Don't leak file descriptors
[qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "hw/hw.h"
26 #include "gdbstub.h"
27 #include "kvm.h"
28
29 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30 #define PAGE_SIZE TARGET_PAGE_SIZE
31
32 //#define DEBUG_KVM
33
34 #ifdef DEBUG_KVM
35 #define dprintf(fmt, ...) \
36 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define dprintf(fmt, ...) \
39 do { } while (0)
40 #endif
41
42 typedef struct KVMSlot
43 {
44 target_phys_addr_t start_addr;
45 ram_addr_t memory_size;
46 ram_addr_t phys_offset;
47 int slot;
48 int flags;
49 } KVMSlot;
50
51 typedef struct kvm_dirty_log KVMDirtyLog;
52
53 int kvm_allowed = 0;
54
55 struct KVMState
56 {
57 KVMSlot slots[32];
58 int fd;
59 int vmfd;
60 int regs_modified;
61 int coalesced_mmio;
62 int broken_set_mem_region;
63 int migration_log;
64 #ifdef KVM_CAP_SET_GUEST_DEBUG
65 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
66 #endif
67 int irqchip_in_kernel;
68 int pit_in_kernel;
69 };
70
71 static KVMState *kvm_state;
72
73 static KVMSlot *kvm_alloc_slot(KVMState *s)
74 {
75 int i;
76
77 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
78 /* KVM private memory slots */
79 if (i >= 8 && i < 12)
80 continue;
81 if (s->slots[i].memory_size == 0)
82 return &s->slots[i];
83 }
84
85 fprintf(stderr, "%s: no free slot available\n", __func__);
86 abort();
87 }
88
89 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
90 target_phys_addr_t start_addr,
91 target_phys_addr_t end_addr)
92 {
93 int i;
94
95 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
96 KVMSlot *mem = &s->slots[i];
97
98 if (start_addr == mem->start_addr &&
99 end_addr == mem->start_addr + mem->memory_size) {
100 return mem;
101 }
102 }
103
104 return NULL;
105 }
106
107 /*
108 * Find overlapping slot with lowest start address
109 */
110 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
111 target_phys_addr_t start_addr,
112 target_phys_addr_t end_addr)
113 {
114 KVMSlot *found = NULL;
115 int i;
116
117 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
118 KVMSlot *mem = &s->slots[i];
119
120 if (mem->memory_size == 0 ||
121 (found && found->start_addr < mem->start_addr)) {
122 continue;
123 }
124
125 if (end_addr > mem->start_addr &&
126 start_addr < mem->start_addr + mem->memory_size) {
127 found = mem;
128 }
129 }
130
131 return found;
132 }
133
134 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
135 {
136 struct kvm_userspace_memory_region mem;
137
138 mem.slot = slot->slot;
139 mem.guest_phys_addr = slot->start_addr;
140 mem.memory_size = slot->memory_size;
141 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
142 mem.flags = slot->flags;
143 if (s->migration_log) {
144 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
145 }
146 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
147 }
148
149 static void kvm_reset_vcpu(void *opaque)
150 {
151 CPUState *env = opaque;
152
153 kvm_arch_reset_vcpu(env);
154 if (kvm_arch_put_registers(env)) {
155 fprintf(stderr, "Fatal: kvm vcpu reset failed\n");
156 abort();
157 }
158 }
159
