782 * @description: the description of the property on the object
1783 *
1784 * Set an object property's description.
1785 *
1786 */
1787 void object_property_set_description(Object *obj, const char *name,
1788 const char *description);
1789 void object_class_property_set_description(ObjectClass *klass, const char *name,
1790 const char *description);
1791
1792 /**
1793 * object_child_foreach:
1794 * @obj: the object whose children will be navigated
1795 * @fn: the iterator function to be called
1796 * @opaque: an opaque value that will be passed to the iterator
1797 *
1798 * Call @fn passing each child of @obj and @opaque to it, until @fn returns
1799 * non-zero.
1800 *
1801 * It is forbidden to add or remove children from @obj from the @fn
1802 * callback.
1803 *
1804 * Returns: The last value returned by @fn, or 0 if there is no child.
1805 */
1806 int object_child_foreach(Object *obj, int (*fn)(Object *child, void *opaque),
1807 void *opaque);
1808
1809 /**
1810 * object_child_foreach_recursive:
1811 * @obj: the object whose children will be navigated
1812 * @fn: the iterator function to be called
1813 * @opaque: an opaque value that will be passed to the iterator
1814 *
1815 * Call @fn passing each child of @obj and @opaque to it, until @fn returns
1816 * non-zero. Calls recursively, all child nodes of @obj will also be passed
1817 * all the way down to the leaf nodes of the tree. Depth first ordering.
1818 *
1819 * It is forbidden to add or remove children from @obj (or its
1820 * child nodes) from the @fn callback.
1821 *
1822 * Returns: The last value returned by @fn, or 0 if there is no child.
1823 */
1824 int object_child_foreach_recursive(Object *obj,
1825 int (*fn)(Object *child, void *opaque),
1826 void *opaque);
1827 /**
1828 * container_get:
1829 * @root: root of the #path, e.g., object_get_root()
1830 * @path: path to the container
1831 *
1832 * Return a container object whose path is @path. Create more containers
1833 * along the path if necessary.
1834 *
1835 * Returns: the container object.
1836 */
1837 Object *container_get(Object *root, const char *path);
1838
1839 /**
1840 * object_type_get_instance_size:
1841 * @typename: Name of the Type whose instance_size is required
1842 *
1843 * Returns the instance_size of the given @typename.
1844 */
1845 size_t object_type_get_instance_size(const char *typename);
1846
1847 /**
1848 * object_property_help:
1849 * @name: the name of the property
1850 * @type: the type of the property
1851 * @defval: the default value
1852 * @description: description of the property
1853 *
1854 * Returns: a user-friendly formatted string describing the property
1855 * for help purposes.
1856 */
1857 char *object_property_help(const char *name, const char *type,
1858 QObject *defval, const char *description);
1859
1860 G_DEFINE_AUTOPTR_CLEANUP_FUNC(Object, object_unref)
1861
1862 #endif