python/qemu/console_socket.py: Correct type of recv()
[qemu.git] / linux-headers / linux / vfio.h
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 /*
3 * VFIO API definition
4 *
5 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
6 * Author: Alex Williamson <alex.williamson@redhat.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12 #ifndef VFIO_H
13 #define VFIO_H
14
15 #include <linux/types.h>
16 #include <linux/ioctl.h>
17
18 #define VFIO_API_VERSION 0
19
20
21 /* Kernel & User level defines for VFIO IOCTLs. */
22
23 /* Extensions */
24
25 #define VFIO_TYPE1_IOMMU 1
26 #define VFIO_SPAPR_TCE_IOMMU 2
27 #define VFIO_TYPE1v2_IOMMU 3
28 /*
29 * IOMMU enforces DMA cache coherence (ex. PCIe NoSnoop stripping). This
30 * capability is subject to change as groups are added or removed.
31 */
32 #define VFIO_DMA_CC_IOMMU 4
33
34 /* Check if EEH is supported */
35 #define VFIO_EEH 5
36
37 /* Two-stage IOMMU */
38 #define VFIO_TYPE1_NESTING_IOMMU 6 /* Implies v2 */
39
40 #define VFIO_SPAPR_TCE_v2_IOMMU 7
41
42 /*
43 * The No-IOMMU IOMMU offers no translation or isolation for devices and
44 * supports no ioctls outside of VFIO_CHECK_EXTENSION. Use of VFIO's No-IOMMU
45 * code will taint the host kernel and should be used with extreme caution.
46 */
47 #define VFIO_NOIOMMU_IOMMU 8
48
49 /*
50 * The IOCTL interface is designed for extensibility by embedding the
51 * structure length (argsz) and flags into structures passed between
52 * kernel and userspace. We therefore use the _IO() macro for these
53 * defines to avoid implicitly embedding a size into the ioctl request.
54 * As structure fields are added, argsz will increase to match and flag
55 * bits will be defined to indicate additional fields with valid data.
56 * It's *always* the caller's responsibility to indicate the size of
57 * the structure passed by setting argsz appropriately.
58 */
59
60 #define VFIO_TYPE (';')
61 #define VFIO_BASE 100
62
63 /*
64 * For extension of INFO ioctls, VFIO makes use of a capability chain
65 * designed after PCI/e capabilities. A flag bit indicates whether
66 * this capability chain is supported and a field defined in the fixed
67 * structure defines the offset of the first capability in the chain.
68 * This field is only valid when the corresponding bit in the flags
69 * bitmap is set. This offset field is relative to the start of the
70 * INFO buffer, as is the next field within each capability header.
71 * The id within the header is a shared address space per INFO ioctl,
72 * while the version field is specific to the capability id. The
73 * contents following the header are specific to the capability id.
74 */
75 struct vfio_info_cap_header {
76 __u16 id; /* Identifies capability */
77 __u16 version; /* Version specific to the capability ID */
78 __u32 next; /* Offset of next capability */
79 };
80
81 /*
82 * Callers of INFO ioctls passing insufficiently sized buffers will see
83 * the capability chain flag bit set, a zero value for the first capability
84 * offset (if available within the provided argsz), and argsz will be
85 * updated to report the necessary buffer size. For compatibility, the
86 * INFO ioctl will not report error in this case, but the capability chain
87 * will not be available.
88 */
89
90 /* -------- IOCTLs for VFIO file descriptor (/dev/vfio/vfio) -------- */
91
92 /**
93 * VFIO_GET_API_VERSION - _IO(VFIO_TYPE, VFIO_BASE + 0)
94 *
95 * Report the version of the VFIO API. This allows us to bump the entire
96 * API version should we later need to add or change features in incompatible
97 * ways.
98 * Return: VFIO_API_VERSION
99 * Availability: Always
100 */
101 #define VFIO_GET_API_VERSION _IO(VFIO_TYPE, VFIO_BASE + 0)
102
103 /**
104 * VFIO_CHECK_EXTENSION - _IOW(VFIO_TYPE, VFIO_BASE + 1, __u32)
105 *
106 * Check whether an extension is supported.
107 * Return: 0 if not supported, 1 (or some other positive integer) if supported.
108 * Availability: Always
109 */
110 #define VFIO_CHECK_EXTENSION _IO(VFIO_TYPE, VFIO_BASE + 1)
111
112 /**
113 * VFIO_SET_IOMMU - _IOW(VFIO_TYPE, VFIO_BASE + 2, __s32)
114 *
115 * Set the iommu to the given type. The type must be supported by an
116 * iommu driver as verified by calling CHECK_EXTENSION using the same
117 * type. A group must be set to this file descriptor before this
118 * ioctl is available. The IOMMU interfaces enabled by this call are
119 * specific to the value set.
120 * Return: 0 on success, -errno on failure
121 * Availability: When VFIO group attached
122 */
123 #define VFIO_SET_IOMMU _IO(VFIO_TYPE, VFIO_BASE + 2)
124
125 /* -------- IOCTLs for GROUP file descriptors (/dev/vfio/$GROUP) -------- */
126
127 /**
128 * VFIO_GROUP_GET_STATUS - _IOR(VFIO_TYPE, VFIO_BASE + 3,
129 * struct vfio_group_status)
130 *
131 * Retrieve information about the group. Fills in provided
132 * struct vfio_group_info. Caller sets argsz.
133 * Return: 0 on succes, -errno on failure.
134 * Availability: Always
135 */
136 struct vfio_group_status {
137 __u32 argsz;
138 __u32 flags;
139 #define VFIO_GROUP_FLAGS_VIABLE (1 << 0)
140 #define VFIO_GROUP_FLAGS_CONTAINER_SET (1 << 1)
141 };
142 #define VFIO_GROUP_GET_STATUS _IO(VFIO_TYPE, VFIO_BASE + 3)
143
144 /**
145 * VFIO_GROUP_SET_CONTAINER - _IOW(VFIO_TYPE, VFIO_BASE + 4, __s32)
146 *
147 * Set the container for the VFIO group to the open VFIO file
148 * descriptor provided. Groups may only belong to a single
149 * container. Containers may, at their discretion, support multiple
150 * groups. Only when a container is set are all of the interfaces
151 * of the VFIO file descriptor and the VFIO group file descriptor
152 * available to the user.
153 * Return: 0 on success, -errno on failure.
154 * Availability: Always
155 */
156 #define VFIO_GROUP_SET_CONTAINER _IO(VFIO_TYPE, VFIO_BASE + 4)
157
158 /**
159 * VFIO_GROUP_UNSET_CONTAINER - _IO(VFIO_TYPE, VFIO_BASE + 5)
160 *
161 * Remove the group from the attached container. This is the
162 * opposite of the SET_CONTAINER call and returns the group to
163 * an initial state. All device file descriptors must be released
164 * prior to calling this interface. When removing the last group
165 * from a container, the IOMMU will be disabled and all state lost,
166 * effectively also returning the VFIO file descriptor to an initial
167 * state.
168 * Return: 0 on success, -errno on failure.
169 * Availability: When attached to container
170 */
171 #define VFIO_GROUP_UNSET_CONTAINER _IO(VFIO_TYPE, VFIO_BASE + 5)
172
173 /**
174 * VFIO_GROUP_GET_DEVICE_FD - _IOW(VFIO_TYPE, VFIO_BASE + 6, char)
175 *
176 * Return a new file descriptor for the device object described by
177 * the provided string. The string should match a device listed in
178 * the devices subdirectory of the IOMMU group sysfs entry. The
179 * group containing the device must already be added to this context.
180 * Return: new file descriptor on success, -errno on failure.