160 int kvm_irqchip_in_kernel(void)
161 {
162 return kvm_state->irqchip_in_kernel;
163 }
164
165 int kvm_pit_in_kernel(void)
166 {
167 return kvm_state->pit_in_kernel;
168 }
169
170
171 int kvm_init_vcpu(CPUState *env)
172 {
173 KVMState *s = kvm_state;
174 long mmap_size;
175 int ret;
176
177 dprintf("kvm_init_vcpu\n");
178
179 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
180 if (ret < 0) {
181 dprintf("kvm_create_vcpu failed\n");
182 goto err;
183 }
184
185 env->kvm_fd = ret;
186 env->kvm_state = s;
187
188 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
189 if (mmap_size < 0) {
190 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
191 goto err;
192 }
193
194 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
195 env->kvm_fd, 0);
196 if (env->kvm_run == MAP_FAILED) {
197 ret = -errno;
198 dprintf("mmap'ing vcpu state failed\n");
199 goto err;
200 }
201
202 ret = kvm_arch_init_vcpu(env);
203 if (ret == 0) {
204 qemu_register_reset(kvm_reset_vcpu, env);
205 kvm_arch_reset_vcpu(env);
206 ret = kvm_arch_put_registers(env);
207 }
208 err:
209 return ret;
210 }
211
212 /*
213 * dirty pages logging control
214 */
215 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
216 ram_addr_t size, int flags, int mask)
217 {
218 KVMState *s = kvm_state;
219 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
220 int old_flags;
221
222 if (mem == NULL) {
223 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
224 TARGET_FMT_plx "\n", __func__, phys_addr,
225 (target_phys_addr_t)(phys_addr + size - 1));
226 return -EINVAL;
227 }
228
229 old_flags = mem->flags;
230
231 flags = (mem->flags & ~mask) | flags;
232 mem->flags = flags;
233
234 /* If nothing changed effectively, no need to issue ioctl */
235 if (s->migration_log) {
236 flags |= KVM_MEM_LOG_DIRTY_PAGES;
237 }
238 if (flags == old_flags) {
239 return 0;
240 }
241
242 return kvm_set_user_memory_region(s, mem);
243 }
244
245 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
246 {
247 return kvm_dirty_pages_log_change(phys_addr, size,
248 KVM_MEM_LOG_DIRTY_PAGES,
249 KVM_MEM_LOG_DIRTY_PAGES);
250 }
251
252 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
253 {
254 return kvm_dirty_pages_log_change(phys_addr, size,
255 0,
256 KVM_MEM_LOG_DIRTY_PAGES);
257 }
258
259 int kvm_set_migration_log(int enable)
260 {
261 KVMState *s = kvm_state;
262 KVMSlot *mem;
263 int i, err;
264
265 s->migration_log = enable;
266
267 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
268 mem = &s->slots[i];
269
270 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
271 continue;
272 }
273 err = kvm_set_user_memory_region(s, mem);
274 if (err) {
275 return err;
276 }
277 }
278 return 0;
279 }
280
281 static int test_le_bit(unsigned long nr, unsigned char *addr)
282 {
283 return (addr[nr >> 3] >> (nr & 7)) & 1;
284 }
285
286 /**
287 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
288 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
289 * This means all bits are set to dirty.
290 *
291 * @start_add: start of logged region.
292 * @end_addr: end of logged region.
