User mode support for Linux ELF files with no section header
[qemu.git] / linux-user / elfload.c
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include <sys/time.h>
3 #include <sys/param.h>
4
5 #include <stdio.h>
6 #include <sys/types.h>
7 #include <fcntl.h>
8 #include <errno.h>
9 #include <unistd.h>
10 #include <sys/mman.h>
11 #include <sys/resource.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <time.h>
15
16 #include "qemu.h"
17 #include "disas/disas.h"
18
19 #ifdef _ARCH_PPC64
20 #undef ARCH_DLINFO
21 #undef ELF_PLATFORM
22 #undef ELF_HWCAP
23 #undef ELF_HWCAP2
24 #undef ELF_CLASS
25 #undef ELF_DATA
26 #undef ELF_ARCH
27 #endif
28
29 #define ELF_OSABI ELFOSABI_SYSV
30
31 /* from personality.h */
32
33 /*
34 * Flags for bug emulation.
35 *
36 * These occupy the top three bytes.
37 */
38 enum {
39 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
40 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
41 descriptors (signal handling) */
42 MMAP_PAGE_ZERO = 0x0100000,
43 ADDR_COMPAT_LAYOUT = 0x0200000,
44 READ_IMPLIES_EXEC = 0x0400000,
45 ADDR_LIMIT_32BIT = 0x0800000,
46 SHORT_INODE = 0x1000000,
47 WHOLE_SECONDS = 0x2000000,
48 STICKY_TIMEOUTS = 0x4000000,
49 ADDR_LIMIT_3GB = 0x8000000,
50 };
51
52 /*
53 * Personality types.
54 *
55 * These go in the low byte. Avoid using the top bit, it will
56 * conflict with error returns.
57 */
58 enum {
59 PER_LINUX = 0x0000,
60 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
61 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
62 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
63 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
64 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
65 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
66 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
67 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
68 PER_BSD = 0x0006,
69 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
70 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
71 PER_LINUX32 = 0x0008,
72 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
73 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
74 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
75 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
76 PER_RISCOS = 0x000c,
77 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
78 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
79 PER_OSF4 = 0x000f, /* OSF/1 v4 */
80 PER_HPUX = 0x0010,
81 PER_MASK = 0x00ff,
82 };
83
84 /*
85 * Return the base personality without flags.
86 */
87 #define personality(pers) (pers & PER_MASK)
88
89 /* this flag is uneffective under linux too, should be deleted */
90 #ifndef MAP_DENYWRITE
91 #define MAP_DENYWRITE 0
92 #endif
93
94 /* should probably go in elf.h */
95 #ifndef ELIBBAD
96 #define ELIBBAD 80
97 #endif
98
99 #ifdef TARGET_WORDS_BIGENDIAN
100 #define ELF_DATA ELFDATA2MSB
101 #else
102 #define ELF_DATA ELFDATA2LSB
103 #endif
104
105 #ifdef TARGET_ABI_MIPSN32
106 typedef abi_ullong target_elf_greg_t;
107 #define tswapreg(ptr) tswap64(ptr)
108 #else
109 typedef abi_ulong target_elf_greg_t;
110 #define tswapreg(ptr) tswapal(ptr)
111 #endif
112
113 #ifdef USE_UID16
114 typedef abi_ushort target_uid_t;
115 typedef abi_ushort target_gid_t;
116 #else
117 typedef abi_uint target_uid_t;
118 typedef abi_uint target_gid_t;
119 #endif
120 typedef abi_int target_pid_t;
121
122 #ifdef TARGET_I386
123
124 #define ELF_PLATFORM get_elf_platform()
125
126 static const char *get_elf_platform(void)
127 {
128 static char elf_platform[] = "i386";
129 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
130 if (family > 6)
131 family = 6;
132 if (family >= 3)
133 elf_platform[1] = '0' + family;
134 return elf_platform;
135 }
136
137 #define ELF_HWCAP get_elf_hwcap()
138
139 static uint32_t get_elf_hwcap(void)
140 {
141 X86CPU *cpu = X86_CPU(thread_cpu);
142
143 return cpu->env.features[FEAT_1_EDX];
144 }
145
146 #ifdef TARGET_X86_64
147 #define ELF_START_MMAP 0x2aaaaab000ULL
148 #define elf_check_arch(x) ( ((x) == ELF_ARCH) )
149
150 #define ELF_CLASS ELFCLASS64
151 #define ELF_ARCH EM_X86_64
152
153 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
154 {
155 regs->rax = 0;
156 regs->rsp = infop->start_stack;
157 regs->rip = infop->entry;
158 }
159
160 #define ELF_NREG 27
161 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
162
163 /*
164 * Note that ELF_NREG should be 29 as there should be place for
165 * TRAPNO and ERR "registers" as well but linux doesn't dump
166 * those.
167 *
168 * See linux kernel: arch/x86/include/asm/elf.h
169 */
170 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
171 {
172 (*regs)[0] = env->regs[15];
173 (*regs)[1] = env->regs[14];
174 (*regs)[2] = env->regs[13];
175 (*regs)[3] = env->regs[12];
176 (*regs)[4] = env->regs[R_EBP];
177 (*regs)[5] = env->regs[R_EBX];
178 (*regs)[6] = env->regs[11];
179 (*regs)[7] = env->regs[10];
180 (*regs)[8] = env->regs[9];
181 (*regs)[9] = env->regs[8];
182 (*regs)[10] = env->regs[R_EAX];
183 (*regs)[11] = env->regs[R_ECX];
184 (*regs)[12] = env->regs[R_EDX];
185 (*regs)[13] = env->regs[R_ESI];
186 (*regs)[14] = env->regs[R_EDI];
187 (*regs)[15] = env->regs[R_EAX]; /* XXX */
188 (*regs)[16] = env->eip;
189 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
190 (*regs)[18] = env->eflags;
191 (*regs)[19] = env->regs[R_ESP];
192 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
193 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
194 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
195 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
196 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
197 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
198 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
199 }
200
201 #else
202
203 #define ELF_START_MMAP 0x80000000
204
205 /*
206 * This is used to ensure we don't load something for the wrong architecture.
207 */
208 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
209
210 /*
211 * These are used to set parameters in the core dumps.
212 */
213 #define ELF_CLASS ELFCLASS32
214 #define ELF_ARCH EM_386
215
216 static inline void init_thread(struct target_pt_regs *regs,
217 struct image_info *infop)
218 {
219 regs->esp = infop->start_stack;
220 regs->eip = infop->entry;
221
222 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
223 starts %edx contains a pointer to a function which might be
224 registered using `atexit'. This provides a mean for the
225 dynamic linker to call DT_FINI functions for shared libraries
226 that have been loaded before the code runs.
227
228 A value of 0 tells we have no such handler. */
229 regs->edx = 0;
230 }
231
232 #define ELF_NREG 17
233 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
234
235 /*
236 * Note that ELF_NREG should be 19 as there should be place for
237 * TRAPNO and ERR "registers" as well but linux doesn't dump
238 * those.
239 *
240 * See linux kernel: arch/x86/include/asm/elf.h
241 */
242 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
243 {
244 (*regs)[0] = env->regs[R_EBX];
245 (*regs)[1] = env->regs[R_ECX];
246 (*regs)[2] = env->regs[R_EDX];
247 (*regs)[3] = env->regs[R_ESI];
248 (*regs)[4] = env->regs[R_EDI];
249 (*regs)[5] = env->regs[R_EBP];
250 (*regs)[6] = env->regs[R_EAX];
251 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
252 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
253 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
254 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
255 (*regs)[11] = env->regs[R_EAX]; /* XXX */
256 (*regs)[12] = env->eip;
257 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
258 (*regs)[14] = env->eflags;
259 (*regs)[15] = env->regs[R_ESP];
260 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
261 }
262 #endif
263
264 #define USE_ELF_CORE_DUMP
265 #define ELF_EXEC_PAGESIZE 4096
266
267 #endif
268
269 #ifdef TARGET_ARM
270
271 #ifndef TARGET_AARCH64
272 /* 32 bit ARM definitions */
273
274 #define ELF_START_MMAP 0x80000000
275
276 #define elf_check_arch(x) ((x) == ELF_MACHINE)
277
278 #define ELF_ARCH ELF_MACHINE
279 #define ELF_CLASS ELFCLASS32
280
281 static inline void init_thread(struct target_pt_regs *regs,
282 struct image_info *infop)
283 {
284 abi_long stack = infop->start_stack;
285 memset(regs, 0, sizeof(*regs));
286
287 regs->ARM_cpsr = 0x10;
288 if (infop->entry & 1)
289 regs->ARM_cpsr |= CPSR_T;
290 regs->ARM_pc = infop->entry & 0xfffffffe;
291 regs->ARM_sp = infop->start_stack;
292 /* FIXME - what to for failure of get_user()? */
293 get_user_ual(regs->ARM_r2, stack + 8); /* envp */
294 get_user_ual(regs->ARM_r1, stack + 4); /* envp */
295 /* XXX: it seems that r0 is zeroed after ! */
296 regs->ARM_r0 = 0;
297 /* For uClinux PIC binaries. */
298 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
299 regs->ARM_r10 = infop->start_data;
300 }
301
302 #define ELF_NREG 18
303 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
304
305 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
306 {
307 (*regs)[0] = tswapreg(env->regs[0]);
308 (*regs)[1] = tswapreg(env->regs[1]);
309 (*regs)[2] = tswapreg(env->regs[2]);
310 (*regs)[3] = tswapreg(env->regs[3]);
311 (*regs)[4] = tswapreg(env->regs[4]);
312 (*regs)[5] = tswapreg(env->regs[5]);
313 (*regs)[6] = tswapreg(env->regs[6]);
314 (*regs)[7] = tswapreg(env->regs[7]);
315 (*regs)[8] = tswapreg(env->regs[8]);
316 (*regs)[9] = tswapreg(env->regs[9]);
317 (*regs)[10] = tswapreg(env->regs[10]);
318 (*regs)[11] = tswapreg(env->regs[11]);
319 (*regs)[12] = tswapreg(env->regs[12]);
320 (*regs)[13] = tswapreg(env->regs[13]);
321 (*regs)[14] = tswapreg(env->regs[14]);
322 (*regs)[15] = tswapreg(env->regs[15]);
323
324 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
325 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
326 }
327
328 #define USE_ELF_CORE_DUMP
329 #define ELF_EXEC_PAGESIZE 4096
330
331 enum
332 {
333 ARM_HWCAP_ARM_SWP = 1 << 0,
334 ARM_HWCAP_ARM_HALF = 1 << 1,
335 ARM_HWCAP_ARM_THUMB = 1 << 2,
336 ARM_HWCAP_ARM_26BIT = 1 << 3,
337 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
338 ARM_HWCAP_ARM_FPA = 1 << 5,
339 ARM_HWCAP_ARM_VFP = 1 << 6,
340 ARM_HWCAP_ARM_EDSP = 1 << 7,
341 ARM_HWCAP_ARM_JAVA = 1 << 8,
342 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
343 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
344 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
345 ARM_HWCAP_ARM_NEON = 1 << 12,
346 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
347 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
348 ARM_HWCAP_ARM_TLS = 1 << 15,
349 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
350 ARM_HWCAP_ARM_IDIVA = 1 << 17,
351 ARM_HWCAP_ARM_IDIVT = 1 << 18,
352 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
353 ARM_HWCAP_ARM_LPAE = 1 << 20,
354 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
355 };
356
357 enum {
358 ARM_HWCAP2_ARM_AES = 1 << 0,
359 ARM_HWCAP2_ARM_PMULL = 1 << 1,
360 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
361 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
362 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
363 };
364
365 /* The commpage only exists for 32 bit kernels */
366
367 #define TARGET_HAS_VALIDATE_GUEST_SPACE
368 /* Return 1 if the proposed guest space is suitable for the guest.
369 * Return 0 if the proposed guest space isn't suitable, but another
370 * address space should be tried.