181 * Availability: When attached to container
182 */
183 #define VFIO_GROUP_GET_DEVICE_FD _IO(VFIO_TYPE, VFIO_BASE + 6)
184
185 /* --------------- IOCTLs for DEVICE file descriptors --------------- */
186
187 /**
188 * VFIO_DEVICE_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 7,
189 * struct vfio_device_info)
190 *
191 * Retrieve information about the device. Fills in provided
192 * struct vfio_device_info. Caller sets argsz.
193 * Return: 0 on success, -errno on failure.
194 */
195 struct vfio_device_info {
196 __u32 argsz;
197 __u32 flags;
198 #define VFIO_DEVICE_FLAGS_RESET (1 << 0) /* Device supports reset */
199 #define VFIO_DEVICE_FLAGS_PCI (1 << 1) /* vfio-pci device */
200 #define VFIO_DEVICE_FLAGS_PLATFORM (1 << 2) /* vfio-platform device */
201 #define VFIO_DEVICE_FLAGS_AMBA (1 << 3) /* vfio-amba device */
202 #define VFIO_DEVICE_FLAGS_CCW (1 << 4) /* vfio-ccw device */
203 #define VFIO_DEVICE_FLAGS_AP (1 << 5) /* vfio-ap device */
204 __u32 num_regions; /* Max region index + 1 */
205 __u32 num_irqs; /* Max IRQ index + 1 */
206 };
207 #define VFIO_DEVICE_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 7)
208
209 /*
210 * Vendor driver using Mediated device framework should provide device_api
211 * attribute in supported type attribute groups. Device API string should be one
212 * of the following corresponding to device flags in vfio_device_info structure.
213 */
214
215 #define VFIO_DEVICE_API_PCI_STRING "vfio-pci"
216 #define VFIO_DEVICE_API_PLATFORM_STRING "vfio-platform"
217 #define VFIO_DEVICE_API_AMBA_STRING "vfio-amba"
218 #define VFIO_DEVICE_API_CCW_STRING "vfio-ccw"
219 #define VFIO_DEVICE_API_AP_STRING "vfio-ap"
220
221 /**
222 * VFIO_DEVICE_GET_REGION_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 8,
223 * struct vfio_region_info)
224 *
225 * Retrieve information about a device region. Caller provides
226 * struct vfio_region_info with index value set. Caller sets argsz.
227 * Implementation of region mapping is bus driver specific. This is
228 * intended to describe MMIO, I/O port, as well as bus specific
229 * regions (ex. PCI config space). Zero sized regions may be used
230 * to describe unimplemented regions (ex. unimplemented PCI BARs).
231 * Return: 0 on success, -errno on failure.
232 */
233 struct vfio_region_info {
234 __u32 argsz;
235 __u32 flags;
236 #define VFIO_REGION_INFO_FLAG_READ (1 << 0) /* Region supports read */
237 #define VFIO_REGION_INFO_FLAG_WRITE (1 << 1) /* Region supports write */
238 #define VFIO_REGION_INFO_FLAG_MMAP (1 << 2) /* Region supports mmap */
239 #define VFIO_REGION_INFO_FLAG_CAPS (1 << 3) /* Info supports caps */
240 __u32 index; /* Region index */
241 __u32 cap_offset; /* Offset within info struct of first cap */
242 __u64 size; /* Region size (bytes) */
243 __u64 offset; /* Region offset from start of device fd */
244 };
245 #define VFIO_DEVICE_GET_REGION_INFO _IO(VFIO_TYPE, VFIO_BASE + 8)
246
247 /*
248 * The sparse mmap capability allows finer granularity of specifying areas
249 * within a region with mmap support. When specified, the user should only
250 * mmap the offset ranges specified by the areas array. mmaps outside of the
251 * areas specified may fail (such as the range covering a PCI MSI-X table) or
252 * may result in improper device behavior.
253 *
254 * The structures below define version 1 of this capability.
255 */
256 #define VFIO_REGION_INFO_CAP_SPARSE_MMAP 1
257
258 struct vfio_region_sparse_mmap_area {
259 __u64 offset; /* Offset of mmap'able area within region */
260 __u64 size; /* Size of mmap'able area */
261 };
262
263 struct vfio_region_info_cap_sparse_mmap {
264 struct vfio_info_cap_header header;
265 __u32 nr_areas;
266 __u32 reserved;
267 struct vfio_region_sparse_mmap_area areas[];
268 };
269
270 /*
271 * The device specific type capability allows regions unique to a specific
272 * device or class of devices to be exposed. This helps solve the problem for
273 * vfio bus drivers of defining which region indexes correspond to which region
274 * on the device, without needing to resort to static indexes, as done by
275 * vfio-pci. For instance, if we were to go back in time, we might remove
276 * VFIO_PCI_VGA_REGION_INDEX and let vfio-pci simply define that all indexes
277 * greater than or equal to VFIO_PCI_NUM_REGIONS are device specific and we'd
278 * make a "VGA" device specific type to describe the VGA access space. This
279 * means that non-VGA devices wouldn't need to waste this index, and thus the
280 * address space associated with it due to implementation of device file
281 * descriptor offsets in vfio-pci.
282 *
283 * The current implementation is now part of the user ABI, so we can't use this
284 * for VGA, but there are other upcoming use cases, such as opregions for Intel
285 * IGD devices and framebuffers for vGPU devices. We missed VGA, but we'll
286 * use this for future additions.
287 *
288 * The structure below defines version 1 of this capability.
289 */
290 #define VFIO_REGION_INFO_CAP_TYPE 2
291
292 struct vfio_region_info_cap_type {
293 struct vfio_info_cap_header header;
294 __u32 type; /* global per bus driver */
295 __u32 subtype; /* type specific */
296 };
297
298 /*
299 * List of region types, global per bus driver.
300 * If you introduce a new type, please add it here.
301 */
302
303 /* PCI region type containing a PCI vendor part */
304 #define VFIO_REGION_TYPE_PCI_VENDOR_TYPE (1 << 31)
305 #define VFIO_REGION_TYPE_PCI_VENDOR_MASK (0xffff)
306 #define VFIO_REGION_TYPE_GFX (1)
307 #define VFIO_REGION_TYPE_CCW (2)
308 #define VFIO_REGION_TYPE_MIGRATION (3)
309
310 /* sub-types for VFIO_REGION_TYPE_PCI_* */
311
312 /* 8086 vendor PCI sub-types */
313 #define VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION (1)
314 #define VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG (2)
315 #define VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG (3)
316
317 /* 10de vendor PCI sub-types */
318 /*
319 * NVIDIA GPU NVlink2 RAM is coherent RAM mapped onto the host address space.
320 */
321 #define VFIO_REGION_SUBTYPE_NVIDIA_NVLINK2_RAM (1)
322
323 /* 1014 vendor PCI sub-types */
324 /*
325 * IBM NPU NVlink2 ATSD (Address Translation Shootdown) register of NPU
326 * to do TLB invalidation on a GPU.
327 */
328 #define VFIO_REGION_SUBTYPE_IBM_NVLINK2_ATSD (1)
329
330 /* sub-types for VFIO_REGION_TYPE_GFX */
331 #define VFIO_REGION_SUBTYPE_GFX_EDID (1)
332
333 /**
334 * struct vfio_region_gfx_edid - EDID region layout.
335 *
336 * Set display link state and EDID blob.
337 *
338 * The EDID blob has monitor information such as brand, name, serial
339 * number, physical size, supported video modes and more.
340 *
341 * This special region allows userspace (typically qemu) set a virtual
342 * EDID for the virtual monitor, which allows a flexible display
343 * configuration.
