qom: Use ``code`` Sphinx syntax where appropriate
[qemu.git] / include / qom / object.h
1 /*
2 * QEMU Object Model
3 *
4 * Copyright IBM, Corp. 2011
5 *
6 * Authors:
7 * Anthony Liguori <aliguori@us.ibm.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef QEMU_OBJECT_H
15 #define QEMU_OBJECT_H
16
17 #include "qapi/qapi-builtin-types.h"
18 #include "qemu/module.h"
19 #include "qom/object.h"
20
21 struct TypeImpl;
22 typedef struct TypeImpl *Type;
23
24 typedef struct TypeInfo TypeInfo;
25
26 typedef struct InterfaceClass InterfaceClass;
27 typedef struct InterfaceInfo InterfaceInfo;
28
29 #define TYPE_OBJECT "object"
30
31 /**
32 * SECTION:object.h
33 * @title:Base Object Type System
34 * @short_description: interfaces for creating new types and objects
35 *
36 * The QEMU Object Model provides a framework for registering user creatable
37 * types and instantiating objects from those types. QOM provides the following
38 * features:
39 *
40 * - System for dynamically registering types
41 * - Support for single-inheritance of types
42 * - Multiple inheritance of stateless interfaces
43 *
44 * <example>
45 * <title>Creating a minimal type</title>
46 * <programlisting>
47 * #include "qdev.h"
48 *
49 * #define TYPE_MY_DEVICE "my-device"
50 *
51 * // No new virtual functions: we can reuse the typedef for the
52 * // superclass.
53 * typedef DeviceClass MyDeviceClass;
54 * typedef struct MyDevice
55 * {
56 * DeviceState parent;
57 *
58 * int reg0, reg1, reg2;
59 * } MyDevice;
60 *
61 * static const TypeInfo my_device_info = {
62 * .name = TYPE_MY_DEVICE,
63 * .parent = TYPE_DEVICE,
64 * .instance_size = sizeof(MyDevice),
65 * };
66 *
67 * static void my_device_register_types(void)
68 * {
69 * type_register_static(&my_device_info);
70 * }
71 *
72 * type_init(my_device_register_types)
73 * </programlisting>
74 * </example>
75 *
76 * In the above example, we create a simple type that is described by #TypeInfo.
77 * #TypeInfo describes information about the type including what it inherits
78 * from, the instance and class size, and constructor/destructor hooks.
79 *
80 * Alternatively several static types could be registered using helper macro
81 * DEFINE_TYPES()
82 *
83 * <example>
84 * <programlisting>
85 * static const TypeInfo device_types_info[] = {
86 * {
87 * .name = TYPE_MY_DEVICE_A,
88 * .parent = TYPE_DEVICE,
89 * .instance_size = sizeof(MyDeviceA),
90 * },
91 * {
92 * .name = TYPE_MY_DEVICE_B,
93 * .parent = TYPE_DEVICE,
94 * .instance_size = sizeof(MyDeviceB),
95 * },
96 * };
97 *
98 * DEFINE_TYPES(device_types_info)
99 * </programlisting>
100 * </example>
101 *
102 * Every type has an #ObjectClass associated with it. #ObjectClass derivatives
103 * are instantiated dynamically but there is only ever one instance for any
104 * given type. The #ObjectClass typically holds a table of function pointers
105 * for the virtual methods implemented by this type.
106 *
107 * Using object_new(), a new #Object derivative will be instantiated. You can
108 * cast an #Object to a subclass (or base-class) type using
109 * object_dynamic_cast(). You typically want to define macro wrappers around
110 * OBJECT_CHECK() and OBJECT_CLASS_CHECK() to make it easier to convert to a
111 * specific type:
112 *
113 * <example>
114 * <title>Typecasting macros</title>
115 * <programlisting>
116 * #define MY_DEVICE_GET_CLASS(obj) \
117 * OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE)
118 * #define MY_DEVICE_CLASS(klass) \
119 * OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE)
120 * #define MY_DEVICE(obj) \
121 * OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE)
122 * </programlisting>
123 * </example>
124 *
125 * # Class Initialization #
126 *
127 * Before an object is initialized, the class for the object must be
128 * initialized. There is only one class object for all instance objects
129 * that is created lazily.
130 *
131 * Classes are initialized by first initializing any parent classes (if
132 * necessary). After the parent class object has initialized, it will be
133 * copied into the current class object and any additional storage in the
134 * class object is zero filled.
135 *
136 * The effect of this is that classes automatically inherit any virtual
137 * function pointers that the parent class has already initialized. All
138 * other fields will be zero filled.
139 *
140 * Once all of the parent classes have been initialized, #TypeInfo::class_init
141 * is called to let the class being instantiated provide default initialize for
142 * its virtual functions. Here is how the above example might be modified
143 * to introduce an overridden virtual function:
144 *
145 * <example>
146 * <title>Overriding a virtual function</title>
147 * <programlisting>
148 * #include "qdev.h"
149 *
150 * void my_device_class_init(ObjectClass *klass, void *class_data)
151 * {
152 * DeviceClass *dc = DEVICE_CLASS(klass);
153 * dc->reset = my_device_reset;
154 * }
155 *
156 * static const TypeInfo my_device_info = {
157 * .name = TYPE_MY_DEVICE,
158 * .parent = TYPE_DEVICE,
159 * .instance_size = sizeof(MyDevice),
160 * .class_init = my_device_class_init,
161 * };
162 * </programlisting>
163 * </example>
164 *
165 * Introducing new virtual methods requires a class to define its own
166 * struct and to add a .class_size member to the #TypeInfo. Each method
167 * will also have a wrapper function to call it easily:
168 *
169 * <example>
170 * <title>Defining an abstract class</title>
171 * <programlisting>
172 * #include "qdev.h"
173 *
174 * typedef struct MyDeviceClass
175 * {
176 * DeviceClass parent;
177 *
178 * void (*frobnicate) (MyDevice *obj);
179 * } MyDeviceClass;
180 *
181 * static const TypeInfo my_device_info = {
182 * .name = TYPE_MY_DEVICE,
183 * .parent = TYPE_DEVICE,
184 * .instance_size = sizeof(MyDevice),
185 * .abstract = true, // or set a default in my_device_class_init
186 * .class_size = sizeof(MyDeviceClass),
187 * };
188 *
189 * void my_device_frobnicate(MyDevice *obj)
190 * {
191 * MyDeviceClass *klass = MY_DEVICE_GET_CLASS(obj);
192 *
193 * klass->frobnicate(obj);
194 * }
195 * </programlisting>
196 * </example>
197 *
198 * # Interfaces #
199 *
200 * Interfaces allow a limited form of multiple inheritance. Instances are
201 * similar to normal types except for the fact that are only defined by
202 * their classes and never carry any state. As a consequence, a pointer to
203 * an interface instance should always be of incomplete type in order to be
204 * sure it cannot be dereferenced. That is, you should define the
205 * 'typedef struct SomethingIf SomethingIf' so that you can pass around
206 * ``SomethingIf *si`` arguments, but not define a ``struct SomethingIf { ... }``.
207 * The only things you can validly do with a ``SomethingIf *`` are to pass it as
208 * an argument to a method on its corresponding SomethingIfClass, or to
209 * dynamically cast it to an object that implements the interface.
210 *
211 * # Methods #
212 *
213 * A <emphasis>method</emphasis> is a function within the namespace scope of
214 * a class. It usually operates on the object instance by passing it as a
215 * strongly-typed first argument.
216 * If it does not operate on an object instance, it is dubbed
217 * <emphasis>class method</emphasis>.
218 *
219 * Methods cannot be overloaded. That is, the #ObjectClass and method name
220 * uniquely identity the function to be called; the signature does not vary
221 * except for trailing varargs.
222 *
223 * Methods are always <emphasis>virtual</emphasis>. Overriding a method in
224 * #TypeInfo.class_init of a subclass leads to any user of the class obtained
225 * via OBJECT_GET_CLASS() accessing the overridden function.
226 * The original function is not automatically invoked. It is the responsibility
227 * of the overriding class to determine whether and when to invoke the method
228 * being overridden.
229 *
230 * To invoke the method being overridden, the preferred solution is to store
231 * the original value in the overriding class before overriding the method.
232 * This corresponds to |[ {super,base}.method(...) ]| in Java and C#
233 * respectively; this frees the overriding class from hardcoding its parent
234 * class, which someone might choose to change at some point.
235 *
236 * <example>
237 * <title>Overriding a virtual method</title>
238 * <programlisting>
239 * typedef struct MyState MyState;
240 *
241 * typedef void (*MyDoSomething)(MyState *obj);
242 *
243 * typedef struct MyClass {
244 * ObjectClass parent_class;
245 *
246 * MyDoSomething do_something;
247 * } MyClass;
248 *
249 * static void my_do_something(MyState *obj)
250 * {
251 * // do something
252 * }
253 *
254 * static void my_class_init(ObjectClass *oc, void *data)
255 * {
256 * MyClass *mc = MY_CLASS(oc);
257 *
258 * mc->do_something = my_do_something;
259 * }
260 *
261 * static const TypeInfo my_type_info = {
262 * .name = TYPE_MY,
263 * .parent = TYPE_OBJECT,
264 * .instance_size = sizeof(MyState),
265 * .class_size = sizeof(MyClass),
266 * .class_init = my_class_init,
267 * };
268 *
269 * typedef struct DerivedClass {
270 * MyClass parent_class;
271 *
272 * MyDoSomething parent_do_something;
273 * } DerivedClass;
274 *
275 * static void derived_do_something(MyState *obj)
276 * {
277 * DerivedClass *dc = DERIVED_GET_CLASS(obj);
278 *
279 * // do something here
280 * dc->parent_do_something(obj);
281 * // do something else here
282 * }
283 *
284 * static void derived_class_init(ObjectClass *oc, void *data)
285 * {
286 * MyClass *mc = MY_CLASS(oc);
287 * DerivedClass *dc = DERIVED_CLASS(oc);
288 *
289 * dc->parent_do_something = mc->do_something;
290 * mc->do_something = derived_do_something;
291 * }
292 *
293 * static const TypeInfo derived_type_info = {
294 * .name = TYPE_DERIVED,
295 * .parent = TYPE_MY,
296 * .class_size = sizeof(DerivedClass),
297 * .class_init = derived_class_init,
298 * };
299 * </programlisting>
300 * </example>
301 *
302 * Alternatively, object_class_by_name() can be used to obtain the class and
303 * its non-overridden methods for a specific type. This would correspond to
304 * ``MyClass::method(...)`` in C++.