371 * Return -1 if there is no way the proposed guest space can be
372 * valid regardless of the base.
373 * The guest code may leave a page mapped and populate it if the
374 * address is suitable.
375 */
376 static int validate_guest_space(unsigned long guest_base,
377 unsigned long guest_size)
378 {
379 unsigned long real_start, test_page_addr;
380
381 /* We need to check that we can force a fault on access to the
382 * commpage at 0xffff0fxx
383 */
384 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
385
386 /* If the commpage lies within the already allocated guest space,
387 * then there is no way we can allocate it.
388 */
389 if (test_page_addr >= guest_base
390 && test_page_addr <= (guest_base + guest_size)) {
391 return -1;
392 }
393
394 /* Note it needs to be writeable to let us initialise it */
395 real_start = (unsigned long)
396 mmap((void *)test_page_addr, qemu_host_page_size,
397 PROT_READ | PROT_WRITE,
398 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
399
400 /* If we can't map it then try another address */
401 if (real_start == -1ul) {
402 return 0;
403 }
404
405 if (real_start != test_page_addr) {
406 /* OS didn't put the page where we asked - unmap and reject */
407 munmap((void *)real_start, qemu_host_page_size);
408 return 0;
409 }
410
411 /* Leave the page mapped
412 * Populate it (mmap should have left it all 0'd)
413 */
414
415 /* Kernel helper versions */
416 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
417
418 /* Now it's populated make it RO */
419 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
420 perror("Protecting guest commpage");
421 exit(-1);
422 }
423
424 return 1; /* All good */
425 }
426
427 #define ELF_HWCAP get_elf_hwcap()
428 #define ELF_HWCAP2 get_elf_hwcap2()
429
430 static uint32_t get_elf_hwcap(void)
431 {
432 ARMCPU *cpu = ARM_CPU(thread_cpu);
433 uint32_t hwcaps = 0;
434
435 hwcaps |= ARM_HWCAP_ARM_SWP;
436 hwcaps |= ARM_HWCAP_ARM_HALF;
437 hwcaps |= ARM_HWCAP_ARM_THUMB;
438 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
439
440 /* probe for the extra features */
441 #define GET_FEATURE(feat, hwcap) \
442 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
443 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
444 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
445 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
446 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
447 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
448 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
449 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
450 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
451 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
452 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
453 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
454 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
455 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
456 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
457 * to our VFP_FP16 feature bit.
458 */
459 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
460 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
461
462 return hwcaps;
463 }
464
465 static uint32_t get_elf_hwcap2(void)
466 {
467 ARMCPU *cpu = ARM_CPU(thread_cpu);
468 uint32_t hwcaps = 0;
469
470 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
471 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
472 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
473 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
474 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
475 return hwcaps;
476 }
477
478 #undef GET_FEATURE
479
480 #else
481 /* 64 bit ARM definitions */
482 #define ELF_START_MMAP 0x80000000
483
484 #define elf_check_arch(x) ((x) == ELF_MACHINE)
485
486 #define ELF_ARCH ELF_MACHINE
487 #define ELF_CLASS ELFCLASS64
488 #define ELF_PLATFORM "aarch64"
489
490 static inline void init_thread(struct target_pt_regs *regs,
491 struct image_info *infop)
492 {
493 abi_long stack = infop->start_stack;
494 memset(regs, 0, sizeof(*regs));
495
496 regs->pc = infop->entry & ~0x3ULL;
497 regs->sp = stack;
498 }
499
500 #define ELF_NREG 34
501 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
502
503 static void elf_core_copy_regs(target_elf_gregset_t *regs,
504 const CPUARMState *env)
505 {
506 int i;
507
508 for (i = 0; i < 32; i++) {
509 (*regs)[i] = tswapreg(env->xregs[i]);
510 }
511 (*regs)[32] = tswapreg(env->pc);
512 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
513 }
514
515 #define USE_ELF_CORE_DUMP
516 #define ELF_EXEC_PAGESIZE 4096
517
518 enum {
519 ARM_HWCAP_A64_FP = 1 << 0,
520 ARM_HWCAP_A64_ASIMD = 1 << 1,
521 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
522 ARM_HWCAP_A64_AES = 1 << 3,
523 ARM_HWCAP_A64_PMULL = 1 << 4,
524 ARM_HWCAP_A64_SHA1 = 1 << 5,
525 ARM_HWCAP_A64_SHA2 = 1 << 6,
526 ARM_HWCAP_A64_CRC32 = 1 << 7,
527 };
528
529 #define ELF_HWCAP get_elf_hwcap()
530
531 static uint32_t get_elf_hwcap(void)
532 {
533 ARMCPU *cpu = ARM_CPU(thread_cpu);
534 uint32_t hwcaps = 0;
535
536 hwcaps |= ARM_HWCAP_A64_FP;
537 hwcaps |= ARM_HWCAP_A64_ASIMD;
538
539 /* probe for the extra features */
540 #define GET_FEATURE(feat, hwcap) \
541 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
542 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
543 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
544 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
545 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
546 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
547 #undef GET_FEATURE
548
549 return hwcaps;
550 }
551
552 #endif /* not TARGET_AARCH64 */
553 #endif /* TARGET_ARM */
554
555 #ifdef TARGET_UNICORE32
556
557 #define ELF_START_MMAP 0x80000000
558
559 #define elf_check_arch(x) ((x) == EM_UNICORE32)
560
561 #define ELF_CLASS ELFCLASS32
562 #define ELF_DATA ELFDATA2LSB
563 #define ELF_ARCH EM_UNICORE32
564
565 static inline void init_thread(struct target_pt_regs *regs,
566 struct image_info *infop)
567 {
568 abi_long stack = infop->start_stack;
569 memset(regs, 0, sizeof(*regs));
570 regs->UC32_REG_asr = 0x10;
571 regs->UC32_REG_pc = infop->entry & 0xfffffffe;
572 regs->UC32_REG_sp = infop->start_stack;
573 /* FIXME - what to for failure of get_user()? */
574 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
575 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
576 /* XXX: it seems that r0 is zeroed after ! */
577 regs->UC32_REG_00 = 0;
578 }
579
580 #define ELF_NREG 34
581 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
582
583 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
584 {
585 (*regs)[0] = env->regs[0];
586 (*regs)[1] = env->regs[1];
587 (*regs)[2] = env->regs[2];
588 (*regs)[3] = env->regs[3];
589 (*regs)[4] = env->regs[4];
590 (*regs)[5] = env->regs[5];
591 (*regs)[6] = env->regs[6];
592 (*regs)[7] = env->regs[7];
593 (*regs)[8] = env->regs[8];
594 (*regs)[9] = env->regs[9];
595 (*regs)[10] = env->regs[10];
596 (*regs)[11] = env->regs[11];
597 (*regs)[12] = env->regs[12];
598 (*regs)[13] = env->regs[13];
599 (*regs)[14] = env->regs[14];
600 (*regs)[15] = env->regs[15];
601 (*regs)[16] = env->regs[16];
602 (*regs)[17] = env->regs[17];
603 (*regs)[18] = env->regs[18];
604 (*regs)[19] = env->regs[19];
605 (*regs)[20] = env->regs[20];
606 (*regs)[21] = env->regs[21];
607 (*regs)[22] = env->regs[22];
608 (*regs)[23] = env->regs[23];
609 (*regs)[24] = env->regs[24];
610 (*regs)[25] = env->regs[25];
611 (*regs)[26] = env->regs[26];
612 (*regs)[27] = env->regs[27];
613 (*regs)[28] = env->regs[28];
614 (*regs)[29] = env->regs[29];
615 (*regs)[30] = env->regs[30];
616 (*regs)[31] = env->regs[31];
617
618 (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
619 (*regs)[33] = env->regs[0]; /* XXX */
620 }
621
622 #define USE_ELF_CORE_DUMP
623 #define ELF_EXEC_PAGESIZE 4096
624
625 #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
626
627 #endif
628
629 #ifdef TARGET_SPARC
630 #ifdef TARGET_SPARC64
631
632 #define ELF_START_MMAP 0x80000000
633 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
634 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
635 #ifndef TARGET_ABI32
636 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
637 #else
638 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
639 #endif
640
641 #define ELF_CLASS ELFCLASS64
642 #define ELF_ARCH EM_SPARCV9
643
644 #define STACK_BIAS 2047
645
646 static inline void init_thread(struct target_pt_regs *regs,
647 struct image_info *infop)
648 {
649 #ifndef TARGET_ABI32
650 regs->tstate = 0;
651 #endif
652 regs->pc = infop->entry;
653 regs->npc = regs->pc + 4;
654 regs->y = 0;
655 #ifdef TARGET_ABI32
656 regs->u_regs[14] = infop->start_stack - 16 * 4;
657 #else
658 if (personality(infop->personality) == PER_LINUX32)
659 regs->u_regs[14] = infop->start_stack - 16 * 4;
660 else
661 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
662 #endif
663 }
664
665 #else
666 #define ELF_START_MMAP 0x80000000
667 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
668 | HWCAP_SPARC_MULDIV)
669 #define elf_check_arch(x) ( (x) == EM_SPARC )
670
671 #define ELF_CLASS ELFCLASS32
672 #define ELF_ARCH EM_SPARC
673
674 static inline void init_thread(struct target_pt_regs *regs,
675 struct image_info *infop)
676 {
677 regs->psr = 0;
678 regs->pc = infop->entry;
679 regs->npc = regs->pc + 4;
680 regs->y = 0;
681 regs->u_regs[14] = infop->start_stack - 16 * 4;
682 }
683
684 #endif
685 #endif
686
687 #ifdef TARGET_PPC
688
689 #define ELF_START_MMAP 0x80000000
690
691 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
692
693 #define elf_check_arch(x) ( (x) == EM_PPC64 )
694
695 #define ELF_CLASS ELFCLASS64
696
697 #else
698
699 #define elf_check_arch(x) ( (x) == EM_PPC )
700
701 #define ELF_CLASS ELFCLASS32
702
703 #endif
704
705 #define ELF_ARCH EM_PPC
706
707 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
708 See arch/powerpc/include/asm/cputable.h. */
709 enum {
710 QEMU_PPC_FEATURE_32 = 0x80000000,
711 QEMU_PPC_FEATURE_64 = 0x40000000,
712 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
713 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
714 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
715 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
716 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
717 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
718 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
719 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
720 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
721 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
722 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
723 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
724 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
725 QEMU_PPC_FEATURE_CELL = 0x00010000,
726 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
727 QEMU_PPC_FEATURE_SMT = 0x00004000,
728 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
729 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
730 QEMU_PPC_FEATURE_PA6T = 0x00000800,
731 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
732 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
733 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
734 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
735 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
736
737 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
738 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
739 };
740
741 #define ELF_HWCAP get_elf_hwcap()
742
743 static uint32_t get_elf_hwcap(void)
744 {
745 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
746 uint32_t features = 0;
747
748 /* We don't have to be terribly complete here; the high points are
749 Altivec/FP/SPE support. Anything else is just a bonus. */
750 #define GET_FEATURE(flag, feature) \
751 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
752 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
753 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
754 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
755 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
756 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
757 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
758 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
759 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
760 #undef GET_FEATURE
761
762 return features;
763 }
764
765 /*
766 * The requirements here are:
767 * - keep the final alignment of sp (sp & 0xf)
768 * - make sure the 32-bit value at the first 16 byte aligned position of
769 * AUXV is greater than 16 for glibc compatibility.
770 * AT_IGNOREPPC is used for that.