344 *
345 * For the edid blob spec look here:
346 * https://en.wikipedia.org/wiki/Extended_Display_Identification_Data
347 *
348 * On linux systems you can find the EDID blob in sysfs:
349 * /sys/class/drm/${card}/${connector}/edid
350 *
351 * You can use the edid-decode ulility (comes with xorg-x11-utils) to
352 * decode the EDID blob.
353 *
354 * @edid_offset: location of the edid blob, relative to the
355 * start of the region (readonly).
356 * @edid_max_size: max size of the edid blob (readonly).
357 * @edid_size: actual edid size (read/write).
358 * @link_state: display link state (read/write).
359 * VFIO_DEVICE_GFX_LINK_STATE_UP: Monitor is turned on.
360 * VFIO_DEVICE_GFX_LINK_STATE_DOWN: Monitor is turned off.
361 * @max_xres: max display width (0 == no limitation, readonly).
362 * @max_yres: max display height (0 == no limitation, readonly).
363 *
364 * EDID update protocol:
365 * (1) set link-state to down.
366 * (2) update edid blob and size.
367 * (3) set link-state to up.
368 */
369 struct vfio_region_gfx_edid {
370 __u32 edid_offset;
371 __u32 edid_max_size;
372 __u32 edid_size;
373 __u32 max_xres;
374 __u32 max_yres;
375 __u32 link_state;
376 #define VFIO_DEVICE_GFX_LINK_STATE_UP 1
377 #define VFIO_DEVICE_GFX_LINK_STATE_DOWN 2
378 };
379
380 /* sub-types for VFIO_REGION_TYPE_CCW */
381 #define VFIO_REGION_SUBTYPE_CCW_ASYNC_CMD (1)
382 #define VFIO_REGION_SUBTYPE_CCW_SCHIB (2)
383 #define VFIO_REGION_SUBTYPE_CCW_CRW (3)
384
385 /* sub-types for VFIO_REGION_TYPE_MIGRATION */
386 #define VFIO_REGION_SUBTYPE_MIGRATION (1)
387
388 /*
389 * The structure vfio_device_migration_info is placed at the 0th offset of
390 * the VFIO_REGION_SUBTYPE_MIGRATION region to get and set VFIO device related
391 * migration information. Field accesses from this structure are only supported
392 * at their native width and alignment. Otherwise, the result is undefined and
393 * vendor drivers should return an error.
394 *
395 * device_state: (read/write)
396 * - The user application writes to this field to inform the vendor driver
397 * about the device state to be transitioned to.
398 * - The vendor driver should take the necessary actions to change the
399 * device state. After successful transition to a given state, the
400 * vendor driver should return success on write(device_state, state)
401 * system call. If the device state transition fails, the vendor driver
402 * should return an appropriate -errno for the fault condition.
403 * - On the user application side, if the device state transition fails,
404 * that is, if write(device_state, state) returns an error, read
405 * device_state again to determine the current state of the device from
406 * the vendor driver.
407 * - The vendor driver should return previous state of the device unless
408 * the vendor driver has encountered an internal error, in which case
409 * the vendor driver may report the device_state VFIO_DEVICE_STATE_ERROR.
410 * - The user application must use the device reset ioctl to recover the
411 * device from VFIO_DEVICE_STATE_ERROR state. If the device is
412 * indicated to be in a valid device state by reading device_state, the
413 * user application may attempt to transition the device to any valid
414 * state reachable from the current state or terminate itself.
415 *
416 * device_state consists of 3 bits:
417 * - If bit 0 is set, it indicates the _RUNNING state. If bit 0 is clear,
418 * it indicates the _STOP state. When the device state is changed to
419 * _STOP, driver should stop the device before write() returns.
420 * - If bit 1 is set, it indicates the _SAVING state, which means that the
421 * driver should start gathering device state information that will be
422 * provided to the VFIO user application to save the device's state.
423 * - If bit 2 is set, it indicates the _RESUMING state, which means that
424 * the driver should prepare to resume the device. Data provided through
425 * the migration region should be used to resume the device.
426 * Bits 3 - 31 are reserved for future use. To preserve them, the user
427 * application should perform a read-modify-write operation on this
428 * field when modifying the specified bits.
429 *
430 * +------- _RESUMING
431 * |+------ _SAVING
432 * ||+----- _RUNNING
433 * |||
434 * 000b => Device Stopped, not saving or resuming
435 * 001b => Device running, which is the default state
436 * 010b => Stop the device & save the device state, stop-and-copy state
437 * 011b => Device running and save the device state, pre-copy state
438 * 100b => Device stopped and the device state is resuming
439 * 101b => Invalid state
440 * 110b => Error state
441 * 111b => Invalid state
442 *
443 * State transitions:
444 *
445 * _RESUMING _RUNNING Pre-copy Stop-and-copy _STOP
446 * (100b) (001b) (011b) (010b) (000b)
447 * 0. Running or default state
448 * |
449 *
450 * 1. Normal Shutdown (optional)
451 * |------------------------------------->|
452 *
453 * 2. Save the state or suspend
454 * |------------------------->|---------->|
455 *
456 * 3. Save the state during live migration
457 * |----------->|------------>|---------->|
458 *
459 * 4. Resuming
460 * |<---------|
461 *
462 * 5. Resumed
463 * |--------->|
464 *
465 * 0. Default state of VFIO device is _RUNNNG when the user application starts.
466 * 1. During normal shutdown of the user application, the user application may
467 * optionally change the VFIO device state from _RUNNING to _STOP. This
468 * transition is optional. The vendor driver must support this transition but
469 * must not require it.
470 * 2. When the user application saves state or suspends the application, the
471 * device state transitions from _RUNNING to stop-and-copy and then to _STOP.
472 * On state transition from _RUNNING to stop-and-copy, driver must stop the
473 * device, save the device state and send it to the application through the
474 * migration region. The sequence to be followed for such transition is given
475 * below.
476 * 3. In live migration of user application, the state transitions from _RUNNING
477 * to pre-copy, to stop-and-copy, and to _STOP.
478 * On state transition from _RUNNING to pre-copy, the driver should start
479 * gathering the device state while the application is still running and send
480 * the device state data to application through the migration region.
481 * On state transition from pre-copy to stop-and-copy, the driver must stop
482 * the device, save the device state and send it to the user application
483 * through the migration region.
484 * Vendor drivers must support the pre-copy state even for implementations
485 * where no data is provided to the user before the stop-and-copy state. The
486 * user must not be required to consume all migration data before the device
487 * transitions to a new state, including the stop-and-copy state.
488 * The sequence to be followed for above two transitions is given below.
489 * 4. To start the resuming phase, the device state should be transitioned from
490 * the _RUNNING to the _RESUMING state.
491 * In the _RESUMING state, the driver should use the device state data
492 * received through the migration region to resume the device.
493 * 5. After providing saved device data to the driver, the application should
494 * change the state from _RESUMING to _RUNNING.
495 *
496 * reserved:
497 * Reads on this field return zero and writes are ignored.
498 *
499 * pending_bytes: (read only)
500 * The number of pending bytes still to be migrated from the vendor driver.
501 *
502 * data_offset: (read only)
503 * The user application should read data_offset field from the migration
504 * region. The user application should read the device data from this
505 * offset within the migration region during the _SAVING state or write
506 * the device data during the _RESUMING state. See below for details of
507 * sequence to be followed.
508 *
509 * data_size: (read/write)
510 * The user application should read data_size to get the size in bytes of
511 * the data copied in the migration region during the _SAVING state and
512 * write the size in bytes of the data copied in the migration region
513 * during the _RESUMING state.
