Update version for v6.2.0-rc3 release
[qemu.git] / linux-headers / linux / vfio.h
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 /*
3 * VFIO API definition
4 *
5 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
6 * Author: Alex Williamson <alex.williamson@redhat.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12 #ifndef VFIO_H
13 #define VFIO_H
14
15 #include <linux/types.h>
16 #include <linux/ioctl.h>
17
18 #define VFIO_API_VERSION 0
19
20
21 /* Kernel & User level defines for VFIO IOCTLs. */
22
23 /* Extensions */
24
25 #define VFIO_TYPE1_IOMMU 1
26 #define VFIO_SPAPR_TCE_IOMMU 2
27 #define VFIO_TYPE1v2_IOMMU 3
28 /*
29 * IOMMU enforces DMA cache coherence (ex. PCIe NoSnoop stripping). This
30 * capability is subject to change as groups are added or removed.
31 */
32 #define VFIO_DMA_CC_IOMMU 4
33
34 /* Check if EEH is supported */
35 #define VFIO_EEH 5
36
37 /* Two-stage IOMMU */
38 #define VFIO_TYPE1_NESTING_IOMMU 6 /* Implies v2 */
39
40 #define VFIO_SPAPR_TCE_v2_IOMMU 7
41
42 /*
43 * The No-IOMMU IOMMU offers no translation or isolation for devices and
44 * supports no ioctls outside of VFIO_CHECK_EXTENSION. Use of VFIO's No-IOMMU
45 * code will taint the host kernel and should be used with extreme caution.
46 */
47 #define VFIO_NOIOMMU_IOMMU 8
48
49 /*
50 * The IOCTL interface is designed for extensibility by embedding the
51 * structure length (argsz) and flags into structures passed between
52 * kernel and userspace. We therefore use the _IO() macro for these
53 * defines to avoid implicitly embedding a size into the ioctl request.
54 * As structure fields are added, argsz will increase to match and flag
55 * bits will be defined to indicate additional fields with valid data.
56 * It's *always* the caller's responsibility to indicate the size of
57 * the structure passed by setting argsz appropriately.
58 */
59
60 #define VFIO_TYPE (';')
61 #define VFIO_BASE 100
62
63 /*
64 * For extension of INFO ioctls, VFIO makes use of a capability chain
65 * designed after PCI/e capabilities. A flag bit indicates whether
66 * this capability chain is supported and a field defined in the fixed
67 * structure defines the offset of the first capability in the chain.
68 * This field is only valid when the corresponding bit in the flags
69 * bitmap is set. This offset field is relative to the start of the
70 * INFO buffer, as is the next field within each capability header.
71 * The id within the header is a shared address space per INFO ioctl,
72 * while the version field is specific to the capability id. The
73 * contents following the header are specific to the capability id.
74 */
75 struct vfio_info_cap_header {
76 __u16 id; /* Identifies capability */
77 __u16 version; /* Version specific to the capability ID */
78 __u32 next; /* Offset of next capability */
79 };
80
81 /*
82 * Callers of INFO ioctls passing insufficiently sized buffers will see
83 * the capability chain flag bit set, a zero value for the first capability
84 * offset (if available within the provided argsz), and argsz will be
85 * updated to report the necessary buffer size. For compatibility, the
86 * INFO ioctl will not report error in this case, but the capability chain
87 * will not be available.
88 */
89
90 /* -------- IOCTLs for VFIO file descriptor (/dev/vfio/vfio) -------- */
91
92 /**
93 * VFIO_GET_API_VERSION - _IO(VFIO_TYPE, VFIO_BASE + 0)
94 *
95 * Report the version of the VFIO API. This allows us to bump the entire
96 * API version should we later need to add or change features in incompatible
97 * ways.
98 * Return: VFIO_API_VERSION
99 * Availability: Always
100 */
101 #define VFIO_GET_API_VERSION _IO(VFIO_TYPE, VFIO_BASE + 0)
102
103 /**
104 * VFIO_CHECK_EXTENSION - _IOW(VFIO_TYPE, VFIO_BASE + 1, __u32)
105 *
106 * Check whether an extension is supported.
107 * Return: 0 if not supported, 1 (or some other positive integer) if supported.
108 * Availability: Always
109 */
110 #define VFIO_CHECK_EXTENSION _IO(VFIO_TYPE, VFIO_BASE + 1)
111
112 /**
113 * VFIO_SET_IOMMU - _IOW(VFIO_TYPE, VFIO_BASE + 2, __s32)
114 *
115 * Set the iommu to the given type. The type must be supported by an
116 * iommu driver as verified by calling CHECK_EXTENSION using the same
117 * type. A group must be set to this file descriptor before this
118 * ioctl is available. The IOMMU interfaces enabled by this call are
119 * specific to the value set.
120 * Return: 0 on success, -errno on failure
121 * Availability: When VFIO group attached
122 */
123 #define VFIO_SET_IOMMU _IO(VFIO_TYPE, VFIO_BASE + 2)
124
125 /* -------- IOCTLs for GROUP file descriptors (/dev/vfio/$GROUP) -------- */
126
127 /**
128 * VFIO_GROUP_GET_STATUS - _IOR(VFIO_TYPE, VFIO_BASE + 3,
129 * struct vfio_group_status)
130 *
131 * Retrieve information about the group. Fills in provided
132 * struct vfio_group_info. Caller sets argsz.
133 * Return: 0 on succes, -errno on failure.
134 * Availability: Always
135 */
136 struct vfio_group_status {
137 __u32 argsz;
138 __u32 flags;
139 #define VFIO_GROUP_FLAGS_VIABLE (1 << 0)
140 #define VFIO_GROUP_FLAGS_CONTAINER_SET (1 << 1)
141 };
142 #define VFIO_GROUP_GET_STATUS _IO(VFIO_TYPE, VFIO_BASE + 3)
143
144 /**
145 * VFIO_GROUP_SET_CONTAINER - _IOW(VFIO_TYPE, VFIO_BASE + 4, __s32)
146 *
147 * Set the container for the VFIO group to the open VFIO file
148 * descriptor provided. Groups may only belong to a single
149 * container. Containers may, at their discretion, support multiple
150 * groups. Only when a container is set are all of the interfaces
151 * of the VFIO file descriptor and the VFIO group file descriptor
152 * available to the user.
153 * Return: 0 on success, -errno on failure.
154 * Availability: Always
155 */
156 #define VFIO_GROUP_SET_CONTAINER _IO(VFIO_TYPE, VFIO_BASE + 4)
157
158 /**
159 * VFIO_GROUP_UNSET_CONTAINER - _IO(VFIO_TYPE, VFIO_BASE + 5)
160 *
161 * Remove the group from the attached container. This is the
162 * opposite of the SET_CONTAINER call and returns the group to
163 * an initial state. All device file descriptors must be released
164 * prior to calling this interface. When removing the last group
165 * from a container, the IOMMU will be disabled and all state lost,
166 * effectively also returning the VFIO file descriptor to an initial
167 * state.
168 * Return: 0 on success, -errno on failure.
169 * Availability: When attached to container
170 */
171 #define VFIO_GROUP_UNSET_CONTAINER _IO(VFIO_TYPE, VFIO_BASE + 5)
172
173 /**
174 * VFIO_GROUP_GET_DEVICE_FD - _IOW(VFIO_TYPE, VFIO_BASE + 6, char)
175 *
176 * Return a new file descriptor for the device object described by
177 * the provided string. The string should match a device listed in
178 * the devices subdirectory of the IOMMU group sysfs entry. The
179 * group containing the device must already be added to this context.
180 * Return: new file descriptor on success, -errno on failure.