293 */
294 int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
295 target_phys_addr_t end_addr)
296 {
297 KVMState *s = kvm_state;
298 unsigned long size, allocated_size = 0;
299 target_phys_addr_t phys_addr;
300 ram_addr_t addr;
301 KVMDirtyLog d;
302 KVMSlot *mem;
303 int ret = 0;
304
305 d.dirty_bitmap = NULL;
306 while (start_addr < end_addr) {
307 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
308 if (mem == NULL) {
309 break;
310 }
311
312 size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
313 if (!d.dirty_bitmap) {
314 d.dirty_bitmap = qemu_malloc(size);
315 } else if (size > allocated_size) {
316 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
317 }
318 allocated_size = size;
319 memset(d.dirty_bitmap, 0, allocated_size);
320
321 d.slot = mem->slot;
322
323 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
324 dprintf("ioctl failed %d\n", errno);
325 ret = -1;
326 break;
327 }
328
329 for (phys_addr = mem->start_addr, addr = mem->phys_offset;
330 phys_addr < mem->start_addr + mem->memory_size;
331 phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
332 unsigned char *bitmap = (unsigned char *)d.dirty_bitmap;
333 unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
334
335 if (test_le_bit(nr, bitmap)) {
336 cpu_physical_memory_set_dirty(addr);
337 }
338 }
339 start_addr = phys_addr;
340 }
341 qemu_free(d.dirty_bitmap);
342
343 return ret;
344 }
345
346 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
347 {
348 int ret = -ENOSYS;
349 #ifdef KVM_CAP_COALESCED_MMIO
350 KVMState *s = kvm_state;
351
352 if (s->coalesced_mmio) {
353 struct kvm_coalesced_mmio_zone zone;
354
355 zone.addr = start;
356 zone.size = size;
357
358 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
359 }
360 #endif
361
362 return ret;
363 }
364
365 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
366 {
367 int ret = -ENOSYS;
368 #ifdef KVM_CAP_COALESCED_MMIO
369 KVMState *s = kvm_state;
370
371 if (s->coalesced_mmio) {
372 struct kvm_coalesced_mmio_zone zone;
373
374 zone.addr = start;
375 zone.size = size;
376
377 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
378 }
379 #endif
380
381 return ret;
382 }
383
384 int kvm_check_extension(KVMState *s, unsigned int extension)
385 {
386 int ret;
387
388 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
389 if (ret < 0) {
390 ret = 0;
391 }
392
393 return ret;
394 }
395
396 int kvm_init(int smp_cpus)
397 {
398 static const char upgrade_note[] =
399 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
400 "(see http://sourceforge.net/projects/kvm).\n";
401 KVMState *s;
402 int ret;
403 int i;
404
405 if (smp_cpus > 1) {
406 fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
407 return -EINVAL;
408 }
409
410 s = qemu_mallocz(sizeof(KVMState));
411
412 #ifdef KVM_CAP_SET_GUEST_DEBUG
413 QTAILQ_INIT(&s->kvm_sw_breakpoints);
414 #endif
415 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
416 s->slots[i].slot = i;
417
418 s->vmfd = -1;
419 s->fd = qemu_open("/dev/kvm", O_RDWR);
420 if (s->fd == -1) {
421 fprintf(stderr, "Could not access KVM kernel module: %m\n");
422 ret = -errno;
423 goto err;
424 }
425
426 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
427 if (ret < KVM_API_VERSION) {
428 if (ret > 0)
429 ret = -EINVAL;
430 fprintf(stderr, "kvm version too old\n");
431 goto err;
432 }
433
434 if (ret > KVM_API_VERSION) {
435 ret = -EINVAL;
436 fprintf(stderr, "kvm version not supported\n");
437 goto err;
438 }
439
440 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
441 if (s->vmfd < 0)
442 goto err;
443
444 /* initially, KVM allocated its own memory and we had to jump through
445 * hooks to make phys_ram_base point to this. Modern versions of KVM
446 * just use a user allocated buffer so we can use regular pages
447 * unmodified. Make sure we have a sufficiently modern version of KVM.