514 *
515 * The format of the migration region is as follows:
516 * ------------------------------------------------------------------
517 * |vfio_device_migration_info| data section |
518 * | | /////////////////////////////// |
519 * ------------------------------------------------------------------
520 * ^ ^
521 * offset 0-trapped part data_offset
522 *
523 * The structure vfio_device_migration_info is always followed by the data
524 * section in the region, so data_offset will always be nonzero. The offset
525 * from where the data is copied is decided by the kernel driver. The data
526 * section can be trapped, mmapped, or partitioned, depending on how the kernel
527 * driver defines the data section. The data section partition can be defined
528 * as mapped by the sparse mmap capability. If mmapped, data_offset must be
529 * page aligned, whereas initial section which contains the
530 * vfio_device_migration_info structure, might not end at the offset, which is
531 * page aligned. The user is not required to access through mmap regardless
532 * of the capabilities of the region mmap.
533 * The vendor driver should determine whether and how to partition the data
534 * section. The vendor driver should return data_offset accordingly.
535 *
536 * The sequence to be followed while in pre-copy state and stop-and-copy state
537 * is as follows:
538 * a. Read pending_bytes, indicating the start of a new iteration to get device
539 * data. Repeated read on pending_bytes at this stage should have no side
540 * effects.
541 * If pending_bytes == 0, the user application should not iterate to get data
542 * for that device.
543 * If pending_bytes > 0, perform the following steps.
544 * b. Read data_offset, indicating that the vendor driver should make data
545 * available through the data section. The vendor driver should return this
546 * read operation only after data is available from (region + data_offset)
547 * to (region + data_offset + data_size).
548 * c. Read data_size, which is the amount of data in bytes available through
549 * the migration region.
550 * Read on data_offset and data_size should return the offset and size of
551 * the current buffer if the user application reads data_offset and
552 * data_size more than once here.
553 * d. Read data_size bytes of data from (region + data_offset) from the
554 * migration region.
555 * e. Process the data.
556 * f. Read pending_bytes, which indicates that the data from the previous
557 * iteration has been read. If pending_bytes > 0, go to step b.
558 *
559 * The user application can transition from the _SAVING|_RUNNING
560 * (pre-copy state) to the _SAVING (stop-and-copy) state regardless of the
561 * number of pending bytes. The user application should iterate in _SAVING
562 * (stop-and-copy) until pending_bytes is 0.
563 *
564 * The sequence to be followed while _RESUMING device state is as follows:
565 * While data for this device is available, repeat the following steps:
566 * a. Read data_offset from where the user application should write data.
567 * b. Write migration data starting at the migration region + data_offset for
568 * the length determined by data_size from the migration source.
569 * c. Write data_size, which indicates to the vendor driver that data is
570 * written in the migration region. Vendor driver must return this write
571 * operations on consuming data. Vendor driver should apply the
572 * user-provided migration region data to the device resume state.
573 *
574 * If an error occurs during the above sequences, the vendor driver can return
575 * an error code for next read() or write() operation, which will terminate the
576 * loop. The user application should then take the next necessary action, for
577 * example, failing migration or terminating the user application.
578 *
579 * For the user application, data is opaque. The user application should write
580 * data in the same order as the data is received and the data should be of
581 * same transaction size at the source.
582 */
583
584 struct vfio_device_migration_info {
585 __u32 device_state; /* VFIO device state */
586 #define VFIO_DEVICE_STATE_STOP (0)
587 #define VFIO_DEVICE_STATE_RUNNING (1 << 0)
588 #define VFIO_DEVICE_STATE_SAVING (1 << 1)
589 #define VFIO_DEVICE_STATE_RESUMING (1 << 2)
590 #define VFIO_DEVICE_STATE_MASK (VFIO_DEVICE_STATE_RUNNING | \
591 VFIO_DEVICE_STATE_SAVING | \
592 VFIO_DEVICE_STATE_RESUMING)
593
594 #define VFIO_DEVICE_STATE_VALID(state) \
595 (state & VFIO_DEVICE_STATE_RESUMING ? \
596 (state & VFIO_DEVICE_STATE_MASK) == VFIO_DEVICE_STATE_RESUMING : 1)
597
598 #define VFIO_DEVICE_STATE_IS_ERROR(state) \
599 ((state & VFIO_DEVICE_STATE_MASK) == (VFIO_DEVICE_STATE_SAVING | \
600 VFIO_DEVICE_STATE_RESUMING))
601
602 #define VFIO_DEVICE_STATE_SET_ERROR(state) \
603 ((state & ~VFIO_DEVICE_STATE_MASK) | VFIO_DEVICE_SATE_SAVING | \
604 VFIO_DEVICE_STATE_RESUMING)
605
606 __u32 reserved;
607 __u64 pending_bytes;
608 __u64 data_offset;
609 __u64 data_size;
610 };
611
612 /*
613 * The MSIX mappable capability informs that MSIX data of a BAR can be mmapped
614 * which allows direct access to non-MSIX registers which happened to be within
615 * the same system page.
616 *
617 * Even though the userspace gets direct access to the MSIX data, the existing
618 * VFIO_DEVICE_SET_IRQS interface must still be used for MSIX configuration.
619 */
620 #define VFIO_REGION_INFO_CAP_MSIX_MAPPABLE 3
621
622 /*
623 * Capability with compressed real address (aka SSA - small system address)
624 * where GPU RAM is mapped on a system bus. Used by a GPU for DMA routing
625 * and by the userspace to associate a NVLink bridge with a GPU.
626 */
627 #define VFIO_REGION_INFO_CAP_NVLINK2_SSATGT 4
628
629 struct vfio_region_info_cap_nvlink2_ssatgt {
630 struct vfio_info_cap_header header;
631 __u64 tgt;
632 };
633
634 /*
635 * Capability with an NVLink link speed. The value is read by
636 * the NVlink2 bridge driver from the bridge's "ibm,nvlink-speed"
637 * property in the device tree. The value is fixed in the hardware
638 * and failing to provide the correct value results in the link
639 * not working with no indication from the driver why.
640 */
641 #define VFIO_REGION_INFO_CAP_NVLINK2_LNKSPD 5
642
643 struct vfio_region_info_cap_nvlink2_lnkspd {
644 struct vfio_info_cap_header header;
645 __u32 link_speed;
646 __u32 __pad;
647 };
648
649 /**
650 * VFIO_DEVICE_GET_IRQ_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 9,
651 * struct vfio_irq_info)
652 *
653 * Retrieve information about a device IRQ. Caller provides
654 * struct vfio_irq_info with index value set. Caller sets argsz.
655 * Implementation of IRQ mapping is bus driver specific. Indexes
656 * using multiple IRQs are primarily intended to support MSI-like
657 * interrupt blocks. Zero count irq blocks may be used to describe
658 * unimplemented interrupt types.
659 *
660 * The EVENTFD flag indicates the interrupt index supports eventfd based
661 * signaling.
662 *
663 * The MASKABLE flags indicates the index supports MASK and UNMASK
664 * actions described below.
665 *
666 * AUTOMASKED indicates that after signaling, the interrupt line is
667 * automatically masked by VFIO and the user needs to unmask the line
668 * to receive new interrupts. This is primarily intended to distinguish
669 * level triggered interrupts.
670 *
671 * The NORESIZE flag indicates that the interrupt lines within the index
672 * are setup as a set and new subindexes cannot be enabled without first
673 * disabling the entire index. This is used for interrupts like PCI MSI
674 * and MSI-X where the driver may only use a subset of the available
675 * indexes, but VFIO needs to enable a specific number of vectors
676 * upfront. In the case of MSI-X, where the user can enable MSI-X and
677 * then add and unmask vectors, it's up to userspace to make the decision
678 * whether to allocate the maximum supported number of vectors or tear
679 * down setup and incrementally increase the vectors as each is enabled.