181 * Availability: When attached to container
182 */
183 #define VFIO_GROUP_GET_DEVICE_FD _IO(VFIO_TYPE, VFIO_BASE + 6)
184
185 /* --------------- IOCTLs for DEVICE file descriptors --------------- */
186
187 /**
188 * VFIO_DEVICE_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 7,
189 * struct vfio_device_info)
190 *
191 * Retrieve information about the device. Fills in provided
192 * struct vfio_device_info. Caller sets argsz.
193 * Return: 0 on success, -errno on failure.
194 */
195 struct vfio_device_info {
196 __u32 argsz;
197 __u32 flags;
198 #define VFIO_DEVICE_FLAGS_RESET (1 << 0) /* Device supports reset */
199 #define VFIO_DEVICE_FLAGS_PCI (1 << 1) /* vfio-pci device */
200 #define VFIO_DEVICE_FLAGS_PLATFORM (1 << 2) /* vfio-platform device */
201 #define VFIO_DEVICE_FLAGS_AMBA (1 << 3) /* vfio-amba device */
202 #define VFIO_DEVICE_FLAGS_CCW (1 << 4) /* vfio-ccw device */
203 #define VFIO_DEVICE_FLAGS_AP (1 << 5) /* vfio-ap device */
204 #define VFIO_DEVICE_FLAGS_FSL_MC (1 << 6) /* vfio-fsl-mc device */
205 #define VFIO_DEVICE_FLAGS_CAPS (1 << 7) /* Info supports caps */
206 __u32 num_regions; /* Max region index + 1 */
207 __u32 num_irqs; /* Max IRQ index + 1 */
208 __u32 cap_offset; /* Offset within info struct of first cap */
209 };
210 #define VFIO_DEVICE_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 7)
211
212 /*
213 * Vendor driver using Mediated device framework should provide device_api
214 * attribute in supported type attribute groups. Device API string should be one
215 * of the following corresponding to device flags in vfio_device_info structure.
216 */
217
218 #define VFIO_DEVICE_API_PCI_STRING "vfio-pci"
219 #define VFIO_DEVICE_API_PLATFORM_STRING "vfio-platform"
220 #define VFIO_DEVICE_API_AMBA_STRING "vfio-amba"
221 #define VFIO_DEVICE_API_CCW_STRING "vfio-ccw"
222 #define VFIO_DEVICE_API_AP_STRING "vfio-ap"
223
224 /*
225 * The following capabilities are unique to s390 zPCI devices. Their contents
226 * are further-defined in vfio_zdev.h
227 */
228 #define VFIO_DEVICE_INFO_CAP_ZPCI_BASE 1
229 #define VFIO_DEVICE_INFO_CAP_ZPCI_GROUP 2
230 #define VFIO_DEVICE_INFO_CAP_ZPCI_UTIL 3
231 #define VFIO_DEVICE_INFO_CAP_ZPCI_PFIP 4
232
233 /**
234 * VFIO_DEVICE_GET_REGION_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 8,
235 * struct vfio_region_info)
236 *
237 * Retrieve information about a device region. Caller provides
238 * struct vfio_region_info with index value set. Caller sets argsz.
239 * Implementation of region mapping is bus driver specific. This is
240 * intended to describe MMIO, I/O port, as well as bus specific
241 * regions (ex. PCI config space). Zero sized regions may be used
242 * to describe unimplemented regions (ex. unimplemented PCI BARs).
243 * Return: 0 on success, -errno on failure.
244 */
245 struct vfio_region_info {
246 __u32 argsz;
247 __u32 flags;
248 #define VFIO_REGION_INFO_FLAG_READ (1 << 0) /* Region supports read */
249 #define VFIO_REGION_INFO_FLAG_WRITE (1 << 1) /* Region supports write */
250 #define VFIO_REGION_INFO_FLAG_MMAP (1 << 2) /* Region supports mmap */
251 #define VFIO_REGION_INFO_FLAG_CAPS (1 << 3) /* Info supports caps */
252 __u32 index; /* Region index */
253 __u32 cap_offset; /* Offset within info struct of first cap */
254 __u64 size; /* Region size (bytes) */
255 __u64 offset; /* Region offset from start of device fd */
256 };
257 #define VFIO_DEVICE_GET_REGION_INFO _IO(VFIO_TYPE, VFIO_BASE + 8)
258
259 /*
260 * The sparse mmap capability allows finer granularity of specifying areas
261 * within a region with mmap support. When specified, the user should only
262 * mmap the offset ranges specified by the areas array. mmaps outside of the
263 * areas specified may fail (such as the range covering a PCI MSI-X table) or
264 * may result in improper device behavior.
265 *
266 * The structures below define version 1 of this capability.
267 */
268 #define VFIO_REGION_INFO_CAP_SPARSE_MMAP 1
269
270 struct vfio_region_sparse_mmap_area {
271 __u64 offset; /* Offset of mmap'able area within region */
272 __u64 size; /* Size of mmap'able area */
273 };
274
275 struct vfio_region_info_cap_sparse_mmap {
276 struct vfio_info_cap_header header;
277 __u32 nr_areas;
278 __u32 reserved;
279 struct vfio_region_sparse_mmap_area areas[];
280 };
281
282 /*
283 * The device specific type capability allows regions unique to a specific
284 * device or class of devices to be exposed. This helps solve the problem for
285 * vfio bus drivers of defining which region indexes correspond to which region
286 * on the device, without needing to resort to static indexes, as done by
287 * vfio-pci. For instance, if we were to go back in time, we might remove
288 * VFIO_PCI_VGA_REGION_INDEX and let vfio-pci simply define that all indexes
289 * greater than or equal to VFIO_PCI_NUM_REGIONS are device specific and we'd
290 * make a "VGA" device specific type to describe the VGA access space. This
291 * means that non-VGA devices wouldn't need to waste this index, and thus the
292 * address space associated with it due to implementation of device file
293 * descriptor offsets in vfio-pci.
294 *
295 * The current implementation is now part of the user ABI, so we can't use this
296 * for VGA, but there are other upcoming use cases, such as opregions for Intel
297 * IGD devices and framebuffers for vGPU devices. We missed VGA, but we'll
298 * use this for future additions.
299 *
300 * The structure below defines version 1 of this capability.
301 */
302 #define VFIO_REGION_INFO_CAP_TYPE 2
303
304 struct vfio_region_info_cap_type {
305 struct vfio_info_cap_header header;
306 __u32 type; /* global per bus driver */
307 __u32 subtype; /* type specific */
308 };
309
310 /*
311 * List of region types, global per bus driver.
312 * If you introduce a new type, please add it here.
313 */
314
315 /* PCI region type containing a PCI vendor part */
316 #define VFIO_REGION_TYPE_PCI_VENDOR_TYPE (1 << 31)
317 #define VFIO_REGION_TYPE_PCI_VENDOR_MASK (0xffff)
318 #define VFIO_REGION_TYPE_GFX (1)
319 #define VFIO_REGION_TYPE_CCW (2)
320 #define VFIO_REGION_TYPE_MIGRATION (3)
321
322 /* sub-types for VFIO_REGION_TYPE_PCI_* */
323
324 /* 8086 vendor PCI sub-types */
325 #define VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION (1)
326 #define VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG (2)
327 #define VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG (3)
328
329 /* 10de vendor PCI sub-types */
330 /*
331 * NVIDIA GPU NVlink2 RAM is coherent RAM mapped onto the host address space.
332 */
333 #define VFIO_REGION_SUBTYPE_NVIDIA_NVLINK2_RAM (1)
334
335 /* 1014 vendor PCI sub-types */
336 /*
337 * IBM NPU NVlink2 ATSD (Address Translation Shootdown) register of NPU
338 * to do TLB invalidation on a GPU.
339 */
340 #define VFIO_REGION_SUBTYPE_IBM_NVLINK2_ATSD (1)
341
342 /* sub-types for VFIO_REGION_TYPE_GFX */
343 #define VFIO_REGION_SUBTYPE_GFX_EDID (1)
344
345 /**
346 * struct vfio_region_gfx_edid - EDID region layout.