771 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
772 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
773 */
774 #define DLINFO_ARCH_ITEMS 5
775 #define ARCH_DLINFO \
776 do { \
777 NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20); \
778 NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20); \
779 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
780 /* \
781 * Now handle glibc compatibility. \
782 */ \
783 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
784 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
785 } while (0)
786
787 static inline uint32_t get_ppc64_abi(struct image_info *infop);
788
789 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
790 {
791 _regs->gpr[1] = infop->start_stack;
792 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
793 if (get_ppc64_abi(infop) < 2) {
794 _regs->gpr[2] = ldq_raw(infop->entry + 8) + infop->load_bias;
795 infop->entry = ldq_raw(infop->entry) + infop->load_bias;
796 } else {
797 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
798 }
799 #endif
800 _regs->nip = infop->entry;
801 }
802
803 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
804 #define ELF_NREG 48
805 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
806
807 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
808 {
809 int i;
810 target_ulong ccr = 0;
811
812 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
813 (*regs)[i] = tswapreg(env->gpr[i]);
814 }
815
816 (*regs)[32] = tswapreg(env->nip);
817 (*regs)[33] = tswapreg(env->msr);
818 (*regs)[35] = tswapreg(env->ctr);
819 (*regs)[36] = tswapreg(env->lr);
820 (*regs)[37] = tswapreg(env->xer);
821
822 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
823 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
824 }
825 (*regs)[38] = tswapreg(ccr);
826 }
827
828 #define USE_ELF_CORE_DUMP
829 #define ELF_EXEC_PAGESIZE 4096
830
831 #endif
832
833 #ifdef TARGET_MIPS
834
835 #define ELF_START_MMAP 0x80000000
836
837 #define elf_check_arch(x) ( (x) == EM_MIPS )
838
839 #ifdef TARGET_MIPS64
840 #define ELF_CLASS ELFCLASS64
841 #else
842 #define ELF_CLASS ELFCLASS32
843 #endif
844 #define ELF_ARCH EM_MIPS
845
846 static inline void init_thread(struct target_pt_regs *regs,
847 struct image_info *infop)
848 {
849 regs->cp0_status = 2 << CP0St_KSU;
850 regs->cp0_epc = infop->entry;
851 regs->regs[29] = infop->start_stack;
852 }
853
854 /* See linux kernel: arch/mips/include/asm/elf.h. */
855 #define ELF_NREG 45
856 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
857
858 /* See linux kernel: arch/mips/include/asm/reg.h. */
859 enum {
860 #ifdef TARGET_MIPS64
861 TARGET_EF_R0 = 0,
862 #else
863 TARGET_EF_R0 = 6,
864 #endif
865 TARGET_EF_R26 = TARGET_EF_R0 + 26,
866 TARGET_EF_R27 = TARGET_EF_R0 + 27,
867 TARGET_EF_LO = TARGET_EF_R0 + 32,
868 TARGET_EF_HI = TARGET_EF_R0 + 33,
869 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
870 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
871 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
872 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
873 };
874
875 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
876 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
877 {
878 int i;
879
880 for (i = 0; i < TARGET_EF_R0; i++) {
881 (*regs)[i] = 0;
882 }
883 (*regs)[TARGET_EF_R0] = 0;
884
885 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
886 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
887 }
888
889 (*regs)[TARGET_EF_R26] = 0;
890 (*regs)[TARGET_EF_R27] = 0;
891 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
892 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
893 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
894 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
895 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
896 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
897 }
898
899 #define USE_ELF_CORE_DUMP
900 #define ELF_EXEC_PAGESIZE 4096
901
902 #endif /* TARGET_MIPS */
903
904 #ifdef TARGET_MICROBLAZE
905
906 #define ELF_START_MMAP 0x80000000
907
908 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
909
910 #define ELF_CLASS ELFCLASS32
911 #define ELF_ARCH EM_MICROBLAZE
912
913 static inline void init_thread(struct target_pt_regs *regs,
914 struct image_info *infop)
915 {
916 regs->pc = infop->entry;
917 regs->r1 = infop->start_stack;
918
919 }
920
921 #define ELF_EXEC_PAGESIZE 4096
922
923 #define USE_ELF_CORE_DUMP
924 #define ELF_NREG 38
925 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
926
927 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
928 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
929 {
930 int i, pos = 0;
931
932 for (i = 0; i < 32; i++) {
933 (*regs)[pos++] = tswapreg(env->regs[i]);
934 }
935
936 for (i = 0; i < 6; i++) {
937 (*regs)[pos++] = tswapreg(env->sregs[i]);
938 }
939 }
940
941 #endif /* TARGET_MICROBLAZE */
942
943 #ifdef TARGET_OPENRISC
944
945 #define ELF_START_MMAP 0x08000000
946
947 #define elf_check_arch(x) ((x) == EM_OPENRISC)
948
949 #define ELF_ARCH EM_OPENRISC
950 #define ELF_CLASS ELFCLASS32
951 #define ELF_DATA ELFDATA2MSB
952
953 static inline void init_thread(struct target_pt_regs *regs,
954 struct image_info *infop)
955 {
956 regs->pc = infop->entry;
957 regs->gpr[1] = infop->start_stack;
958 }
959
960 #define USE_ELF_CORE_DUMP
961 #define ELF_EXEC_PAGESIZE 8192
962
963 /* See linux kernel arch/openrisc/include/asm/elf.h. */
964 #define ELF_NREG 34 /* gprs and pc, sr */
965 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
966
967 static void elf_core_copy_regs(target_elf_gregset_t *regs,
968 const CPUOpenRISCState *env)
969 {
970 int i;
971
972 for (i = 0; i < 32; i++) {
973 (*regs)[i] = tswapreg(env->gpr[i]);
974 }
975
976 (*regs)[32] = tswapreg(env->pc);
977 (*regs)[33] = tswapreg(env->sr);
978 }
979 #define ELF_HWCAP 0
980 #define ELF_PLATFORM NULL
981
982 #endif /* TARGET_OPENRISC */
983
984 #ifdef TARGET_SH4
985
986 #define ELF_START_MMAP 0x80000000
987
988 #define elf_check_arch(x) ( (x) == EM_SH )
989
990 #define ELF_CLASS ELFCLASS32
991 #define ELF_ARCH EM_SH
992
993 static inline void init_thread(struct target_pt_regs *regs,
994 struct image_info *infop)
995 {
996 /* Check other registers XXXXX */
997 regs->pc = infop->entry;
998 regs->regs[15] = infop->start_stack;
999 }
1000
1001 /* See linux kernel: arch/sh/include/asm/elf.h. */
1002 #define ELF_NREG 23
1003 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1004
1005 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1006 enum {
1007 TARGET_REG_PC = 16,
1008 TARGET_REG_PR = 17,
1009 TARGET_REG_SR = 18,
1010 TARGET_REG_GBR = 19,
1011 TARGET_REG_MACH = 20,
1012 TARGET_REG_MACL = 21,
1013 TARGET_REG_SYSCALL = 22
1014 };
1015
1016 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1017 const CPUSH4State *env)
1018 {
1019 int i;
1020
1021 for (i = 0; i < 16; i++) {
1022 (*regs[i]) = tswapreg(env->gregs[i]);
1023 }
1024
1025 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1026 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1027 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1028 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1029 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1030 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1031 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1032 }
1033
1034 #define USE_ELF_CORE_DUMP
1035 #define ELF_EXEC_PAGESIZE 4096
1036
1037 #endif
1038
1039 #ifdef TARGET_CRIS
1040
1041 #define ELF_START_MMAP 0x80000000
1042
1043 #define elf_check_arch(x) ( (x) == EM_CRIS )
1044
1045 #define ELF_CLASS ELFCLASS32
1046 #define ELF_ARCH EM_CRIS
1047
1048 static inline void init_thread(struct target_pt_regs *regs,
1049 struct image_info *infop)
1050 {
1051 regs->erp = infop->entry;
1052 }
1053
1054 #define ELF_EXEC_PAGESIZE 8192
1055
1056 #endif
1057
1058 #ifdef TARGET_M68K
1059
1060 #define ELF_START_MMAP 0x80000000
1061
1062 #define elf_check_arch(x) ( (x) == EM_68K )
1063
1064 #define ELF_CLASS ELFCLASS32
1065 #define ELF_ARCH EM_68K
1066
1067 /* ??? Does this need to do anything?
1068 #define ELF_PLAT_INIT(_r) */
1069
1070 static inline void init_thread(struct target_pt_regs *regs,
1071 struct image_info *infop)
1072 {
1073 regs->usp = infop->start_stack;
1074 regs->sr = 0;
1075 regs->pc = infop->entry;
1076 }
1077
1078 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1079 #define ELF_NREG 20
1080 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1081
1082 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1083 {
1084 (*regs)[0] = tswapreg(env->dregs[1]);
1085 (*regs)[1] = tswapreg(env->dregs[2]);
1086 (*regs)[2] = tswapreg(env->dregs[3]);
1087 (*regs)[3] = tswapreg(env->dregs[4]);
1088 (*regs)[4] = tswapreg(env->dregs[5]);
1089 (*regs)[5] = tswapreg(env->dregs[6]);
1090 (*regs)[6] = tswapreg(env->dregs[7]);
1091 (*regs)[7] = tswapreg(env->aregs[0]);
1092 (*regs)[8] = tswapreg(env->aregs[1]);
1093 (*regs)[9] = tswapreg(env->aregs[2]);
1094 (*regs)[10] = tswapreg(env->aregs[3]);
1095 (*regs)[11] = tswapreg(env->aregs[4]);
1096 (*regs)[12] = tswapreg(env->aregs[5]);
1097 (*regs)[13] = tswapreg(env->aregs[6]);
1098 (*regs)[14] = tswapreg(env->dregs[0]);
1099 (*regs)[15] = tswapreg(env->aregs[7]);
1100 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1101 (*regs)[17] = tswapreg(env->sr);
1102 (*regs)[18] = tswapreg(env->pc);
1103 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1104 }
1105
1106 #define USE_ELF_CORE_DUMP
1107 #define ELF_EXEC_PAGESIZE 8192
1108
1109 #endif
1110
1111 #ifdef TARGET_ALPHA
1112
1113 #define ELF_START_MMAP (0x30000000000ULL)
1114
1115 #define elf_check_arch(x) ( (x) == ELF_ARCH )
1116
1117 #define ELF_CLASS ELFCLASS64
1118 #define ELF_ARCH EM_ALPHA
1119
1120 static inline void init_thread(struct target_pt_regs *regs,
1121 struct image_info *infop)
1122 {
1123 regs->pc = infop->entry;
1124 regs->ps = 8;
1125 regs->usp = infop->start_stack;
1126 }
1127
1128 #define ELF_EXEC_PAGESIZE 8192
1129
1130 #endif /* TARGET_ALPHA */
1131
1132 #ifdef TARGET_S390X
1133
1134 #define ELF_START_MMAP (0x20000000000ULL)
1135
1136 #define elf_check_arch(x) ( (x) == ELF_ARCH )
1137
1138 #define ELF_CLASS ELFCLASS64
1139 #define ELF_DATA ELFDATA2MSB
1140 #define ELF_ARCH EM_S390
1141
1142 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1143 {
1144 regs->psw.addr = infop->entry;
1145 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1146 regs->gprs[15] = infop->start_stack;
1147 }
1148
1149 #endif /* TARGET_S390X */
1150
1151 #ifndef ELF_PLATFORM
1152 #define ELF_PLATFORM (NULL)
1153 #endif
1154
1155 #ifndef ELF_HWCAP
1156 #define ELF_HWCAP 0
1157 #endif
1158
1159 #ifdef TARGET_ABI32
1160 #undef ELF_CLASS
1161 #define ELF_CLASS ELFCLASS32
1162 #undef bswaptls
1163 #define bswaptls(ptr) bswap32s(ptr)
1164 #endif
1165
1166 #include "elf.h"
1167
1168 #ifdef TARGET_PPC
1169 static inline uint32_t get_ppc64_abi(struct image_info *infop)
1170 {
1171 return infop->elf_flags & EF_PPC64_ABI;
1172 }
1173 #endif
1174
1175 struct exec
1176 {
1177 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1178 unsigned int a_text; /* length of text, in bytes */
1179 unsigned int a_data; /* length of data, in bytes */
1180 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1181 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1182 unsigned int a_entry; /* start address */
1183 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1184 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1185 };
1186
1187
1188 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1189 #define OMAGIC 0407
1190 #define NMAGIC 0410
1191 #define ZMAGIC 0413
1192 #define QMAGIC 0314
1193
1194 /* Necessary parameters */
1195 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1196 #define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1))
1197 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1198
1199 #define DLINFO_ITEMS 14
1200
1201 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1202 {
1203 memcpy(to, from, n);
1204 }
1205
1206 #ifdef BSWAP_NEEDED
1207 static void bswap_ehdr(struct elfhdr *ehdr)
1208 {
1209 bswap16s(&ehdr->e_type); /* Object file type */
1210 bswap16s(&ehdr->e_machine); /* Architecture */
1211 bswap32s(&ehdr->e_version); /* Object file version */
1212 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1213 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1214 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1215 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1216 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1217 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1218 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1219 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1220 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1221 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1222 }
1223
1224 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1225 {
1226 int i;
1227 for (i = 0; i < phnum; ++i, ++phdr) {
1228 bswap32s(&phdr->p_type); /* Segment type */
1229 bswap32s(&phdr->p_flags); /* Segment flags */
1230 bswaptls(&phdr->p_offset); /* Segment file offset */
1231 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1232 bswaptls(&phdr->p_paddr); /* Segment physical address */
1233 bswaptls(&phdr->p_filesz); /* Segment size in file */
1234 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1235 bswaptls(&phdr->p_align); /* Segment alignment */
1236 }
1237 }
1238
1239 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1240 {
1241 int i;
1242 for (i = 0; i < shnum; ++i, ++shdr) {
1243 bswap32s(&shdr->sh_name);
1244 bswap32s(&shdr->sh_type);
1245 bswaptls(&shdr->sh_flags);
1246 bswaptls(&shdr->sh_addr);
1247 bswaptls(&shdr->sh_offset);
1248 bswaptls(&shdr->sh_size);
1249 bswap32s(&shdr->sh_link);
1250 bswap32s(&shdr->sh_info);
1251 bswaptls(&shdr->sh_addralign);
1252 bswaptls(&shdr->sh_entsize);
1253 }
1254 }
1255
1256 static void bswap_sym(struct elf_sym *sym)
1257 {
1258 bswap32s(&sym->st_name);
1259 bswaptls(&sym->st_value);
1260 bswaptls(&sym->st_size);
1261 bswap16s(&sym->st_shndx);
1262 }
1263 #else
1264 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1265 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1266 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1267 static inline void bswap_sym(struct elf_sym *sym) { }
1268 #endif
1269
1270 #ifdef USE_ELF_CORE_DUMP
1271 static int elf_core_dump(int, const CPUArchState *);
1272 #endif /* USE_ELF_CORE_DUMP */
1273 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1274
1275 /* Verify the portions of EHDR within E_IDENT for the target.