680 */
681 struct vfio_irq_info {
682 __u32 argsz;
683 __u32 flags;
684 #define VFIO_IRQ_INFO_EVENTFD (1 << 0)
685 #define VFIO_IRQ_INFO_MASKABLE (1 << 1)
686 #define VFIO_IRQ_INFO_AUTOMASKED (1 << 2)
687 #define VFIO_IRQ_INFO_NORESIZE (1 << 3)
688 __u32 index; /* IRQ index */
689 __u32 count; /* Number of IRQs within this index */
690 };
691 #define VFIO_DEVICE_GET_IRQ_INFO _IO(VFIO_TYPE, VFIO_BASE + 9)
692
693 /**
694 * VFIO_DEVICE_SET_IRQS - _IOW(VFIO_TYPE, VFIO_BASE + 10, struct vfio_irq_set)
695 *
696 * Set signaling, masking, and unmasking of interrupts. Caller provides
697 * struct vfio_irq_set with all fields set. 'start' and 'count' indicate
698 * the range of subindexes being specified.
699 *
700 * The DATA flags specify the type of data provided. If DATA_NONE, the
701 * operation performs the specified action immediately on the specified
702 * interrupt(s). For example, to unmask AUTOMASKED interrupt [0,0]:
703 * flags = (DATA_NONE|ACTION_UNMASK), index = 0, start = 0, count = 1.
704 *
705 * DATA_BOOL allows sparse support for the same on arrays of interrupts.
706 * For example, to mask interrupts [0,1] and [0,3] (but not [0,2]):
707 * flags = (DATA_BOOL|ACTION_MASK), index = 0, start = 1, count = 3,
708 * data = {1,0,1}
709 *
710 * DATA_EVENTFD binds the specified ACTION to the provided __s32 eventfd.
711 * A value of -1 can be used to either de-assign interrupts if already
712 * assigned or skip un-assigned interrupts. For example, to set an eventfd
713 * to be trigger for interrupts [0,0] and [0,2]:
714 * flags = (DATA_EVENTFD|ACTION_TRIGGER), index = 0, start = 0, count = 3,
715 * data = {fd1, -1, fd2}
716 * If index [0,1] is previously set, two count = 1 ioctls calls would be
717 * required to set [0,0] and [0,2] without changing [0,1].
718 *
719 * Once a signaling mechanism is set, DATA_BOOL or DATA_NONE can be used
720 * with ACTION_TRIGGER to perform kernel level interrupt loopback testing
721 * from userspace (ie. simulate hardware triggering).
722 *
723 * Setting of an event triggering mechanism to userspace for ACTION_TRIGGER
724 * enables the interrupt index for the device. Individual subindex interrupts
725 * can be disabled using the -1 value for DATA_EVENTFD or the index can be
726 * disabled as a whole with: flags = (DATA_NONE|ACTION_TRIGGER), count = 0.
727 *
728 * Note that ACTION_[UN]MASK specify user->kernel signaling (irqfds) while
729 * ACTION_TRIGGER specifies kernel->user signaling.
730 */
731 struct vfio_irq_set {
732 __u32 argsz;
733 __u32 flags;
734 #define VFIO_IRQ_SET_DATA_NONE (1 << 0) /* Data not present */
735 #define VFIO_IRQ_SET_DATA_BOOL (1 << 1) /* Data is bool (u8) */
736 #define VFIO_IRQ_SET_DATA_EVENTFD (1 << 2) /* Data is eventfd (s32) */
737 #define VFIO_IRQ_SET_ACTION_MASK (1 << 3) /* Mask interrupt */
738 #define VFIO_IRQ_SET_ACTION_UNMASK (1 << 4) /* Unmask interrupt */
739 #define VFIO_IRQ_SET_ACTION_TRIGGER (1 << 5) /* Trigger interrupt */
740 __u32 index;
741 __u32 start;
742 __u32 count;
743 __u8 data[];
744 };
745 #define VFIO_DEVICE_SET_IRQS _IO(VFIO_TYPE, VFIO_BASE + 10)
746
747 #define VFIO_IRQ_SET_DATA_TYPE_MASK (VFIO_IRQ_SET_DATA_NONE | \
748 VFIO_IRQ_SET_DATA_BOOL | \
749 VFIO_IRQ_SET_DATA_EVENTFD)
750 #define VFIO_IRQ_SET_ACTION_TYPE_MASK (VFIO_IRQ_SET_ACTION_MASK | \
751 VFIO_IRQ_SET_ACTION_UNMASK | \
752 VFIO_IRQ_SET_ACTION_TRIGGER)
753 /**
754 * VFIO_DEVICE_RESET - _IO(VFIO_TYPE, VFIO_BASE + 11)
755 *
756 * Reset a device.
757 */
758 #define VFIO_DEVICE_RESET _IO(VFIO_TYPE, VFIO_BASE + 11)
759
760 /*
761 * The VFIO-PCI bus driver makes use of the following fixed region and
762 * IRQ index mapping. Unimplemented regions return a size of zero.
763 * Unimplemented IRQ types return a count of zero.
764 */
765
766 enum {
767 VFIO_PCI_BAR0_REGION_INDEX,
768 VFIO_PCI_BAR1_REGION_INDEX,
769 VFIO_PCI_BAR2_REGION_INDEX,
770 VFIO_PCI_BAR3_REGION_INDEX,
771 VFIO_PCI_BAR4_REGION_INDEX,
772 VFIO_PCI_BAR5_REGION_INDEX,
773 VFIO_PCI_ROM_REGION_INDEX,
774 VFIO_PCI_CONFIG_REGION_INDEX,
775 /*
776 * Expose VGA regions defined for PCI base class 03, subclass 00.
777 * This includes I/O port ranges 0x3b0 to 0x3bb and 0x3c0 to 0x3df
778 * as well as the MMIO range 0xa0000 to 0xbffff. Each implemented
779 * range is found at it's identity mapped offset from the region
780 * offset, for example 0x3b0 is region_info.offset + 0x3b0. Areas
781 * between described ranges are unimplemented.
782 */
783 VFIO_PCI_VGA_REGION_INDEX,
784 VFIO_PCI_NUM_REGIONS = 9 /* Fixed user ABI, region indexes >=9 use */
785 /* device specific cap to define content. */
786 };
787
788 enum {
789 VFIO_PCI_INTX_IRQ_INDEX,
790 VFIO_PCI_MSI_IRQ_INDEX,
791 VFIO_PCI_MSIX_IRQ_INDEX,
792 VFIO_PCI_ERR_IRQ_INDEX,
793 VFIO_PCI_REQ_IRQ_INDEX,
794 VFIO_PCI_NUM_IRQS
795 };
796
797 /*
798 * The vfio-ccw bus driver makes use of the following fixed region and
799 * IRQ index mapping. Unimplemented regions return a size of zero.
800 * Unimplemented IRQ types return a count of zero.
801 */
802
803 enum {
804 VFIO_CCW_CONFIG_REGION_INDEX,
805 VFIO_CCW_NUM_REGIONS
806 };
807
808 enum {
809 VFIO_CCW_IO_IRQ_INDEX,
810 VFIO_CCW_CRW_IRQ_INDEX,
811 VFIO_CCW_NUM_IRQS
812 };
813
814 /**
815 * VFIO_DEVICE_GET_PCI_HOT_RESET_INFO - _IORW(VFIO_TYPE, VFIO_BASE + 12,
816 * struct vfio_pci_hot_reset_info)
817 *
818 * Return: 0 on success, -errno on failure:
819 * -enospc = insufficient buffer, -enodev = unsupported for device.