347 *
348 * Set display link state and EDID blob.
349 *
350 * The EDID blob has monitor information such as brand, name, serial
351 * number, physical size, supported video modes and more.
352 *
353 * This special region allows userspace (typically qemu) set a virtual
354 * EDID for the virtual monitor, which allows a flexible display
355 * configuration.
356 *
357 * For the edid blob spec look here:
358 * https://en.wikipedia.org/wiki/Extended_Display_Identification_Data
359 *
360 * On linux systems you can find the EDID blob in sysfs:
361 * /sys/class/drm/${card}/${connector}/edid
362 *
363 * You can use the edid-decode ulility (comes with xorg-x11-utils) to
364 * decode the EDID blob.
365 *
366 * @edid_offset: location of the edid blob, relative to the
367 * start of the region (readonly).
368 * @edid_max_size: max size of the edid blob (readonly).
369 * @edid_size: actual edid size (read/write).
370 * @link_state: display link state (read/write).
371 * VFIO_DEVICE_GFX_LINK_STATE_UP: Monitor is turned on.
372 * VFIO_DEVICE_GFX_LINK_STATE_DOWN: Monitor is turned off.
373 * @max_xres: max display width (0 == no limitation, readonly).
374 * @max_yres: max display height (0 == no limitation, readonly).
375 *
376 * EDID update protocol:
377 * (1) set link-state to down.
378 * (2) update edid blob and size.
379 * (3) set link-state to up.
380 */
381 struct vfio_region_gfx_edid {
382 __u32 edid_offset;
383 __u32 edid_max_size;
384 __u32 edid_size;
385 __u32 max_xres;
386 __u32 max_yres;
387 __u32 link_state;
388 #define VFIO_DEVICE_GFX_LINK_STATE_UP 1
389 #define VFIO_DEVICE_GFX_LINK_STATE_DOWN 2
390 };
391
392 /* sub-types for VFIO_REGION_TYPE_CCW */
393 #define VFIO_REGION_SUBTYPE_CCW_ASYNC_CMD (1)
394 #define VFIO_REGION_SUBTYPE_CCW_SCHIB (2)
395 #define VFIO_REGION_SUBTYPE_CCW_CRW (3)
396
397 /* sub-types for VFIO_REGION_TYPE_MIGRATION */
398 #define VFIO_REGION_SUBTYPE_MIGRATION (1)
399
400 /*
401 * The structure vfio_device_migration_info is placed at the 0th offset of
402 * the VFIO_REGION_SUBTYPE_MIGRATION region to get and set VFIO device related
403 * migration information. Field accesses from this structure are only supported
404 * at their native width and alignment. Otherwise, the result is undefined and
405 * vendor drivers should return an error.
406 *
407 * device_state: (read/write)
408 * - The user application writes to this field to inform the vendor driver
409 * about the device state to be transitioned to.
410 * - The vendor driver should take the necessary actions to change the
411 * device state. After successful transition to a given state, the
412 * vendor driver should return success on write(device_state, state)
413 * system call. If the device state transition fails, the vendor driver
414 * should return an appropriate -errno for the fault condition.
415 * - On the user application side, if the device state transition fails,
416 * that is, if write(device_state, state) returns an error, read
417 * device_state again to determine the current state of the device from
418 * the vendor driver.
419 * - The vendor driver should return previous state of the device unless
420 * the vendor driver has encountered an internal error, in which case
421 * the vendor driver may report the device_state VFIO_DEVICE_STATE_ERROR.
422 * - The user application must use the device reset ioctl to recover the
423 * device from VFIO_DEVICE_STATE_ERROR state. If the device is
424 * indicated to be in a valid device state by reading device_state, the
425 * user application may attempt to transition the device to any valid
426 * state reachable from the current state or terminate itself.
427 *
428 * device_state consists of 3 bits:
429 * - If bit 0 is set, it indicates the _RUNNING state. If bit 0 is clear,
430 * it indicates the _STOP state. When the device state is changed to
431 * _STOP, driver should stop the device before write() returns.
432 * - If bit 1 is set, it indicates the _SAVING state, which means that the
433 * driver should start gathering device state information that will be
434 * provided to the VFIO user application to save the device's state.
435 * - If bit 2 is set, it indicates the _RESUMING state, which means that
436 * the driver should prepare to resume the device. Data provided through
437 * the migration region should be used to resume the device.
438 * Bits 3 - 31 are reserved for future use. To preserve them, the user
439 * application should perform a read-modify-write operation on this
440 * field when modifying the specified bits.
441 *
442 * +------- _RESUMING
443 * |+------ _SAVING
444 * ||+----- _RUNNING
445 * |||
446 * 000b => Device Stopped, not saving or resuming
447 * 001b => Device running, which is the default state
448 * 010b => Stop the device & save the device state, stop-and-copy state
449 * 011b => Device running and save the device state, pre-copy state
450 * 100b => Device stopped and the device state is resuming
451 * 101b => Invalid state
452 * 110b => Error state
453 * 111b => Invalid state
454 *
455 * State transitions:
456 *
457 * _RESUMING _RUNNING Pre-copy Stop-and-copy _STOP
458 * (100b) (001b) (011b) (010b) (000b)
459 * 0. Running or default state
460 * |
461 *
462 * 1. Normal Shutdown (optional)
463 * |------------------------------------->|
464 *
465 * 2. Save the state or suspend
466 * |------------------------->|---------->|
467 *
468 * 3. Save the state during live migration
469 * |----------->|------------>|---------->|
470 *
471 * 4. Resuming
472 * |<---------|
473 *
474 * 5. Resumed
475 * |--------->|
476 *
477 * 0. Default state of VFIO device is _RUNNING when the user application starts.
478 * 1. During normal shutdown of the user application, the user application may
479 * optionally change the VFIO device state from _RUNNING to _STOP. This
480 * transition is optional. The vendor driver must support this transition but
481 * must not require it.
482 * 2. When the user application saves state or suspends the application, the
483 * device state transitions from _RUNNING to stop-and-copy and then to _STOP.
484 * On state transition from _RUNNING to stop-and-copy, driver must stop the
485 * device, save the device state and send it to the application through the
486 * migration region. The sequence to be followed for such transition is given
487 * below.
488 * 3. In live migration of user application, the state transitions from _RUNNING
489 * to pre-copy, to stop-and-copy, and to _STOP.
490 * On state transition from _RUNNING to pre-copy, the driver should start
491 * gathering the device state while the application is still running and send
492 * the device state data to application through the migration region.
493 * On state transition from pre-copy to stop-and-copy, the driver must stop
494 * the device, save the device state and send it to the user application
495 * through the migration region.
496 * Vendor drivers must support the pre-copy state even for implementations
497 * where no data is provided to the user before the stop-and-copy state. The
498 * user must not be required to consume all migration data before the device
499 * transitions to a new state, including the stop-and-copy state.
500 * The sequence to be followed for above two transitions is given below.
501 * 4. To start the resuming phase, the device state should be transitioned from
502 * the _RUNNING to the _RESUMING state.
503 * In the _RESUMING state, the driver should use the device state data
504 * received through the migration region to resume the device.
505 * 5. After providing saved device data to the driver, the application should
506 * change the state from _RESUMING to _RUNNING.
507 *
508 * reserved:
509 * Reads on this field return zero and writes are ignored.
510 *
511 * pending_bytes: (read only)
512 * The number of pending bytes still to be migrated from the vendor driver.
513 *
514 * data_offset: (read only)
515 * The user application should read data_offset field from the migration
516 * region. The user application should read the device data from this
517 * offset within the migration region during the _SAVING state or write
518 * the device data during the _RESUMING state. See below for details of
519 * sequence to be followed.