305 *
306 * The first example of such a QOM method was #CPUClass.reset,
307 * another example is #DeviceClass.realize.
308 *
309 * # Standard type declaration and definition macros #
310 *
311 * A lot of the code outlined above follows a standard pattern and naming
312 * convention. To reduce the amount of boilerplate code that needs to be
313 * written for a new type there are two sets of macros to generate the
314 * common parts in a standard format.
315 *
316 * A type is declared using the OBJECT_DECLARE macro family. In types
317 * which do not require any virtual functions in the class, the
318 * OBJECT_DECLARE_SIMPLE_TYPE macro is suitable, and is commonly placed
319 * in the header file:
320 *
321 * <example>
322 * <title>Declaring a simple type</title>
323 * <programlisting>
324 * OBJECT_DECLARE_SIMPLE_TYPE(MyDevice, my_device, MY_DEVICE, DEVICE)
325 * </programlisting>
326 * </example>
327 *
328 * This is equivalent to the following:
329 *
330 * <example>
331 * <title>Expansion from declaring a simple type</title>
332 * <programlisting>
333 * typedef struct MyDevice MyDevice;
334 * typedef struct MyDeviceClass MyDeviceClass;
335 *
336 * G_DEFINE_AUTOPTR_CLEANUP_FUNC(MyDeviceClass, object_unref)
337 *
338 * #define MY_DEVICE_GET_CLASS(void *obj) \
339 * OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE)
340 * #define MY_DEVICE_CLASS(void *klass) \
341 * OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE)
342 * #define MY_DEVICE(void *obj)
343 * OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE)
344 *
345 * struct MyDeviceClass {
346 * DeviceClass parent_class;
347 * };
348 * </programlisting>
349 * </example>
350 *
351 * The 'struct MyDevice' needs to be declared separately.
352 * If the type requires virtual functions to be declared in the class
353 * struct, then the alternative OBJECT_DECLARE_TYPE() macro can be
354 * used. This does the same as OBJECT_DECLARE_SIMPLE_TYPE(), but without
355 * the 'struct MyDeviceClass' definition.
356 *
357 * To implement the type, the OBJECT_DEFINE macro family is available.
358 * In the simple case the OBJECT_DEFINE_TYPE macro is suitable:
359 *
360 * <example>
361 * <title>Defining a simple type</title>
362 * <programlisting>
363 * OBJECT_DEFINE_TYPE(MyDevice, my_device, MY_DEVICE, DEVICE)
364 * </programlisting>
365 * </example>
366 *
367 * This is equivalent to the following:
368 *
369 * <example>
370 * <title>Expansion from defining a simple type</title>
371 * <programlisting>
372 * static void my_device_finalize(Object *obj);
373 * static void my_device_class_init(ObjectClass *oc, void *data);
374 * static void my_device_init(Object *obj);
375 *
376 * static const TypeInfo my_device_info = {
377 * .parent = TYPE_DEVICE,
378 * .name = TYPE_MY_DEVICE,
379 * .instance_size = sizeof(MyDevice),
380 * .instance_init = my_device_init,
381 * .instance_finalize = my_device_finalize,
382 * .class_size = sizeof(MyDeviceClass),
383 * .class_init = my_device_class_init,
384 * };
385 *
386 * static void
387 * my_device_register_types(void)
388 * {
389 * type_register_static(&my_device_info);
390 * }
391 * type_init(my_device_register_types);
392 * </programlisting>
393 * </example>
394 *
395 * This is sufficient to get the type registered with the type
396 * system, and the three standard methods now need to be implemented
397 * along with any other logic required for the type.
398 *
399 * If the type needs to implement one or more interfaces, then the
400 * OBJECT_DEFINE_TYPE_WITH_INTERFACES() macro can be used instead.
401 * This accepts an array of interface type names.
402 *
403 * <example>
404 * <title>Defining a simple type implementing interfaces</title>
405 * <programlisting>
406 * OBJECT_DEFINE_TYPE_WITH_INTERFACES(MyDevice, my_device,
407 * MY_DEVICE, DEVICE,
408 * { TYPE_USER_CREATABLE }, { NULL })
409 * </programlisting>
410 * </example>
411 *
412 * If the type is not intended to be instantiated, then then
413 * the OBJECT_DEFINE_ABSTRACT_TYPE() macro can be used instead:
414 *
415 * <example>
416 * <title>Defining a simple type</title>
417 * <programlisting>
418 * OBJECT_DEFINE_ABSTRACT_TYPE(MyDevice, my_device, MY_DEVICE, DEVICE)
419 * </programlisting>
420 * </example>
421 */
422
423
424 typedef struct ObjectProperty ObjectProperty;
425
426 /**
427 * ObjectPropertyAccessor:
428 * @obj: the object that owns the property
429 * @v: the visitor that contains the property data
430 * @name: the name of the property
431 * @opaque: the object property opaque
432 * @errp: a pointer to an Error that is filled if getting/setting fails.
433 *
434 * Called when trying to get/set a property.
435 */
436 typedef void (ObjectPropertyAccessor)(Object *obj,
437 Visitor *v,
438 const char *name,
439 void *opaque,
440 Error **errp);
441
442 /**
443 * ObjectPropertyResolve:
444 * @obj: the object that owns the property
445 * @opaque: the opaque registered with the property
446 * @part: the name of the property
447 *
448 * Resolves the #Object corresponding to property @part.
449 *
450 * The returned object can also be used as a starting point
451 * to resolve a relative path starting with "@part".
452 *
453 * Returns: If @path is the path that led to @obj, the function
454 * returns the #Object corresponding to "@path/@part".
455 * If "@path/@part" is not a valid object path, it returns #NULL.
456 */
457 typedef Object *(ObjectPropertyResolve)(Object *obj,
458 void *opaque,
459 const char *part);
460
461 /**
462 * ObjectPropertyRelease:
463 * @obj: the object that owns the property
464 * @name: the name of the property
465 * @opaque: the opaque registered with the property
466 *
467 * Called when a property is removed from a object.
468 */
469 typedef void (ObjectPropertyRelease)(Object *obj,
470 const char *name,
471 void *opaque);
472
473 /**
474 * ObjectPropertyInit:
475 * @obj: the object that owns the property
476 * @prop: the property to set
477 *
478 * Called when a property is initialized.
479 */
480 typedef void (ObjectPropertyInit)(Object *obj, ObjectProperty *prop);
481
482 struct ObjectProperty
483 {
484 char *name;
485 char *type;
486 char *description;
487 ObjectPropertyAccessor *get;
488 ObjectPropertyAccessor *set;
489 ObjectPropertyResolve *resolve;
490 ObjectPropertyRelease *release;
491 ObjectPropertyInit *init;
492 void *opaque;
493 QObject *defval;
494 };
495
496 /**
497 * ObjectUnparent:
498 * @obj: the object that is being removed from the composition tree
499 *
500 * Called when an object is being removed from the QOM composition tree.
501 * The function should remove any backlinks from children objects to @obj.
502 */
503 typedef void (ObjectUnparent)(Object *obj);
504
505 /**
506 * ObjectFree:
507 * @obj: the object being freed
508 *
509 * Called when an object's last reference is removed.
510 */
511 typedef void (ObjectFree)(void *obj);
512
513 #define OBJECT_CLASS_CAST_CACHE 4
514
515 /**
516 * ObjectClass:
517 *
518 * The base for all classes. The only thing that #ObjectClass contains is an
519 * integer type handle.
520 */
521 struct ObjectClass
522 {
523 /* private: */
524 Type type;
525 GSList *interfaces;
526
527 const char *object_cast_cache[OBJECT_CLASS_CAST_CACHE];
528 const char *class_cast_cache[OBJECT_CLASS_CAST_CACHE];
529
530 ObjectUnparent *unparent;
531
532 GHashTable *properties;
533 };
534
535 /**
536 * Object:
537 *
538 * The base for all objects. The first member of this object is a pointer to
539 * a #ObjectClass. Since C guarantees that the first member of a structure
540 * always begins at byte 0 of that structure, as long as any sub-object places
541 * its parent as the first member, we can cast directly to a #Object.
542 *
543 * As a result, #Object contains a reference to the objects type as its
544 * first member. This allows identification of the real type of the object at
545 * run time.
546 */
547 struct Object
548 {
549 /* private: */
550 ObjectClass *class;
551 ObjectFree *free;
552 GHashTable *properties;
553 uint32_t ref;
554 Object *parent;
555 };
556
557 /**
558 * DECLARE_INSTANCE_CHECKER:
559 * @InstanceType: instance struct name
560 * @OBJ_NAME: the object name in uppercase with underscore separators
561 * @TYPENAME: type name
562 *
563 * Direct usage of this macro should be avoided, and the complete
564 * OBJECT_DECLARE_TYPE macro is recommended instead.
565 *
566 * This macro will provide the three standard type cast functions for a
567 * QOM type.
568 */
569 #define DECLARE_INSTANCE_CHECKER(InstanceType, OBJ_NAME, TYPENAME) \
570 static inline G_GNUC_UNUSED InstanceType * \
571 OBJ_NAME(const void *obj) \
572 { return OBJECT_CHECK(InstanceType, obj, TYPENAME); }
573
574 /**
575 * DECLARE_CLASS_CHECKERS:
576 * @ClassType: class struct name
577 * @OBJ_NAME: the object name in uppercase with underscore separators
578 * @TYPENAME: type name
579 *
580 * Direct usage of this macro should be avoided, and the complete
581 * OBJECT_DECLARE_TYPE macro is recommended instead.
582 *
583 * This macro will provide the three standard type cast functions for a
584 * QOM type.
585 */
586 #define DECLARE_CLASS_CHECKERS(ClassType, OBJ_NAME, TYPENAME) \
587 static inline G_GNUC_UNUSED ClassType * \
588 OBJ_NAME##_GET_CLASS(const void *obj) \
589 { return OBJECT_GET_CLASS(ClassType, obj, TYPENAME); } \
590 \
591 static inline G_GNUC_UNUSED ClassType * \
592 OBJ_NAME##_CLASS(const void *klass) \
593 { return OBJECT_CLASS_CHECK(ClassType, klass, TYPENAME); }
594
595 /**
596 * DECLARE_OBJ_CHECKERS:
597 * @InstanceType: instance struct name
598 * @ClassType: class struct name
599 * @OBJ_NAME: the object name in uppercase with underscore separators
600 * @TYPENAME: type name
601 *
602 * Direct usage of this macro should be avoided, and the complete
603 * OBJECT_DECLARE_TYPE macro is recommended instead.