1276 This can be performed before bswapping the entire header. */
1277 static bool elf_check_ident(struct elfhdr *ehdr)
1278 {
1279 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1280 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1281 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1282 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1283 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1284 && ehdr->e_ident[EI_DATA] == ELF_DATA
1285 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1286 }
1287
1288 /* Verify the portions of EHDR outside of E_IDENT for the target.
1289 This has to wait until after bswapping the header. */
1290 static bool elf_check_ehdr(struct elfhdr *ehdr)
1291 {
1292 return (elf_check_arch(ehdr->e_machine)
1293 && ehdr->e_ehsize == sizeof(struct elfhdr)
1294 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1295 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1296 }
1297
1298 /*
1299 * 'copy_elf_strings()' copies argument/envelope strings from user
1300 * memory to free pages in kernel mem. These are in a format ready
1301 * to be put directly into the top of new user memory.
1302 *
1303 */
1304 static abi_ulong copy_elf_strings(int argc,char ** argv, void **page,
1305 abi_ulong p)
1306 {
1307 char *tmp, *tmp1, *pag = NULL;
1308 int len, offset = 0;
1309
1310 if (!p) {
1311 return 0; /* bullet-proofing */
1312 }
1313 while (argc-- > 0) {
1314 tmp = argv[argc];
1315 if (!tmp) {
1316 fprintf(stderr, "VFS: argc is wrong");
1317 exit(-1);
1318 }
1319 tmp1 = tmp;
1320 while (*tmp++);
1321 len = tmp - tmp1;
1322 if (p < len) { /* this shouldn't happen - 128kB */
1323 return 0;
1324 }
1325 while (len) {
1326 --p; --tmp; --len;
1327 if (--offset < 0) {
1328 offset = p % TARGET_PAGE_SIZE;
1329 pag = (char *)page[p/TARGET_PAGE_SIZE];
1330 if (!pag) {
1331 pag = g_try_malloc0(TARGET_PAGE_SIZE);
1332 page[p/TARGET_PAGE_SIZE] = pag;
1333 if (!pag)
1334 return 0;
1335 }
1336 }
1337 if (len == 0 || offset == 0) {
1338 *(pag + offset) = *tmp;
1339 }
1340 else {
1341 int bytes_to_copy = (len > offset) ? offset : len;
1342 tmp -= bytes_to_copy;
1343 p -= bytes_to_copy;
1344 offset -= bytes_to_copy;
1345 len -= bytes_to_copy;
1346 memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1);
1347 }
1348 }
1349 }
1350 return p;
1351 }
1352
1353 static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm,
1354 struct image_info *info)
1355 {
1356 abi_ulong stack_base, size, error, guard;
1357 int i;
1358
1359 /* Create enough stack to hold everything. If we don't use
1360 it for args, we'll use it for something else. */
1361 size = guest_stack_size;
1362 if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) {
1363 size = MAX_ARG_PAGES*TARGET_PAGE_SIZE;
1364 }
1365 guard = TARGET_PAGE_SIZE;
1366 if (guard < qemu_real_host_page_size) {
1367 guard = qemu_real_host_page_size;
1368 }
1369
1370 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1371 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1372 if (error == -1) {
1373 perror("mmap stack");
1374 exit(-1);
1375 }
1376
1377 /* We reserve one extra page at the top of the stack as guard. */
1378 target_mprotect(error, guard, PROT_NONE);
1379
1380 info->stack_limit = error + guard;
1381 stack_base = info->stack_limit + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE;
1382 p += stack_base;
1383
1384 for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
1385 if (bprm->page[i]) {
1386 info->rss++;
1387 /* FIXME - check return value of memcpy_to_target() for failure */
1388 memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE);
1389 g_free(bprm->page[i]);
1390 }
1391 stack_base += TARGET_PAGE_SIZE;
1392 }
1393 return p;
1394 }
1395
1396 /* Map and zero the bss. We need to explicitly zero any fractional pages
1397 after the data section (i.e. bss). */
1398 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1399 {
1400 uintptr_t host_start, host_map_start, host_end;
1401
1402 last_bss = TARGET_PAGE_ALIGN(last_bss);
1403
1404 /* ??? There is confusion between qemu_real_host_page_size and
1405 qemu_host_page_size here and elsewhere in target_mmap, which
1406 may lead to the end of the data section mapping from the file
1407 not being mapped. At least there was an explicit test and
1408 comment for that here, suggesting that "the file size must
1409 be known". The comment probably pre-dates the introduction
1410 of the fstat system call in target_mmap which does in fact
1411 find out the size. What isn't clear is if the workaround
1412 here is still actually needed. For now, continue with it,
1413 but merge it with the "normal" mmap that would allocate the bss. */
1414
1415 host_start = (uintptr_t) g2h(elf_bss);
1416 host_end = (uintptr_t) g2h(last_bss);
1417 host_map_start = (host_start + qemu_real_host_page_size - 1);
1418 host_map_start &= -qemu_real_host_page_size;
1419
1420 if (host_map_start < host_end) {
1421 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1422 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1423 if (p == MAP_FAILED) {
1424 perror("cannot mmap brk");
1425 exit(-1);
1426 }
1427 }
1428
1429 /* Ensure that the bss page(s) are valid */
1430 if ((page_get_flags(last_bss-1) & prot) != prot) {
1431 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1432 }
1433
1434 if (host_start < host_map_start) {
1435 memset((void *)host_start, 0, host_map_start - host_start);
1436 }
1437 }
1438
1439 #ifdef CONFIG_USE_FDPIC
1440 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1441 {
1442 uint16_t n;
1443 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1444
1445 /* elf32_fdpic_loadseg */
1446 n = info->nsegs;
1447 while (n--) {
1448 sp -= 12;
1449 put_user_u32(loadsegs[n].addr, sp+0);
1450 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1451 put_user_u32(loadsegs[n].p_memsz, sp+8);
1452 }
1453
1454 /* elf32_fdpic_loadmap */
1455 sp -= 4;
1456 put_user_u16(0, sp+0); /* version */
1457 put_user_u16(info->nsegs, sp+2); /* nsegs */
1458
1459 info->personality = PER_LINUX_FDPIC;
1460 info->loadmap_addr = sp;
1461
1462 return sp;
1463 }
1464 #endif
1465
1466 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1467 struct elfhdr *exec,
1468 struct image_info *info,
1469 struct image_info *interp_info)
1470 {
1471 abi_ulong sp;
1472 abi_ulong sp_auxv;
1473 int size;
1474 int i;
1475 abi_ulong u_rand_bytes;
1476 uint8_t k_rand_bytes[16];
1477 abi_ulong u_platform;
1478 const char *k_platform;
1479 const int n = sizeof(elf_addr_t);
1480
1481 sp = p;
1482
1483 #ifdef CONFIG_USE_FDPIC
1484 /* Needs to be before we load the env/argc/... */
1485 if (elf_is_fdpic(exec)) {
1486 /* Need 4 byte alignment for these structs */
1487 sp &= ~3;
1488 sp = loader_build_fdpic_loadmap(info, sp);
1489 info->other_info = interp_info;
1490 if (interp_info) {
1491 interp_info->other_info = info;
1492 sp = loader_build_fdpic_loadmap(interp_info, sp);
1493 }
1494 }
1495 #endif
1496
1497 u_platform = 0;
1498 k_platform = ELF_PLATFORM;
1499 if (k_platform) {
1500 size_t len = strlen(k_platform) + 1;
1501 sp -= (len + n - 1) & ~(n - 1);
1502 u_platform = sp;
1503 /* FIXME - check return value of memcpy_to_target() for failure */
1504 memcpy_to_target(sp, k_platform, len);
1505 }
1506
1507 /*
1508 * Generate 16 random bytes for userspace PRNG seeding (not
1509 * cryptically secure but it's not the aim of QEMU).
1510 */
1511 srand((unsigned int) time(NULL));
1512 for (i = 0; i < 16; i++) {
1513 k_rand_bytes[i] = rand();
1514 }
1515 sp -= 16;
1516 u_rand_bytes = sp;
1517 /* FIXME - check return value of memcpy_to_target() for failure */
1518 memcpy_to_target(sp, k_rand_bytes, 16);
1519
1520 /*
1521 * Force 16 byte _final_ alignment here for generality.