520 *
521 * data_size: (read/write)
522 * The user application should read data_size to get the size in bytes of
523 * the data copied in the migration region during the _SAVING state and
524 * write the size in bytes of the data copied in the migration region
525 * during the _RESUMING state.
526 *
527 * The format of the migration region is as follows:
528 * ------------------------------------------------------------------
529 * |vfio_device_migration_info| data section |
530 * | | /////////////////////////////// |
531 * ------------------------------------------------------------------
532 * ^ ^
533 * offset 0-trapped part data_offset
534 *
535 * The structure vfio_device_migration_info is always followed by the data
536 * section in the region, so data_offset will always be nonzero. The offset
537 * from where the data is copied is decided by the kernel driver. The data
538 * section can be trapped, mmapped, or partitioned, depending on how the kernel
539 * driver defines the data section. The data section partition can be defined
540 * as mapped by the sparse mmap capability. If mmapped, data_offset must be
541 * page aligned, whereas initial section which contains the
542 * vfio_device_migration_info structure, might not end at the offset, which is
543 * page aligned. The user is not required to access through mmap regardless
544 * of the capabilities of the region mmap.
545 * The vendor driver should determine whether and how to partition the data
546 * section. The vendor driver should return data_offset accordingly.
547 *
548 * The sequence to be followed while in pre-copy state and stop-and-copy state
549 * is as follows:
550 * a. Read pending_bytes, indicating the start of a new iteration to get device
551 * data. Repeated read on pending_bytes at this stage should have no side
552 * effects.
553 * If pending_bytes == 0, the user application should not iterate to get data
554 * for that device.
555 * If pending_bytes > 0, perform the following steps.
556 * b. Read data_offset, indicating that the vendor driver should make data
557 * available through the data section. The vendor driver should return this
558 * read operation only after data is available from (region + data_offset)
559 * to (region + data_offset + data_size).
560 * c. Read data_size, which is the amount of data in bytes available through
561 * the migration region.
562 * Read on data_offset and data_size should return the offset and size of
563 * the current buffer if the user application reads data_offset and
564 * data_size more than once here.
565 * d. Read data_size bytes of data from (region + data_offset) from the
566 * migration region.
567 * e. Process the data.
568 * f. Read pending_bytes, which indicates that the data from the previous
569 * iteration has been read. If pending_bytes > 0, go to step b.
570 *
571 * The user application can transition from the _SAVING|_RUNNING
572 * (pre-copy state) to the _SAVING (stop-and-copy) state regardless of the
573 * number of pending bytes. The user application should iterate in _SAVING
574 * (stop-and-copy) until pending_bytes is 0.
575 *
576 * The sequence to be followed while _RESUMING device state is as follows:
577 * While data for this device is available, repeat the following steps:
578 * a. Read data_offset from where the user application should write data.
579 * b. Write migration data starting at the migration region + data_offset for
580 * the length determined by data_size from the migration source.
581 * c. Write data_size, which indicates to the vendor driver that data is
582 * written in the migration region. Vendor driver must return this write
583 * operations on consuming data. Vendor driver should apply the
584 * user-provided migration region data to the device resume state.
585 *
586 * If an error occurs during the above sequences, the vendor driver can return
587 * an error code for next read() or write() operation, which will terminate the
588 * loop. The user application should then take the next necessary action, for
589 * example, failing migration or terminating the user application.
590 *
591 * For the user application, data is opaque. The user application should write
592 * data in the same order as the data is received and the data should be of
593 * same transaction size at the source.
594 */
595
596 struct vfio_device_migration_info {
597 __u32 device_state; /* VFIO device state */
598 #define VFIO_DEVICE_STATE_STOP (0)
599 #define VFIO_DEVICE_STATE_RUNNING (1 << 0)
600 #define VFIO_DEVICE_STATE_SAVING (1 << 1)
601 #define VFIO_DEVICE_STATE_RESUMING (1 << 2)
602 #define VFIO_DEVICE_STATE_MASK (VFIO_DEVICE_STATE_RUNNING | \
603 VFIO_DEVICE_STATE_SAVING | \
604 VFIO_DEVICE_STATE_RESUMING)
605
606 #define VFIO_DEVICE_STATE_VALID(state) \
607 (state & VFIO_DEVICE_STATE_RESUMING ? \
608 (state & VFIO_DEVICE_STATE_MASK) == VFIO_DEVICE_STATE_RESUMING : 1)
609
610 #define VFIO_DEVICE_STATE_IS_ERROR(state) \
611 ((state & VFIO_DEVICE_STATE_MASK) == (VFIO_DEVICE_STATE_SAVING | \
612 VFIO_DEVICE_STATE_RESUMING))
613
614 #define VFIO_DEVICE_STATE_SET_ERROR(state) \
615 ((state & ~VFIO_DEVICE_STATE_MASK) | VFIO_DEVICE_SATE_SAVING | \
616 VFIO_DEVICE_STATE_RESUMING)
617
618 __u32 reserved;
619 __u64 pending_bytes;
620 __u64 data_offset;
621 __u64 data_size;
622 };
623
624 /*
625 * The MSIX mappable capability informs that MSIX data of a BAR can be mmapped
626 * which allows direct access to non-MSIX registers which happened to be within
627 * the same system page.
628 *
629 * Even though the userspace gets direct access to the MSIX data, the existing
630 * VFIO_DEVICE_SET_IRQS interface must still be used for MSIX configuration.
631 */
632 #define VFIO_REGION_INFO_CAP_MSIX_MAPPABLE 3
633
634 /*
635 * Capability with compressed real address (aka SSA - small system address)
636 * where GPU RAM is mapped on a system bus. Used by a GPU for DMA routing
637 * and by the userspace to associate a NVLink bridge with a GPU.
638 */
639 #define VFIO_REGION_INFO_CAP_NVLINK2_SSATGT 4
640
641 struct vfio_region_info_cap_nvlink2_ssatgt {
642 struct vfio_info_cap_header header;
643 __u64 tgt;
644 };
645
646 /*
647 * Capability with an NVLink link speed. The value is read by
648 * the NVlink2 bridge driver from the bridge's "ibm,nvlink-speed"
649 * property in the device tree. The value is fixed in the hardware
650 * and failing to provide the correct value results in the link
651 * not working with no indication from the driver why.
652 */
653 #define VFIO_REGION_INFO_CAP_NVLINK2_LNKSPD 5
654
655 struct vfio_region_info_cap_nvlink2_lnkspd {
656 struct vfio_info_cap_header header;
657 __u32 link_speed;
658 __u32 __pad;
659 };
660
661 /**
662 * VFIO_DEVICE_GET_IRQ_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 9,
663 * struct vfio_irq_info)
664 *
665 * Retrieve information about a device IRQ. Caller provides
666 * struct vfio_irq_info with index value set. Caller sets argsz.
667 * Implementation of IRQ mapping is bus driver specific. Indexes
668 * using multiple IRQs are primarily intended to support MSI-like
669 * interrupt blocks. Zero count irq blocks may be used to describe
670 * unimplemented interrupt types.
671 *
672 * The EVENTFD flag indicates the interrupt index supports eventfd based
673 * signaling.
674 *
675 * The MASKABLE flags indicates the index supports MASK and UNMASK
676 * actions described below.
677 *
678 * AUTOMASKED indicates that after signaling, the interrupt line is
679 * automatically masked by VFIO and the user needs to unmask the line
680 * to receive new interrupts. This is primarily intended to distinguish
681 * level triggered interrupts.
682 *
683 * The NORESIZE flag indicates that the interrupt lines within the index
684 * are setup as a set and new subindexes cannot be enabled without first
685 * disabling the entire index. This is used for interrupts like PCI MSI
686 * and MSI-X where the driver may only use a subset of the available
687 * indexes, but VFIO needs to enable a specific number of vectors
688 * upfront. In the case of MSI-X, where the user can enable MSI-X and
689 * then add and unmask vectors, it's up to userspace to make the decision
690 * whether to allocate the maximum supported number of vectors or tear
691 * down setup and incrementally increase the vectors as each is enabled.