604 *
605 * This macro will provide the three standard type cast functions for a
606 * QOM type.
607 */
608 #define DECLARE_OBJ_CHECKERS(InstanceType, ClassType, OBJ_NAME, TYPENAME) \
609 DECLARE_INSTANCE_CHECKER(InstanceType, OBJ_NAME, TYPENAME) \
610 \
611 DECLARE_CLASS_CHECKERS(ClassType, OBJ_NAME, TYPENAME)
612
613 /**
614 * OBJECT_DECLARE_TYPE:
615 * @InstanceType: instance struct name
616 * @ClassType: class struct name
617 * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators
618 *
619 * This macro is typically used in a header file, and will:
620 *
621 * - create the typedefs for the object and class structs
622 * - register the type for use with g_autoptr
623 * - provide three standard type cast functions
624 *
625 * The object struct and class struct need to be declared manually.
626 */
627 #define OBJECT_DECLARE_TYPE(InstanceType, ClassType, MODULE_OBJ_NAME) \
628 typedef struct InstanceType InstanceType; \
629 typedef struct ClassType ClassType; \
630 \
631 G_DEFINE_AUTOPTR_CLEANUP_FUNC(InstanceType, object_unref) \
632 \
633 DECLARE_OBJ_CHECKERS(InstanceType, ClassType, \
634 MODULE_OBJ_NAME, TYPE_##MODULE_OBJ_NAME)
635
636 /**
637 * OBJECT_DECLARE_SIMPLE_TYPE:
638 * @InstanceType: instance struct name
639 * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators
640 *
641 * This does the same as OBJECT_DECLARE_TYPE(), but with no class struct
642 * declared.
643 *
644 * This macro should be used unless the class struct needs to have
645 * virtual methods declared.
646 */
647 #define OBJECT_DECLARE_SIMPLE_TYPE(InstanceType, MODULE_OBJ_NAME) \
648 typedef struct InstanceType InstanceType; \
649 \
650 G_DEFINE_AUTOPTR_CLEANUP_FUNC(InstanceType, object_unref) \
651 \
652 DECLARE_INSTANCE_CHECKER(InstanceType, MODULE_OBJ_NAME, TYPE_##MODULE_OBJ_NAME)
653
654
655 /**
656 * OBJECT_DEFINE_TYPE_EXTENDED:
657 * @ModuleObjName: the object name with initial caps
658 * @module_obj_name: the object name in lowercase with underscore separators
659 * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators
660 * @PARENT_MODULE_OBJ_NAME: the parent object name in uppercase with underscore
661 * separators
662 * @ABSTRACT: boolean flag to indicate whether the object can be instantiated
663 * @...: list of initializers for "InterfaceInfo" to declare implemented interfaces
664 *
665 * This macro is typically used in a source file, and will:
666 *
667 * - declare prototypes for _finalize, _class_init and _init methods
668 * - declare the TypeInfo struct instance
669 * - provide the constructor to register the type
670 *
671 * After using this macro, implementations of the _finalize, _class_init,
672 * and _init methods need to be written. Any of these can be zero-line
673 * no-op impls if no special logic is required for a given type.
674 *
675 * This macro should rarely be used, instead one of the more specialized
676 * macros is usually a better choice.
677 */
678 #define OBJECT_DEFINE_TYPE_EXTENDED(ModuleObjName, module_obj_name, \
679 MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME, \
680 ABSTRACT, ...) \
681 static void \
682 module_obj_name##_finalize(Object *obj); \
683 static void \
684 module_obj_name##_class_init(ObjectClass *oc, void *data); \
685 static void \
686 module_obj_name##_init(Object *obj); \
687 \
688 static const TypeInfo module_obj_name##_info = { \
689 .parent = TYPE_##PARENT_MODULE_OBJ_NAME, \
690 .name = TYPE_##MODULE_OBJ_NAME, \
691 .instance_size = sizeof(ModuleObjName), \
692 .instance_align = __alignof__(ModuleObjName), \
693 .instance_init = module_obj_name##_init, \
694 .instance_finalize = module_obj_name##_finalize, \
695 .class_size = sizeof(ModuleObjName##Class), \
696 .class_init = module_obj_name##_class_init, \
697 .abstract = ABSTRACT, \
698 .interfaces = (InterfaceInfo[]) { __VA_ARGS__ } , \
699 }; \
700 \
701 static void \
702 module_obj_name##_register_types(void) \
703 { \
704 type_register_static(&module_obj_name##_info); \
705 } \
706 type_init(module_obj_name##_register_types);
707
708 /**
709 * OBJECT_DEFINE_TYPE:
710 * @ModuleObjName: the object name with initial caps
711 * @module_obj_name: the object name in lowercase with underscore separators
712 * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators
713 * @PARENT_MODULE_OBJ_NAME: the parent object name in uppercase with underscore
714 * separators
715 *
716 * This is a specialization of OBJECT_DEFINE_TYPE_EXTENDED, which is suitable
717 * for the common case of a non-abstract type, without any interfaces.
718 */
719 #define OBJECT_DEFINE_TYPE(ModuleObjName, module_obj_name, MODULE_OBJ_NAME, \
720 PARENT_MODULE_OBJ_NAME) \
721 OBJECT_DEFINE_TYPE_EXTENDED(ModuleObjName, module_obj_name, \
722 MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME, \
723 false, { NULL })
724
725 /**
726 * OBJECT_DEFINE_TYPE_WITH_INTERFACES:
727 * @ModuleObjName: the object name with initial caps
728 * @module_obj_name: the object name in lowercase with underscore separators
729 * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators
730 * @PARENT_MODULE_OBJ_NAME: the parent object name in uppercase with underscore
731 * separators
732 * @...: list of initializers for "InterfaceInfo" to declare implemented interfaces
733 *
734 * This is a specialization of OBJECT_DEFINE_TYPE_EXTENDED, which is suitable
735 * for the common case of a non-abstract type, with one or more implemented
736 * interfaces.
737 *
738 * Note when passing the list of interfaces, be sure to include the final
739 * NULL entry, e.g. { TYPE_USER_CREATABLE }, { NULL }
740 */
741 #define OBJECT_DEFINE_TYPE_WITH_INTERFACES(ModuleObjName, module_obj_name, \
742 MODULE_OBJ_NAME, \
743 PARENT_MODULE_OBJ_NAME, ...) \
744 OBJECT_DEFINE_TYPE_EXTENDED(ModuleObjName, module_obj_name, \
745 MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME, \
746 false, __VA_ARGS__)
747
748 /**
749 * OBJECT_DEFINE_ABSTRACT_TYPE:
750 * @ModuleObjName: the object name with initial caps
751 * @module_obj_name: the object name in lowercase with underscore separators
752 * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators
753 * @PARENT_MODULE_OBJ_NAME: the parent object name in uppercase with underscore
754 * separators
755 *
756 * This is a specialization of OBJECT_DEFINE_TYPE_EXTENDED, which is suitable
757 * for defining an abstract type, without any interfaces.
758 */
759 #define OBJECT_DEFINE_ABSTRACT_TYPE(ModuleObjName, module_obj_name, \
760 MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME) \
761 OBJECT_DEFINE_TYPE_EXTENDED(ModuleObjName, module_obj_name, \
762 MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME, \
763 true, { NULL })
764
765 /**
766 * TypeInfo:
767 * @name: The name of the type.
768 * @parent: The name of the parent type.
769 * @instance_size: The size of the object (derivative of #Object). If
770 * @instance_size is 0, then the size of the object will be the size of the
771 * parent object.
772 * @instance_align: The required alignment of the object. If @instance_align
773 * is 0, then normal malloc alignment is sufficient; if non-zero, then we
774 * must use qemu_memalign for allocation.
775 * @instance_init: This function is called to initialize an object. The parent
776 * class will have already been initialized so the type is only responsible
777 * for initializing its own members.
778 * @instance_post_init: This function is called to finish initialization of
779 * an object, after all @instance_init functions were called.
780 * @instance_finalize: This function is called during object destruction. This
781 * is called before the parent @instance_finalize function has been called.
782 * An object should only free the members that are unique to its type in this
783 * function.
784 * @abstract: If this field is true, then the class is considered abstract and
785 * cannot be directly instantiated.
786 * @class_size: The size of the class object (derivative of #ObjectClass)
787 * for this object. If @class_size is 0, then the size of the class will be
788 * assumed to be the size of the parent class. This allows a type to avoid
789 * implementing an explicit class type if they are not adding additional
790 * virtual functions.
791 * @class_init: This function is called after all parent class initialization
792 * has occurred to allow a class to set its default virtual method pointers.
793 * This is also the function to use to override virtual methods from a parent
794 * class.
795 * @class_base_init: This function is called for all base classes after all
796 * parent class initialization has occurred, but before the class itself
797 * is initialized. This is the function to use to undo the effects of
798 * memcpy from the parent class to the descendants.
799 * @class_data: Data to pass to the @class_init,
800 * @class_base_init. This can be useful when building dynamic
801 * classes.
802 * @interfaces: The list of interfaces associated with this type. This
803 * should point to a static array that's terminated with a zero filled
804 * element.
805 */
806 struct TypeInfo
807 {
808 const char *name;
809 const char *parent;
810
811 size_t instance_size;
812 size_t instance_align;
813 void (*instance_init)(Object *obj);
814 void (*instance_post_init)(Object *obj);
815 void (*instance_finalize)(Object *obj);
816
817 bool abstract;
818 size_t class_size;
819
820 void (*class_init)(ObjectClass *klass, void *data);
821 void (*class_base_init)(ObjectClass *klass, void *data);
822 void *class_data;
823
824 InterfaceInfo *interfaces;
825 };
826
827 /**
828 * OBJECT:
829 * @obj: A derivative of #Object
830 *
831 * Converts an object to a #Object. Since all objects are #Objects,
832 * this function will always succeed.
833 */
834 #define OBJECT(obj) \
835 ((Object *)(obj))
836
837 /**
838 * OBJECT_CLASS:
839 * @class: A derivative of #ObjectClass.
840 *
841 * Converts a class to an #ObjectClass. Since all objects are #Objects,
842 * this function will always succeed.
843 */
844 #define OBJECT_CLASS(class) \
845 ((ObjectClass *)(class))
846
847 /**
848 * OBJECT_CHECK:
849 * @type: The C type to use for the return value.
850 * @obj: A derivative of @type to cast.
851 * @name: The QOM typename of @type
852 *
853 * A type safe version of @object_dynamic_cast_assert. Typically each class
854 * will define a macro based on this type to perform type safe dynamic_casts to
855 * this object type.