1522 */
1523 sp = sp &~ (abi_ulong)15;
1524 size = (DLINFO_ITEMS + 1) * 2;
1525 if (k_platform)
1526 size += 2;
1527 #ifdef DLINFO_ARCH_ITEMS
1528 size += DLINFO_ARCH_ITEMS * 2;
1529 #endif
1530 #ifdef ELF_HWCAP2
1531 size += 2;
1532 #endif
1533 size += envc + argc + 2;
1534 size += 1; /* argc itself */
1535 size *= n;
1536 if (size & 15)
1537 sp -= 16 - (size & 15);
1538
1539 /* This is correct because Linux defines
1540 * elf_addr_t as Elf32_Off / Elf64_Off
1541 */
1542 #define NEW_AUX_ENT(id, val) do { \
1543 sp -= n; put_user_ual(val, sp); \
1544 sp -= n; put_user_ual(id, sp); \
1545 } while(0)
1546
1547 sp_auxv = sp;
1548 NEW_AUX_ENT (AT_NULL, 0);
1549
1550 /* There must be exactly DLINFO_ITEMS entries here. */
1551 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1552 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1553 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1554 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
1555 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1556 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1557 NEW_AUX_ENT(AT_ENTRY, info->entry);
1558 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1559 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1560 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1561 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1562 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1563 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1564 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1565
1566 #ifdef ELF_HWCAP2
1567 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1568 #endif
1569
1570 if (k_platform)
1571 NEW_AUX_ENT(AT_PLATFORM, u_platform);
1572 #ifdef ARCH_DLINFO
1573 /*
1574 * ARCH_DLINFO must come last so platform specific code can enforce
1575 * special alignment requirements on the AUXV if necessary (eg. PPC).
1576 */
1577 ARCH_DLINFO;
1578 #endif
1579 #undef NEW_AUX_ENT
1580
1581 info->saved_auxv = sp;
1582 info->auxv_len = sp_auxv - sp;
1583
1584 sp = loader_build_argptr(envc, argc, sp, p, 0);
1585 /* Check the right amount of stack was allocated for auxvec, envp & argv. */
1586 assert(sp_auxv - sp == size);
1587 return sp;
1588 }
1589
1590 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
1591 /* If the guest doesn't have a validation function just agree */
1592 static int validate_guest_space(unsigned long guest_base,
1593 unsigned long guest_size)
1594 {
1595 return 1;
1596 }
1597 #endif
1598
1599 unsigned long init_guest_space(unsigned long host_start,
1600 unsigned long host_size,
1601 unsigned long guest_start,
1602 bool fixed)
1603 {
1604 unsigned long current_start, real_start;
1605 int flags;
1606
1607 assert(host_start || host_size);
1608
1609 /* If just a starting address is given, then just verify that
1610 * address. */
1611 if (host_start && !host_size) {
1612 if (validate_guest_space(host_start, host_size) == 1) {
1613 return host_start;
1614 } else {
1615 return (unsigned long)-1;
1616 }
1617 }
1618
1619 /* Setup the initial flags and start address. */
1620 current_start = host_start & qemu_host_page_mask;
1621 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1622 if (fixed) {
1623 flags |= MAP_FIXED;
1624 }
1625
1626 /* Otherwise, a non-zero size region of memory needs to be mapped
1627 * and validated. */
1628 while (1) {
1629 unsigned long real_size = host_size;
1630
1631 /* Do not use mmap_find_vma here because that is limited to the
1632 * guest address space. We are going to make the
1633 * guest address space fit whatever we're given.
1634 */
1635 real_start = (unsigned long)
1636 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1637 if (real_start == (unsigned long)-1) {
1638 return (unsigned long)-1;
1639 }
1640
1641 /* Ensure the address is properly aligned. */
1642 if (real_start & ~qemu_host_page_mask) {
1643 munmap((void *)real_start, host_size);
1644 real_size = host_size + qemu_host_page_size;
1645 real_start = (unsigned long)
1646 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1647 if (real_start == (unsigned long)-1) {
1648 return (unsigned long)-1;
1649 }
1650 real_start = HOST_PAGE_ALIGN(real_start);
1651 }
1652
1653 /* Check to see if the address is valid. */
1654 if (!host_start || real_start == current_start) {
1655 int valid = validate_guest_space(real_start - guest_start,
1656 real_size);
1657 if (valid == 1) {
1658 break;
1659 } else if (valid == -1) {
1660 return (unsigned long)-1;
1661 }
1662 /* valid == 0, so try again. */
1663 }
1664
1665 /* That address didn't work. Unmap and try a different one.
1666 * The address the host picked because is typically right at
1667 * the top of the host address space and leaves the guest with
1668 * no usable address space. Resort to a linear search. We
1669 * already compensated for mmap_min_addr, so this should not
1670 * happen often. Probably means we got unlucky and host
1671 * address space randomization put a shared library somewhere
1672 * inconvenient.
1673 */
1674 munmap((void *)real_start, host_size);
1675 current_start += qemu_host_page_size;
1676 if (host_start == current_start) {
1677 /* Theoretically possible if host doesn't have any suitably
1678 * aligned areas. Normally the first mmap will fail.
1679 */
1680 return (unsigned long)-1;
1681 }
1682 }
1683
1684 qemu_log("Reserved 0x%lx bytes of guest address space\n", host_size);
1685
1686 return real_start;
1687 }
1688
1689 static void probe_guest_base(const char *image_name,
1690 abi_ulong loaddr, abi_ulong hiaddr)
1691 {
1692 /* Probe for a suitable guest base address, if the user has not set
1693 * it explicitly, and set guest_base appropriately.
1694 * In case of error we will print a suitable message and exit.
1695 */
1696 #if defined(CONFIG_USE_GUEST_BASE)
1697 const char *errmsg;
1698 if (!have_guest_base && !reserved_va) {
1699 unsigned long host_start, real_start, host_size;
1700
1701 /* Round addresses to page boundaries. */
1702 loaddr &= qemu_host_page_mask;
1703 hiaddr = HOST_PAGE_ALIGN(hiaddr);
1704
1705 if (loaddr < mmap_min_addr) {
1706 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1707 } else {
1708 host_start = loaddr;
1709 if (host_start != loaddr) {
1710 errmsg = "Address overflow loading ELF binary";
1711 goto exit_errmsg;
1712 }
1713 }
1714 host_size = hiaddr - loaddr;
1715
1716 /* Setup the initial guest memory space with ranges gleaned from
1717 * the ELF image that is being loaded.
1718 */
1719 real_start = init_guest_space(host_start, host_size, loaddr, false);
1720 if (real_start == (unsigned long)-1) {
1721 errmsg = "Unable to find space for application";
1722 goto exit_errmsg;
1723 }
1724 guest_base = real_start - loaddr;
1725
1726 qemu_log("Relocating guest address space from 0x"
1727 TARGET_ABI_FMT_lx " to 0x%lx\n",
1728 loaddr, real_start);
1729 }
1730 return;
1731
1732 exit_errmsg:
1733 fprintf(stderr, "%s: %s\n", image_name, errmsg);
1734 exit(-1);
1735 #endif
1736 }
1737
1738
1739 /* Load an ELF image into the address space.
1740
1741 IMAGE_NAME is the filename of the image, to use in error messages.
1742 IMAGE_FD is the open file descriptor for the image.
1743
1744 BPRM_BUF is a copy of the beginning of the file; this of course
1745 contains the elf file header at offset 0. It is assumed that this
1746 buffer is sufficiently aligned to present no problems to the host
1747 in accessing data at aligned offsets within the buffer.
1748
1749 On return: INFO values will be filled in, as necessary or available. */
1750
1751 static void load_elf_image(const char *image_name, int image_fd,
1752 struct image_info *info, char **pinterp_name,
1753 char bprm_buf[BPRM_BUF_SIZE])
1754 {
1755 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1756 struct elf_phdr *phdr;
1757 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1758 int i, retval;
1759 const char *errmsg;
1760
1761 /* First of all, some simple consistency checks */
1762 errmsg = "Invalid ELF image for this architecture";
1763 if (!elf_check_ident(ehdr)) {
1764 goto exit_errmsg;
1765 }
1766 bswap_ehdr(ehdr);
1767 if (!elf_check_ehdr(ehdr)) {
1768 goto exit_errmsg;
1769 }
1770
1771 i = ehdr->e_phnum * sizeof(struct elf_phdr);
1772 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
1773 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
1774 } else {
1775 phdr = (struct elf_phdr *) alloca(i);
1776 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
1777 if (retval != i) {
1778 goto exit_read;
1779 }
1780 }
1781 bswap_phdr(phdr, ehdr->e_phnum);
1782
1783 #ifdef CONFIG_USE_FDPIC
1784 info->nsegs = 0;
1785 info->pt_dynamic_addr = 0;
1786 #endif
1787
1788 /* Find the maximum size of the image and allocate an appropriate
1789 amount of memory to handle that. */
1790 loaddr = -1, hiaddr = 0;
1791 for (i = 0; i < ehdr->e_phnum; ++i) {
1792 if (phdr[i].p_type == PT_LOAD) {
1793 abi_ulong a = phdr[i].p_vaddr;
1794 if (a < loaddr) {
1795 loaddr = a;
1796 }
1797 a += phdr[i].p_memsz;
1798 if (a > hiaddr) {
1799 hiaddr = a;
1800 }
1801 #ifdef CONFIG_USE_FDPIC
1802 ++info->nsegs;
1803 #endif
1804 }
1805 }
1806
1807 load_addr = loaddr;
1808 if (ehdr->e_type == ET_DYN) {
1809 /* The image indicates that it can be loaded anywhere. Find a
1810 location that can hold the memory space required. If the
1811 image is pre-linked, LOADDR will be non-zero. Since we do
1812 not supply MAP_FIXED here we'll use that address if and
1813 only if it remains available. */
1814 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
1815 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
1816 -1, 0);
1817 if (load_addr == -1) {
1818 goto exit_perror;
1819 }
1820 } else if (pinterp_name != NULL) {
1821 /* This is the main executable. Make sure that the low
1822 address does not conflict with MMAP_MIN_ADDR or the
1823 QEMU application itself. */
1824 probe_guest_base(image_name, loaddr, hiaddr);
1825 }
1826 load_bias = load_addr - loaddr;
1827
1828 #ifdef CONFIG_USE_FDPIC
1829 {
1830 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
1831 g_malloc(sizeof(*loadsegs) * info->nsegs);
1832
1833 for (i = 0; i < ehdr->e_phnum; ++i) {
1834 switch (phdr[i].p_type) {
1835 case PT_DYNAMIC:
1836 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
1837 break;
1838 case PT_LOAD:
1839 loadsegs->addr = phdr[i].p_vaddr + load_bias;
1840 loadsegs->p_vaddr = phdr[i].p_vaddr;
1841 loadsegs->p_memsz = phdr[i].p_memsz;
1842 ++loadsegs;
1843 break;
1844 }
1845 }
1846 }
1847 #endif
1848
1849 info->load_bias = load_bias;
1850 info->load_addr = load_addr;
1851 info->entry = ehdr->e_entry + load_bias;
1852 info->start_code = -1;
1853 info->end_code = 0;
1854 info->start_data = -1;
1855 info->end_data = 0;
1856 info->brk = 0;
1857 info->elf_flags = ehdr->e_flags;
1858
1859 for (i = 0; i < ehdr->e_phnum; i++) {
1860 struct elf_phdr *eppnt = phdr + i;
1861 if (eppnt->p_type == PT_LOAD) {
1862 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
1863 int elf_prot = 0;
1864
1865 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
1866 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1867 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
1868
1869 vaddr = load_bias + eppnt->p_vaddr;
1870 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
1871 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
1872
1873 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
1874 elf_prot, MAP_PRIVATE | MAP_FIXED,
1875 image_fd, eppnt->p_offset - vaddr_po);
1876 if (error == -1) {
1877 goto exit_perror;
1878 }
1879
1880 vaddr_ef = vaddr + eppnt->p_filesz;
1881 vaddr_em = vaddr + eppnt->p_memsz;
1882
1883 /* If the load segment requests extra zeros (e.g. bss), map it. */
1884 if (vaddr_ef < vaddr_em) {
1885 zero_bss(vaddr_ef, vaddr_em, elf_prot);
1886 }
1887
1888 /* Find the full program boundaries. */
1889 if (elf_prot & PROT_EXEC) {
1890 if (vaddr < info->start_code) {
1891 info->start_code = vaddr;
1892 }
1893 if (vaddr_ef > info->end_code) {
1894 info->end_code = vaddr_ef;
1895 }
1896 }
1897 if (elf_prot & PROT_WRITE) {
1898 if (vaddr < info->start_data) {
1899 info->start_data = vaddr;
1900 }
1901 if (vaddr_ef > info->end_data) {
1902 info->end_data = vaddr_ef;
1903 }
1904 if (vaddr_em > info->brk) {
1905 info->brk = vaddr_em;
1906 }
1907 }
1908 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