692 */
693 struct vfio_irq_info {
694 __u32 argsz;
695 __u32 flags;
696 #define VFIO_IRQ_INFO_EVENTFD (1 << 0)
697 #define VFIO_IRQ_INFO_MASKABLE (1 << 1)
698 #define VFIO_IRQ_INFO_AUTOMASKED (1 << 2)
699 #define VFIO_IRQ_INFO_NORESIZE (1 << 3)
700 __u32 index; /* IRQ index */
701 __u32 count; /* Number of IRQs within this index */
702 };
703 #define VFIO_DEVICE_GET_IRQ_INFO _IO(VFIO_TYPE, VFIO_BASE + 9)
704
705 /**
706 * VFIO_DEVICE_SET_IRQS - _IOW(VFIO_TYPE, VFIO_BASE + 10, struct vfio_irq_set)
707 *
708 * Set signaling, masking, and unmasking of interrupts. Caller provides
709 * struct vfio_irq_set with all fields set. 'start' and 'count' indicate
710 * the range of subindexes being specified.
711 *
712 * The DATA flags specify the type of data provided. If DATA_NONE, the
713 * operation performs the specified action immediately on the specified
714 * interrupt(s). For example, to unmask AUTOMASKED interrupt [0,0]:
715 * flags = (DATA_NONE|ACTION_UNMASK), index = 0, start = 0, count = 1.
716 *
717 * DATA_BOOL allows sparse support for the same on arrays of interrupts.
718 * For example, to mask interrupts [0,1] and [0,3] (but not [0,2]):
719 * flags = (DATA_BOOL|ACTION_MASK), index = 0, start = 1, count = 3,
720 * data = {1,0,1}
721 *
722 * DATA_EVENTFD binds the specified ACTION to the provided __s32 eventfd.
723 * A value of -1 can be used to either de-assign interrupts if already
724 * assigned or skip un-assigned interrupts. For example, to set an eventfd
725 * to be trigger for interrupts [0,0] and [0,2]:
726 * flags = (DATA_EVENTFD|ACTION_TRIGGER), index = 0, start = 0, count = 3,
727 * data = {fd1, -1, fd2}
728 * If index [0,1] is previously set, two count = 1 ioctls calls would be
729 * required to set [0,0] and [0,2] without changing [0,1].
730 *
731 * Once a signaling mechanism is set, DATA_BOOL or DATA_NONE can be used
732 * with ACTION_TRIGGER to perform kernel level interrupt loopback testing
733 * from userspace (ie. simulate hardware triggering).
734 *
735 * Setting of an event triggering mechanism to userspace for ACTION_TRIGGER
736 * enables the interrupt index for the device. Individual subindex interrupts
737 * can be disabled using the -1 value for DATA_EVENTFD or the index can be
738 * disabled as a whole with: flags = (DATA_NONE|ACTION_TRIGGER), count = 0.
739 *
740 * Note that ACTION_[UN]MASK specify user->kernel signaling (irqfds) while
741 * ACTION_TRIGGER specifies kernel->user signaling.
742 */
743 struct vfio_irq_set {
744 __u32 argsz;
745 __u32 flags;
746 #define VFIO_IRQ_SET_DATA_NONE (1 << 0) /* Data not present */
747 #define VFIO_IRQ_SET_DATA_BOOL (1 << 1) /* Data is bool (u8) */
748 #define VFIO_IRQ_SET_DATA_EVENTFD (1 << 2) /* Data is eventfd (s32) */
749 #define VFIO_IRQ_SET_ACTION_MASK (1 << 3) /* Mask interrupt */
750 #define VFIO_IRQ_SET_ACTION_UNMASK (1 << 4) /* Unmask interrupt */
751 #define VFIO_IRQ_SET_ACTION_TRIGGER (1 << 5) /* Trigger interrupt */
752 __u32 index;
753 __u32 start;
754 __u32 count;
755 __u8 data[];
756 };
757 #define VFIO_DEVICE_SET_IRQS _IO(VFIO_TYPE, VFIO_BASE + 10)
758
759 #define VFIO_IRQ_SET_DATA_TYPE_MASK (VFIO_IRQ_SET_DATA_NONE | \
760 VFIO_IRQ_SET_DATA_BOOL | \
761 VFIO_IRQ_SET_DATA_EVENTFD)
762 #define VFIO_IRQ_SET_ACTION_TYPE_MASK (VFIO_IRQ_SET_ACTION_MASK | \
763 VFIO_IRQ_SET_ACTION_UNMASK | \
764 VFIO_IRQ_SET_ACTION_TRIGGER)
765 /**
766 * VFIO_DEVICE_RESET - _IO(VFIO_TYPE, VFIO_BASE + 11)
767 *
768 * Reset a device.
769 */
770 #define VFIO_DEVICE_RESET _IO(VFIO_TYPE, VFIO_BASE + 11)
771
772 /*
773 * The VFIO-PCI bus driver makes use of the following fixed region and
774 * IRQ index mapping. Unimplemented regions return a size of zero.
775 * Unimplemented IRQ types return a count of zero.
776 */
777
778 enum {
779 VFIO_PCI_BAR0_REGION_INDEX,
780 VFIO_PCI_BAR1_REGION_INDEX,
781 VFIO_PCI_BAR2_REGION_INDEX,
782 VFIO_PCI_BAR3_REGION_INDEX,
783 VFIO_PCI_BAR4_REGION_INDEX,
784 VFIO_PCI_BAR5_REGION_INDEX,
785 VFIO_PCI_ROM_REGION_INDEX,
786 VFIO_PCI_CONFIG_REGION_INDEX,
787 /*
788 * Expose VGA regions defined for PCI base class 03, subclass 00.
789 * This includes I/O port ranges 0x3b0 to 0x3bb and 0x3c0 to 0x3df
790 * as well as the MMIO range 0xa0000 to 0xbffff. Each implemented
791 * range is found at it's identity mapped offset from the region
792 * offset, for example 0x3b0 is region_info.offset + 0x3b0. Areas
793 * between described ranges are unimplemented.
794 */
795 VFIO_PCI_VGA_REGION_INDEX,
796 VFIO_PCI_NUM_REGIONS = 9 /* Fixed user ABI, region indexes >=9 use */
797 /* device specific cap to define content. */
798 };
799
800 enum {
801 VFIO_PCI_INTX_IRQ_INDEX,
802 VFIO_PCI_MSI_IRQ_INDEX,
803 VFIO_PCI_MSIX_IRQ_INDEX,
804 VFIO_PCI_ERR_IRQ_INDEX,
805 VFIO_PCI_REQ_IRQ_INDEX,
806 VFIO_PCI_NUM_IRQS
807 };
808
809 /*
810 * The vfio-ccw bus driver makes use of the following fixed region and
811 * IRQ index mapping. Unimplemented regions return a size of zero.
812 * Unimplemented IRQ types return a count of zero.
813 */
814
815 enum {
816 VFIO_CCW_CONFIG_REGION_INDEX,
817 VFIO_CCW_NUM_REGIONS
818 };
819
820 enum {
821 VFIO_CCW_IO_IRQ_INDEX,
822 VFIO_CCW_CRW_IRQ_INDEX,
823 VFIO_CCW_REQ_IRQ_INDEX,
824 VFIO_CCW_NUM_IRQS
825 };
826
827 /**
828 * VFIO_DEVICE_GET_PCI_HOT_RESET_INFO - _IORW(VFIO_TYPE, VFIO_BASE + 12,
829 * struct vfio_pci_hot_reset_info)
830 *
831 * Return: 0 on success, -errno on failure:
832 * -enospc = insufficient buffer, -enodev = unsupported for device.