856 *
857 * If an invalid object is passed to this function, a run time assert will be
858 * generated.
859 */
860 #define OBJECT_CHECK(type, obj, name) \
861 ((type *)object_dynamic_cast_assert(OBJECT(obj), (name), \
862 __FILE__, __LINE__, __func__))
863
864 /**
865 * OBJECT_CLASS_CHECK:
866 * @class_type: The C type to use for the return value.
867 * @class: A derivative class of @class_type to cast.
868 * @name: the QOM typename of @class_type.
869 *
870 * A type safe version of @object_class_dynamic_cast_assert. This macro is
871 * typically wrapped by each type to perform type safe casts of a class to a
872 * specific class type.
873 */
874 #define OBJECT_CLASS_CHECK(class_type, class, name) \
875 ((class_type *)object_class_dynamic_cast_assert(OBJECT_CLASS(class), (name), \
876 __FILE__, __LINE__, __func__))
877
878 /**
879 * OBJECT_GET_CLASS:
880 * @class: The C type to use for the return value.
881 * @obj: The object to obtain the class for.
882 * @name: The QOM typename of @obj.
883 *
884 * This function will return a specific class for a given object. Its generally
885 * used by each type to provide a type safe macro to get a specific class type
886 * from an object.
887 */
888 #define OBJECT_GET_CLASS(class, obj, name) \
889 OBJECT_CLASS_CHECK(class, object_get_class(OBJECT(obj)), name)
890
891 /**
892 * InterfaceInfo:
893 * @type: The name of the interface.
894 *
895 * The information associated with an interface.
896 */
897 struct InterfaceInfo {
898 const char *type;
899 };
900
901 /**
902 * InterfaceClass:
903 * @parent_class: the base class
904 *
905 * The class for all interfaces. Subclasses of this class should only add
906 * virtual methods.
907 */
908 struct InterfaceClass
909 {
910 ObjectClass parent_class;
911 /* private: */
912 ObjectClass *concrete_class;
913 Type interface_type;
914 };
915
916 #define TYPE_INTERFACE "interface"
917
918 /**
919 * INTERFACE_CLASS:
920 * @klass: class to cast from
921 * Returns: An #InterfaceClass or raise an error if cast is invalid
922 */
923 #define INTERFACE_CLASS(klass) \
924 OBJECT_CLASS_CHECK(InterfaceClass, klass, TYPE_INTERFACE)
925
926 /**
927 * INTERFACE_CHECK:
928 * @interface: the type to return
929 * @obj: the object to convert to an interface
930 * @name: the interface type name
931 *
932 * Returns: @obj casted to @interface if cast is valid, otherwise raise error.
933 */
934 #define INTERFACE_CHECK(interface, obj, name) \
935 ((interface *)object_dynamic_cast_assert(OBJECT((obj)), (name), \
936 __FILE__, __LINE__, __func__))
937
938 /**
939 * object_new_with_class:
940 * @klass: The class to instantiate.
941 *
942 * This function will initialize a new object using heap allocated memory.
943 * The returned object has a reference count of 1, and will be freed when
944 * the last reference is dropped.
945 *
946 * Returns: The newly allocated and instantiated object.
947 */
948 Object *object_new_with_class(ObjectClass *klass);
949
950 /**
951 * object_new:
952 * @typename: The name of the type of the object to instantiate.
953 *
954 * This function will initialize a new object using heap allocated memory.
955 * The returned object has a reference count of 1, and will be freed when
956 * the last reference is dropped.
957 *
958 * Returns: The newly allocated and instantiated object.
959 */
960 Object *object_new(const char *typename);
961
962 /**
963 * object_new_with_props:
964 * @typename: The name of the type of the object to instantiate.
965 * @parent: the parent object
966 * @id: The unique ID of the object
967 * @errp: pointer to error object
968 * @...: list of property names and values
969 *
970 * This function will initialize a new object using heap allocated memory.
971 * The returned object has a reference count of 1, and will be freed when
972 * the last reference is dropped.
973 *
974 * The @id parameter will be used when registering the object as a
975 * child of @parent in the composition tree.
976 *
977 * The variadic parameters are a list of pairs of (propname, propvalue)
978 * strings. The propname of %NULL indicates the end of the property
979 * list. If the object implements the user creatable interface, the
980 * object will be marked complete once all the properties have been
981 * processed.
982 *
983 * <example>
984 * <title>Creating an object with properties</title>
985 * <programlisting>
986 * Error *err = NULL;
987 * Object *obj;
988 *
989 * obj = object_new_with_props(TYPE_MEMORY_BACKEND_FILE,
990 * object_get_objects_root(),
991 * "hostmem0",
992 * &err,
993 * "share", "yes",
994 * "mem-path", "/dev/shm/somefile",
995 * "prealloc", "yes",
996 * "size", "1048576",
997 * NULL);
998 *
999 * if (!obj) {
1000 * error_reportf_err(err, "Cannot create memory backend: ");
1001 * }
1002 * </programlisting>
1003 * </example>
1004 *
1005 * The returned object will have one stable reference maintained
1006 * for as long as it is present in the object hierarchy.
1007 *
1008 * Returns: The newly allocated, instantiated & initialized object.
1009 */
1010 Object *object_new_with_props(const char *typename,
1011 Object *parent,
1012 const char *id,
1013 Error **errp,
1014 ...) QEMU_SENTINEL;
1015
1016 /**
1017 * object_new_with_propv:
1018 * @typename: The name of the type of the object to instantiate.
1019 * @parent: the parent object
1020 * @id: The unique ID of the object
1021 * @errp: pointer to error object
1022 * @vargs: list of property names and values
1023 *
1024 * See object_new_with_props() for documentation.
1025 */
1026 Object *object_new_with_propv(const char *typename,
1027 Object *parent,
1028 const char *id,
1029 Error **errp,
1030 va_list vargs);
1031
1032 bool object_apply_global_props(Object *obj, const GPtrArray *props,
1033 Error **errp);
1034 void object_set_machine_compat_props(GPtrArray *compat_props);
1035 void object_set_accelerator_compat_props(GPtrArray *compat_props);
1036 void object_register_sugar_prop(const char *driver, const char *prop, const char *value);
1037 void object_apply_compat_props(Object *obj);
1038
1039 /**
1040 * object_set_props:
1041 * @obj: the object instance to set properties on
1042 * @errp: pointer to error object
1043 * @...: list of property names and values
1044 *
1045 * This function will set a list of properties on an existing object
1046 * instance.
1047 *
1048 * The variadic parameters are a list of pairs of (propname, propvalue)
1049 * strings. The propname of %NULL indicates the end of the property
1050 * list.
1051 *
1052 * <example>
1053 * <title>Update an object's properties</title>
1054 * <programlisting>
1055 * Error *err = NULL;
1056 * Object *obj = ...get / create object...;
1057 *
1058 * if (!object_set_props(obj,
1059 * &err,
1060 * "share", "yes",
1061 * "mem-path", "/dev/shm/somefile",
1062 * "prealloc", "yes",
1063 * "size", "1048576",
1064 * NULL)) {
1065 * error_reportf_err(err, "Cannot set properties: ");
1066 * }
1067 * </programlisting>
1068 * </example>
1069 *
1070 * The returned object will have one stable reference maintained
1071 * for as long as it is present in the object hierarchy.
1072 *
1073 * Returns: %true on success, %false on error.
1074 */
1075 bool object_set_props(Object *obj, Error **errp, ...) QEMU_SENTINEL;
1076
1077 /**
1078 * object_set_propv:
1079 * @obj: the object instance to set properties on
1080 * @errp: pointer to error object
1081 * @vargs: list of property names and values
1082 *
1083 * See object_set_props() for documentation.
1084 *
1085 * Returns: %true on success, %false on error.
1086 */
1087 bool object_set_propv(Object *obj, Error **errp, va_list vargs);
1088
1089 /**
1090 * object_initialize:
1091 * @obj: A pointer to the memory to be used for the object.
1092 * @size: The maximum size available at @obj for the object.
1093 * @typename: The name of the type of the object to instantiate.
1094 *
1095 * This function will initialize an object. The memory for the object should
1096 * have already been allocated. The returned object has a reference count of 1,
1097 * and will be finalized when the last reference is dropped.
1098 */
1099 void object_initialize(void *obj, size_t size, const char *typename);
1100
1101 /**
1102 * object_initialize_child_with_props:
1103 * @parentobj: The parent object to add a property to
1104 * @propname: The name of the property
1105 * @childobj: A pointer to the memory to be used for the object.
1106 * @size: The maximum size available at @childobj for the object.
1107 * @type: The name of the type of the object to instantiate.
1108 * @errp: If an error occurs, a pointer to an area to store the error
1109 * @...: list of property names and values
1110 *
1111 * This function will initialize an object. The memory for the object should
1112 * have already been allocated. The object will then be added as child property
1113 * to a parent with object_property_add_child() function. The returned object
1114 * has a reference count of 1 (for the "child<...>" property from the parent),
1115 * so the object will be finalized automatically when the parent gets removed.
1116 *
1117 * The variadic parameters are a list of pairs of (propname, propvalue)
1118 * strings. The propname of %NULL indicates the end of the property list.
1119 * If the object implements the user creatable interface, the object will
1120 * be marked complete once all the properties have been processed.
1121 *
1122 * Returns: %true on success, %false on failure.
1123 */
1124 bool object_initialize_child_with_props(Object *parentobj,
1125 const char *propname,
1126 void *childobj, size_t size, const char *type,
1127 Error **errp, ...) QEMU_SENTINEL;
1128
1129 /**
1130 * object_initialize_child_with_propsv:
1131 * @parentobj: The parent object to add a property to
1132 * @propname: The name of the property
1133 * @childobj: A pointer to the memory to be used for the object.
1134 * @size: The maximum size available at @childobj for the object.
1135 * @type: The name of the type of the object to instantiate.
1136 * @errp: If an error occurs, a pointer to an area to store the error
1137 * @vargs: list of property names and values
1138 *
1139 * See object_initialize_child() for documentation.
1140 *
1141 * Returns: %true on success, %false on failure.
1142 */
1143 bool object_initialize_child_with_propsv(Object *parentobj,
1144 const char *propname,
1145 void *childobj, size_t size, const char *type,
1146 Error **errp, va_list vargs);
1147
1148 /**
1149 * object_initialize_child:
1150 * @parent: The parent object to add a property to
1151 * @propname: The name of the property
1152 * @child: A precisely typed pointer to the memory to be used for the
1153 * object.