1909 char *interp_name;
1910
1911 if (*pinterp_name) {
1912 errmsg = "Multiple PT_INTERP entries";
1913 goto exit_errmsg;
1914 }
1915 interp_name = malloc(eppnt->p_filesz);
1916 if (!interp_name) {
1917 goto exit_perror;
1918 }
1919
1920 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
1921 memcpy(interp_name, bprm_buf + eppnt->p_offset,
1922 eppnt->p_filesz);
1923 } else {
1924 retval = pread(image_fd, interp_name, eppnt->p_filesz,
1925 eppnt->p_offset);
1926 if (retval != eppnt->p_filesz) {
1927 goto exit_perror;
1928 }
1929 }
1930 if (interp_name[eppnt->p_filesz - 1] != 0) {
1931 errmsg = "Invalid PT_INTERP entry";
1932 goto exit_errmsg;
1933 }
1934 *pinterp_name = interp_name;
1935 }
1936 }
1937
1938 if (info->end_data == 0) {
1939 info->start_data = info->end_code;
1940 info->end_data = info->end_code;
1941 info->brk = info->end_code;
1942 }
1943
1944 if (qemu_log_enabled()) {
1945 load_symbols(ehdr, image_fd, load_bias);
1946 }
1947
1948 close(image_fd);
1949 return;
1950
1951 exit_read:
1952 if (retval >= 0) {
1953 errmsg = "Incomplete read of file header";
1954 goto exit_errmsg;
1955 }
1956 exit_perror:
1957 errmsg = strerror(errno);
1958 exit_errmsg:
1959 fprintf(stderr, "%s: %s\n", image_name, errmsg);
1960 exit(-1);
1961 }
1962
1963 static void load_elf_interp(const char *filename, struct image_info *info,
1964 char bprm_buf[BPRM_BUF_SIZE])
1965 {
1966 int fd, retval;
1967
1968 fd = open(path(filename), O_RDONLY);
1969 if (fd < 0) {
1970 goto exit_perror;
1971 }
1972
1973 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
1974 if (retval < 0) {
1975 goto exit_perror;
1976 }
1977 if (retval < BPRM_BUF_SIZE) {
1978 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
1979 }
1980
1981 load_elf_image(filename, fd, info, NULL, bprm_buf);
1982 return;
1983
1984 exit_perror:
1985 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
1986 exit(-1);
1987 }
1988
1989 static int symfind(const void *s0, const void *s1)
1990 {
1991 target_ulong addr = *(target_ulong *)s0;
1992 struct elf_sym *sym = (struct elf_sym *)s1;
1993 int result = 0;
1994 if (addr < sym->st_value) {
1995 result = -1;
1996 } else if (addr >= sym->st_value + sym->st_size) {
1997 result = 1;
1998 }
1999 return result;
2000 }
2001
2002 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2003 {
2004 #if ELF_CLASS == ELFCLASS32
2005 struct elf_sym *syms = s->disas_symtab.elf32;
2006 #else
2007 struct elf_sym *syms = s->disas_symtab.elf64;
2008 #endif
2009
2010 // binary search
2011 struct elf_sym *sym;
2012
2013 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2014 if (sym != NULL) {
2015 return s->disas_strtab + sym->st_name;
2016 }
2017
2018 return "";
2019 }
2020
2021 /* FIXME: This should use elf_ops.h */
2022 static int symcmp(const void *s0, const void *s1)
2023 {
2024 struct elf_sym *sym0 = (struct elf_sym *)s0;
2025 struct elf_sym *sym1 = (struct elf_sym *)s1;
2026 return (sym0->st_value < sym1->st_value)
2027 ? -1
2028 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2029 }
2030
2031 /* Best attempt to load symbols from this ELF object. */
2032 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2033 {
2034 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2035 struct elf_shdr *shdr;
2036 char *strings = NULL;
2037 struct syminfo *s = NULL;
2038 struct elf_sym *new_syms, *syms = NULL;
2039
2040 shnum = hdr->e_shnum;
2041 i = shnum * sizeof(struct elf_shdr);
2042 shdr = (struct elf_shdr *)alloca(i);
2043 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2044 return;
2045 }
2046
2047 bswap_shdr(shdr, shnum);
2048 for (i = 0; i < shnum; ++i) {
2049 if (shdr[i].sh_type == SHT_SYMTAB) {
2050 sym_idx = i;
2051 str_idx = shdr[i].sh_link;
2052 goto found;
2053 }
2054 }
2055
2056 /* There will be no symbol table if the file was stripped. */
2057 return;
2058
2059 found:
2060 /* Now know where the strtab and symtab are. Snarf them. */
2061 s = malloc(sizeof(*s));
2062 if (!s) {
2063 goto give_up;
2064 }
2065
2066 i = shdr[str_idx].sh_size;
2067 s->disas_strtab = strings = malloc(i);
2068 if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
2069 goto give_up;
2070 }
2071
2072 i = shdr[sym_idx].sh_size;
2073 syms = malloc(i);
2074 if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
2075 goto give_up;
2076 }
2077
2078 nsyms = i / sizeof(struct elf_sym);
2079 for (i = 0; i < nsyms; ) {
2080 bswap_sym(syms + i);
2081 /* Throw away entries which we do not need. */
2082 if (syms[i].st_shndx == SHN_UNDEF
2083 || syms[i].st_shndx >= SHN_LORESERVE
2084 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2085 if (i < --nsyms) {
2086 syms[i] = syms[nsyms];
2087 }
2088 } else {
2089 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2090 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2091 syms[i].st_value &= ~(target_ulong)1;
2092 #endif
2093 syms[i].st_value += load_bias;
2094 i++;
2095 }
2096 }
2097
2098 /* No "useful" symbol. */
2099 if (nsyms == 0) {
2100 goto give_up;
2101 }
2102
2103 /* Attempt to free the storage associated with the local symbols
2104 that we threw away. Whether or not this has any effect on the
2105 memory allocation depends on the malloc implementation and how
2106 many symbols we managed to discard. */
2107 new_syms = realloc(syms, nsyms * sizeof(*syms));
2108 if (new_syms == NULL) {
2109 goto give_up;
2110 }
2111 syms = new_syms;
2112
2113 qsort(syms, nsyms, sizeof(*syms), symcmp);
2114
2115 s->disas_num_syms = nsyms;
2116 #if ELF_CLASS == ELFCLASS32
2117 s->disas_symtab.elf32 = syms;
2118 #else
2119 s->disas_symtab.elf64 = syms;
2120 #endif
2121 s->lookup_symbol = lookup_symbolxx;
2122 s->next = syminfos;
2123 syminfos = s;
2124
2125 return;
2126
2127 give_up:
2128 free(s);
2129 free(strings);
2130 free(syms);
2131 }
2132
2133 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2134 {
2135 struct image_info interp_info;
2136 struct elfhdr elf_ex;
2137 char *elf_interpreter = NULL;
2138
2139 info->start_mmap = (abi_ulong)ELF_START_MMAP;
2140 info->mmap = 0;
2141 info->rss = 0;
2142
2143 load_elf_image(bprm->filename, bprm->fd, info,
2144 &elf_interpreter, bprm->buf);
2145
2146 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2147 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2148 when we load the interpreter. */
2149 elf_ex = *(struct elfhdr *)bprm->buf;
2150
2151 bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p);
2152 bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p);
2153 bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p);
2154 if (!bprm->p) {
2155 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2156 exit(-1);
2157 }
2158
2159 /* Do this so that we can load the interpreter, if need be. We will
2160 change some of these later */
2161 bprm->p = setup_arg_pages(bprm->p, bprm, info);
2162
2163 if (elf_interpreter) {
2164 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2165
2166 /* If the program interpreter is one of these two, then assume
2167 an iBCS2 image. Otherwise assume a native linux image. */
2168
2169 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2170 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2171 info->personality = PER_SVR4;
2172
2173 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2174 and some applications "depend" upon this behavior. Since
2175 we do not have the power to recompile these, we emulate
2176 the SVr4 behavior. Sigh. */
2177 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2178 MAP_FIXED | MAP_PRIVATE, -1, 0);
2179 }
2180 }
2181
2182 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2183 info, (elf_interpreter ? &interp_info : NULL));
2184 info->start_stack = bprm->p;
2185
2186 /* If we have an interpreter, set that as the program's entry point.
2187 Copy the load_bias as well, to help PPC64 interpret the entry
2188 point as a function descriptor. Do this after creating elf tables
2189 so that we copy the original program entry point into the AUXV. */
2190 if (elf_interpreter) {
2191 info->load_bias = interp_info.load_bias;
2192 info->entry = interp_info.entry;
2193 free(elf_interpreter);
2194 }
2195
2196 #ifdef USE_ELF_CORE_DUMP
2197 bprm->core_dump = &elf_core_dump;
2198 #endif
2199
2200 return 0;
2201 }
2202
2203 #ifdef USE_ELF_CORE_DUMP
2204 /*
2205 * Definitions to generate Intel SVR4-like core files.
2206 * These mostly have the same names as the SVR4 types with "target_elf_"
2207 * tacked on the front to prevent clashes with linux definitions,
2208 * and the typedef forms have been avoided. This is mostly like
2209 * the SVR4 structure, but more Linuxy, with things that Linux does
2210 * not support and which gdb doesn't really use excluded.
2211 *
2212 * Fields we don't dump (their contents is zero) in linux-user qemu
2213 * are marked with XXX.
2214 *
2215 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2216 *
2217 * Porting ELF coredump for target is (quite) simple process. First you
2218 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2219 * the target resides):
2220 *
2221 * #define USE_ELF_CORE_DUMP
2222 *
2223 * Next you define type of register set used for dumping. ELF specification
2224 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2225 *
2226 * typedef <target_regtype> target_elf_greg_t;
2227 * #define ELF_NREG <number of registers>
2228 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2229 *
2230 * Last step is to implement target specific function that copies registers
2231 * from given cpu into just specified register set. Prototype is:
2232 *
2233 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2234 * const CPUArchState *env);
2235 *
2236 * Parameters:
2237 * regs - copy register values into here (allocated and zeroed by caller)
2238 * env - copy registers from here
2239 *
2240 * Example for ARM target is provided in this file.
2241 */
2242
2243 /* An ELF note in memory */
2244 struct memelfnote {
2245 const char *name;
2246 size_t namesz;
2247 size_t namesz_rounded;
2248 int type;
2249 size_t datasz;
2250 size_t datasz_rounded;
2251 void *data;
2252 size_t notesz;
2253 };
2254
2255 struct target_elf_siginfo {
2256 abi_int si_signo; /* signal number */
2257 abi_int si_code; /* extra code */
2258 abi_int si_errno; /* errno */
2259 };
2260
2261 struct target_elf_prstatus {
2262 struct target_elf_siginfo pr_info; /* Info associated with signal */
2263 abi_short pr_cursig; /* Current signal */
2264 abi_ulong pr_sigpend; /* XXX */
2265 abi_ulong pr_sighold; /* XXX */
2266 target_pid_t pr_pid;
2267 target_pid_t pr_ppid;
2268 target_pid_t pr_pgrp;
2269 target_pid_t pr_sid;
2270 struct target_timeval pr_utime; /* XXX User time */
2271 struct target_timeval pr_stime; /* XXX System time */
2272 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2273 struct target_timeval pr_cstime; /* XXX Cumulative system time */
2274 target_elf_gregset_t pr_reg; /* GP registers */
2275 abi_int pr_fpvalid; /* XXX */
2276 };
2277
2278 #define ELF_PRARGSZ (80) /* Number of chars for args */
2279
2280 struct target_elf_prpsinfo {
2281 char pr_state; /* numeric process state */
2282 char pr_sname; /* char for pr_state */
2283 char pr_zomb; /* zombie */
2284 char pr_nice; /* nice val */
2285 abi_ulong pr_flag; /* flags */
2286 target_uid_t pr_uid;
2287 target_gid_t pr_gid;
2288 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2289 /* Lots missing */
2290 char pr_fname[16]; /* filename of executable */
2291 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2292 };
2293
2294 /* Here is the structure in which status of each thread is captured. */
2295 struct elf_thread_status {
2296 QTAILQ_ENTRY(elf_thread_status) ets_link;
2297 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
2298 #if 0
2299 elf_fpregset_t fpu; /* NT_PRFPREG */
2300 struct task_struct *thread;
2301 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2302 #endif
2303 struct memelfnote notes[1];
2304 int num_notes;
2305 };
2306
2307 struct elf_note_info {
2308 struct memelfnote *notes;
2309 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2310 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
2311
2312 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2313 #if 0
2314 /*
2315 * Current version of ELF coredump doesn't support
2316 * dumping fp regs etc.