833 */
834 struct vfio_pci_dependent_device {
835 __u32 group_id;
836 __u16 segment;
837 __u8 bus;
838 __u8 devfn; /* Use PCI_SLOT/PCI_FUNC */
839 };
840
841 struct vfio_pci_hot_reset_info {
842 __u32 argsz;
843 __u32 flags;
844 __u32 count;
845 struct vfio_pci_dependent_device devices[];
846 };
847
848 #define VFIO_DEVICE_GET_PCI_HOT_RESET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12)
849
850 /**
851 * VFIO_DEVICE_PCI_HOT_RESET - _IOW(VFIO_TYPE, VFIO_BASE + 13,
852 * struct vfio_pci_hot_reset)
853 *
854 * Return: 0 on success, -errno on failure.
855 */
856 struct vfio_pci_hot_reset {
857 __u32 argsz;
858 __u32 flags;
859 __u32 count;
860 __s32 group_fds[];
861 };
862
863 #define VFIO_DEVICE_PCI_HOT_RESET _IO(VFIO_TYPE, VFIO_BASE + 13)
864
865 /**
866 * VFIO_DEVICE_QUERY_GFX_PLANE - _IOW(VFIO_TYPE, VFIO_BASE + 14,
867 * struct vfio_device_query_gfx_plane)
868 *
869 * Set the drm_plane_type and flags, then retrieve the gfx plane info.
870 *
871 * flags supported:
872 * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_DMABUF are set
873 * to ask if the mdev supports dma-buf. 0 on support, -EINVAL on no
874 * support for dma-buf.
875 * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_REGION are set
876 * to ask if the mdev supports region. 0 on support, -EINVAL on no
877 * support for region.
878 * - VFIO_GFX_PLANE_TYPE_DMABUF or VFIO_GFX_PLANE_TYPE_REGION is set
879 * with each call to query the plane info.
880 * - Others are invalid and return -EINVAL.
881 *
882 * Note:
883 * 1. Plane could be disabled by guest. In that case, success will be
884 * returned with zero-initialized drm_format, size, width and height
885 * fields.
886 * 2. x_hot/y_hot is set to 0xFFFFFFFF if no hotspot information available
887 *
888 * Return: 0 on success, -errno on other failure.
889 */
890 struct vfio_device_gfx_plane_info {
891 __u32 argsz;
892 __u32 flags;
893 #define VFIO_GFX_PLANE_TYPE_PROBE (1 << 0)
894 #define VFIO_GFX_PLANE_TYPE_DMABUF (1 << 1)
895 #define VFIO_GFX_PLANE_TYPE_REGION (1 << 2)
896 /* in */
897 __u32 drm_plane_type; /* type of plane: DRM_PLANE_TYPE_* */
898 /* out */
899 __u32 drm_format; /* drm format of plane */
900 __u64 drm_format_mod; /* tiled mode */
901 __u32 width; /* width of plane */
902 __u32 height; /* height of plane */
903 __u32 stride; /* stride of plane */
904 __u32 size; /* size of plane in bytes, align on page*/
905 __u32 x_pos; /* horizontal position of cursor plane */
906 __u32 y_pos; /* vertical position of cursor plane*/
907 __u32 x_hot; /* horizontal position of cursor hotspot */
908 __u32 y_hot; /* vertical position of cursor hotspot */
909 union {
910 __u32 region_index; /* region index */
911 __u32 dmabuf_id; /* dma-buf id */
912 };
913 };
914
915 #define VFIO_DEVICE_QUERY_GFX_PLANE _IO(VFIO_TYPE, VFIO_BASE + 14)
916
917 /**
918 * VFIO_DEVICE_GET_GFX_DMABUF - _IOW(VFIO_TYPE, VFIO_BASE + 15, __u32)
919 *
920 * Return a new dma-buf file descriptor for an exposed guest framebuffer
921 * described by the provided dmabuf_id. The dmabuf_id is returned from VFIO_
922 * DEVICE_QUERY_GFX_PLANE as a token of the exposed guest framebuffer.
923 */
924
925 #define VFIO_DEVICE_GET_GFX_DMABUF _IO(VFIO_TYPE, VFIO_BASE + 15)
926
927 /**
928 * VFIO_DEVICE_IOEVENTFD - _IOW(VFIO_TYPE, VFIO_BASE + 16,
929 * struct vfio_device_ioeventfd)
930 *
931 * Perform a write to the device at the specified device fd offset, with
932 * the specified data and width when the provided eventfd is triggered.
933 * vfio bus drivers may not support this for all regions, for all widths,
934 * or at all. vfio-pci currently only enables support for BAR regions,
935 * excluding the MSI-X vector table.
936 *
937 * Return: 0 on success, -errno on failure.
938 */
939 struct vfio_device_ioeventfd {
940 __u32 argsz;
941 __u32 flags;
942 #define VFIO_DEVICE_IOEVENTFD_8 (1 << 0) /* 1-byte write */
943 #define VFIO_DEVICE_IOEVENTFD_16 (1 << 1) /* 2-byte write */
944 #define VFIO_DEVICE_IOEVENTFD_32 (1 << 2) /* 4-byte write */
945 #define VFIO_DEVICE_IOEVENTFD_64 (1 << 3) /* 8-byte write */
946 #define VFIO_DEVICE_IOEVENTFD_SIZE_MASK (0xf)
947 __u64 offset; /* device fd offset of write */
948 __u64 data; /* data to be written */
949 __s32 fd; /* -1 for de-assignment */
950 };
951
952 #define VFIO_DEVICE_IOEVENTFD _IO(VFIO_TYPE, VFIO_BASE + 16)
953
954 /**
955 * VFIO_DEVICE_FEATURE - _IORW(VFIO_TYPE, VFIO_BASE + 17,
956 * struct vfio_device_feature)
957 *
958 * Get, set, or probe feature data of the device. The feature is selected
959 * using the FEATURE_MASK portion of the flags field. Support for a feature
960 * can be probed by setting both the FEATURE_MASK and PROBE bits. A probe
961 * may optionally include the GET and/or SET bits to determine read vs write
962 * access of the feature respectively. Probing a feature will return success
963 * if the feature is supported and all of the optionally indicated GET/SET
964 * methods are supported. The format of the data portion of the structure is
965 * specific to the given feature. The data portion is not required for
966 * probing. GET and SET are mutually exclusive, except for use with PROBE.
967 *
968 * Return 0 on success, -errno on failure.
969 */
970 struct vfio_device_feature {
971 __u32 argsz;
972 __u32 flags;
973 #define VFIO_DEVICE_FEATURE_MASK (0xffff) /* 16-bit feature index */
974 #define VFIO_DEVICE_FEATURE_GET (1 << 16) /* Get feature into data[] */
975 #define VFIO_DEVICE_FEATURE_SET (1 << 17) /* Set feature from data[] */
976 #define VFIO_DEVICE_FEATURE_PROBE (1 << 18) /* Probe feature support */
977 __u8 data[];
978 };
979
980 #define VFIO_DEVICE_FEATURE _IO(VFIO_TYPE, VFIO_BASE + 17)
981
982 /*
983 * Provide support for setting a PCI VF Token, which is used as a shared
984 * secret between PF and VF drivers. This feature may only be set on a
985 * PCI SR-IOV PF when SR-IOV is enabled on the PF and there are no existing
986 * open VFs. Data provided when setting this feature is a 16-byte array
987 * (__u8 b[16]), representing a UUID.
988 */
989 #define VFIO_DEVICE_FEATURE_PCI_VF_TOKEN (0)
990
991 /* -------- API for Type1 VFIO IOMMU -------- */
992
993 /**
994 * VFIO_IOMMU_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 12, struct vfio_iommu_info)
995 *
996 * Retrieve information about the IOMMU object. Fills in provided
997 * struct vfio_iommu_info. Caller sets argsz.