1154 * @type: The name of the type of the object to instantiate.
1155 *
1156 * This is like
1157 * object_initialize_child_with_props(parent, propname,
1158 * child, sizeof(*child), type,
1159 * &error_abort, NULL)
1160 */
1161 #define object_initialize_child(parent, propname, child, type) \
1162 object_initialize_child_internal((parent), (propname), \
1163 (child), sizeof(*(child)), (type))
1164 void object_initialize_child_internal(Object *parent, const char *propname,
1165 void *child, size_t size,
1166 const char *type);
1167
1168 /**
1169 * object_dynamic_cast:
1170 * @obj: The object to cast.
1171 * @typename: The @typename to cast to.
1172 *
1173 * This function will determine if @obj is-a @typename. @obj can refer to an
1174 * object or an interface associated with an object.
1175 *
1176 * Returns: This function returns @obj on success or #NULL on failure.
1177 */
1178 Object *object_dynamic_cast(Object *obj, const char *typename);
1179
1180 /**
1181 * object_dynamic_cast_assert:
1182 * @obj: The object to cast.
1183 * @typename: The @typename to cast to.
1184 * @file: Source code file where function was called
1185 * @line: Source code line where function was called
1186 * @func: Name of function where this function was called
1187 *
1188 * See object_dynamic_cast() for a description of the parameters of this
1189 * function. The only difference in behavior is that this function asserts
1190 * instead of returning #NULL on failure if QOM cast debugging is enabled.
1191 * This function is not meant to be called directly, but only through
1192 * the wrapper macro OBJECT_CHECK.
1193 */
1194 Object *object_dynamic_cast_assert(Object *obj, const char *typename,
1195 const char *file, int line, const char *func);
1196
1197 /**
1198 * object_get_class:
1199 * @obj: A derivative of #Object
1200 *
1201 * Returns: The #ObjectClass of the type associated with @obj.
1202 */
1203 ObjectClass *object_get_class(Object *obj);
1204
1205 /**
1206 * object_get_typename:
1207 * @obj: A derivative of #Object.
1208 *
1209 * Returns: The QOM typename of @obj.
1210 */
1211 const char *object_get_typename(const Object *obj);
1212
1213 /**
1214 * type_register_static:
1215 * @info: The #TypeInfo of the new type.
1216 *
1217 * @info and all of the strings it points to should exist for the life time
1218 * that the type is registered.
1219 *
1220 * Returns: the new #Type.
1221 */
1222 Type type_register_static(const TypeInfo *info);
1223
1224 /**
1225 * type_register:
1226 * @info: The #TypeInfo of the new type
1227 *
1228 * Unlike type_register_static(), this call does not require @info or its
1229 * string members to continue to exist after the call returns.
1230 *
1231 * Returns: the new #Type.
1232 */
1233 Type type_register(const TypeInfo *info);
1234
1235 /**
1236 * type_register_static_array:
1237 * @infos: The array of the new type #TypeInfo structures.
1238 * @nr_infos: number of entries in @infos
1239 *
1240 * @infos and all of the strings it points to should exist for the life time
1241 * that the type is registered.
1242 */
1243 void type_register_static_array(const TypeInfo *infos, int nr_infos);
1244
1245 /**
1246 * DEFINE_TYPES:
1247 * @type_array: The array containing #TypeInfo structures to register
1248 *
1249 * @type_array should be static constant that exists for the life time
1250 * that the type is registered.
1251 */
1252 #define DEFINE_TYPES(type_array) \
1253 static void do_qemu_init_ ## type_array(void) \
1254 { \
1255 type_register_static_array(type_array, ARRAY_SIZE(type_array)); \
1256 } \
1257 type_init(do_qemu_init_ ## type_array)
1258
1259 /**
1260 * object_class_dynamic_cast_assert:
1261 * @klass: The #ObjectClass to attempt to cast.
1262 * @typename: The QOM typename of the class to cast to.
1263 * @file: Source code file where function was called
1264 * @line: Source code line where function was called
1265 * @func: Name of function where this function was called
1266 *
1267 * See object_class_dynamic_cast() for a description of the parameters
1268 * of this function. The only difference in behavior is that this function
1269 * asserts instead of returning #NULL on failure if QOM cast debugging is
1270 * enabled. This function is not meant to be called directly, but only through
1271 * the wrapper macro OBJECT_CLASS_CHECK.
1272 */
1273 ObjectClass *object_class_dynamic_cast_assert(ObjectClass *klass,
1274 const char *typename,
1275 const char *file, int line,
1276 const char *func);
1277
1278 /**
1279 * object_class_dynamic_cast:
1280 * @klass: The #ObjectClass to attempt to cast.
1281 * @typename: The QOM typename of the class to cast to.
1282 *
1283 * Returns: If @typename is a class, this function returns @klass if
1284 * @typename is a subtype of @klass, else returns #NULL.
1285 *
1286 * If @typename is an interface, this function returns the interface
1287 * definition for @klass if @klass implements it unambiguously; #NULL
1288 * is returned if @klass does not implement the interface or if multiple
1289 * classes or interfaces on the hierarchy leading to @klass implement
1290 * it. (FIXME: perhaps this can be detected at type definition time?)
1291 */
1292 ObjectClass *object_class_dynamic_cast(ObjectClass *klass,
1293 const char *typename);
1294
1295 /**
1296 * object_class_get_parent:
1297 * @klass: The class to obtain the parent for.
1298 *
1299 * Returns: The parent for @klass or %NULL if none.
1300 */
1301 ObjectClass *object_class_get_parent(ObjectClass *klass);
1302
1303 /**
1304 * object_class_get_name:
1305 * @klass: The class to obtain the QOM typename for.
1306 *
1307 * Returns: The QOM typename for @klass.
1308 */
1309 const char *object_class_get_name(ObjectClass *klass);
1310
1311 /**
1312 * object_class_is_abstract:
1313 * @klass: The class to obtain the abstractness for.
1314 *
1315 * Returns: %true if @klass is abstract, %false otherwise.
1316 */
1317 bool object_class_is_abstract(ObjectClass *klass);
1318
1319 /**
1320 * object_class_by_name:
1321 * @typename: The QOM typename to obtain the class for.
1322 *
1323 * Returns: The class for @typename or %NULL if not found.
1324 */
1325 ObjectClass *object_class_by_name(const char *typename);
1326
1327 /**
1328 * module_object_class_by_name:
1329 * @typename: The QOM typename to obtain the class for.
1330 *
1331 * For objects which might be provided by a module. Behaves like
1332 * object_class_by_name, but additionally tries to load the module
1333 * needed in case the class is not available.
1334 *
1335 * Returns: The class for @typename or %NULL if not found.
1336 */
1337 ObjectClass *module_object_class_by_name(const char *typename);
1338
1339 void object_class_foreach(void (*fn)(ObjectClass *klass, void *opaque),
1340 const char *implements_type, bool include_abstract,
1341 void *opaque);
1342
1343 /**
1344 * object_class_get_list:
1345 * @implements_type: The type to filter for, including its derivatives.
1346 * @include_abstract: Whether to include abstract classes.
1347 *
1348 * Returns: A singly-linked list of the classes in reverse hashtable order.
1349 */
1350 GSList *object_class_get_list(const char *implements_type,
1351 bool include_abstract);
1352
1353 /**
1354 * object_class_get_list_sorted:
1355 * @implements_type: The type to filter for, including its derivatives.
1356 * @include_abstract: Whether to include abstract classes.
1357 *
1358 * Returns: A singly-linked list of the classes in alphabetical
1359 * case-insensitive order.
1360 */
1361 GSList *object_class_get_list_sorted(const char *implements_type,
1362 bool include_abstract);
1363
1364 /**
1365 * object_ref:
1366 * @obj: the object
1367 *
1368 * Increase the reference count of a object. A object cannot be freed as long
1369 * as its reference count is greater than zero.
1370 * Returns: @obj
1371 */
1372 Object *object_ref(void *obj);
1373
1374 /**
1375 * object_unref:
1376 * @obj: the object
1377 *
1378 * Decrease the reference count of a object. A object cannot be freed as long
1379 * as its reference count is greater than zero.
1380 */
1381 void object_unref(void *obj);
1382
1383 /**
1384 * object_property_try_add:
1385 * @obj: the object to add a property to
1386 * @name: the name of the property. This can contain any character except for
1387 * a forward slash. In general, you should use hyphens '-' instead of
1388 * underscores '_' when naming properties.
1389 * @type: the type name of the property. This namespace is pretty loosely
1390 * defined. Sub namespaces are constructed by using a prefix and then
1391 * to angle brackets. For instance, the type 'virtio-net-pci' in the
1392 * 'link' namespace would be 'link<virtio-net-pci>'.
1393 * @get: The getter to be called to read a property. If this is NULL, then
1394 * the property cannot be read.
1395 * @set: the setter to be called to write a property. If this is NULL,
1396 * then the property cannot be written.
1397 * @release: called when the property is removed from the object. This is
1398 * meant to allow a property to free its opaque upon object
1399 * destruction. This may be NULL.
1400 * @opaque: an opaque pointer to pass to the callbacks for the property
1401 * @errp: pointer to error object
1402 *
1403 * Returns: The #ObjectProperty; this can be used to set the @resolve
1404 * callback for child and link properties.
1405 */
1406 ObjectProperty *object_property_try_add(Object *obj, const char *name,
1407 const char *type,
1408 ObjectPropertyAccessor *get,
1409 ObjectPropertyAccessor *set,
1410 ObjectPropertyRelease *release,
1411 void *opaque, Error **errp);
1412
1413 /**
1414 * object_property_add:
1415 * Same as object_property_try_add() with @errp hardcoded to
1416 * &error_abort.
1417 *
1418 * @obj: the object to add a property to
1419 * @name: the name of the property. This can contain any character except for
1420 * a forward slash. In general, you should use hyphens '-' instead of
1421 * underscores '_' when naming properties.
1422 * @type: the type name of the property. This namespace is pretty loosely
1423 * defined. Sub namespaces are constructed by using a prefix and then
1424 * to angle brackets. For instance, the type 'virtio-net-pci' in the
1425 * 'link' namespace would be 'link<virtio-net-pci>'.
1426 * @get: The getter to be called to read a property. If this is NULL, then
1427 * the property cannot be read.
1428 * @set: the setter to be called to write a property. If this is NULL,
1429 * then the property cannot be written.
1430 * @release: called when the property is removed from the object. This is
1431 * meant to allow a property to free its opaque upon object
1432 * destruction. This may be NULL.