820 */
821 struct vfio_pci_dependent_device {
822 __u32 group_id;
823 __u16 segment;
824 __u8 bus;
825 __u8 devfn; /* Use PCI_SLOT/PCI_FUNC */
826 };
827
828 struct vfio_pci_hot_reset_info {
829 __u32 argsz;
830 __u32 flags;
831 __u32 count;
832 struct vfio_pci_dependent_device devices[];
833 };
834
835 #define VFIO_DEVICE_GET_PCI_HOT_RESET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12)
836
837 /**
838 * VFIO_DEVICE_PCI_HOT_RESET - _IOW(VFIO_TYPE, VFIO_BASE + 13,
839 * struct vfio_pci_hot_reset)
840 *
841 * Return: 0 on success, -errno on failure.
842 */
843 struct vfio_pci_hot_reset {
844 __u32 argsz;
845 __u32 flags;
846 __u32 count;
847 __s32 group_fds[];
848 };
849
850 #define VFIO_DEVICE_PCI_HOT_RESET _IO(VFIO_TYPE, VFIO_BASE + 13)
851
852 /**
853 * VFIO_DEVICE_QUERY_GFX_PLANE - _IOW(VFIO_TYPE, VFIO_BASE + 14,
854 * struct vfio_device_query_gfx_plane)
855 *
856 * Set the drm_plane_type and flags, then retrieve the gfx plane info.
857 *
858 * flags supported:
859 * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_DMABUF are set
860 * to ask if the mdev supports dma-buf. 0 on support, -EINVAL on no
861 * support for dma-buf.
862 * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_REGION are set
863 * to ask if the mdev supports region. 0 on support, -EINVAL on no
864 * support for region.
865 * - VFIO_GFX_PLANE_TYPE_DMABUF or VFIO_GFX_PLANE_TYPE_REGION is set
866 * with each call to query the plane info.
867 * - Others are invalid and return -EINVAL.
868 *
869 * Note:
870 * 1. Plane could be disabled by guest. In that case, success will be
871 * returned with zero-initialized drm_format, size, width and height
872 * fields.
873 * 2. x_hot/y_hot is set to 0xFFFFFFFF if no hotspot information available
874 *
875 * Return: 0 on success, -errno on other failure.
876 */
877 struct vfio_device_gfx_plane_info {
878 __u32 argsz;
879 __u32 flags;
880 #define VFIO_GFX_PLANE_TYPE_PROBE (1 << 0)
881 #define VFIO_GFX_PLANE_TYPE_DMABUF (1 << 1)
882 #define VFIO_GFX_PLANE_TYPE_REGION (1 << 2)
883 /* in */
884 __u32 drm_plane_type; /* type of plane: DRM_PLANE_TYPE_* */
885 /* out */
886 __u32 drm_format; /* drm format of plane */
887 __u64 drm_format_mod; /* tiled mode */
888 __u32 width; /* width of plane */
889 __u32 height; /* height of plane */
890 __u32 stride; /* stride of plane */
891 __u32 size; /* size of plane in bytes, align on page*/
892 __u32 x_pos; /* horizontal position of cursor plane */
893 __u32 y_pos; /* vertical position of cursor plane*/
894 __u32 x_hot; /* horizontal position of cursor hotspot */
895 __u32 y_hot; /* vertical position of cursor hotspot */
896 union {
897 __u32 region_index; /* region index */
898 __u32 dmabuf_id; /* dma-buf id */
899 };
900 };
901
902 #define VFIO_DEVICE_QUERY_GFX_PLANE _IO(VFIO_TYPE, VFIO_BASE + 14)
903
904 /**
905 * VFIO_DEVICE_GET_GFX_DMABUF - _IOW(VFIO_TYPE, VFIO_BASE + 15, __u32)
906 *
907 * Return a new dma-buf file descriptor for an exposed guest framebuffer
908 * described by the provided dmabuf_id. The dmabuf_id is returned from VFIO_
909 * DEVICE_QUERY_GFX_PLANE as a token of the exposed guest framebuffer.
910 */
911
912 #define VFIO_DEVICE_GET_GFX_DMABUF _IO(VFIO_TYPE, VFIO_BASE + 15)
913
914 /**
915 * VFIO_DEVICE_IOEVENTFD - _IOW(VFIO_TYPE, VFIO_BASE + 16,
916 * struct vfio_device_ioeventfd)
917 *
918 * Perform a write to the device at the specified device fd offset, with
919 * the specified data and width when the provided eventfd is triggered.
920 * vfio bus drivers may not support this for all regions, for all widths,
921 * or at all. vfio-pci currently only enables support for BAR regions,
922 * excluding the MSI-X vector table.
923 *
924 * Return: 0 on success, -errno on failure.
925 */
926 struct vfio_device_ioeventfd {
927 __u32 argsz;
928 __u32 flags;
929 #define VFIO_DEVICE_IOEVENTFD_8 (1 << 0) /* 1-byte write */
930 #define VFIO_DEVICE_IOEVENTFD_16 (1 << 1) /* 2-byte write */
931 #define VFIO_DEVICE_IOEVENTFD_32 (1 << 2) /* 4-byte write */
932 #define VFIO_DEVICE_IOEVENTFD_64 (1 << 3) /* 8-byte write */
933 #define VFIO_DEVICE_IOEVENTFD_SIZE_MASK (0xf)
934 __u64 offset; /* device fd offset of write */
935 __u64 data; /* data to be written */
936 __s32 fd; /* -1 for de-assignment */
937 };
938
939 #define VFIO_DEVICE_IOEVENTFD _IO(VFIO_TYPE, VFIO_BASE + 16)
940
941 /**
942 * VFIO_DEVICE_FEATURE - _IORW(VFIO_TYPE, VFIO_BASE + 17,
943 * struct vfio_device_feature)
944 *
945 * Get, set, or probe feature data of the device. The feature is selected
946 * using the FEATURE_MASK portion of the flags field. Support for a feature
947 * can be probed by setting both the FEATURE_MASK and PROBE bits. A probe
948 * may optionally include the GET and/or SET bits to determine read vs write
949 * access of the feature respectively. Probing a feature will return success
950 * if the feature is supported and all of the optionally indicated GET/SET
951 * methods are supported. The format of the data portion of the structure is
952 * specific to the given feature. The data portion is not required for
953 * probing. GET and SET are mutually exclusive, except for use with PROBE.
954 *
955 * Return 0 on success, -errno on failure.
956 */
957 struct vfio_device_feature {
958 __u32 argsz;
959 __u32 flags;
960 #define VFIO_DEVICE_FEATURE_MASK (0xffff) /* 16-bit feature index */
961 #define VFIO_DEVICE_FEATURE_GET (1 << 16) /* Get feature into data[] */
962 #define VFIO_DEVICE_FEATURE_SET (1 << 17) /* Set feature from data[] */
963 #define VFIO_DEVICE_FEATURE_PROBE (1 << 18) /* Probe feature support */
964 __u8 data[];
965 };
966
967 #define VFIO_DEVICE_FEATURE _IO(VFIO_TYPE, VFIO_BASE + 17)
968
969 /*
970 * Provide support for setting a PCI VF Token, which is used as a shared
971 * secret between PF and VF drivers. This feature may only be set on a
972 * PCI SR-IOV PF when SR-IOV is enabled on the PF and there are no existing
973 * open VFs. Data provided when setting this feature is a 16-byte array
974 * (__u8 b[16]), representing a UUID.
975 */
976 #define VFIO_DEVICE_FEATURE_PCI_VF_TOKEN (0)
977
978 /* -------- API for Type1 VFIO IOMMU -------- */
979
980 /**
981 * VFIO_IOMMU_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 12, struct vfio_iommu_info)
982 *
983 * Retrieve information about the IOMMU object. Fills in provided
984 * struct vfio_iommu_info. Caller sets argsz.