998 *
999 * XXX Should we do these by CHECK_EXTENSION too?
1000 */
1001 struct vfio_iommu_type1_info {
1002 __u32 argsz;
1003 __u32 flags;
1004 #define VFIO_IOMMU_INFO_PGSIZES (1 << 0) /* supported page sizes info */
1005 #define VFIO_IOMMU_INFO_CAPS (1 << 1) /* Info supports caps */
1006 __u64 iova_pgsizes; /* Bitmap of supported page sizes */
1007 __u32 cap_offset; /* Offset within info struct of first cap */
1008 };
1009
1010 /*
1011 * The IOVA capability allows to report the valid IOVA range(s)
1012 * excluding any non-relaxable reserved regions exposed by
1013 * devices attached to the container. Any DMA map attempt
1014 * outside the valid iova range will return error.
1015 *
1016 * The structures below define version 1 of this capability.
1017 */
1018 #define VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE 1
1019
1020 struct vfio_iova_range {
1021 __u64 start;
1022 __u64 end;
1023 };
1024
1025 struct vfio_iommu_type1_info_cap_iova_range {
1026 struct vfio_info_cap_header header;
1027 __u32 nr_iovas;
1028 __u32 reserved;
1029 struct vfio_iova_range iova_ranges[];
1030 };
1031
1032 /*
1033 * The migration capability allows to report supported features for migration.
1034 *
1035 * The structures below define version 1 of this capability.
1036 *
1037 * The existence of this capability indicates that IOMMU kernel driver supports
1038 * dirty page logging.
1039 *
1040 * pgsize_bitmap: Kernel driver returns bitmap of supported page sizes for dirty
1041 * page logging.
1042 * max_dirty_bitmap_size: Kernel driver returns maximum supported dirty bitmap
1043 * size in bytes that can be used by user applications when getting the dirty
1044 * bitmap.
1045 */
1046 #define VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION 2
1047
1048 struct vfio_iommu_type1_info_cap_migration {
1049 struct vfio_info_cap_header header;
1050 __u32 flags;
1051 __u64 pgsize_bitmap;
1052 __u64 max_dirty_bitmap_size; /* in bytes */
1053 };
1054
1055 /*
1056 * The DMA available capability allows to report the current number of
1057 * simultaneously outstanding DMA mappings that are allowed.
1058 *
1059 * The structure below defines version 1 of this capability.
1060 *
1061 * avail: specifies the current number of outstanding DMA mappings allowed.
1062 */
1063 #define VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL 3
1064
1065 struct vfio_iommu_type1_info_dma_avail {
1066 struct vfio_info_cap_header header;
1067 __u32 avail;
1068 };
1069
1070 #define VFIO_IOMMU_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12)
1071
1072 /**
1073 * VFIO_IOMMU_MAP_DMA - _IOW(VFIO_TYPE, VFIO_BASE + 13, struct vfio_dma_map)
1074 *
1075 * Map process virtual addresses to IO virtual addresses using the
1076 * provided struct vfio_dma_map. Caller sets argsz. READ &/ WRITE required.
1077 */
1078 struct vfio_iommu_type1_dma_map {
1079 __u32 argsz;
1080 __u32 flags;
1081 #define VFIO_DMA_MAP_FLAG_READ (1 << 0) /* readable from device */
1082 #define VFIO_DMA_MAP_FLAG_WRITE (1 << 1) /* writable from device */
1083 __u64 vaddr; /* Process virtual address */
1084 __u64 iova; /* IO virtual address */
1085 __u64 size; /* Size of mapping (bytes) */
1086 };
1087
1088 #define VFIO_IOMMU_MAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 13)
1089
1090 struct vfio_bitmap {
1091 __u64 pgsize; /* page size for bitmap in bytes */
1092 __u64 size; /* in bytes */
1093 __u64 *data; /* one bit per page */
1094 };
1095
1096 /**
1097 * VFIO_IOMMU_UNMAP_DMA - _IOWR(VFIO_TYPE, VFIO_BASE + 14,
1098 * struct vfio_dma_unmap)
1099 *
1100 * Unmap IO virtual addresses using the provided struct vfio_dma_unmap.
1101 * Caller sets argsz. The actual unmapped size is returned in the size
1102 * field. No guarantee is made to the user that arbitrary unmaps of iova
1103 * or size different from those used in the original mapping call will
1104 * succeed.
1105 * VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP should be set to get the dirty bitmap
1106 * before unmapping IO virtual addresses. When this flag is set, the user must
1107 * provide a struct vfio_bitmap in data[]. User must provide zero-allocated
1108 * memory via vfio_bitmap.data and its size in the vfio_bitmap.size field.
1109 * A bit in the bitmap represents one page, of user provided page size in
1110 * vfio_bitmap.pgsize field, consecutively starting from iova offset. Bit set
1111 * indicates that the page at that offset from iova is dirty. A Bitmap of the
1112 * pages in the range of unmapped size is returned in the user-provided
1113 * vfio_bitmap.data.
1114 */
1115 struct vfio_iommu_type1_dma_unmap {
1116 __u32 argsz;
1117 __u32 flags;
1118 #define VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP (1 << 0)
1119 __u64 iova; /* IO virtual address */
1120 __u64 size; /* Size of mapping (bytes) */
1121 __u8 data[];
1122 };
1123
1124 #define VFIO_IOMMU_UNMAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 14)
1125
1126 /*
1127 * IOCTLs to enable/disable IOMMU container usage.
1128 * No parameters are supported.
1129 */
1130 #define VFIO_IOMMU_ENABLE _IO(VFIO_TYPE, VFIO_BASE + 15)
1131 #define VFIO_IOMMU_DISABLE _IO(VFIO_TYPE, VFIO_BASE + 16)
1132
1133 /**
1134 * VFIO_IOMMU_DIRTY_PAGES - _IOWR(VFIO_TYPE, VFIO_BASE + 17,
1135 * struct vfio_iommu_type1_dirty_bitmap)
1136 * IOCTL is used for dirty pages logging.
1137 * Caller should set flag depending on which operation to perform, details as
1138 * below:
1139 *
1140 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_START flag set, instructs
1141 * the IOMMU driver to log pages that are dirtied or potentially dirtied by
1142 * the device; designed to be used when a migration is in progress. Dirty pages
1143 * are logged until logging is disabled by user application by calling the IOCTL
1144 * with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag.
1145 *
1146 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag set, instructs
1147 * the IOMMU driver to stop logging dirtied pages.
1148 *
1149 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP flag set
1150 * returns the dirty pages bitmap for IOMMU container for a given IOVA range.
1151 * The user must specify the IOVA range and the pgsize through the structure
1152 * vfio_iommu_type1_dirty_bitmap_get in the data[] portion. This interface
1153 * supports getting a bitmap of the smallest supported pgsize only and can be
1154 * modified in future to get a bitmap of any specified supported pgsize. The
1155 * user must provide a zeroed memory area for the bitmap memory and specify its
1156 * size in bitmap.size. One bit is used to represent one page consecutively
1157 * starting from iova offset. The user should provide page size in bitmap.pgsize
1158 * field. A bit set in the bitmap indicates that the page at that offset from
1159 * iova is dirty. The caller must set argsz to a value including the size of
1160 * structure vfio_iommu_type1_dirty_bitmap_get, but excluding the size of the
1161 * actual bitmap. If dirty pages logging is not enabled, an error will be
1162 * returned.
1163 *
1164 * Only one of the flags _START, _STOP and _GET may be specified at a time.