448 */
449 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
450 ret = -EINVAL;
451 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
452 upgrade_note);
453 goto err;
454 }
455
456 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
457 * destroyed properly. Since we rely on this capability, refuse to work
458 * with any kernel without this capability. */
459 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
460 ret = -EINVAL;
461
462 fprintf(stderr,
463 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
464 upgrade_note);
465 goto err;
466 }
467
468 #ifdef KVM_CAP_COALESCED_MMIO
469 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
470 #else
471 s->coalesced_mmio = 0;
472 #endif
473
474 s->broken_set_mem_region = 1;
475 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
476 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
477 if (ret > 0) {
478 s->broken_set_mem_region = 0;
479 }
480 #endif
481
482 ret = kvm_arch_init(s, smp_cpus);
483 if (ret < 0)
484 goto err;
485
486 kvm_state = s;
487
488 return 0;
489
490 err:
491 if (s) {
492 if (s->vmfd != -1)
493 close(s->vmfd);
494 if (s->fd != -1)
495 close(s->fd);
496 }
497 qemu_free(s);
498
499 return ret;
500 }
501
502 static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
503 uint32_t count)
504 {
505 int i;
506 uint8_t *ptr = data;
507
508 for (i = 0; i < count; i++) {
509 if (direction == KVM_EXIT_IO_IN) {
510 switch (size) {
511 case 1:
512 stb_p(ptr, cpu_inb(port));
513 break;
514 case 2:
515 stw_p(ptr, cpu_inw(port));
516 break;
517 case 4:
518 stl_p(ptr, cpu_inl(port));
519 break;
520 }
521 } else {
522 switch (size) {
523 case 1:
524 cpu_outb(port, ldub_p(ptr));
525 break;
526 case 2:
527 cpu_outw(port, lduw_p(ptr));
528 break;
529 case 4:
530 cpu_outl(port, ldl_p(ptr));
531 break;
532 }
533 }
534
535 ptr += size;
536 }
537
538 return 1;
539 }
540
541 static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
542 {
543 #ifdef KVM_CAP_COALESCED_MMIO
544 KVMState *s = kvm_state;
545 if (s->coalesced_mmio) {
546 struct kvm_coalesced_mmio_ring *ring;
547
548 ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
549 while (ring->first != ring->last) {
550 struct kvm_coalesced_mmio *ent;
551
552 ent = &ring->coalesced_mmio[ring->first];
553
554 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
555 /* FIXME smp_wmb() */
556 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
557 }
558 }
559 #endif
560 }
561
562 void kvm_cpu_synchronize_state(CPUState *env)
563 {
564 if (!env->kvm_state->regs_modified) {
565 kvm_arch_get_registers(env);
566 env->kvm_state->regs_modified = 1;
567 }
568 }
569
570 int kvm_cpu_exec(CPUState *env)
571 {
572 struct kvm_run *run = env->kvm_run;
573 int ret;
574
575 dprintf("kvm_cpu_exec()\n");
576
577 do {
578 if (env->exit_request) {
579 dprintf("interrupt exit requested\n");
580 ret = 0;
581 break;
582 }
583
584 if (env->kvm_state->regs_modified) {
585 kvm_arch_put_registers(env);
586 env->kvm_state->regs_modified = 0;
587 }
588
589 kvm_arch_pre_run(env, run);
590 qemu_mutex_unlock_iothread();
591 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
592 qemu_mutex_lock_iothread();
593 kvm_arch_post_run(env, run);
594
595 if (ret == -EINTR || ret == -EAGAIN) {
596 dprintf("io window exit\n");