1433 * @opaque: an opaque pointer to pass to the callbacks for the property
1434 */
1435 ObjectProperty *object_property_add(Object *obj, const char *name,
1436 const char *type,
1437 ObjectPropertyAccessor *get,
1438 ObjectPropertyAccessor *set,
1439 ObjectPropertyRelease *release,
1440 void *opaque);
1441
1442 void object_property_del(Object *obj, const char *name);
1443
1444 ObjectProperty *object_class_property_add(ObjectClass *klass, const char *name,
1445 const char *type,
1446 ObjectPropertyAccessor *get,
1447 ObjectPropertyAccessor *set,
1448 ObjectPropertyRelease *release,
1449 void *opaque);
1450
1451 /**
1452 * object_property_set_default_bool:
1453 * @prop: the property to set
1454 * @value: the value to be written to the property
1455 *
1456 * Set the property default value.
1457 */
1458 void object_property_set_default_bool(ObjectProperty *prop, bool value);
1459
1460 /**
1461 * object_property_set_default_str:
1462 * @prop: the property to set
1463 * @value: the value to be written to the property
1464 *
1465 * Set the property default value.
1466 */
1467 void object_property_set_default_str(ObjectProperty *prop, const char *value);
1468
1469 /**
1470 * object_property_set_default_int:
1471 * @prop: the property to set
1472 * @value: the value to be written to the property
1473 *
1474 * Set the property default value.
1475 */
1476 void object_property_set_default_int(ObjectProperty *prop, int64_t value);
1477
1478 /**
1479 * object_property_set_default_uint:
1480 * @prop: the property to set
1481 * @value: the value to be written to the property
1482 *
1483 * Set the property default value.
1484 */
1485 void object_property_set_default_uint(ObjectProperty *prop, uint64_t value);
1486
1487 /**
1488 * object_property_find:
1489 * @obj: the object
1490 * @name: the name of the property
1491 *
1492 * Look up a property for an object.
1493 *
1494 * Return its #ObjectProperty if found, or NULL.
1495 */
1496 ObjectProperty *object_property_find(Object *obj, const char *name);
1497
1498 /**
1499 * object_property_find_err:
1500 * @obj: the object
1501 * @name: the name of the property
1502 * @errp: returns an error if this function fails
1503 *
1504 * Look up a property for an object.
1505 *
1506 * Return its #ObjectProperty if found, or NULL.
1507 */
1508 ObjectProperty *object_property_find_err(Object *obj,
1509 const char *name,
1510 Error **errp);
1511
1512 /**
1513 * object_class_property_find:
1514 * @klass: the object class
1515 * @name: the name of the property
1516 *
1517 * Look up a property for an object class.
1518 *
1519 * Return its #ObjectProperty if found, or NULL.
1520 */
1521 ObjectProperty *object_class_property_find(ObjectClass *klass,
1522 const char *name);
1523
1524 /**
1525 * object_class_property_find_err:
1526 * @klass: the object class
1527 * @name: the name of the property
1528 * @errp: returns an error if this function fails
1529 *
1530 * Look up a property for an object class.
1531 *
1532 * Return its #ObjectProperty if found, or NULL.
1533 */
1534 ObjectProperty *object_class_property_find_err(ObjectClass *klass,
1535 const char *name,
1536 Error **errp);
1537
1538 typedef struct ObjectPropertyIterator {
1539 ObjectClass *nextclass;
1540 GHashTableIter iter;
1541 } ObjectPropertyIterator;
1542
1543 /**
1544 * object_property_iter_init:
1545 * @iter: the iterator instance
1546 * @obj: the object
1547 *
1548 * Initializes an iterator for traversing all properties
1549 * registered against an object instance, its class and all parent classes.
1550 *
1551 * It is forbidden to modify the property list while iterating,
1552 * whether removing or adding properties.
1553 *
1554 * Typical usage pattern would be
1555 *
1556 * <example>
1557 * <title>Using object property iterators</title>
1558 * <programlisting>
1559 * ObjectProperty *prop;
1560 * ObjectPropertyIterator iter;
1561 *
1562 * object_property_iter_init(&iter, obj);
1563 * while ((prop = object_property_iter_next(&iter))) {
1564 * ... do something with prop ...
1565 * }
1566 * </programlisting>
1567 * </example>
1568 */
1569 void object_property_iter_init(ObjectPropertyIterator *iter,
1570 Object *obj);
1571
1572 /**
1573 * object_class_property_iter_init:
1574 * @iter: the iterator instance
1575 * @klass: the class
1576 *
1577 * Initializes an iterator for traversing all properties
1578 * registered against an object class and all parent classes.
1579 *
1580 * It is forbidden to modify the property list while iterating,
1581 * whether removing or adding properties.
1582 *
1583 * This can be used on abstract classes as it does not create a temporary
1584 * instance.
1585 */
1586 void object_class_property_iter_init(ObjectPropertyIterator *iter,
1587 ObjectClass *klass);
1588
1589 /**
1590 * object_property_iter_next:
1591 * @iter: the iterator instance
1592 *
1593 * Return the next available property. If no further properties
1594 * are available, a %NULL value will be returned and the @iter
1595 * pointer should not be used again after this point without
1596 * re-initializing it.
1597 *
1598 * Returns: the next property, or %NULL when all properties
1599 * have been traversed.
1600 */
1601 ObjectProperty *object_property_iter_next(ObjectPropertyIterator *iter);
1602
1603 void object_unparent(Object *obj);
1604
1605 /**
1606 * object_property_get:
1607 * @obj: the object
1608 * @name: the name of the property
1609 * @v: the visitor that will receive the property value. This should be an
1610 * Output visitor and the data will be written with @name as the name.
1611 * @errp: returns an error if this function fails
1612 *
1613 * Reads a property from a object.
1614 *
1615 * Returns: %true on success, %false on failure.
1616 */
1617 bool object_property_get(Object *obj, const char *name, Visitor *v,
1618 Error **errp);
1619
1620 /**
1621 * object_property_set_str:
1622 * @obj: the object
1623 * @name: the name of the property
1624 * @value: the value to be written to the property
1625 * @errp: returns an error if this function fails
1626 *
1627 * Writes a string value to a property.
1628 *
1629 * Returns: %true on success, %false on failure.
1630 */
1631 bool object_property_set_str(Object *obj, const char *name,
1632 const char *value, Error **errp);
1633
1634 /**
1635 * object_property_get_str:
1636 * @obj: the object
1637 * @name: the name of the property
1638 * @errp: returns an error if this function fails
1639 *
1640 * Returns: the value of the property, converted to a C string, or NULL if
1641 * an error occurs (including when the property value is not a string).
1642 * The caller should free the string.
1643 */
1644 char *object_property_get_str(Object *obj, const char *name,
1645 Error **errp);
1646
1647 /**
1648 * object_property_set_link:
1649 * @obj: the object
1650 * @name: the name of the property
1651 * @value: the value to be written to the property
1652 * @errp: returns an error if this function fails
1653 *
1654 * Writes an object's canonical path to a property.
1655 *
1656 * If the link property was created with
1657 * <code>OBJ_PROP_LINK_STRONG</code> bit, the old target object is
1658 * unreferenced, and a reference is added to the new target object.
1659 *
1660 * Returns: %true on success, %false on failure.
1661 */
1662 bool object_property_set_link(Object *obj, const char *name,
1663 Object *value, Error **errp);
1664
1665 /**
1666 * object_property_get_link:
1667 * @obj: the object
1668 * @name: the name of the property
1669 * @errp: returns an error if this function fails
1670 *
1671 * Returns: the value of the property, resolved from a path to an Object,
1672 * or NULL if an error occurs (including when the property value is not a
1673 * string or not a valid object path).
1674 */
1675 Object *object_property_get_link(Object *obj, const char *name,
1676 Error **errp);
1677
1678 /**
1679 * object_property_set_bool:
1680 * @obj: the object
1681 * @name: the name of the property
1682 * @value: the value to be written to the property
1683 * @errp: returns an error if this function fails
1684 *
1685 * Writes a bool value to a property.
1686 *
1687 * Returns: %true on success, %false on failure.
1688 */
1689 bool object_property_set_bool(Object *obj, const char *name,
1690 bool value, Error **errp);
1691
1692 /**
1693 * object_property_get_bool:
1694 * @obj: the object
1695 * @name: the name of the property
1696 * @errp: returns an error if this function fails
1697 *
1698 * Returns: the value of the property, converted to a boolean, or false if
1699 * an error occurs (including when the property value is not a bool).
1700 */
1701 bool object_property_get_bool(Object *obj, const char *name,
1702 Error **errp);
1703
1704 /**
1705 * object_property_set_int:
1706 * @obj: the object
1707 * @name: the name of the property
1708 * @value: the value to be written to the property
1709 * @errp: returns an error if this function fails
1710 *
1711 * Writes an integer value to a property.
1712 *
1713 * Returns: %true on success, %false on failure.
1714 */
1715 bool object_property_set_int(Object *obj, const char *name,
1716 int64_t value, Error **errp);
1717
1718 /**
1719 * object_property_get_int:
1720 * @obj: the object
1721 * @name: the name of the property
1722 * @errp: returns an error if this function fails
1723 *
1724 * Returns: the value of the property, converted to an integer, or -1 if
1725 * an error occurs (including when the property value is not an integer).
1726 */
1727 int64_t object_property_get_int(Object *obj, const char *name,
1728 Error **errp);
1729
1730 /**
1731 * object_property_set_uint:
1732 * @obj: the object
1733 * @name: the name of the property
1734 * @value: the value to be written to the property
1735 * @errp: returns an error if this function fails
1736 *
1737 * Writes an unsigned integer value to a property.
1738 *
1739 * Returns: %true on success, %false on failure.
1740 */
1741 bool object_property_set_uint(Object *obj, const char *name,
1742 uint64_t value, Error **errp);
1743
1744 /**
1745 * object_property_get_uint:
1746 * @obj: the object
1747 * @name: the name of the property
1748 * @errp: returns an error if this function fails
1749 *
1750 * Returns: the value of the property, converted to an unsigned integer, or 0
1751 * an error occurs (including when the property value is not an integer).
1752 */
1753 uint64_t object_property_get_uint(Object *obj, const char *name,
1754 Error **errp);
1755
1756 /**
1757 * object_property_get_enum:
1758 * @obj: the object
1759 * @name: the name of the property
1760 * @typename: the name of the enum data type
1761 * @errp: returns an error if this function fails
1762 *
1763 * Returns: the value of the property, converted to an integer (which
1764 * can't be negative), or -1 on error (including when the property
1765 * value is not an enum).