1165 *
1166 */
1167 struct vfio_iommu_type1_dirty_bitmap {
1168 __u32 argsz;
1169 __u32 flags;
1170 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_START (1 << 0)
1171 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP (1 << 1)
1172 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP (1 << 2)
1173 __u8 data[];
1174 };
1175
1176 struct vfio_iommu_type1_dirty_bitmap_get {
1177 __u64 iova; /* IO virtual address */
1178 __u64 size; /* Size of iova range */
1179 struct vfio_bitmap bitmap;
1180 };
1181
1182 #define VFIO_IOMMU_DIRTY_PAGES _IO(VFIO_TYPE, VFIO_BASE + 17)
1183
1184 /* -------- Additional API for SPAPR TCE (Server POWERPC) IOMMU -------- */
1185
1186 /*
1187 * The SPAPR TCE DDW info struct provides the information about
1188 * the details of Dynamic DMA window capability.
1189 *
1190 * @pgsizes contains a page size bitmask, 4K/64K/16M are supported.
1191 * @max_dynamic_windows_supported tells the maximum number of windows
1192 * which the platform can create.
1193 * @levels tells the maximum number of levels in multi-level IOMMU tables;
1194 * this allows splitting a table into smaller chunks which reduces
1195 * the amount of physically contiguous memory required for the table.
1196 */
1197 struct vfio_iommu_spapr_tce_ddw_info {
1198 __u64 pgsizes; /* Bitmap of supported page sizes */
1199 __u32 max_dynamic_windows_supported;
1200 __u32 levels;
1201 };
1202
1203 /*
1204 * The SPAPR TCE info struct provides the information about the PCI bus
1205 * address ranges available for DMA, these values are programmed into
1206 * the hardware so the guest has to know that information.
1207 *
1208 * The DMA 32 bit window start is an absolute PCI bus address.
1209 * The IOVA address passed via map/unmap ioctls are absolute PCI bus
1210 * addresses too so the window works as a filter rather than an offset
1211 * for IOVA addresses.
1212 *
1213 * Flags supported:
1214 * - VFIO_IOMMU_SPAPR_INFO_DDW: informs the userspace that dynamic DMA windows
1215 * (DDW) support is present. @ddw is only supported when DDW is present.
1216 */
1217 struct vfio_iommu_spapr_tce_info {
1218 __u32 argsz;
1219 __u32 flags;
1220 #define VFIO_IOMMU_SPAPR_INFO_DDW (1 << 0) /* DDW supported */
1221 __u32 dma32_window_start; /* 32 bit window start (bytes) */
1222 __u32 dma32_window_size; /* 32 bit window size (bytes) */
1223 struct vfio_iommu_spapr_tce_ddw_info ddw;
1224 };
1225
1226 #define VFIO_IOMMU_SPAPR_TCE_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12)
1227
1228 /*
1229 * EEH PE operation struct provides ways to:
1230 * - enable/disable EEH functionality;
1231 * - unfreeze IO/DMA for frozen PE;
1232 * - read PE state;
1233 * - reset PE;
1234 * - configure PE;
1235 * - inject EEH error.
1236 */
1237 struct vfio_eeh_pe_err {
1238 __u32 type;
1239 __u32 func;
1240 __u64 addr;
1241 __u64 mask;
1242 };
1243
1244 struct vfio_eeh_pe_op {
1245 __u32 argsz;
1246 __u32 flags;
1247 __u32 op;
1248 union {
1249 struct vfio_eeh_pe_err err;
1250 };
1251 };
1252
1253 #define VFIO_EEH_PE_DISABLE 0 /* Disable EEH functionality */
1254 #define VFIO_EEH_PE_ENABLE 1 /* Enable EEH functionality */
1255 #define VFIO_EEH_PE_UNFREEZE_IO 2 /* Enable IO for frozen PE */
1256 #define VFIO_EEH_PE_UNFREEZE_DMA 3 /* Enable DMA for frozen PE */
1257 #define VFIO_EEH_PE_GET_STATE 4 /* PE state retrieval */
1258 #define VFIO_EEH_PE_STATE_NORMAL 0 /* PE in functional state */
1259 #define VFIO_EEH_PE_STATE_RESET 1 /* PE reset in progress */
1260 #define VFIO_EEH_PE_STATE_STOPPED 2 /* Stopped DMA and IO */
1261 #define VFIO_EEH_PE_STATE_STOPPED_DMA 4 /* Stopped DMA only */
1262 #define VFIO_EEH_PE_STATE_UNAVAIL 5 /* State unavailable */
1263 #define VFIO_EEH_PE_RESET_DEACTIVATE 5 /* Deassert PE reset */
1264 #define VFIO_EEH_PE_RESET_HOT 6 /* Assert hot reset */
1265 #define VFIO_EEH_PE_RESET_FUNDAMENTAL 7 /* Assert fundamental reset */
1266 #define VFIO_EEH_PE_CONFIGURE 8 /* PE configuration */
1267 #define VFIO_EEH_PE_INJECT_ERR 9 /* Inject EEH error */
1268
1269 #define VFIO_EEH_PE_OP _IO(VFIO_TYPE, VFIO_BASE + 21)
1270
1271 /**
1272 * VFIO_IOMMU_SPAPR_REGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 17, struct vfio_iommu_spapr_register_memory)
1273 *
1274 * Registers user space memory where DMA is allowed. It pins
1275 * user pages and does the locked memory accounting so
1276 * subsequent VFIO_IOMMU_MAP_DMA/VFIO_IOMMU_UNMAP_DMA calls
1277 * get faster.
1278 */
1279 struct vfio_iommu_spapr_register_memory {
1280 __u32 argsz;
1281 __u32 flags;
1282 __u64 vaddr; /* Process virtual address */
1283 __u64 size; /* Size of mapping (bytes) */
1284 };
1285 #define VFIO_IOMMU_SPAPR_REGISTER_MEMORY _IO(VFIO_TYPE, VFIO_BASE + 17)
1286
1287 /**
1288 * VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 18, struct vfio_iommu_spapr_register_memory)
1289 *
1290 * Unregisters user space memory registered with
1291 * VFIO_IOMMU_SPAPR_REGISTER_MEMORY.
1292 * Uses vfio_iommu_spapr_register_memory for parameters.
1293 */
1294 #define VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY _IO(VFIO_TYPE, VFIO_BASE + 18)
1295
1296 /**
1297 * VFIO_IOMMU_SPAPR_TCE_CREATE - _IOWR(VFIO_TYPE, VFIO_BASE + 19, struct vfio_iommu_spapr_tce_create)
1298 *
1299 * Creates an additional TCE table and programs it (sets a new DMA window)
1300 * to every IOMMU group in the container. It receives page shift, window
1301 * size and number of levels in the TCE table being created.
1302 *
1303 * It allocates and returns an offset on a PCI bus of the new DMA window.
1304 */
1305 struct vfio_iommu_spapr_tce_create {
1306 __u32 argsz;
1307 __u32 flags;
1308 /* in */
1309 __u32 page_shift;
1310 __u32 __resv1;
1311 __u64 window_size;
1312 __u32 levels;
1313 __u32 __resv2;
1314 /* out */
1315 __u64 start_addr;
1316 };
1317 #define VFIO_IOMMU_SPAPR_TCE_CREATE _IO(VFIO_TYPE, VFIO_BASE + 19)
1318
1319 /**
1320 * VFIO_IOMMU_SPAPR_TCE_REMOVE - _IOW(VFIO_TYPE, VFIO_BASE + 20, struct vfio_iommu_spapr_tce_remove)
1321 *
1322 * Unprograms a TCE table from all groups in the container and destroys it.
1323 * It receives a PCI bus offset as a window id.
1324 */
1325 struct vfio_iommu_spapr_tce_remove {
1326 __u32 argsz;
1327 __u32 flags;
1328 /* in */
1329 __u64 start_addr;
1330 };
1331 #define VFIO_IOMMU_SPAPR_TCE_REMOVE _IO(VFIO_TYPE, VFIO_BASE + 20)
1332
1333 /* ***************************************************************** */
1334
1335 #endif /* VFIO_H */