985 *
986 * XXX Should we do these by CHECK_EXTENSION too?
987 */
988 struct vfio_iommu_type1_info {
989 __u32 argsz;
990 __u32 flags;
991 #define VFIO_IOMMU_INFO_PGSIZES (1 << 0) /* supported page sizes info */
992 #define VFIO_IOMMU_INFO_CAPS (1 << 1) /* Info supports caps */
993 __u64 iova_pgsizes; /* Bitmap of supported page sizes */
994 __u32 cap_offset; /* Offset within info struct of first cap */
995 };
996
997 /*
998 * The IOVA capability allows to report the valid IOVA range(s)
999 * excluding any non-relaxable reserved regions exposed by
1000 * devices attached to the container. Any DMA map attempt
1001 * outside the valid iova range will return error.
1002 *
1003 * The structures below define version 1 of this capability.
1004 */
1005 #define VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE 1
1006
1007 struct vfio_iova_range {
1008 __u64 start;
1009 __u64 end;
1010 };
1011
1012 struct vfio_iommu_type1_info_cap_iova_range {
1013 struct vfio_info_cap_header header;
1014 __u32 nr_iovas;
1015 __u32 reserved;
1016 struct vfio_iova_range iova_ranges[];
1017 };
1018
1019 /*
1020 * The migration capability allows to report supported features for migration.
1021 *
1022 * The structures below define version 1 of this capability.
1023 *
1024 * The existence of this capability indicates that IOMMU kernel driver supports
1025 * dirty page logging.
1026 *
1027 * pgsize_bitmap: Kernel driver returns bitmap of supported page sizes for dirty
1028 * page logging.
1029 * max_dirty_bitmap_size: Kernel driver returns maximum supported dirty bitmap
1030 * size in bytes that can be used by user applications when getting the dirty
1031 * bitmap.
1032 */
1033 #define VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION 2
1034
1035 struct vfio_iommu_type1_info_cap_migration {
1036 struct vfio_info_cap_header header;
1037 __u32 flags;
1038 __u64 pgsize_bitmap;
1039 __u64 max_dirty_bitmap_size; /* in bytes */
1040 };
1041
1042 #define VFIO_IOMMU_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12)
1043
1044 /**
1045 * VFIO_IOMMU_MAP_DMA - _IOW(VFIO_TYPE, VFIO_BASE + 13, struct vfio_dma_map)
1046 *
1047 * Map process virtual addresses to IO virtual addresses using the
1048 * provided struct vfio_dma_map. Caller sets argsz. READ &/ WRITE required.
1049 */
1050 struct vfio_iommu_type1_dma_map {
1051 __u32 argsz;
1052 __u32 flags;
1053 #define VFIO_DMA_MAP_FLAG_READ (1 << 0) /* readable from device */
1054 #define VFIO_DMA_MAP_FLAG_WRITE (1 << 1) /* writable from device */
1055 __u64 vaddr; /* Process virtual address */
1056 __u64 iova; /* IO virtual address */
1057 __u64 size; /* Size of mapping (bytes) */
1058 };
1059
1060 #define VFIO_IOMMU_MAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 13)
1061
1062 struct vfio_bitmap {
1063 __u64 pgsize; /* page size for bitmap in bytes */
1064 __u64 size; /* in bytes */
1065 __u64 *data; /* one bit per page */
1066 };
1067
1068 /**
1069 * VFIO_IOMMU_UNMAP_DMA - _IOWR(VFIO_TYPE, VFIO_BASE + 14,
1070 * struct vfio_dma_unmap)
1071 *
1072 * Unmap IO virtual addresses using the provided struct vfio_dma_unmap.
1073 * Caller sets argsz. The actual unmapped size is returned in the size
1074 * field. No guarantee is made to the user that arbitrary unmaps of iova
1075 * or size different from those used in the original mapping call will
1076 * succeed.
1077 * VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP should be set to get the dirty bitmap
1078 * before unmapping IO virtual addresses. When this flag is set, the user must
1079 * provide a struct vfio_bitmap in data[]. User must provide zero-allocated
1080 * memory via vfio_bitmap.data and its size in the vfio_bitmap.size field.
1081 * A bit in the bitmap represents one page, of user provided page size in
1082 * vfio_bitmap.pgsize field, consecutively starting from iova offset. Bit set
1083 * indicates that the page at that offset from iova is dirty. A Bitmap of the
1084 * pages in the range of unmapped size is returned in the user-provided
1085 * vfio_bitmap.data.
1086 */
1087 struct vfio_iommu_type1_dma_unmap {
1088 __u32 argsz;
1089 __u32 flags;
1090 #define VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP (1 << 0)
1091 __u64 iova; /* IO virtual address */
1092 __u64 size; /* Size of mapping (bytes) */
1093 __u8 data[];
1094 };
1095
1096 #define VFIO_IOMMU_UNMAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 14)
1097
1098 /*
1099 * IOCTLs to enable/disable IOMMU container usage.
1100 * No parameters are supported.
1101 */
1102 #define VFIO_IOMMU_ENABLE _IO(VFIO_TYPE, VFIO_BASE + 15)
1103 #define VFIO_IOMMU_DISABLE _IO(VFIO_TYPE, VFIO_BASE + 16)
1104
1105 /**
1106 * VFIO_IOMMU_DIRTY_PAGES - _IOWR(VFIO_TYPE, VFIO_BASE + 17,
1107 * struct vfio_iommu_type1_dirty_bitmap)
1108 * IOCTL is used for dirty pages logging.
1109 * Caller should set flag depending on which operation to perform, details as
1110 * below:
1111 *
1112 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_START flag set, instructs
1113 * the IOMMU driver to log pages that are dirtied or potentially dirtied by
1114 * the device; designed to be used when a migration is in progress. Dirty pages
1115 * are logged until logging is disabled by user application by calling the IOCTL
1116 * with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag.
1117 *
1118 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag set, instructs
1119 * the IOMMU driver to stop logging dirtied pages.
1120 *
1121 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP flag set
1122 * returns the dirty pages bitmap for IOMMU container for a given IOVA range.
1123 * The user must specify the IOVA range and the pgsize through the structure
1124 * vfio_iommu_type1_dirty_bitmap_get in the data[] portion. This interface
1125 * supports getting a bitmap of the smallest supported pgsize only and can be
1126 * modified in future to get a bitmap of any specified supported pgsize. The
1127 * user must provide a zeroed memory area for the bitmap memory and specify its
1128 * size in bitmap.size. One bit is used to represent one page consecutively
1129 * starting from iova offset. The user should provide page size in bitmap.pgsize
1130 * field. A bit set in the bitmap indicates that the page at that offset from
1131 * iova is dirty. The caller must set argsz to a value including the size of
1132 * structure vfio_iommu_type1_dirty_bitmap_get, but excluding the size of the
1133 * actual bitmap. If dirty pages logging is not enabled, an error will be
1134 * returned.
1135 *
1136 * Only one of the flags _START, _STOP and _GET may be specified at a time.
1137 *
1138 */
1139 struct vfio_iommu_type1_dirty_bitmap {
1140 __u32 argsz;
1141 __u32 flags;
1142 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_START (1 << 0)
1143 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP (1 << 1)
1144 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP (1 << 2)
1145 __u8 data[];
1146 };
1147
1148 struct vfio_iommu_type1_dirty_bitmap_get {
1149 __u64 iova; /* IO virtual address */
1150 __u64 size; /* Size of iova range */
1151 struct vfio_bitmap bitmap;
1152 };
1153
1154 #define VFIO_IOMMU_DIRTY_PAGES _IO(VFIO_TYPE, VFIO_BASE + 17)
1155
1156 /* -------- Additional API for SPAPR TCE (Server POWERPC) IOMMU -------- */
1157
1158 /*
1159 * The SPAPR TCE DDW info struct provides the information about
1160 * the details of Dynamic DMA window capability.