1766 */
1767 int object_property_get_enum(Object *obj, const char *name,
1768 const char *typename, Error **errp);
1769
1770 /**
1771 * object_property_set:
1772 * @obj: the object
1773 * @name: the name of the property
1774 * @v: the visitor that will be used to write the property value. This should
1775 * be an Input visitor and the data will be first read with @name as the
1776 * name and then written as the property value.
1777 * @errp: returns an error if this function fails
1778 *
1779 * Writes a property to a object.
1780 *
1781 * Returns: %true on success, %false on failure.
1782 */
1783 bool object_property_set(Object *obj, const char *name, Visitor *v,
1784 Error **errp);
1785
1786 /**
1787 * object_property_parse:
1788 * @obj: the object
1789 * @name: the name of the property
1790 * @string: the string that will be used to parse the property value.
1791 * @errp: returns an error if this function fails
1792 *
1793 * Parses a string and writes the result into a property of an object.
1794 *
1795 * Returns: %true on success, %false on failure.
1796 */
1797 bool object_property_parse(Object *obj, const char *name,
1798 const char *string, Error **errp);
1799
1800 /**
1801 * object_property_print:
1802 * @obj: the object
1803 * @name: the name of the property
1804 * @human: if true, print for human consumption
1805 * @errp: returns an error if this function fails
1806 *
1807 * Returns a string representation of the value of the property. The
1808 * caller shall free the string.
1809 */
1810 char *object_property_print(Object *obj, const char *name, bool human,
1811 Error **errp);
1812
1813 /**
1814 * object_property_get_type:
1815 * @obj: the object
1816 * @name: the name of the property
1817 * @errp: returns an error if this function fails
1818 *
1819 * Returns: The type name of the property.
1820 */
1821 const char *object_property_get_type(Object *obj, const char *name,
1822 Error **errp);
1823
1824 /**
1825 * object_get_root:
1826 *
1827 * Returns: the root object of the composition tree
1828 */
1829 Object *object_get_root(void);
1830
1831
1832 /**
1833 * object_get_objects_root:
1834 *
1835 * Get the container object that holds user created
1836 * object instances. This is the object at path
1837 * "/objects"
1838 *
1839 * Returns: the user object container
1840 */
1841 Object *object_get_objects_root(void);
1842
1843 /**
1844 * object_get_internal_root:
1845 *
1846 * Get the container object that holds internally used object
1847 * instances. Any object which is put into this container must not be
1848 * user visible, and it will not be exposed in the QOM tree.
1849 *
1850 * Returns: the internal object container
1851 */
1852 Object *object_get_internal_root(void);
1853
1854 /**
1855 * object_get_canonical_path_component:
1856 * @obj: the object
1857 *
1858 * Returns: The final component in the object's canonical path. The canonical
1859 * path is the path within the composition tree starting from the root.
1860 * %NULL if the object doesn't have a parent (and thus a canonical path).
1861 */
1862 const char *object_get_canonical_path_component(const Object *obj);
1863
1864 /**
1865 * object_get_canonical_path:
1866 * @obj: the object
1867 *
1868 * Returns: The canonical path for a object, newly allocated. This is
1869 * the path within the composition tree starting from the root. Use
1870 * g_free() to free it.
1871 */
1872 char *object_get_canonical_path(const Object *obj);
1873
1874 /**
1875 * object_resolve_path:
1876 * @path: the path to resolve
1877 * @ambiguous: returns true if the path resolution failed because of an
1878 * ambiguous match
1879 *
1880 * There are two types of supported paths--absolute paths and partial paths.
1881 *
1882 * Absolute paths are derived from the root object and can follow child<> or
1883 * link<> properties. Since they can follow link<> properties, they can be
1884 * arbitrarily long. Absolute paths look like absolute filenames and are
1885 * prefixed with a leading slash.
1886 *
1887 * Partial paths look like relative filenames. They do not begin with a
1888 * prefix. The matching rules for partial paths are subtle but designed to make
1889 * specifying objects easy. At each level of the composition tree, the partial
1890 * path is matched as an absolute path. The first match is not returned. At
1891 * least two matches are searched for. A successful result is only returned if
1892 * only one match is found. If more than one match is found, a flag is
1893 * returned to indicate that the match was ambiguous.
1894 *
1895 * Returns: The matched object or NULL on path lookup failure.
1896 */
1897 Object *object_resolve_path(const char *path, bool *ambiguous);
1898
1899 /**
1900 * object_resolve_path_type:
1901 * @path: the path to resolve
1902 * @typename: the type to look for.
1903 * @ambiguous: returns true if the path resolution failed because of an
1904 * ambiguous match
1905 *
1906 * This is similar to object_resolve_path. However, when looking for a
1907 * partial path only matches that implement the given type are considered.
1908 * This restricts the search and avoids spuriously flagging matches as
1909 * ambiguous.
1910 *
1911 * For both partial and absolute paths, the return value goes through
1912 * a dynamic cast to @typename. This is important if either the link,
1913 * or the typename itself are of interface types.
1914 *
1915 * Returns: The matched object or NULL on path lookup failure.
1916 */
1917 Object *object_resolve_path_type(const char *path, const char *typename,
1918 bool *ambiguous);
1919
1920 /**
1921 * object_resolve_path_component:
1922 * @parent: the object in which to resolve the path
1923 * @part: the component to resolve.
1924 *
1925 * This is similar to object_resolve_path with an absolute path, but it
1926 * only resolves one element (@part) and takes the others from @parent.
1927 *
1928 * Returns: The resolved object or NULL on path lookup failure.
1929 */
1930 Object *object_resolve_path_component(Object *parent, const char *part);
1931
1932 /**
1933 * object_property_try_add_child:
1934 * @obj: the object to add a property to
1935 * @name: the name of the property
1936 * @child: the child object
1937 * @errp: pointer to error object
1938 *
1939 * Child properties form the composition tree. All objects need to be a child
1940 * of another object. Objects can only be a child of one object.
1941 *
1942 * There is no way for a child to determine what its parent is. It is not
1943 * a bidirectional relationship. This is by design.
1944 *
1945 * The value of a child property as a C string will be the child object's
1946 * canonical path. It can be retrieved using object_property_get_str().
1947 * The child object itself can be retrieved using object_property_get_link().
1948 *
1949 * Returns: The newly added property on success, or %NULL on failure.
1950 */
1951 ObjectProperty *object_property_try_add_child(Object *obj, const char *name,
1952 Object *child, Error **errp);
1953
1954 /**
1955 * object_property_add_child:
1956 * @obj: the object to add a property to
1957 * @name: the name of the property
1958 * @child: the child object
1959 *
1960 * Same as object_property_try_add_child() with @errp hardcoded to
1961 * &error_abort
1962 */
1963 ObjectProperty *object_property_add_child(Object *obj, const char *name,
1964 Object *child);
1965
1966 typedef enum {
1967 /* Unref the link pointer when the property is deleted */
1968 OBJ_PROP_LINK_STRONG = 0x1,
1969
1970 /* private */
1971 OBJ_PROP_LINK_DIRECT = 0x2,
1972 OBJ_PROP_LINK_CLASS = 0x4,
1973 } ObjectPropertyLinkFlags;
1974
1975 /**
1976 * object_property_allow_set_link:
1977 * @obj: the object to add a property to
1978 * @name: the name of the property
1979 * @child: the child object
1980 * @errp: pointer to error object
1981 *
1982 * The default implementation of the object_property_add_link() check()
1983 * callback function. It allows the link property to be set and never returns
1984 * an error.
1985 */
1986 void object_property_allow_set_link(const Object *obj, const char *name,
1987 Object *child, Error **errp);
1988
1989 /**
1990 * object_property_add_link:
1991 * @obj: the object to add a property to
1992 * @name: the name of the property
1993 * @type: the qobj type of the link
1994 * @targetp: a pointer to where the link object reference is stored
1995 * @check: callback to veto setting or NULL if the property is read-only
1996 * @flags: additional options for the link
1997 *
1998 * Links establish relationships between objects. Links are unidirectional
1999 * although two links can be combined to form a bidirectional relationship
2000 * between objects.
2001 *
2002 * Links form the graph in the object model.
2003 *
2004 * The <code>@check()</code> callback is invoked when
2005 * object_property_set_link() is called and can raise an error to prevent the
2006 * link being set. If <code>@check</code> is NULL, the property is read-only
2007 * and cannot be set.
2008 *
2009 * Ownership of the pointer that @child points to is transferred to the
2010 * link property. The reference count for <code>*@child</code> is
2011 * managed by the property from after the function returns till the
2012 * property is deleted with object_property_del(). If the
2013 * <code>@flags</code> <code>OBJ_PROP_LINK_STRONG</code> bit is set,
2014 * the reference count is decremented when the property is deleted or
2015 * modified.
2016 *
2017 * Returns: The newly added property on success, or %NULL on failure.
2018 */
2019 ObjectProperty *object_property_add_link(Object *obj, const char *name,
2020 const char *type, Object **targetp,
2021 void (*check)(const Object *obj, const char *name,
2022 Object *val, Error **errp),
2023 ObjectPropertyLinkFlags flags);
2024
2025 ObjectProperty *object_class_property_add_link(ObjectClass *oc,
2026 const char *name,
2027 const char *type, ptrdiff_t offset,
2028 void (*check)(const Object *obj, const char *name,
2029 Object *val, Error **errp),
2030 ObjectPropertyLinkFlags flags);
2031
2032 /**
2033 * object_property_add_str:
2034 * @obj: the object to add a property to
2035 * @name: the name of the property
2036 * @get: the getter or NULL if the property is write-only. This function must
2037 * return a string to be freed by g_free().
2038 * @set: the setter or NULL if the property is read-only
2039 *
2040 * Add a string property using getters/setters. This function will add a
2041 * property of type 'string'.
2042 *
2043 * Returns: The newly added property on success, or %NULL on failure.
2044 */
2045 ObjectProperty *object_property_add_str(Object *obj, const char *name,
2046 char *(*get)(Object *, Error **),
2047 void (*set)(Object *, const char *, Error **));
2048
2049 ObjectProperty *object_class_property_add_str(ObjectClass *klass,
2050 const char *name,
2051 char *(*get)(Object *, Error **),
2052 void (*set)(Object *, const char *,
2053 Error **));
2054
2055 /**
2056 * object_property_add_bool:
2057 * @obj: the object to add a property to
2058 * @name: the name of the property
2059 * @get: the getter or NULL if the property is write-only.