2317 */
2318 elf_fpregset_t *fpu;
2319 elf_fpxregset_t *xfpu;
2320 int thread_status_size;
2321 #endif
2322 int notes_size;
2323 int numnote;
2324 };
2325
2326 struct vm_area_struct {
2327 abi_ulong vma_start; /* start vaddr of memory region */
2328 abi_ulong vma_end; /* end vaddr of memory region */
2329 abi_ulong vma_flags; /* protection etc. flags for the region */
2330 QTAILQ_ENTRY(vm_area_struct) vma_link;
2331 };
2332
2333 struct mm_struct {
2334 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2335 int mm_count; /* number of mappings */
2336 };
2337
2338 static struct mm_struct *vma_init(void);
2339 static void vma_delete(struct mm_struct *);
2340 static int vma_add_mapping(struct mm_struct *, abi_ulong,
2341 abi_ulong, abi_ulong);
2342 static int vma_get_mapping_count(const struct mm_struct *);
2343 static struct vm_area_struct *vma_first(const struct mm_struct *);
2344 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2345 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2346 static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
2347 unsigned long flags);
2348
2349 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2350 static void fill_note(struct memelfnote *, const char *, int,
2351 unsigned int, void *);
2352 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2353 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2354 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2355 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2356 static size_t note_size(const struct memelfnote *);
2357 static void free_note_info(struct elf_note_info *);
2358 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2359 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2360 static int core_dump_filename(const TaskState *, char *, size_t);
2361
2362 static int dump_write(int, const void *, size_t);
2363 static int write_note(struct memelfnote *, int);
2364 static int write_note_info(struct elf_note_info *, int);
2365
2366 #ifdef BSWAP_NEEDED
2367 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2368 {
2369 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2370 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2371 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2372 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2373 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2374 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2375 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2376 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2377 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2378 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2379 /* cpu times are not filled, so we skip them */
2380 /* regs should be in correct format already */
2381 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2382 }
2383
2384 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2385 {
2386 psinfo->pr_flag = tswapal(psinfo->pr_flag);
2387 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2388 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2389 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2390 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2391 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2392 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2393 }
2394
2395 static void bswap_note(struct elf_note *en)
2396 {
2397 bswap32s(&en->n_namesz);
2398 bswap32s(&en->n_descsz);
2399 bswap32s(&en->n_type);
2400 }
2401 #else
2402 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2403 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2404 static inline void bswap_note(struct elf_note *en) { }
2405 #endif /* BSWAP_NEEDED */
2406
2407 /*
2408 * Minimal support for linux memory regions. These are needed
2409 * when we are finding out what memory exactly belongs to
2410 * emulated process. No locks needed here, as long as
2411 * thread that received the signal is stopped.
2412 */
2413
2414 static struct mm_struct *vma_init(void)
2415 {
2416 struct mm_struct *mm;
2417
2418 if ((mm = g_malloc(sizeof (*mm))) == NULL)
2419 return (NULL);
2420
2421 mm->mm_count = 0;
2422 QTAILQ_INIT(&mm->mm_mmap);
2423
2424 return (mm);
2425 }
2426
2427 static void vma_delete(struct mm_struct *mm)
2428 {
2429 struct vm_area_struct *vma;
2430
2431 while ((vma = vma_first(mm)) != NULL) {
2432 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2433 g_free(vma);
2434 }
2435 g_free(mm);
2436 }
2437
2438 static int vma_add_mapping(struct mm_struct *mm, abi_ulong start,
2439 abi_ulong end, abi_ulong flags)
2440 {
2441 struct vm_area_struct *vma;
2442
2443 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2444 return (-1);
2445
2446 vma->vma_start = start;
2447 vma->vma_end = end;
2448 vma->vma_flags = flags;
2449
2450 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2451 mm->mm_count++;
2452
2453 return (0);
2454 }
2455
2456 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2457 {
2458 return (QTAILQ_FIRST(&mm->mm_mmap));
2459 }
2460
2461 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2462 {
2463 return (QTAILQ_NEXT(vma, vma_link));
2464 }
2465
2466 static int vma_get_mapping_count(const struct mm_struct *mm)
2467 {
2468 return (mm->mm_count);
2469 }
2470
2471 /*
2472 * Calculate file (dump) size of given memory region.
2473 */
2474 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2475 {
2476 /* if we cannot even read the first page, skip it */
2477 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2478 return (0);
2479
2480 /*
2481 * Usually we don't dump executable pages as they contain
2482 * non-writable code that debugger can read directly from
2483 * target library etc. However, thread stacks are marked
2484 * also executable so we read in first page of given region
2485 * and check whether it contains elf header. If there is
2486 * no elf header, we dump it.
2487 */
2488 if (vma->vma_flags & PROT_EXEC) {
2489 char page[TARGET_PAGE_SIZE];
2490
2491 copy_from_user(page, vma->vma_start, sizeof (page));
2492 if ((page[EI_MAG0] == ELFMAG0) &&
2493 (page[EI_MAG1] == ELFMAG1) &&
2494 (page[EI_MAG2] == ELFMAG2) &&
2495 (page[EI_MAG3] == ELFMAG3)) {
2496 /*
2497 * Mappings are possibly from ELF binary. Don't dump
2498 * them.
2499 */
2500 return (0);
2501 }
2502 }
2503
2504 return (vma->vma_end - vma->vma_start);
2505 }
2506
2507 static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
2508 unsigned long flags)
2509 {
2510 struct mm_struct *mm = (struct mm_struct *)priv;
2511
2512 vma_add_mapping(mm, start, end, flags);
2513 return (0);
2514 }
2515
2516 static void fill_note(struct memelfnote *note, const char *name, int type,
2517 unsigned int sz, void *data)
2518 {
2519 unsigned int namesz;
2520
2521 namesz = strlen(name) + 1;
2522 note->name = name;
2523 note->namesz = namesz;
2524 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2525 note->type = type;
2526 note->datasz = sz;
2527 note->datasz_rounded = roundup(sz, sizeof (int32_t));
2528
2529 note->data = data;
2530
2531 /*
2532 * We calculate rounded up note size here as specified by
2533 * ELF document.
2534 */
2535 note->notesz = sizeof (struct elf_note) +
2536 note->namesz_rounded + note->datasz_rounded;
2537 }
2538
2539 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2540 uint32_t flags)
2541 {
2542 (void) memset(elf, 0, sizeof(*elf));
2543
2544 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2545 elf->e_ident[EI_CLASS] = ELF_CLASS;
2546 elf->e_ident[EI_DATA] = ELF_DATA;
2547 elf->e_ident[EI_VERSION] = EV_CURRENT;
2548 elf->e_ident[EI_OSABI] = ELF_OSABI;
2549
2550 elf->e_type = ET_CORE;
2551 elf->e_machine = machine;
2552 elf->e_version = EV_CURRENT;
2553 elf->e_phoff = sizeof(struct elfhdr);
2554 elf->e_flags = flags;
2555 elf->e_ehsize = sizeof(struct elfhdr);
2556 elf->e_phentsize = sizeof(struct elf_phdr);
2557 elf->e_phnum = segs;
2558
2559 bswap_ehdr(elf);
2560 }
2561
2562 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2563 {
2564 phdr->p_type = PT_NOTE;
2565 phdr->p_offset = offset;
2566 phdr->p_vaddr = 0;
2567 phdr->p_paddr = 0;
2568 phdr->p_filesz = sz;
2569 phdr->p_memsz = 0;
2570 phdr->p_flags = 0;
2571 phdr->p_align = 0;
2572
2573 bswap_phdr(phdr, 1);
2574 }
2575
2576 static size_t note_size(const struct memelfnote *note)
2577 {
2578 return (note->notesz);
2579 }
2580
2581 static void fill_prstatus(struct target_elf_prstatus *prstatus,
2582 const TaskState *ts, int signr)
2583 {
2584 (void) memset(prstatus, 0, sizeof (*prstatus));
2585 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2586 prstatus->pr_pid = ts->ts_tid;
2587 prstatus->pr_ppid = getppid();
2588 prstatus->pr_pgrp = getpgrp();
2589 prstatus->pr_sid = getsid(0);
2590
2591 bswap_prstatus(prstatus);
2592 }
2593
2594 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
2595 {
2596 char *base_filename;
2597 unsigned int i, len;
2598
2599 (void) memset(psinfo, 0, sizeof (*psinfo));
2600
2601 len = ts->info->arg_end - ts->info->arg_start;
2602 if (len >= ELF_PRARGSZ)
2603 len = ELF_PRARGSZ - 1;
2604 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2605 return -EFAULT;
2606 for (i = 0; i < len; i++)
2607 if (psinfo->pr_psargs[i] == 0)
2608 psinfo->pr_psargs[i] = ' ';
2609 psinfo->pr_psargs[len] = 0;
2610
2611 psinfo->pr_pid = getpid();
2612 psinfo->pr_ppid = getppid();
2613 psinfo->pr_pgrp = getpgrp();
2614 psinfo->pr_sid = getsid(0);
2615 psinfo->pr_uid = getuid();
2616 psinfo->pr_gid = getgid();
2617
2618 base_filename = g_path_get_basename(ts->bprm->filename);
2619 /*
2620 * Using strncpy here is fine: at max-length,
2621 * this field is not NUL-terminated.
2622 */
2623 (void) strncpy(psinfo->pr_fname, base_filename,
2624 sizeof(psinfo->pr_fname));
2625
2626 g_free(base_filename);
2627 bswap_psinfo(psinfo);
2628 return (0);
2629 }
2630
2631 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2632 {
2633 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2634 elf_addr_t orig_auxv = auxv;
2635 void *ptr;
2636 int len = ts->info->auxv_len;
2637
2638 /*
2639 * Auxiliary vector is stored in target process stack. It contains
2640 * {type, value} pairs that we need to dump into note. This is not
2641 * strictly necessary but we do it here for sake of completeness.
2642 */
2643
2644 /* read in whole auxv vector and copy it to memelfnote */
2645 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2646 if (ptr != NULL) {
2647 fill_note(note, "CORE", NT_AUXV, len, ptr);
2648 unlock_user(ptr, auxv, len);
2649 }
2650 }
2651
2652 /*
2653 * Constructs name of coredump file. We have following convention
2654 * for the name:
2655 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2656 *
2657 * Returns 0 in case of success, -1 otherwise (errno is set).