1161 *
1162 * @pgsizes contains a page size bitmask, 4K/64K/16M are supported.
1163 * @max_dynamic_windows_supported tells the maximum number of windows
1164 * which the platform can create.
1165 * @levels tells the maximum number of levels in multi-level IOMMU tables;
1166 * this allows splitting a table into smaller chunks which reduces
1167 * the amount of physically contiguous memory required for the table.
1168 */
1169 struct vfio_iommu_spapr_tce_ddw_info {
1170 __u64 pgsizes; /* Bitmap of supported page sizes */
1171 __u32 max_dynamic_windows_supported;
1172 __u32 levels;
1173 };
1174
1175 /*
1176 * The SPAPR TCE info struct provides the information about the PCI bus
1177 * address ranges available for DMA, these values are programmed into
1178 * the hardware so the guest has to know that information.
1179 *
1180 * The DMA 32 bit window start is an absolute PCI bus address.
1181 * The IOVA address passed via map/unmap ioctls are absolute PCI bus
1182 * addresses too so the window works as a filter rather than an offset
1183 * for IOVA addresses.
1184 *
1185 * Flags supported:
1186 * - VFIO_IOMMU_SPAPR_INFO_DDW: informs the userspace that dynamic DMA windows
1187 * (DDW) support is present. @ddw is only supported when DDW is present.
1188 */
1189 struct vfio_iommu_spapr_tce_info {
1190 __u32 argsz;
1191 __u32 flags;
1192 #define VFIO_IOMMU_SPAPR_INFO_DDW (1 << 0) /* DDW supported */
1193 __u32 dma32_window_start; /* 32 bit window start (bytes) */
1194 __u32 dma32_window_size; /* 32 bit window size (bytes) */
1195 struct vfio_iommu_spapr_tce_ddw_info ddw;
1196 };
1197
1198 #define VFIO_IOMMU_SPAPR_TCE_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12)
1199
1200 /*
1201 * EEH PE operation struct provides ways to:
1202 * - enable/disable EEH functionality;
1203 * - unfreeze IO/DMA for frozen PE;
1204 * - read PE state;
1205 * - reset PE;
1206 * - configure PE;
1207 * - inject EEH error.
1208 */
1209 struct vfio_eeh_pe_err {
1210 __u32 type;
1211 __u32 func;
1212 __u64 addr;
1213 __u64 mask;
1214 };
1215
1216 struct vfio_eeh_pe_op {
1217 __u32 argsz;
1218 __u32 flags;
1219 __u32 op;
1220 union {
1221 struct vfio_eeh_pe_err err;
1222 };
1223 };
1224
1225 #define VFIO_EEH_PE_DISABLE 0 /* Disable EEH functionality */
1226 #define VFIO_EEH_PE_ENABLE 1 /* Enable EEH functionality */
1227 #define VFIO_EEH_PE_UNFREEZE_IO 2 /* Enable IO for frozen PE */
1228 #define VFIO_EEH_PE_UNFREEZE_DMA 3 /* Enable DMA for frozen PE */
1229 #define VFIO_EEH_PE_GET_STATE 4 /* PE state retrieval */
1230 #define VFIO_EEH_PE_STATE_NORMAL 0 /* PE in functional state */
1231 #define VFIO_EEH_PE_STATE_RESET 1 /* PE reset in progress */
1232 #define VFIO_EEH_PE_STATE_STOPPED 2 /* Stopped DMA and IO */
1233 #define VFIO_EEH_PE_STATE_STOPPED_DMA 4 /* Stopped DMA only */
1234 #define VFIO_EEH_PE_STATE_UNAVAIL 5 /* State unavailable */
1235 #define VFIO_EEH_PE_RESET_DEACTIVATE 5 /* Deassert PE reset */
1236 #define VFIO_EEH_PE_RESET_HOT 6 /* Assert hot reset */
1237 #define VFIO_EEH_PE_RESET_FUNDAMENTAL 7 /* Assert fundamental reset */
1238 #define VFIO_EEH_PE_CONFIGURE 8 /* PE configuration */
1239 #define VFIO_EEH_PE_INJECT_ERR 9 /* Inject EEH error */
1240
1241 #define VFIO_EEH_PE_OP _IO(VFIO_TYPE, VFIO_BASE + 21)
1242
1243 /**
1244 * VFIO_IOMMU_SPAPR_REGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 17, struct vfio_iommu_spapr_register_memory)
1245 *
1246 * Registers user space memory where DMA is allowed. It pins
1247 * user pages and does the locked memory accounting so
1248 * subsequent VFIO_IOMMU_MAP_DMA/VFIO_IOMMU_UNMAP_DMA calls
1249 * get faster.
1250 */
1251 struct vfio_iommu_spapr_register_memory {
1252 __u32 argsz;
1253 __u32 flags;
1254 __u64 vaddr; /* Process virtual address */
1255 __u64 size; /* Size of mapping (bytes) */
1256 };
1257 #define VFIO_IOMMU_SPAPR_REGISTER_MEMORY _IO(VFIO_TYPE, VFIO_BASE + 17)
1258
1259 /**
1260 * VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 18, struct vfio_iommu_spapr_register_memory)
1261 *
1262 * Unregisters user space memory registered with
1263 * VFIO_IOMMU_SPAPR_REGISTER_MEMORY.
1264 * Uses vfio_iommu_spapr_register_memory for parameters.
1265 */
1266 #define VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY _IO(VFIO_TYPE, VFIO_BASE + 18)
1267
1268 /**
1269 * VFIO_IOMMU_SPAPR_TCE_CREATE - _IOWR(VFIO_TYPE, VFIO_BASE + 19, struct vfio_iommu_spapr_tce_create)
1270 *
1271 * Creates an additional TCE table and programs it (sets a new DMA window)
1272 * to every IOMMU group in the container. It receives page shift, window
1273 * size and number of levels in the TCE table being created.
1274 *
1275 * It allocates and returns an offset on a PCI bus of the new DMA window.
1276 */
1277 struct vfio_iommu_spapr_tce_create {
1278 __u32 argsz;
1279 __u32 flags;
1280 /* in */
1281 __u32 page_shift;
1282 __u32 __resv1;
1283 __u64 window_size;
1284 __u32 levels;
1285 __u32 __resv2;
1286 /* out */
1287 __u64 start_addr;
1288 };
1289 #define VFIO_IOMMU_SPAPR_TCE_CREATE _IO(VFIO_TYPE, VFIO_BASE + 19)
1290
1291 /**
1292 * VFIO_IOMMU_SPAPR_TCE_REMOVE - _IOW(VFIO_TYPE, VFIO_BASE + 20, struct vfio_iommu_spapr_tce_remove)
1293 *
1294 * Unprograms a TCE table from all groups in the container and destroys it.
1295 * It receives a PCI bus offset as a window id.
1296 */
1297 struct vfio_iommu_spapr_tce_remove {
1298 __u32 argsz;
1299 __u32 flags;
1300 /* in */
1301 __u64 start_addr;
1302 };
1303 #define VFIO_IOMMU_SPAPR_TCE_REMOVE _IO(VFIO_TYPE, VFIO_BASE + 20)
1304
1305 /* ***************************************************************** */
1306
1307 #endif /* VFIO_H */