2060 * @set: the setter or NULL if the property is read-only
2061 *
2062 * Add a bool property using getters/setters. This function will add a
2063 * property of type 'bool'.
2064 *
2065 * Returns: The newly added property on success, or %NULL on failure.
2066 */
2067 ObjectProperty *object_property_add_bool(Object *obj, const char *name,
2068 bool (*get)(Object *, Error **),
2069 void (*set)(Object *, bool, Error **));
2070
2071 ObjectProperty *object_class_property_add_bool(ObjectClass *klass,
2072 const char *name,
2073 bool (*get)(Object *, Error **),
2074 void (*set)(Object *, bool, Error **));
2075
2076 /**
2077 * object_property_add_enum:
2078 * @obj: the object to add a property to
2079 * @name: the name of the property
2080 * @typename: the name of the enum data type
2081 * @lookup: enum value namelookup table
2082 * @get: the getter or %NULL if the property is write-only.
2083 * @set: the setter or %NULL if the property is read-only
2084 *
2085 * Add an enum property using getters/setters. This function will add a
2086 * property of type '@typename'.
2087 *
2088 * Returns: The newly added property on success, or %NULL on failure.
2089 */
2090 ObjectProperty *object_property_add_enum(Object *obj, const char *name,
2091 const char *typename,
2092 const QEnumLookup *lookup,
2093 int (*get)(Object *, Error **),
2094 void (*set)(Object *, int, Error **));
2095
2096 ObjectProperty *object_class_property_add_enum(ObjectClass *klass,
2097 const char *name,
2098 const char *typename,
2099 const QEnumLookup *lookup,
2100 int (*get)(Object *, Error **),
2101 void (*set)(Object *, int, Error **));
2102
2103 /**
2104 * object_property_add_tm:
2105 * @obj: the object to add a property to
2106 * @name: the name of the property
2107 * @get: the getter or NULL if the property is write-only.
2108 *
2109 * Add a read-only struct tm valued property using a getter function.
2110 * This function will add a property of type 'struct tm'.
2111 *
2112 * Returns: The newly added property on success, or %NULL on failure.
2113 */
2114 ObjectProperty *object_property_add_tm(Object *obj, const char *name,
2115 void (*get)(Object *, struct tm *, Error **));
2116
2117 ObjectProperty *object_class_property_add_tm(ObjectClass *klass,
2118 const char *name,
2119 void (*get)(Object *, struct tm *, Error **));
2120
2121 typedef enum {
2122 /* Automatically add a getter to the property */
2123 OBJ_PROP_FLAG_READ = 1 << 0,
2124 /* Automatically add a setter to the property */
2125 OBJ_PROP_FLAG_WRITE = 1 << 1,
2126 /* Automatically add a getter and a setter to the property */
2127 OBJ_PROP_FLAG_READWRITE = (OBJ_PROP_FLAG_READ | OBJ_PROP_FLAG_WRITE),
2128 } ObjectPropertyFlags;
2129
2130 /**
2131 * object_property_add_uint8_ptr:
2132 * @obj: the object to add a property to
2133 * @name: the name of the property
2134 * @v: pointer to value
2135 * @flags: bitwise-or'd ObjectPropertyFlags
2136 *
2137 * Add an integer property in memory. This function will add a
2138 * property of type 'uint8'.
2139 *
2140 * Returns: The newly added property on success, or %NULL on failure.
2141 */
2142 ObjectProperty *object_property_add_uint8_ptr(Object *obj, const char *name,
2143 const uint8_t *v,
2144 ObjectPropertyFlags flags);
2145
2146 ObjectProperty *object_class_property_add_uint8_ptr(ObjectClass *klass,
2147 const char *name,
2148 const uint8_t *v,
2149 ObjectPropertyFlags flags);
2150
2151 /**
2152 * object_property_add_uint16_ptr:
2153 * @obj: the object to add a property to
2154 * @name: the name of the property
2155 * @v: pointer to value
2156 * @flags: bitwise-or'd ObjectPropertyFlags
2157 *
2158 * Add an integer property in memory. This function will add a
2159 * property of type 'uint16'.
2160 *
2161 * Returns: The newly added property on success, or %NULL on failure.
2162 */
2163 ObjectProperty *object_property_add_uint16_ptr(Object *obj, const char *name,
2164 const uint16_t *v,
2165 ObjectPropertyFlags flags);
2166
2167 ObjectProperty *object_class_property_add_uint16_ptr(ObjectClass *klass,
2168 const char *name,
2169 const uint16_t *v,
2170 ObjectPropertyFlags flags);
2171
2172 /**
2173 * object_property_add_uint32_ptr:
2174 * @obj: the object to add a property to
2175 * @name: the name of the property
2176 * @v: pointer to value
2177 * @flags: bitwise-or'd ObjectPropertyFlags
2178 *
2179 * Add an integer property in memory. This function will add a
2180 * property of type 'uint32'.
2181 *
2182 * Returns: The newly added property on success, or %NULL on failure.
2183 */
2184 ObjectProperty *object_property_add_uint32_ptr(Object *obj, const char *name,
2185 const uint32_t *v,
2186 ObjectPropertyFlags flags);
2187
2188 ObjectProperty *object_class_property_add_uint32_ptr(ObjectClass *klass,
2189 const char *name,
2190 const uint32_t *v,
2191 ObjectPropertyFlags flags);
2192
2193 /**
2194 * object_property_add_uint64_ptr:
2195 * @obj: the object to add a property to
2196 * @name: the name of the property
2197 * @v: pointer to value
2198 * @flags: bitwise-or'd ObjectPropertyFlags
2199 *
2200 * Add an integer property in memory. This function will add a
2201 * property of type 'uint64'.
2202 *
2203 * Returns: The newly added property on success, or %NULL on failure.
2204 */
2205 ObjectProperty *object_property_add_uint64_ptr(Object *obj, const char *name,
2206 const uint64_t *v,
2207 ObjectPropertyFlags flags);
2208
2209 ObjectProperty *object_class_property_add_uint64_ptr(ObjectClass *klass,
2210 const char *name,
2211 const uint64_t *v,
2212 ObjectPropertyFlags flags);
2213
2214 /**
2215 * object_property_add_alias:
2216 * @obj: the object to add a property to
2217 * @name: the name of the property
2218 * @target_obj: the object to forward property access to
2219 * @target_name: the name of the property on the forwarded object
2220 *
2221 * Add an alias for a property on an object. This function will add a property
2222 * of the same type as the forwarded property.
2223 *
2224 * The caller must ensure that <code>@target_obj</code> stays alive as long as
2225 * this property exists. In the case of a child object or an alias on the same
2226 * object this will be the case. For aliases to other objects the caller is
2227 * responsible for taking a reference.
2228 *
2229 * Returns: The newly added property on success, or %NULL on failure.
2230 */
2231 ObjectProperty *object_property_add_alias(Object *obj, const char *name,
2232 Object *target_obj, const char *target_name);
2233
2234 /**
2235 * object_property_add_const_link:
2236 * @obj: the object to add a property to
2237 * @name: the name of the property
2238 * @target: the object to be referred by the link
2239 *
2240 * Add an unmodifiable link for a property on an object. This function will
2241 * add a property of type link<TYPE> where TYPE is the type of @target.
2242 *
2243 * The caller must ensure that @target stays alive as long as
2244 * this property exists. In the case @target is a child of @obj,
2245 * this will be the case. Otherwise, the caller is responsible for
2246 * taking a reference.
2247 *
2248 * Returns: The newly added property on success, or %NULL on failure.
2249 */
2250 ObjectProperty *object_property_add_const_link(Object *obj, const char *name,
2251 Object *target);
2252
2253 /**
2254 * object_property_set_description:
2255 * @obj: the object owning the property
2256 * @name: the name of the property
2257 * @description: the description of the property on the object
2258 *
2259 * Set an object property's description.
2260 *
2261 * Returns: %true on success, %false on failure.
2262 */
2263 void object_property_set_description(Object *obj, const char *name,
2264 const char *description);
2265 void object_class_property_set_description(ObjectClass *klass, const char *name,
2266 const char *description);
2267
2268 /**
2269 * object_child_foreach:
2270 * @obj: the object whose children will be navigated
2271 * @fn: the iterator function to be called
2272 * @opaque: an opaque value that will be passed to the iterator
2273 *
2274 * Call @fn passing each child of @obj and @opaque to it, until @fn returns
2275 * non-zero.
2276 *
2277 * It is forbidden to add or remove children from @obj from the @fn
2278 * callback.
2279 *
2280 * Returns: The last value returned by @fn, or 0 if there is no child.
2281 */
2282 int object_child_foreach(Object *obj, int (*fn)(Object *child, void *opaque),
2283 void *opaque);
2284
2285 /**
2286 * object_child_foreach_recursive:
2287 * @obj: the object whose children will be navigated
2288 * @fn: the iterator function to be called
2289 * @opaque: an opaque value that will be passed to the iterator
2290 *
2291 * Call @fn passing each child of @obj and @opaque to it, until @fn returns
2292 * non-zero. Calls recursively, all child nodes of @obj will also be passed
2293 * all the way down to the leaf nodes of the tree. Depth first ordering.
2294 *
2295 * It is forbidden to add or remove children from @obj (or its
2296 * child nodes) from the @fn callback.
2297 *
2298 * Returns: The last value returned by @fn, or 0 if there is no child.
2299 */
2300 int object_child_foreach_recursive(Object *obj,
2301 int (*fn)(Object *child, void *opaque),
2302 void *opaque);
2303 /**
2304 * container_get:
2305 * @root: root of the #path, e.g., object_get_root()
2306 * @path: path to the container
2307 *
2308 * Return a container object whose path is @path. Create more containers
2309 * along the path if necessary.
2310 *
2311 * Returns: the container object.
2312 */
2313 Object *container_get(Object *root, const char *path);
2314
2315 /**
2316 * object_type_get_instance_size:
2317 * @typename: Name of the Type whose instance_size is required
2318 *
2319 * Returns the instance_size of the given @typename.
2320 */
2321 size_t object_type_get_instance_size(const char *typename);
2322
2323 /**
2324 * object_property_help:
2325 * @name: the name of the property
2326 * @type: the type of the property
2327 * @defval: the default value
2328 * @description: description of the property
2329 *
2330 * Returns: a user-friendly formatted string describing the property
2331 * for help purposes.
2332 */
2333 char *object_property_help(const char *name, const char *type,
2334 QObject *defval, const char *description);
2335
2336 G_DEFINE_AUTOPTR_CLEANUP_FUNC(Object, object_unref)
2337
2338 #endif