2658 */
2659 static int core_dump_filename(const TaskState *ts, char *buf,
2660 size_t bufsize)
2661 {
2662 char timestamp[64];
2663 char *filename = NULL;
2664 char *base_filename = NULL;
2665 struct timeval tv;
2666 struct tm tm;
2667
2668 assert(bufsize >= PATH_MAX);
2669
2670 if (gettimeofday(&tv, NULL) < 0) {
2671 (void) fprintf(stderr, "unable to get current timestamp: %s",
2672 strerror(errno));
2673 return (-1);
2674 }
2675
2676 filename = strdup(ts->bprm->filename);
2677 base_filename = strdup(basename(filename));
2678 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
2679 localtime_r(&tv.tv_sec, &tm));
2680 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
2681 base_filename, timestamp, (int)getpid());
2682 free(base_filename);
2683 free(filename);
2684
2685 return (0);
2686 }
2687
2688 static int dump_write(int fd, const void *ptr, size_t size)
2689 {
2690 const char *bufp = (const char *)ptr;
2691 ssize_t bytes_written, bytes_left;
2692 struct rlimit dumpsize;
2693 off_t pos;
2694
2695 bytes_written = 0;
2696 getrlimit(RLIMIT_CORE, &dumpsize);
2697 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2698 if (errno == ESPIPE) { /* not a seekable stream */
2699 bytes_left = size;
2700 } else {
2701 return pos;
2702 }
2703 } else {
2704 if (dumpsize.rlim_cur <= pos) {
2705 return -1;
2706 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2707 bytes_left = size;
2708 } else {
2709 size_t limit_left=dumpsize.rlim_cur - pos;
2710 bytes_left = limit_left >= size ? size : limit_left ;
2711 }
2712 }
2713
2714 /*
2715 * In normal conditions, single write(2) should do but
2716 * in case of socket etc. this mechanism is more portable.
2717 */
2718 do {
2719 bytes_written = write(fd, bufp, bytes_left);
2720 if (bytes_written < 0) {
2721 if (errno == EINTR)
2722 continue;
2723 return (-1);
2724 } else if (bytes_written == 0) { /* eof */
2725 return (-1);
2726 }
2727 bufp += bytes_written;
2728 bytes_left -= bytes_written;
2729 } while (bytes_left > 0);
2730
2731 return (0);
2732 }
2733
2734 static int write_note(struct memelfnote *men, int fd)
2735 {
2736 struct elf_note en;
2737
2738 en.n_namesz = men->namesz;
2739 en.n_type = men->type;
2740 en.n_descsz = men->datasz;
2741
2742 bswap_note(&en);
2743
2744 if (dump_write(fd, &en, sizeof(en)) != 0)
2745 return (-1);
2746 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2747 return (-1);
2748 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
2749 return (-1);
2750
2751 return (0);
2752 }
2753
2754 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
2755 {
2756 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2757 TaskState *ts = (TaskState *)cpu->opaque;
2758 struct elf_thread_status *ets;
2759
2760 ets = g_malloc0(sizeof (*ets));
2761 ets->num_notes = 1; /* only prstatus is dumped */
2762 fill_prstatus(&ets->prstatus, ts, 0);
2763 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2764 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
2765 &ets->prstatus);
2766
2767 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
2768
2769 info->notes_size += note_size(&ets->notes[0]);
2770 }
2771
2772 static void init_note_info(struct elf_note_info *info)
2773 {
2774 /* Initialize the elf_note_info structure so that it is at
2775 * least safe to call free_note_info() on it. Must be
2776 * called before calling fill_note_info().
2777 */
2778 memset(info, 0, sizeof (*info));
2779 QTAILQ_INIT(&info->thread_list);
2780 }
2781
2782 static int fill_note_info(struct elf_note_info *info,
2783 long signr, const CPUArchState *env)
2784 {
2785 #define NUMNOTES 3
2786 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2787 TaskState *ts = (TaskState *)cpu->opaque;
2788 int i;
2789
2790 info->notes = g_malloc0(NUMNOTES * sizeof (struct memelfnote));
2791 if (info->notes == NULL)
2792 return (-ENOMEM);
2793 info->prstatus = g_malloc0(sizeof (*info->prstatus));
2794 if (info->prstatus == NULL)
2795 return (-ENOMEM);
2796 info->psinfo = g_malloc0(sizeof (*info->psinfo));
2797 if (info->prstatus == NULL)
2798 return (-ENOMEM);
2799
2800 /*
2801 * First fill in status (and registers) of current thread
2802 * including process info & aux vector.
2803 */
2804 fill_prstatus(info->prstatus, ts, signr);
2805 elf_core_copy_regs(&info->prstatus->pr_reg, env);
2806 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
2807 sizeof (*info->prstatus), info->prstatus);
2808 fill_psinfo(info->psinfo, ts);
2809 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
2810 sizeof (*info->psinfo), info->psinfo);
2811 fill_auxv_note(&info->notes[2], ts);
2812 info->numnote = 3;
2813
2814 info->notes_size = 0;
2815 for (i = 0; i < info->numnote; i++)
2816 info->notes_size += note_size(&info->notes[i]);
2817
2818 /* read and fill status of all threads */
2819 cpu_list_lock();
2820 CPU_FOREACH(cpu) {
2821 if (cpu == thread_cpu) {
2822 continue;
2823 }
2824 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
2825 }
2826 cpu_list_unlock();
2827
2828 return (0);
2829 }
2830
2831 static void free_note_info(struct elf_note_info *info)
2832 {
2833 struct elf_thread_status *ets;
2834
2835 while (!QTAILQ_EMPTY(&info->thread_list)) {
2836 ets = QTAILQ_FIRST(&info->thread_list);
2837 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
2838 g_free(ets);
2839 }
2840
2841 g_free(info->prstatus);
2842 g_free(info->psinfo);
2843 g_free(info->notes);
2844 }
2845
2846 static int write_note_info(struct elf_note_info *info, int fd)
2847 {
2848 struct elf_thread_status *ets;
2849 int i, error = 0;
2850
2851 /* write prstatus, psinfo and auxv for current thread */
2852 for (i = 0; i < info->numnote; i++)
2853 if ((error = write_note(&info->notes[i], fd)) != 0)
2854 return (error);
2855
2856 /* write prstatus for each thread */
2857 for (ets = info->thread_list.tqh_first; ets != NULL;
2858 ets = ets->ets_link.tqe_next) {
2859 if ((error = write_note(&ets->notes[0], fd)) != 0)
2860 return (error);
2861 }
2862
2863 return (0);
2864 }
2865
2866 /*
2867 * Write out ELF coredump.
2868 *
2869 * See documentation of ELF object file format in:
2870 * http://www.caldera.com/developers/devspecs/gabi41.pdf
2871 *
2872 * Coredump format in linux is following:
2873 *
2874 * 0 +----------------------+ \
2875 * | ELF header | ET_CORE |
2876 * +----------------------+ |
2877 * | ELF program headers | |--- headers
2878 * | - NOTE section | |
2879 * | - PT_LOAD sections | |
2880 * +----------------------+ /
2881 * | NOTEs: |
2882 * | - NT_PRSTATUS |
2883 * | - NT_PRSINFO |
2884 * | - NT_AUXV |
2885 * +----------------------+ <-- aligned to target page
2886 * | Process memory dump |
2887 * : :
2888 * . .
2889 * : :
2890 * | |
2891 * +----------------------+
2892 *
2893 * NT_PRSTATUS -> struct elf_prstatus (per thread)
2894 * NT_PRSINFO -> struct elf_prpsinfo
2895 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2896 *
2897 * Format follows System V format as close as possible. Current
2898 * version limitations are as follows:
2899 * - no floating point registers are dumped
2900 *
2901 * Function returns 0 in case of success, negative errno otherwise.
2902 *
2903 * TODO: make this work also during runtime: it should be
2904 * possible to force coredump from running process and then
2905 * continue processing. For example qemu could set up SIGUSR2
2906 * handler (provided that target process haven't registered
2907 * handler for that) that does the dump when signal is received.
2908 */
2909 static int elf_core_dump(int signr, const CPUArchState *env)
2910 {
2911 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2912 const TaskState *ts = (const TaskState *)cpu->opaque;
2913 struct vm_area_struct *vma = NULL;
2914 char corefile[PATH_MAX];
2915 struct elf_note_info info;
2916 struct elfhdr elf;
2917 struct elf_phdr phdr;
2918 struct rlimit dumpsize;
2919 struct mm_struct *mm = NULL;
2920 off_t offset = 0, data_offset = 0;
2921 int segs = 0;
2922 int fd = -1;
2923
2924 init_note_info(&info);
2925
2926 errno = 0;
2927 getrlimit(RLIMIT_CORE, &dumpsize);
2928 if (dumpsize.rlim_cur == 0)
2929 return 0;
2930
2931 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
2932 return (-errno);
2933
2934 if ((fd = open(corefile, O_WRONLY | O_CREAT,
2935 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
2936 return (-errno);
2937
2938 /*
2939 * Walk through target process memory mappings and
2940 * set up structure containing this information. After
2941 * this point vma_xxx functions can be used.
2942 */
2943 if ((mm = vma_init()) == NULL)
2944 goto out;
2945
2946 walk_memory_regions(mm, vma_walker);
2947 segs = vma_get_mapping_count(mm);
2948
2949 /*
2950 * Construct valid coredump ELF header. We also
2951 * add one more segment for notes.
2952 */
2953 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
2954 if (dump_write(fd, &elf, sizeof (elf)) != 0)
2955 goto out;
2956
2957 /* fill in in-memory version of notes */
2958 if (fill_note_info(&info, signr, env) < 0)
2959 goto out;
2960
2961 offset += sizeof (elf); /* elf header */
2962 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
2963
2964 /* write out notes program header */
2965 fill_elf_note_phdr(&phdr, info.notes_size, offset);
2966
2967 offset += info.notes_size;
2968 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
2969 goto out;
2970
2971 /*
2972 * ELF specification wants data to start at page boundary so
2973 * we align it here.
2974 */
2975 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2976
2977 /*
2978 * Write program headers for memory regions mapped in
2979 * the target process.
2980 */
2981 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2982 (void) memset(&phdr, 0, sizeof (phdr));
2983
2984 phdr.p_type = PT_LOAD;
2985 phdr.p_offset = offset;
2986 phdr.p_vaddr = vma->vma_start;
2987 phdr.p_paddr = 0;
2988 phdr.p_filesz = vma_dump_size(vma);
2989 offset += phdr.p_filesz;
2990 phdr.p_memsz = vma->vma_end - vma->vma_start;
2991 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
2992 if (vma->vma_flags & PROT_WRITE)
2993 phdr.p_flags |= PF_W;
2994 if (vma->vma_flags & PROT_EXEC)
2995 phdr.p_flags |= PF_X;
2996 phdr.p_align = ELF_EXEC_PAGESIZE;
2997
2998 bswap_phdr(&phdr, 1);
2999 dump_write(fd, &phdr, sizeof (phdr));
3000 }
3001
3002 /*
3003 * Next we write notes just after program headers. No
3004 * alignment needed here.
3005 */
3006 if (write_note_info(&info, fd) < 0)
3007 goto out;
3008
3009 /* align data to page boundary */
3010 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3011 goto out;
3012
3013 /*
3014 * Finally we can dump process memory into corefile as well.
3015 */
3016 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3017 abi_ulong addr;
3018 abi_ulong end;
3019
3020 end = vma->vma_start + vma_dump_size(vma);
3021
3022 for (addr = vma->vma_start; addr < end;
3023 addr += TARGET_PAGE_SIZE) {
3024 char page[TARGET_PAGE_SIZE];
3025 int error;
3026
3027 /*
3028 * Read in page from target process memory and
3029 * write it to coredump file.
3030 */
3031 error = copy_from_user(page, addr, sizeof (page));
3032 if (error != 0) {
3033 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3034 addr);
3035 errno = -error;
3036 goto out;
3037 }
3038 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3039 goto out;
3040 }
3041 }
3042
3043 out:
3044 free_note_info(&info);
3045 if (mm != NULL)
3046 vma_delete(mm);
3047 (void) close(fd);
3048
3049 if (errno != 0)
3050 return (-errno);
3051 return (0);
3052 }
3053 #endif /* USE_ELF_CORE_DUMP */
3054
3055 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3056 {
3057 init_thread(regs, infop);
3058 }