597 ret = 0;
598 break;
599 }
600
601 if (ret < 0) {
602 dprintf("kvm run failed %s\n", strerror(-ret));
603 abort();
604 }
605
606 kvm_run_coalesced_mmio(env, run);
607
608 ret = 0; /* exit loop */
609 switch (run->exit_reason) {
610 case KVM_EXIT_IO:
611 dprintf("handle_io\n");
612 ret = kvm_handle_io(run->io.port,
613 (uint8_t *)run + run->io.data_offset,
614 run->io.direction,
615 run->io.size,
616 run->io.count);
617 break;
618 case KVM_EXIT_MMIO:
619 dprintf("handle_mmio\n");
620 cpu_physical_memory_rw(run->mmio.phys_addr,
621 run->mmio.data,
622 run->mmio.len,
623 run->mmio.is_write);
624 ret = 1;
625 break;
626 case KVM_EXIT_IRQ_WINDOW_OPEN:
627 dprintf("irq_window_open\n");
628 break;
629 case KVM_EXIT_SHUTDOWN:
630 dprintf("shutdown\n");
631 qemu_system_reset_request();
632 ret = 1;
633 break;
634 case KVM_EXIT_UNKNOWN:
635 dprintf("kvm_exit_unknown\n");
636 break;
637 case KVM_EXIT_FAIL_ENTRY:
638 dprintf("kvm_exit_fail_entry\n");
639 break;
640 case KVM_EXIT_EXCEPTION:
641 dprintf("kvm_exit_exception\n");
642 break;
643 case KVM_EXIT_DEBUG:
644 dprintf("kvm_exit_debug\n");
645 #ifdef KVM_CAP_SET_GUEST_DEBUG
646 if (kvm_arch_debug(&run->debug.arch)) {
647 gdb_set_stop_cpu(env);
648 vm_stop(EXCP_DEBUG);
649 env->exception_index = EXCP_DEBUG;
650 return 0;
651 }
652 /* re-enter, this exception was guest-internal */
653 ret = 1;
654 #endif /* KVM_CAP_SET_GUEST_DEBUG */
655 break;
656 default:
657 dprintf("kvm_arch_handle_exit\n");
658 ret = kvm_arch_handle_exit(env, run);
659 break;
660 }
661 } while (ret > 0);
662
663 if (env->exit_request) {
664 env->exit_request = 0;
665 env->exception_index = EXCP_INTERRUPT;
666 }
667
668 return ret;
669 }
670
671 void kvm_set_phys_mem(target_phys_addr_t start_addr,
672 ram_addr_t size,
673 ram_addr_t phys_offset)
674 {
675 KVMState *s = kvm_state;
676 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
677 KVMSlot *mem, old;
678 int err;
679
680 if (start_addr & ~TARGET_PAGE_MASK) {
681 if (flags >= IO_MEM_UNASSIGNED) {
682 if (!kvm_lookup_overlapping_slot(s, start_addr,
683 start_addr + size)) {
684 return;
685 }
686 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
687 } else {
688 fprintf(stderr, "Only page-aligned memory slots supported\n");
689 }
690 abort();
691 }
692
693 /* KVM does not support read-only slots */
694 phys_offset &= ~IO_MEM_ROM;
695
696 while (1) {
697 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
698 if (!mem) {
699 break;
700 }
701
702 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
703 (start_addr + size <= mem->start_addr + mem->memory_size) &&
704 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
705 /* The new slot fits into the existing one and comes with
706 * identical parameters - nothing to be done. */
707 return;
708 }
709
710 old = *mem;
711
712 /* unregister the overlapping slot */
713 mem->memory_size = 0;
714 err = kvm_set_user_memory_region(s, mem);
715 if (err) {
716 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
717 __func__, strerror(-err));
718 abort();
719 }
720
721 /* Workaround for older KVM versions: we can't join slots, even not by
722 * unregistering the previous ones and then registering the larger
723 * slot. We have to maintain the existing fragmentation. Sigh.
724 *
725 * This workaround assumes that the new slot starts at the same
726 * address as the first existing one. If not or if some overlapping
727 * slot comes around later, we will fail (not seen in practice so far)
728 * - and actually require a recent KVM version. */
729 if (s->broken_set_mem_region &&
730 old.start_addr == start_addr && old.memory_size < size &&
731 flags < IO_MEM_UNASSIGNED) {
732 mem = kvm_alloc_slot(s);
733 mem->memory_size = old.memory_size;
734 mem->start_addr = old.start_addr;
735 mem->phys_offset = old.phys_offset;
736 mem->flags = 0;
737
738 err = kvm_set_user_memory_region(s, mem);
739 if (err) {
740 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
741 strerror(-err));
742 abort();
743 }
744
745 start_addr += old.memory_size;
746 phys_offset += old.memory_size;
747 size -= old.memory_size;
748 continue;
749 }
750
751 /* register prefix slot */
752 if (old.start_addr < start_addr) {
753 mem = kvm_alloc_slot(s);
754 mem->memory_size = start_addr - old.start_addr;
755 mem->start_addr = old.start_addr;
756 mem->phys_offset = old.phys_offset;
757 mem->flags = 0;
758
759 err = kvm_set_user_memory_region(s, mem);
760 if (err) {
761 fprintf(stderr, "%s: error registering prefix slot: %s\n",
762 __func__, strerror(-err));
763 abort();
764 }
765 }
766
767 /* register suffix slot */
768 if (old.start_addr + old.memory_size > start_addr + size) {
769 ram_addr_t size_delta;
770
771 mem = kvm_alloc_slot(s);
772 mem->start_addr = start_addr + size;
773 size_delta = mem->start_addr - old.start_addr;
774 mem->memory_size = old.memory_size - size_delta;
775 mem->phys_offset = old.phys_offset + size_delta;
776 mem->flags = 0;
777
778 err = kvm_set_user_memory_region(s, mem);
779 if (err) {
780 fprintf(stderr, "%s: error registering suffix slot: %s\n",
781 __func__, strerror(-err));
782 abort();
783 }
784 }
785 }
786
787 /* in case the KVM bug workaround already "consumed" the new slot */
788 if (!size)
789 return;
790
791 /* KVM does not need to know about this memory */
792 if (flags >= IO_MEM_UNASSIGNED)
793 return;
794
795 mem = kvm_alloc_slot(s);
796 mem->memory_size = size;
797 mem->start_addr = start_addr;
798 mem->phys_offset = phys_offset;
799 mem->flags = 0;
800
801 err = kvm_set_user_memory_region(s, mem);
802 if (err) {
803 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
804 strerror(-err));
805 abort();
806 }
807 }
808
809 int kvm_ioctl(KVMState *s, int type, ...)
810 {
811 int ret;
812 void *arg;
813 va_list ap;
814
815 va_start(ap, type);
816 arg = va_arg(ap, void *);
817 va_end(ap);
818
819 ret = ioctl(s->fd, type, arg);
820 if (ret == -1)
821 ret = -errno;
822
823 return ret;
824 }
825
826 int kvm_vm_ioctl(KVMState *s, int type, ...)
827 {
828 int ret;
829 void *arg;
830 va_list ap;
831
832 va_start(ap, type);
833 arg = va_arg(ap, void *);
834 va_end(ap);
835
836 ret = ioctl(s->vmfd, type, arg);
837 if (ret == -1)
838 ret = -errno;
839
840 return ret;
841 }
842
843 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
844 {
845 int ret;
846 void *arg;
847 va_list ap;
848
849 va_start(ap, type);
850 arg = va_arg(ap, void *);
851 va_end(ap);
852
853 ret = ioctl(env->kvm_fd, type, arg);
854 if (ret == -1)
855 ret = -errno;
856
857 return ret;
858 }
859
860 int kvm_has_sync_mmu(void)
861 {
862 #ifdef KVM_CAP_SYNC_MMU
863 KVMState *s = kvm_state;
864
865 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
866 #else
867 return 0;
868 #endif
869 }
870
871 void kvm_setup_guest_memory(void *start, size_t size)
872 {
873 if (!kvm_has_sync_mmu()) {
874 #ifdef MADV_DONTFORK
875 int ret = madvise(start, size, MADV_DONTFORK);
876
877 if (ret) {
878 perror("madvice");
879 exit(1);
880 }
881 #else
882 fprintf(stderr,
883 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
884 exit(1);
885 #endif
886 }
887 }
888
889 #ifdef KVM_CAP_SET_GUEST_DEBUG
890 static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
891 {
892 #ifdef CONFIG_IOTHREAD
893 if (env == cpu_single_env) {
894 func(data);
895 return;
896 }
897 abort();
898 #else
899 func(data);
900 #endif
901 }
902
903 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
904 target_ulong pc)
905 {
906 struct kvm_sw_breakpoint *bp;
907
908 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
909 if (bp->pc == pc)
910 return bp;
911 }
912 return NULL;
913 }
914
915 int kvm_sw_breakpoints_active(CPUState *env)
916 {
917 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
918 }
919
920 struct kvm_set_guest_debug_data {
921 struct kvm_guest_debug dbg;
922 CPUState *env;
923 int err;
924 };
925
926 static void kvm_invoke_set_guest_debug(void *data)
927 {
928 struct kvm_set_guest_debug_data *dbg_data = data;
929 CPUState *env = dbg_data->env;
930
931 if (env->kvm_state->regs_modified) {
932 kvm_arch_put_registers(env);
933 env->kvm_state->regs_modified = 0;
934 }
935 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
936 }
937
938 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
939 {
940 struct kvm_set_guest_debug_data data;
941
942 data.dbg.control = 0;
943 if (env->singlestep_enabled)
944 data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
945
946 kvm_arch_update_guest_debug(env, &data.dbg);
947 data.dbg.control |= reinject_trap;
948 data.env = env;
949
950 on_vcpu(env, kvm_invoke_set_guest_debug, &data);
951 return data.err;
952 }
953
954 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
955 target_ulong len, int type)
956 {
957 struct kvm_sw_breakpoint *bp;
958 CPUState *env;
959 int err;
960
961 if (type == GDB_BREAKPOINT_SW) {
962 bp = kvm_find_sw_breakpoint(current_env, addr);
963 if (bp) {
964 bp->use_count++;
965 return 0;
966 }
967
968 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
969 if (!bp)
970 return -ENOMEM;
971
972 bp->pc = addr;
973 bp->use_count = 1;
974 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
975 if (err) {
976 free(bp);
977 return err;
978 }
979
980 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
981 bp, entry);
982 } else {
983 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
984 if (err)
985 return err;
986 }
987
988 for (env = first_cpu; env != NULL; env = env->next_cpu) {
989 err = kvm_update_guest_debug(env, 0);
990 if (err)
991 return err;
992 }
993 return 0;
994 }
995
996 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
997 target_ulong len, int type)
998 {
999 struct kvm_sw_breakpoint *bp;
1000 CPUState *env;
1001 int err;
1002
1003 if (type == GDB_BREAKPOINT_SW) {
1004 bp = kvm_find_sw_breakpoint(current_env, addr);
1005 if (!bp)
1006 return -ENOENT;
1007
1008 if (bp->use_count > 1) {
1009 bp->use_count--;
1010 return 0;
1011 }
1012
1013 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1014 if (err)
1015 return err;
1016
1017 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1018 qemu_free(bp);
1019 } else {
1020 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1021 if (err)
1022 return err;
1023 }
1024
1025 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1026 err = kvm_update_guest_debug(env, 0);
1027 if (err)
1028 return err;
1029 }
1030 return 0;
1031 }
1032
1033 void kvm_remove_all_breakpoints(CPUState *current_env)
1034 {
1035 struct kvm_sw_breakpoint *bp, *next;
1036 KVMState *s = current_env->kvm_state;
1037 CPUState *env;
1038
1039 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1040 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1041 /* Try harder to find a CPU that currently sees the breakpoint. */
1042 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1043 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1044 break;
1045 }
1046 }
1047 }
1048 kvm_arch_remove_all_hw_breakpoints();
1049
1050 for (env = first_cpu; env != NULL; env = env->next_cpu)
1051 kvm_update_guest_debug(env, 0);
1052 }
1053
1054 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1055
1056 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1057 {
1058 return -EINVAL;
1059 }
1060
1061 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1062 target_ulong len, int type)
1063 {
1064 return -EINVAL;
1065 }
1066
1067 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1068 target_ulong len, int type)
1069 {
1070 return -EINVAL;
1071 }
1072
1073 void kvm_remove_all_breakpoints(CPUState *current_env)
1074 {
1075 }
1076 #endif /* !KVM_CAP_SET_GUEST_DEBUG */